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Abstract
We discuss recent results giving algorithms for learning mixtures of unstructured distributions.
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Summary

The past decade or so has witnessed tremendous progress in the theory of learning statistical
mixture models. The most striking example is that of learning mixtures of high dimen-
sional Gaussians. Starting from Dasgupta’s ground-breaking paper [14], a long sequence
of improvements [15, 5, 27, 21, 1, 17, 8] culminated in the recent results [20, 7, 23] that
essentially resolve the problem in its general form. In this vein, other highly structured
mixture models, such as mixtures of discrete product distributions [22, 19, 12, 18, 9, 11] and
similar models [12, 6, 24, 21, 13, 10, 16], have been studied intensively.

Here we discuss recent results giving algorithms for learning mixtures of unstructured
distributions. More specifically, we consider the problem of learning mixtures of k arbitrary
distributions over a large discrete domain [n] = {1, 2, . . . , n}. This problem arises in various
unsupervised learning scenarios, for example in learning topic models from a corpus of
documents spanning several topics. We discuss the goal of learning the probabilistic model
that is hypothesized to generate the observed data, in particular the constituents (each topic
distribution) of the mixture. It is information-theoretically impossible to reconstruct the
mixture model from single-view samples (e.g., single word documents). Thus, multi-view
access is necessary. It is desirable to minimize the aperture or number of views in each sample
point, as well as the number of sample points needed, as these parameters govern both
the applicability of an algorithm and its computational complexity. We will survey some
of the results in recent papers [4, 2, 3], as well as our joint work with L.J. Schulman and
C. Swamy [25, 26]. In particular, we will discuss some of the tools that contribute to these
results, in brief: concentration results for random matrices, SVD and other factorizations,
dimension reduction, moment estimations, and sensitivity analysis.

References
1 D. Achlioptas and F. McSherry. On spectral learning of mixtures of distributions. In Proc.

of the 18th Ann. Conf. on Learning Theory, pages 458–469, June 2005.

© Yuval Rabani;
licensed under Creative Commons License BY

32nd Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012).
Editors: D. D’Souza, J. Radhakrishnan, and K. Telikepalli; pp. 1–3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 Learning Mixtures

2 A. Anandkumar, D.P. Foster, D. Hsu, S.M. Kakade, and Y.-K. Liu. Two SVDs suffice:
Spectral decompositions for probabilistic topic modeling and latent Dirichlet allocation.
CoRR, abs/1204.6703, 2012.

3 A. Anandkumar, D. Hsu, and S.M. Kakade. A method of moments for mixture models and
hidden Markov models. CoRR, abs/1203.0683, 2012.

4 S. Arora, R. Ge, and A. Moitra. Learning topic models — going beyond SVD. CoRR,
abs/1204.1956, 2012.

5 S. Arora and R. Kannan. Learning mixtures of separated nonspherical Gaussians. Ann.
Appl. Probab., 15(1A):69–92, 2005.

6 T. Batu, S. Guha, and S. Kannan. Inferring mixtures of Markov chains. In Proc. of the
17th Ann. Conf. on Learning Theory, pages 186–199, July 2004.

7 M. Belkin and K. Sinha. Polynomial learning of distribution families. In Proc. of the 51st
Ann. IEEE Symp. on Foundations of Computer Science, pages 103–112, October 2010.

8 S.C. Brubaker and S. Vempala. Isotropic PCA and affine-invariant clustering. In Proc. of
the 49th Ann. IEEE Symp. on Foundations of Computer Science, pages 551–560, October
2008.

9 K. Chaudhuri, E. Halperin, S. Rao, and S. Zhou. A rigorous analysis of population strat-
ification with limited data. In Proc. of the 18th Ann. ACM-SIAM Symp. on Discrete
Algorithms, pages 1046–1055, January 2007.

10 K. Chaudhuri and S. Rao. Beyond Gaussians: Spectral methods for learning mixtures
of heavy-tailed distributions. In Proc. of the 21st Ann. Conf. on Learning Theory, pages
21–32, July 2008.

11 K. Chaudhuri and S. Rao. Learning mixtures of product distributions using correlations
and independence. In Proc. of the 21st Ann. Conf. on Learning Theory, pages 9–20, July
2008.

12 M. Cryan, L. Goldberg, and P. Goldberg. Evolutionary trees can be learned in polynomial
time in the two state general Markov model. SIAM J. Comput., 31(2):375–397, 2002.

13 A. Dasgupta, J. Hopcroft, J. Kleinberg, and M. Sandler. On learning mixtures of heavy-
tailed distributions. In Proc. of the 46th Ann. IEEE Symp. on Foundations of Computer
Science, pages 491–500, October 2005.

14 S. Dasgupta. Learning mixtures of Gaussians. In Proc. of the 40th Ann. Symp. on Found-
ations of Computer Science, pages 634–644, October 1999.

15 S. Dasgupta and L.J. Schulman. A probabilistic analysis of EM for mixtures of separated,
spherical Gaussians. Journal of Machine Learning Research, 8:203–226, 2007.

16 C. Daskalakis, I. Diakonikolas, and R.A. Servedio. Learning k-modal distributions via
testing. In Proc. of the 23rd Ann. ACM-SIAM Symp. on Discrete Algorithms, pages 1371–
1385, January 2012.

17 J. Feldman, R. O’Donnell, and R.A. Servedio. PAC learning mixtures of axis-aligned
Gaussians with no separation assumption. In Proc. of the 19th Ann. Conf. on Learning
Theory, pages 20–34, June 2006.

18 J. Feldman, R. O’Donnell, and R.A. Servedio. Learning mixtures of product distributions
over discrete domains. SIAM J. Comput., 37(5):1536–1564, 2008.

19 Y. Freund and Y. Mansour. Estimating a mixture of two product distributions. In Proc.
of the 12th Ann. Conf. on Computational Learning Theory, pages 183–192, July 1999.

20 A.T. Kalai, A. Moitra, and G. Valiant. Efficiently learning mixtures of two Gaussians. In
Proc. of the 42nd Ann. ACM Symp. on Theory of Computing, pages 553–562, June 2010.

21 R. Kannan, H. Salmasian, and S. Vempala. The spectral method for general mixture models.
SIAM J. Comput., 38(3):1141–1156, 2008.



Y. Rabani 3

22 M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. Schapire, and L. Sellie. On the learnabil-
ity of discrete distributions. In Proc. of the 26th Ann. ACM Symp. on Theory of Computing,
pages 273–282, May 1994.

23 A. Moitra and G. Valiant. Settling the polynomial learnability of mixtures of Gaussians.
In Proc. of the 51st Ann. IEEE Symp. on Foundations of Computer Science, pages 93–102,
2010.

24 E. Mossel and S. Roch. Learning nonsingular phylogenies and hidden Markov models. In
Proc. of the 37th Ann. ACM Symp. on Theory of Computing, pages 366–375, May 2005.

25 Y. Rabani, L.J. Schulman, and C. Swamy. Inference from sparse sampling.
http://www.cs.technion.ac.il/˜rabani/Papers/RabaniSS-manuscript.pdf, 2008.

26 Y. Rabani, L.J. Schulman, and C. Swamy. Learning mixtures of arbitrary distributions
over large discrete domains. Unpublished, 2012.

27 S. Vempala and G. Wang. A spectral algorithm for learning mixtures of distributions. J.
Computer and System Sciences, 68(4):841–860, 2004.

FSTTCS 2012


