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Abstract
The Lovász Local Lemma (LLL) is a powerful tool that can be used to prove that an object

having none of a set of bad properties exists, using the probabilistic method. In many applications
of the LLL it is also desirable to explicitly construct the combinatorial object. Recently it was
shown that this is possible using a randomized algorithm in the full asymmetric LLL setting [R.
Moser and G. Tardos, 2010]. A strengthening of the LLL for the case of dense local neighborhoods
proved in [R. Bissacot et al., 2010] was recently also made constructive in [W. Pegden, 2011]. In
another recent work [B. Haupler, B. Saha, A. Srinivasan, 2010], it was proved that the algorithm
of Moser and Tardos is still efficient even when the number of events is exponential. Here we
prove that these last two contributions can be combined to yield a new version of the LLL.
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1 Introduction

The Lovász Local Lemma (LLL) [4] states that if one has a collection A of “bad” events in
a probability space and each event is independent of all but “a few” other events in A, then
the probability that none of the bad events occurs is bounded away from 0. (We will give a
precise and constructive statement shortly.)

Over the years there have been numerous efforts [1, 2, 7, 11, 8] to make the LLL con-
structive, culminating with the recent breakthrough of Moser and Tardos [9]. Specifically,
in [9] one assumes that there is a finite set of n mutually independent random variables
P = {Pi} and that each event in A is determined by a subset of P. Let the dependency
graph G(A) have the events of A as its vertices and let two events Ai, Aj be deemed adja-
cent, denoted as Ai ∼ Aj , iff they share at least one variable, i.e., vbl(Ai)∩vbl(Aj) 6= ∅. The
inclusive neighborhood of each event consists of itself and its adjacent events in G. (While
this setting is not quite as general as the original LLL setting, as shown in [6], it suffices for
the vast majority of applications of the LLL.) The goal is to find an assignment of values
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to the n variables in P such that none of the events in A occurs. To that end, Moser and
Tardos [9] showed that the following astonishingly simple algorithm suffices.
algorithm mt

Initialize the variables in P by sampling from their product measure.
While any event in A occurs, select any occurring event and resample its variables ac-
cording to their product measure.

I Theorem 1 ([9]). Let P be a finite set of mutually independent random variables in a
probability space. Let A be a finite set of events with a dependency graph G determined by
these variables. Let Γi denote the inclusive neighborhood of event Ai in G.

If there exists µ : A → (0,+∞) such that

∀Ai ∈ A : Pr[Ai] ≤ µ(Ai) ·

∑
U⊆Γi

∏
B∈U

µ(B)

−1

, (1)

then the expected number of resamplings performed by the randomized algorithm MT is
bounded by

∑
Ai∈A µ(Ai) = O(|A|) = O(m).

Clearly, since the running time of the algorithm is finite, we can trivially conclude that
whenever a collection Ai of events satisfies (1), i.e., the LLL conditions, there exists an
assignment to the variables such that none of them occurs.

In [3], Bissacot et al. gave a non-constructive strengthening of the LLL using cluster-
expansion methods from statistical physics. Specifically, they proved that in the hypothesis
of the LLL, in the rhs of (1), one can replace the summation over all subsets U ⊆ Γi with a
summation over subsets forming independent sets in G(A). This improvement is significant
if the subgraphs induced by the vertex neighborhoods in G are dense. On the other hand,
the improvement is vanishing if the dependency graph is triangle-free.

In [10], Pegden made the result of Bissacot et al. constructive, by proving a theorem
identical to Theorem 1, except for the aforementioned change in the range of the summation.

In a different direction, Haeupler, Saha, and Srinivasan [5] gave a more careful analysis
of the MT algorithm, establishing that under slightly stronger assumptions the running time
of the algorithm is independent of the number of events. This speedup can be exponential
in certain applications.

I Theorem 2 ([5]). In the setting of Theorem 1, assume that there is ε > 0 such that

∀Ai ∈ A : Pr[Ai] ≤ (1− ε)µ(Ai) ·

∑
U⊆Γi

∏
B∈U

µ(B)

−1

. (2)

Then the expected number of resamplings performed by algorithm MT is O(ε−1n log(n/ε)).

1.1 Our Results
We prove that the improvements of [10] and [5] stated earlier can be combined, yielding the
strongest form of the LLL known to us.

As in the setting of Moser and Tardos [9], let P be a finite set of mutually independent
random variables in a probability space. Let A be a finite set of events determined by the
variables in P and let G = G(A) be the the dependency graph of the events. Recall that Γi

denotes the inclusive neighborhood of (the vertex corresponding to) each event Ai in G.
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I Definition 3. For each Γi, let Ii consist of all subsets of Γi that are independent in G(A).
Let also Si = Ii∪{I ∪{Ai} : I ∈ Ii}, i.e., Si contains every independent set of Γi along with
its version enhanced by the addition of Ai.

I Theorem 4. If there exists µ : A → (0,+∞) and ε > 0 such that

∀Ai ∈ A : Pr[Ai] ≤ (1− ε)µ(Ai) ·
(∑

U∈Ii

∏
B∈U

µ(B)
)−1

, (3)

then the expected number of resamplings performed by MT is O
(
ε−1n log

(∑
Ai∈A µ(Ai)

))
.

By slightly strengthening the condition in (3) the bound on the running time can be
replaced by an expression that, in most applications, is independent of the number of events.

I Theorem 5. In the setting of Theorem 4, assume that (3) holds if the summation is
extended over all sets U ∈ Si (rather than over all sets U ∈ Ii). Then the expected number
of resamplings performed by MT is bounded by O(ε−1n log(Z/ε)), where

Z = Z(µ) =
∑

Ai∈A

µ(Ai)
1 + µ(Ai)

.

Clearly, the bound on the number of resamplings of Theorem 5 is no greater than the
bound in Theorem 4, since each term in the sum is now divided by 1 +µ(Ai). It was further
shown in [5], that for most applications Z = O(n logn), implying that the expected number
of resamplings in the conclusion of Theorem 5 is O(ε−1n log(n/ε)).

Indeed, our approach shows that all results from [5], e.g., the results regarding the case
ε = 0, hold under the relaxed conditions in which one sums only over independent sets (or
over the sets Si if one wants to replace

∑
µ(Ai) with Z(µ)/ε in the running time). As the

proof technique is identical for all cases, we only show here the proofs of Theorems 4 and 5.

2 Witness Trees

2.1 Definition
A witness tree W is a finite, rooted tree where each vertex is labelled by an event. The
analysis of the algorithm in [9] was made by mapping each prefix of the sequence of resampled
events to a witness tree. Specifically, let L be the sequence of resampled events and let
L(t) = [Ai1 , Ai2 , ..., Ait

] be the first t resampled events. The witness tree WL(t) is a labelled
tree constructed as follows.

Initialize WL(t) to a single node r (the root) with label Ait and depth d(r) = 0.
For s from t− 1 down to 1 do:
1. Seek the deepest node of WL(t) whose event (label) is adjacent to Ais in G(A).
2. If you find such a node b, then update WL(t) by adding a node v with label Ais as a

child of b and let d(v) = d(b) + 1.
3. If no such b exists, do nothing.

I Remark. If t1 6= t2 then WL(t1) 6= WL(t2). (To see this observe that the witness tree
associated with the k-th resampling of Ai will be the only witness tree with Ai as the root
and exactly k nodes with label Ai.)
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Moser and Tardos [9] provided an upper bound for the expected number of resamplings by
studying the size of the witness trees generated by executions of their algorithm. Specifically,
they proved the following upper bound on the probability that a specific witness tree W is
ever generated for a given dependency graph G.

I Lemma 6 ([9]). For any witness tree W , let M = M(W ) be the multiset containing the
labels of the vertices of W . Let XW be the indicator random variable that W occurs in L.
Pr[XW = 1] ≤

∏
i∈M Pr[Ai].

The above lemma is used in [9] to bound the expected number of resamplings as follows.
Let T be the random variable equal to the number of resamplings and let Wi be the set of
all possible witness tress with root Ai. Since T = |L| and each fixed witness tree occurs at
most once in L, we get

E[T ] = E[|L|] = E

[ ∑
Ai∈A

∑
W∈Wi

XW

]
=
∑

Ai∈A

∑
W∈Wi

E[XW ] =
∑

Ai∈A

∑
W∈Wi

Pr[XW = 1] . (4)

2.2 Random generation via branching process
To bound the sum in (4), Moser and Tardos [9] defined the set of proper witness trees to
consist of all rooted, labelled trees in which the children of each node have distinct labels.
Note that the set of proper witness trees contains all witness trees that can be generated by
algorithm MT, since there cannot be two nodes with the same label at the same depth of
the tree (the node that was added later must have gone at a strictly larger depth, if nothing
else as a child of the earlier node).

To bound the total probability of all proper witness trees with root Ai, they defined
the Galton-Watson branching process below and proved that the probability the algorithm
generates any particular such witness tree W , i.e., Pr[XW = 1], is bounded by a constant
C times the probability that W is generated by the branching process. Therefore, each of
the m events Ai is expected to appear at most C times in L and, thus, the expected total
number of resamplings is bounded by Cm.

Let g(Ai) = µ(Ai)(1 + µ(Ai))−1.
Create a single node r (the root) with label Ai and depth d(r) = 0.
Let d = 0.
Repeat
1. For each node A at depth d consider its neighboring events in the dependency graph.

For each such event B, with probability g(B) add to A a child node with label B.
2. d← d+ 1.
until there is no node at depth d.

The bound on Pr[XW = 1] comes by first applying Lemma 6, then substituting the
bounds on Pr[Ai] from the LLL conditions, and finally relating the resulting expression to
the exact expression for the probability that W is generated by the branching process.

2.3 The improvement of Pegden
Observe that since witness trees for the MT algorithm are grown by adding each event
to the deepest possible level, the nodes at every level are labelled by events that form an
independent set in the dependency graph G. Using this observation, in [10], Pegden defined
witness trees in which sibling nodes must have non-adjacent events as strongly proper and
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20 Algorithmic Improvements of the LLL via Cluster Expansion

modified the Galton Watson process above as follows. To generate the progeny of each node
we generate progeny-samples as before, i.e., via an independent trial for each neighboring
event, but continue to reject until we get a progeny that forms an independent set in G. For
this modified branching process, Pegden proved the following.

I Lemma 7 ([10]). For any strongly proper witness tree W with root labelled Ai, the prob-
ability that the branching process described above produces W is equal to

pW ≡ µ(Ai)−1
∏

Aj∈W

µ(Aj)

∑
U∈Ij

∏
B∈U

µ(B)

−1

. (5)

Moser and Tardos [9] had proved a similar lemma, where the summation is over all subsets
of vertices in Γj instead of just the independent sets U ∈ Ij .

3 Proof of Theorem 4

We first state without proof a lemma that gives an upper bound on the expectation of a
random variable given an exponential tail bound.

I Lemma 8. Let X be an integer-valued random variable such that for some ε > 0, C > 1,
and all i > 0, Pr[X ≥ i] ≤ C(1− ε)i. Then E[X] ≤ ε−1(1 + ε+ logC).

Our plan is to bound the expected number of resamplings of the most frequent event.
We will do this by bounding the expected size of the largest witness tree and using the
fact that if an event A is resampled r times, then the witness tree associated with its last
resampling will contain at least r nodes, as it will have exactly r nodes with label A. So, an
upper bound on the expected size of the largest witness tree gives an upper bound on the
expected number of resamplings of the most frequent event. Multiplying by n then gives an
upper bound on the expected total number of resamplings.

For any integer k, let Y (k) be the random variable equal to the number of witness trees
that occur and have size at least k. Also, letW s

i (k) denote the set of strongly proper witness
trees with root Ai and size at least k. Since the only witness trees that can possibly occur
are strongly proper,

Y (k) =
∑

Ai∈A

∑
W∈W s

i
(k)

XW . (6)

By Markov’s inequality, the probability that there is at least one witness tree of size at least
k is bounded by the expected number of trees of size at least k that occur. Therefore, the
probability that the largest witness tree in L has size at least k is bounded by∑

Ai∈A

∑
W∈W s

i
(k)

Pr[XW = 1] .

Under the conditions in (3), for every witness tree W of size at least k, Lemma 6 implies

Pr[XW = 1] ≤
∏

Aj∈W

(1− ε) · µ(Aj)

∑
U∈Ij

∏
B∈U

µ(B)

−1

≤ (1− ε)k
∏

Aj∈W

µ(Aj)

∑
U∈Ij

∏
B∈U

µ(B)

−1

, (7)



D. Achlioptas and T. Gouleakis 21

where the second inequality follows from the fact that W has size at least k.
Substituting (7) into (6) we get (8) below and, by Lemma 7 we get (9).

E[Y (k)] ≤ (1− ε)k
∑

Ai∈A

∑
W∈W s

i
(k)

∏
Aj∈W

µ(Aj)

∑
U∈Ij

∏
B∈U

µ(B)

−1

(8)

= (1− ε)k
∑

Ai∈A
µ(Ai)

∑
W∈W s

i
(k)

pW (9)

≤ (1− ε)k
∑

Ai∈A
µ(Ai) . (10)

Thus,

Pr
[

max
W∈L

|W | ≥ k
]
≤ E[Y (k)] ≤ (1− ε)k

∑
Ai∈A

µ(Ai) .

Lemma 8 thus implies that the expected size of the largest witness tree is bounded by

ε−1

(
1 + ε+ log

(∑
Ai∈A

µ(Ai)
))

(11)

which, as mentioned, implies that the expected number of resamplings of the MT algorithm
is O

(
ε−1n log

(∑
Ai∈A µ(Ai)

))
.

4 Proof of Theorem 5

Recall that our assumption is that there exists a function µ : A → (0,+∞) such that

∀Ai ∈ A : Pr[Ai] ≤ (1− ε)µ(Ai) ·
(∑

U∈Si

∏
B∈U

µ(B)
)−1

. (12)

The idea is to prove that for every function µ satisfying (12), there is another function
µ′ satisfying (12) with slack somewhat less than ε, but all of whose values are bounded by
some constant depending on ε. Observe that if µ′ satisfies (12) with any slack, then µ′ also
satisfies the condition of Theorem 4 with the same slack since in that condition we only sum
over Ii ⊆ Si. Thus armed with µ′ we first apply Theorem 4 to get a bound on the expected
number of resamplings in terms of

∑
µ′(Ai) and then exploit the boundedness of µ′ to get

a bound on the number of resamplings that depends only on Z(µ′), n and ε.
Recall that each set Si contains all subsets of Γi that form independent sets in G, i.e.,

Ii ⊆ Si, along with each element of Ii augmented by Ai. Therefore,∑
U∈Si

∏
B∈U

µ(B) = (1 + µ(Ai))
∑

U∈Ii\{Ai}

∏
B∈U

µ(u) . (13)

Substituting (13) into (12) we get that for each event Ai,

Pr[Ai] ≤ (1− ε) · µ(Ai)
1 + µ(Ai)

 ∑
U∈Ii\{Ai}

∏
B∈U

µ(u)

−1

. (14)

I Lemma 9. If (12) holds for µ : A → (0,+∞), then there is µ′ : A → (0, 2/ε − 1) for
which (12) holds with ε replaced by ε/2.
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Proof. The function g(x) = x/(1 + x) with domain (0,+∞) is strictly increasing and its
range is (0, 1). So, for every i, we can find µ′(Ai) < µ(Ai) such that

µ′(Ai)
1 + µ′(Ai)

= (1− ε/2) µ(Ai)
1 + µ(Ai)

(15)

< 1− ε/2 . (16)

This choice implies that µ′ is bounded, as desired, since starting with (16) we get

µ′(Ai)
1 + µ′(Ai)

< 1− ε/2 =⇒ µ′(Ai) < 1 +µ′(Ai)−
ε

2(1 +µ′(Ai)) =⇒ µ′(Ai) <
2
ε
− 1 . (17)

Now, starting with (14) and using that (1−ε/2)2 > 1−ε for any ε > 0 we get (18) below.
Substituring (15) in (18) yields (19). Using that 0 < µ′ < µ yields (20). Reorganizing the
sum in (20) as in the derivation of (13) yields (21), i.e., the conclusion of the lemma.

Pr[Ai] < (1− ε/2)2 · µ(Ai)
1 + µ(Ai)

 ∑
U∈Ii\{Ai}

∏
B∈U

µ(u)

−1

(18)

= (1− ε/2) · µ′(Ai)
1 + µ′(Ai)

·

 ∑
U∈Ii\{Ai}

∏
B∈U

µ(u)

−1

(19)

< (1− ε/2) · µ′(Ai)
1 + µ′(Ai)

·

 ∑
U∈Ii\{Ai}

∏
B∈U

µ′(u)

−1

(20)

= (1− ε/2) · µ′(Ai) ·
(∑

U∈Si

∏
B∈U

µ′(B)
)−1

. (21)

J

By Lemma 9, we know that (21) holds for all i. Since µ′ > 0 and Ii ⊆ Si, this immediately
implies that for all Ai,

Pr[Ai] ≤ (1− ε/2)µ′(Ai) ·
(∑

U∈Ii

∏
B∈U

µ′(B)
)−1

,

which is precisely the condition of Theorem 4. Applying the theorem yields that the
expected number of resamplings is O

(
ε−1n log

(∑
Ai∈A µ

′(Ai)
))
. But by (17)∑

Ai∈A
µ′(Ai) ≤ (1 + max

i
µ′(Ai))

∑
Ai∈A

µ′(Ai)
1 + µ′(Ai)

< (2/ε)Z(µ′) . (22)
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