
Scheduling with Setup Costs and Monotone
Penalties
Rohit Khandekar1, Kirsten Hildrum2, Deepak Rajan3, and Joel
Wolf2

1 Knight Capital Group, Jersey City, NJ, USA
rkhandekar@gmail.com

2 IBM T. J. Watson Research Center, Hawthorne, NY, USA
{hildrum,jlwolf}@us.ibm.com

3 Lawrence Livermore National Laboratory, Livermore, CA, USA
rajan3@llnl.gov

Abstract
We consider single processor preemptive scheduling with job-dependent setup times. In this
model, a job-dependent setup time is incurred when a job is started for the first time, and each
time it is restarted after preemption. This model is a common generalization of preemptive
scheduling, and actually of non-preemptive scheduling as well. The objective is to minimize the
sum of any general non-negative, non-decreasing cost functions of the completion times of the jobs
— this generalizes objectives of minimizing weighted flow time, flow-time squared, tardiness or
the number of tardy jobs among many others. Our main result is a randomized polynomial time
O(1)-speed O(1)-approximation algorithm for this problem. Without speedup, no polynomial
time finite multiplicative approximation is possible unless P = NP.

We extend the approach of Bansal et al. (FOCS 2007) of rounding a linear programming
relaxation which accounts for costs incurred due to the non-preemptive nature of the schedule. A
key new idea used in the rounding is that a point in the intersection polytope of two matroids can
be decomposed as a convex combination of incidence vectors of sets that are independent in both
matroids. In fact, we use this for the intersection of a partition matroid and a laminar matroid, in
which case the decomposition can be found efficiently using network flows. Our approach gives a
randomized polynomial time offline O(1)-speed O(1)-approximation algorithm for the broadcast
scheduling problem with general cost functions as well.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Scheduling, resource augmentation, approximation algorithm, preemp-
tion, setup times

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2012.185

1 Introduction

In this paper, we consider a very general preemptive scheduling problem with job-dependent
setup times. This model captures the necessity of performing a setup whenever a job is
started for the first time, or restarted after being preempted. Such a setup time might
be needed for a variety of practical reasons, such as loading the job context or acquiring
the necessary resources. Furthermore, we set as our goal the minimization of the sum of
arbitrarily given non-decreasing cost functions of the completion times of the jobs. (For this
paper we will restrict our attention to non-negative cost functions.) This problem is general
enough to capture several interesting min-sum cost functions such as weighted flow-time,

© R. Khandekar and K. Hildrum and D. Rajan and J. Wolf;
licensed under Creative Commons License NC-ND

32nd Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012).
Editors: D. D’Souza, J. Radhakrishnan, and K. Telikepalli; pp. 185–198

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.185
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

186 Scheduling with Setup Costs and Monotone Penalties

flow-time squared, tardiness or the number of tardy jobs. One can also encode min-max cost
functions such as makespan or maximum stretch by doing binary searches on the optimum
cost and setting job deadlines appropriately.

We now define our problem, which can be classified as 1 | pmtn, rj , setup = sj |
∑
fj(Cj).

We call this problem a general scheduling problem or gsp. Let Z+ denote the set of non-
negative integers, and R the set of all reals. Consider a set J of jobs, where each job j ∈ J
is associated with release time rj ∈ Z+, setup time sj ∈ Z+, processing time pj ∈ Z+ and a
non-decreasing cost function1 fj : Z+ → Z+ ∪{∞}. A feasible schedule on a single processor
works on no job before its release time and works on at most one job at any time. The jobs
can be preempted. However, every time a job j is started or restarted, a setup time of sj
must be spent before processing can begin. Thus, without loss of generality, any schedule
which starts or restarts job j works on it for at least sj time before preempting or completing
it. A job j requires a total of pj time for processing.2 Thus if job j is preempted k times
before it completes, the total amount of time (including time for setup and processing) it
requires is (k + 1) · sj + pj . Given a feasible schedule, let Cj denote the completion time of
job j. The objective is to find a feasible schedule that minimizes the total cost

∑
j∈J fj(Cj).

The above problem generalizes both preemptive scheduling (when sj = 0 for all j) and
non-preemptive scheduling (when pj = 0 for all j). As a result, obtaining small multiplicative
approximation factors for gsp in polynomial time can be ruled out. More precisely, it is
impossible to obtain an n1/2−ε-approximation for any ε > 0 in polynomial time even for
minimizing non-preemptive unweighted flow-time (i.e., fj(t) = max{0, t − rj}) on n-job
instances unless P = NP [11].

A commonly used method for dealing with such problems is resource augmentation
analysis, first proposed by Kalyanasundaram and Pruhs [10] and named so by Phillips
et al. [12]. In this methodology, one compares the candidate algorithm, equipped with a
faster processor, to an optimum algorithm with a unit speed processor. Define an s-speed
ρ-approximation algorithm to be one which, using a processor of speed s, can achieve an
objective value no more than ρ times the optimum value on a processor of speed 1. One also
considers an analogous notion of extra processors instead of or in addition to extra speed: an
m-processor s-speed ρ-approximation algorithm is one which, using m processors of speed s
each, can achieve an objective value no more than ρ times the optimum value on a single
processor of speed 1. This method of analysis can help elucidate the problem structure. For
example, it can be used to explain why some algorithms work well in practice. It can also
be used to explain why hardness proofs fall apart when hard instances are perturbed even
slightly, for example a reduction from 3-Partition that shows non-preemptive flow-time is
hard. We refer the reader to Bansal et al. [3] for further explanation. In this paper, we use
resource augmentation analysis.

1.1 Our Results
We summarize our results now. The main result is given in Theorem 1.

I Theorem 1. There exists a randomized polynomial time O(1)-speed O(1)-approximation
algorithm for gsp.

1 We assume that fj is given by a value oracle that given t ∈ Z+ returns fj(t).
2 In the case with pj = 0 for some job j, we insist that job j must get its setup time sj contiguously at

least once.

Rohit Khandekar, Kirsten Hildrum, Deepak Rajan, and Joel Wolf 187

I Lemma 2. For any ε > 0, there exists a randomized polynomial time (1 + ε)-speed
(1 + 1

ε)(1 + ε)-approximation for preemptive scheduling (sj = 0 for all j) and a randomized
polynomial time 12-speed 2(1 + ε)-approximation for non-preemptive scheduling (pj = 0 for
all j).

I Theorem 3. There exists a randomized polynomial time O(1)-speed O(1)-approximation
algorithm for the broadcast version of gsp.

To determine if there exists a randomized polynomial time (1+ε)-speed f(ε)-approximation
algorithm for gsp for any ε > 0, where f(ε) is any computable function of ε alone, is an
interesting open question. However it is easy to show that a speedup, greater than 1, is needed
to obtain any finite multiplicative approximation, even for the special case of non-preemptive
scheduling to minimize the number of tardy jobs, if P 6= NP, as shown by the lemma below.

I Lemma 4. Consider a special case of non-preemptive scheduling (i.e., pj = 0 for all j ∈ J)
to minimize the number of tardy jobs (i.e., fj(t) = 0 if t ≤ dj, and 1 otherwise for deadline
dj ∈ Z+). It is strongly NP-hard to distinguish between the instances that have zero optimum
cost and the instances that have positive optimum cost.

The definition of broadcast scheduling problem and proofs of Lemma 2, Theorem 3 and
Lemma 4 are omitted from this version due to lack of space.

1.2 Our Techniques
Our algorithm is based on rounding a linear programming relaxation. Our LP relaxation and
overall approach are motivated by the work of Bansal et al. [3], who consider min-sum non-
preemptive scheduling problems like weighted flow-time, weighted tardiness and unweighted
number of tardy jobs on single processor. The LP has a time-indexed formulation that pays
a job-dependent setup time in each fractional processing of a job, and also gets partial credit
for completing jobs fractionally. The LP also has the obvious constraints to ensure that each
job is scheduled to the full extent and that at most one job is scheduled at any single time.
Apart from these, the LP has one more crucial set of constraints used to lower bound the
cost of any feasible schedule. These constraints are similar to those used by Bansal et al. [3]
and are based on the following non-preemptive nature of the problem. Consider a job k that
the LP decides to schedule continuously in a certain time interval [t, t+ `). Then any job j
that is released in the interval [t, t+ `) must start no earlier than t+ `. Thus it must pay at
least fj(t+ `) cost in the objective function. These constraints provide a good lower bound
that a rounding scheme can charge against when the penalty function fj of job j increases
significantly between rj and t+ `.

1.2.1 New: rounding using total unimodularity of network flows
The main technical contribution of this paper as compared to Bansal et al. [3], however, is in
rounding the fractional LP solution. The rounding scheme of Bansal et al. [3] works only
when the fractional solution is so-called laminar. Intuitively, being laminar means that if
the fractional schedule “preempts” job j in favor of scheduling job k, it starts processing job
j again only after finishing job k. Such a property holds, for example, when there exists a
total ordering ≺ on the jobs, such that j ≺ k iff the partial credit that the fractional solution
gets by scheduling job k is at least that for job j at any point in time. Such an ordering
exists for the case of weighted flow-time: j ≺ k iff k has higher weight than j, or if they have
same weight and k is released before j.

FSTTCS 2012

188 Scheduling with Setup Costs and Monotone Penalties

The fractional solution may not be laminar, however, for arbitrary non-decreasing cost
functions. Consider, for example, a cost function that encodes weighted completion time and
a strict deadline, so that fj(t) = ωjt if t ≤ dj and ∞ otherwise. Suppose two jobs j and k
have a cost function of this form with release dates rj < rk, weights ωj < ωk and deadlines
dj < dk. In the absence of any other jobs, the fractional solution schedules job j starting at
rj . Once job k is released, it preempts job j in favor of job k because of the partial credit
due to ωk > ωj . At some point later, it preempts job k in favor of job j to finish it by its
deadline. It then schedules job k again. Thus the fractional solution is not laminar. There
may not be a general way to massage such a solution to make it laminar without increasing
its cost by too much.

Our approach works even if the fractional solution is not laminar. It first partitions the
time into “aligned” intervals of length a power of β, an integer greater than 1. Thus these
intervals are of the form [a · βc, (a+ 1) · βc) where a and c are integers. We refer to c as the
class of an interval of this type. It is easy to see that aligned intervals from all classes form a
laminar family.3 Intuitively speaking, our algorithm uses a rounding procedure on bipartite
graphs where jobs on one side are fractionally assigned to aligned intervals from a certain
class on the other side. We would like to convert this assignment into an integral assignment
randomly while preserving the expectation and ensuring that the maximum number of jobs
in any aligned interval is at most the ceiling of its expectation. We reduce this problem
to rounding a fractional max-flow to an integral max-flow in a network with integral arc
capacities. This can be done using the total unimodularity of network flow matrices, see
details in Section 2.4. Our rounding is reminiscent of the bipartite graph based dependent
rounding of Gandhi et al. [8]. Their rounding, however, cannot be used here, because our
problem cannot be formulated as a rounding problem on bipartite graphs since we need to
satisfy the so-called “degree-preservation constraints” for all aligned intervals which form a
laminar family.

From a more general perspective, one can see this rounding as decomposing a point in the
intersection polytope of a partition matroid and a laminar matroid as a convex combination
of incidence vectors of sets which are independent in both the matroids. It turns out that
the intersection polytope of a partition and a laminar matroid can be expressed as the set
of feasible source-sink flows in a network with integral arc capacities. Thus the problem
of decomposing a point in such a polytope as a convex combination of integral extreme
points can be reduced to network flow computations. An algorithm, for rounding a point in
the intersection polytope of two matroids, with some concentration properties was recently
presented by Chekuri et al. [6]. We do not need their complex rounding scheme since we do
not need the concentration properties in our analysis.

1.3 Related Work
The closest works to ours are Bansal et al. [3] and Bansal and Pruhs [4]. As mentioned
before, Bansal et al. [3] consider non-preemptive single processor scheduling for min-sum
objectives like weighted flow-time, weighted tardiness, unweighted number of tardy jobs.
We generalize their rounding procedure to work with arbitrary cost functions. Bansal and
Pruhs [4] consider single processor scheduling with the same general cost functions as we
do, plus preemption and release dates. There are, however, no setup times. Reducing this
problem to a particular geometric set-cover problem yields a randomized polynomial time

3 A laminar family is not to be confused with a non-laminar fractional solution.

Rohit Khandekar, Kirsten Hildrum, Deepak Rajan, and Joel Wolf 189

algorithm with approximation ratio O(log log(nP)), where P is the maximum job size. They
also give an O(1) approximation in the special case of identical release times. Recently, Im
et al. [9] showed that the Highest-Density-First algorithm is (2 + ε)-speed O(1)-competitive
for general monotone penalty functions. On the one hand, their algorithm is online, which is
stronger, but on the other hand, they allow job preemption without any setup time penalty.

Several models for preemption penalties have been considered before. These include
sequence-dependent, job-dependent or processor-dependent penalties. See Potts and van
Wassenhove [13] and Allahverdi et al. [2] for surveys of the area. Most of the results deal
with specific cost functions such as total completion time, total flow-time, or makespan.
Schuurman and Woeginger [14], for example, present (4/3 + ε)-approximation for minimizing
makespan in the context of multiple parallel processors, with preemption, job-migration
and job-dependent setup times. There has also been some work in online scheduling with
preemption penalties as well. For example, Divakaran and Saks [7] consider the single
processor online problem with release times and setup times. The goal is to minimize the
maximum flow time for a job. They present an O(1)-competitive algorithm for this problem.
They also show that the offline problem is NP-hard. Chan et al. [5] study the online flow
time scheduling in the presence of preemption overheads and present a simple algorithm that
is (1 + ε)-speed (1 + 1/ε)-competitive.

2 Algorithm for gsp

2.1 Outline of the Algorithm
We give a randomized polynomial time O(1)-speed O(1)-approximation algorithm. Our
algorithm and analysis have the following high-level steps.
1. Incurring a constant speedup factor, we argue that gsp can be reduced to a problem

called multi-piece non-preemptive scheduling problem (mpsp) and one can restrict the
search to so-called “aligned” schedules.

2. We then create and solve an LP relaxation to lower bound the cost of the optimum
schedule.

3. We next perform randomized rounding of the fractional solution using network flow
techniques to obtain a “pseudo”-schedule.

4. Losing another constant speedup factor, we convert the pseudo-solution into a feasible
schedule.

5. Finally, incurring yet another constant speedup factor, we get a feasible solution with
cost at most constant times the LP lower bound.

We remark that steps 1, 2 and 4 are very similar to the corresponding steps of the
algorithm of Bansal et al. [3]. Our main contribution is in step 3. Step 5 is a final (and
simple) wrap-up needed to bound the cost of the computed solution.

2.2 Step 1: Reduction to mpsp and Restricting to Aligned Schedules
We begin by reducing our problem to multi-piece non-preemptive scheduling problem (mpsp),
defined as follows. The input to mpsp consists of a set J of jobs, where each job j ∈ J is
associated with release time rj ∈ Z+, number of pieces nj ∈ Z+, processing time pj ∈ Z+ of
each piece and a non-decreasing cost function4 fj : Z+ → Z+ ∪ {∞}. A feasible schedule on

4 We again assume that fj is given by a value oracle that given t ∈ Z+ returns fj(t).

FSTTCS 2012

190 Scheduling with Setup Costs and Monotone Penalties

a single processor works on no job before its release time and works on at most one job at
any time. A feasible schedule also schedules each job j in exactly nj intervals, each of length
exactly pj . Given a feasible schedule, let Cj denote the completion time of job j, i.e., the
maximum end time of any interval corresponding to job j. The mpsp is to find a feasible
schedule that minimizes the total cost

∑
j∈J fj(Cj).

I Lemma 5. If there is a polynomial-time σ-speed ρ-approximation algorithm for mpsp,
there is a polynomial-time 2σ-speed ρ-approximation algorithm for gsp.

Proof. Given instance (J, {(rj , sj , pj , fj) | j ∈ J}) of gsp, define an instance (J, {(r′j , n′j , p′j , f ′j) |
j ∈ J}) of mpsp by letting r′j = rj , n′j = max{1, dpj/max{1, sj}e}, p′j = max{1, 2sj} and
f ′j = fj for each job j ∈ J . Let opt(gsp) denote the optimum value of the gsp instance and
let opt(mpsp) denote the optimum value of the mpsp instance on a processor with twice the
speed. We first argue that opt(mpsp) ≤ opt(gsp). Consider the optimum schedule S of the
gsp instance. We construct a feasible solution S′ for the mpsp instance on a processor with
twice the speed as follows. Consider an interval [t, t+ sj + t′) in which S schedules a job
j. Let S′ schedule dt′/max{1, sj}e pieces of length p′j = max{1, 2sj} each in this interval.
Since there is at least one such interval and the sum of processings t′ over all such intervals is
pj , the total number of pieces scheduled for job j is at least n′j . Therefore S′ gives a feasible
solution for the mpsp instance on a processor with twice the speed. It is easy to see that the
cost of S′ is at most that of S.

Now it is enough to show that given a solution S′ for the mpsp instance, one can construct
a solution S for the gsp instance feasible on a processor with the same speed and with cost
at most that of S′. Consider an interval [t, t+ p′j) in which S′ schedules a piece of job j. Let
S schedule job j in this interval so that it spends sj time in setup and max{1, sj} time in
processing. Thus job j gets n′j ·max{1, sj} ≥ pj processing overall. It is easy to see that the
cost of S is at most that of S′. J

In light of this lemma, we focus on designing an O(1)-speed O(1)-approximation algorithm
for mpsp. Fix an instance (J, {(rj , nj , pj , fj) | j ∈ J}) of mpsp. Let β > 1 be an integer to
be determined later. Incurring a speedup factor of β, we assume that all processing times
in the instance are integer powers of β by replacing pj by βblogβ pjc. We define a notion of
aligned schedules.

I Definition 6. We say that a schedule for mpsp is aligned if each piece of each job j is
scheduled in an interval of the form [apj , (a+ 1)pj) where a ≥ 0 is an integer.

I Lemma 7. On a processor with speedup factor 2, there exists an aligned schedule with cost
at most that of the original mpsp instance.

Proof. Fix an optimum schedule S for mpsp. Suppose S processes a piece of job j in the
interval [t, t+ pj). Let t′ ∈ [t, t+ pj/2) be an integral multiple of pj/2. On a processor with
twice the speed, we can process this piece of job j in the interval [t′, t′ + pj/2). It is easy to
see that the resulting schedule is aligned and has cost at most that of S. J

To summarize, by incurring an overall speedup factor of 4β, we reduce gsp to mpsp,
assume that each pj is an integer power of β and set our goal to finding the aligned schedule
with minimum cost. Let opt denote the cost of an optimum aligned schedule of the new
mpsp instance.

Rohit Khandekar, Kirsten Hildrum, Deepak Rajan, and Joel Wolf 191

2.3 Step 2: Solving the Linear Programming Relaxation
We now present a linear programming relaxation for lower bounding opt. Since any schedule,
without loss of generality, completes all jobs by time T = maxj rj +

∑
j njpj , it is enough

to work within this time horizon. We introduce a variable x(j, t) for each job j and each
multiple t of pj such that t ≥ rj . In the “intended” solution, x(j, t) = 1 if a piece of job j
is scheduled in the interval [t, t + pj). We also introduce a variable Wj intended to lower
bound the cost of job j.

minimize
∑
j

Wj (1)

∀j ∈ J, nj =
∑
t

x(j, t) (2)

∀τ ∈ Z+, 1 ≥
∑
j

∑
t:τ∈[t,t+pj)

x(j, t) (3)

∀j ∈ J, Wj ≥ 1
nj

∑
t

x(j, t) · fj(t+ pj) (4)

∀j ∈ J, Wj ≥
∑
k 6=j

∑
t:rj∈(t,t+pk)

x(k, t) · fj(t+ pk) (5)

∀j, t, x(j, t) ≥ 0 (6)

I Lemma 8. The optimum value of the LP (1)-(6) is at most opt.

Proof. Consider an optimal aligned schedule S with cost opt. Using S, we construct a
feasible solution {x∗,W ∗} to the LP with value at most opt. Let x∗(j, t) = 1 if S schedules
a piece of j in the interval [t, t+ pj) and 0 otherwise. Let W ∗j = fj(Cj) denote the cost of job
j in S, where Cj denotes the completion time of j in S. It is easy to see that constraints (2)
and (3) are satisfied by this solution, since each job j has exactly nj pieces scheduled and S
works on at most one job at a time, respectively. We now argue that the cost of job j in
S is at least the right-hand-side of constraint (4) (the “average lower bound”) or (5) (the
“displacement lower bound”) for job j. Fix a job j and let [ti, ti + pj) for i = 1, 2, . . . be the
intervals containing the pieces of job j. The right-hand-side of constraint (4) for job j is the
average of fj(ti + pj) for i = 1, 2, . . . which is clearly at most W ∗j = maxi fj(ti + pj), the cost
of job j in S. Thus the constraint (4) is satisfied. Now note that there is at most one job
k 6= j that has x∗(k, t) > 0 for values of t with rj ∈ (t, t+ pk). This is because S works on at
most one job at a time. If such a job does not exist, it is easy to see that the constraint (5)
is satisfied. If such a job k exists, the earliest time the first piece of job j can start is at
least t+ pk. Thus its cost is at least fj(t+ pk). Since x∗(k, t) = 1 holds in such a case, the
constraint (5) is satisfied. J

The number of variables and constraints in this LP is pseudo-polynomial. Using an
approach similar to Bansal et al. [3], we can make this LP polynomial-sized at a small loss.
We omit detailed from this version due to lack of space. For now, let us assume that we can
compute a fractional optimum, denoted by x∗(j, t) and W ∗j for j ∈ J and 0 ≤ t ≤ T , of this
LP.

2.4 Step 3: Obtaining a Pseudo-Schedule via Network Flows
We say that a job j belongs to class c ≥ 0 if pj = βc. Let Jc denote the set of jobs in class
c. We obtain a pseudo-schedule for jobs in Jc for each class c separately. Fix a class c. To

FSTTCS 2012

192 Scheduling with Setup Costs and Monotone Penalties

obtain a pseudo-schedule for class c, we create an instance of the network flow problem. For
an integer d ≥ 0, we call an interval of the form [a · βd, (a+ 1) · βd) an aligned βd-interval or
simply an aligned interval, where a ≥ 0 is an integer.

2.4.1 Creating a flow network

Refer to Figure 1 for an example for the case of β = 2. The flow network we create is a
layered directed acyclic graph with all arcs going between consecutive layers from top to
bottom. The first layer consists of the source node. The second layer has a node vj for each
job j ∈ Jc. For k ≥ 0, the (k+ 3)rd layer has a node vI for each aligned βc+k-interval I. The
last layer has a node for the single aligned interval spanning the entire instance – we call this
node the sink.

We add an arc from the source to vj with capacity nj =
∑
t x(j, t), i.e., the total x-value

job j receives. We add an arc from vj to vI for βc-aligned interval I = [t, t+ βc) such that
x(j, t) > 0. We assign such an arc a capacity of

dx(j, t)e ,

i.e., the x-value that job j receives in aligned βc-interval I rounded up to the nearest
integer. For k ≥ 0, we add an arc from vI to vI′ for an aligned βc+k-interval I and aligned
βc+k+1-interval I ′ such that I ⊂ I ′, provided vI is not the sink. We give this arc a capacity
of 

∑
j∈Jc

∑
t:[t,t+βc)⊆I

x(j, t)

 ,
i.e., the total x-value all jobs in Jc receive in aligned βc-intervals contained in I rounded up
to the nearest integer. Thus the flow network below layer 3 looks like an inverted β-ary tree.
Note also that all arc-capacities in this network are integral.

Observe that the fractional solution {x(j, t) | j ∈ Jc, 0 ≤ t ≤ T} gives a fractional
feasible maximum flow in this network from source to sink of total value

∑
j∈Jc nj =∑

j∈Jc
∑
t x(j, t) as follows. Send a flow of nj =

∑
t x(j, t) on (source, vj) for all j ∈

Jc, a flow of x(j, t) on (vj , v[t,t+βc)) for all j ∈ Jc and t with x(j, t) > 0 and a flow of∑
j∈Jc

∑
t:[t,t+βc)⊆I x(j, t) on the unique out-going arc (vI , vI′) for all aligned intervals I

except the one corresponding to the sink.
We now use the fact that a network flow matrix is totally unimodular and hence the

polytope of flows in a network with integral arc capacities has integral extreme points.
Therefore any point inside such a polytope can be decomposed as a convex combination of
integral flows.

I Lemma 9. Consider a flow network with a source node, a sink node and integral arc
capacities. Given a fractional maximum flow f in the network, one can compute a collection
of integral maximum flows F1, . . . , Fq and corresponding λ1, . . . , λq ≥ 0 with

∑
i λi = 1 such

that f =
∑
i λiFi. Furthermore, the size q of the convex combination and its computation

time is bounded polynomially in the input size.

Proof. We cast the problem of decomposing the given maximum flow f as a convex combina-
tion of integral maximum flows as a linear program. Introduce a variable λi for each integral
maximum flow Fi (that satisfies the arc capacity constraints). There may be exponentially

Rohit Khandekar, Kirsten Hildrum, Deepak Rajan, and Joel Wolf 193

0.3

0.4

0.1
0.3

0.3 0.5 0.8

0.7
0.6

2/2
1/1

1/1

0.7/1 0/0
0.6/1 0.1/1

0.5/1 0.8/1

0.7/1 0.6/1

0.7/1 0.7/1 1.3/2 1.3/2

2.6/3 1.4/2

source

sink

jobs

intervals

0.4/1

0.3/1 0.3/1

0.5/1

0.8/1

0.3/1

0.7/1

0.1/1
0.6/1

Figure 1 Creating a network flow instance. Consider the adjacent example with 3 jobs and 8
aligned intervals in a certain class. Assume that β = 2. The total x-values white, grey and black
jobs receive are 2, 1 and 1 respectively. The corresponding flow network has a source node in the
top layer, 3 nodes corresponding to jobs in the second layer and nodes corresponding to aligned
intervals arranged in form of a β-ary tree. The bottom layer has a sink node. The numbers on the
arcs denote their flows/integral capacities. The fractional maximum flow given is computed from
the fractional solution.

many such flows. Now consider the following LP and its dual.

Primal: max{
∑
i

λi |
∑
i

λiFi(e) = f(e) ∀ arcs e, λi ≥ 0 ∀ i},

Dual: min{
∑
e

f(e)le |
∑
e

Fi(e)le ≥ 1 ∀ i, le ∈ R ∀ arcs e}.

The dual has exponentially many constraints but only polynomially many variables. We
can solve the dual using the ellipsoid algorithm using the separation oracle that given not-
necessarily-positive “arc-lengths” {le} computes a maximum flow Fi with “minimum cost”∑
e Fi(e)le. Several polynomial time algorithms exist for this well-known min-cost max-flow

problem [1]. Recall that since all arc capacities are integral, this oracle returns an integral
flow. The ellipsoid algorithm finds polynomially many maximum flows while computing the
dual optimum solution. We can then restrict our attention to these maximum flows (i.e.,
set λi = 0 for all maximum flows Fi not found in the ellipsoid algorithm) and solve the new
primal that now has polynomially many variables and constraints. Since each Fi as well as f
are maximum flows, it is easy to see that the optimum primal solution thus computed has
value

∑
i λi = 1. J

Our rounding procedure to obtain a pseudo-schedule for class c works as follows.

Procedure round: Use Lemma 9 to compute a convex combination of integral flows.
Pick exactly one integral flow Fi with probability λi. Schedule Fi(vj , vI) pieces of job j
in the aligned βc-interval I for all jobs j and aligned βc-intervals I.

I Lemma 10. The pseudo-schedule for all classes constructed by the above rounding procedure
satisfies the following properties.

FSTTCS 2012

194 Scheduling with Setup Costs and Monotone Penalties

1. The expected number of pieces any job j receives in an aligned interval [t, t+βc) is x(j, t).

2. With probability 1, each job j has exactly nj pieces scheduled overall.

3. With probability 1, at most d
∑
j∈Jc

∑
t:[t,t+βc)⊆I x(j, t)e pieces of jobs in class c, counting

multiplicities from the same job, are scheduled in any interval I of a class d ≥ c.

4. Consider any interval in class d. With probability 1, the total size of all pieces of jobs in
classes 0, . . . , d scheduled in this interval is at most βd(2 + 1

β−1).

Proof. The properties 1, 2 and 3 hold directly from the rounding. To see property 4, fix an
interval I in class d. Summing the volume constraint (3) that the fractional solution satisfies
over all τ ∈ I

d∑
c=0

βc

∑
j∈Jc

∑
t:[t,t+βc)⊆I

x(j, t)

 ≤ βd.
Now from property 3, at most d

∑
j∈Jc

∑
t:[t,t+βc)⊆I x(j, t)e pieces of jobs in class c are

scheduled in I. Therefore the total size of all the pieces of jobs in classes 0, . . . , d scheduled
in I is at most

d∑
c=0

βc


∑
j∈Jc

∑
t:[t,t+βc)⊆I

x(j, t)

 <
d∑
c=0

βc

1 +
∑
j∈Jc

∑
t:[t,t+βc)⊆I

x(j, t)


≤

d∑
c=0

βc + βd

= βd
(

β

β − 1 + 1
)
. J

2.5 Step 4: Converting the Pseudo-Schedule into a Feasible Schedule

We use a factor (2 + 1
β−1) speedup to convert the pseudo-schedule into a feasible schedule

that schedules at most one job at any single time. Consider the pseudo-schedule produced
in step 3. Call an aligned interval maximal if it contains a piece of a job of equal size and
does not overlap with any other piece of a job of larger size. There can be multiple pieces
corresponding to any maximal aligned interval. Fix a maximal interval I. We associate a
natural β-ary tree corresponding to all the pieces overlapping with I. The tree-nodes in level
d correspond to the aligned βd-intervals overlapping with I. See Figure 2 for an example of
such a tree for the case β = 2.

We give a procedure that uses a speedup factor of (2+ 1
β−1), and given a tree corresponding

to a maximal interval I, feasibly schedules all the pieces in that tree in the aligned βc-interval
corresponding to the root. The schedule is feasible in the sense that pieces of each job are
not scheduled before its release time and no two pieces overlap with each other. Since all the
maximal intervals are non-overlapping, applying the above procedure to each corresponding
tree produces a schedule for the entire instance.

Rohit Khandekar, Kirsten Hildrum, Deepak Rajan, and Joel Wolf 195

Figure 2 Example of a pseudo-schedule output by the rounding procedure for β = 2 and its
corresponding β-ary tree. Each shaded box (and the respective tree-node) corresponds to one or more
pieces of one or more jobs. From Lemma 10-4, the total size of pieces in any sub-tree (containing a
node and all its descendants) is at most (2 + 1

β−1) times the size of the root of the sub-tree. The
black boxes/tree-nodes represent pieces of early jobs while grey boxes/tree-nodes represent pieces of
late jobs. A box/tree-node can be both black or grey. (Source: Bansal et al. [3])

Procedure fit: We first shrink all pieces in JI by a factor of (2 + 1
β−1). We then

compute the postorder5 traversal of the β-ary tree TI . We schedule all pieces of early
jobs in the order they appear in postorder(TI), pieces of equal lengths overlapping
with each other ordered arbitrarily. We then compute the preorder traversal of TI .
We schedule all pieces of late jobs in the order they appear in preorder(TI), pieces of
equal lengths overlapping with each other ordered arbitrarily. These pieces of late jobs
are then “right-justified”, shifted as far right as possible so that the last piece completes
at the end-point of interval I.

Consider a maximal interval I = [τ, τ + βc). Let JI denote the set of jobs corresponding
to pieces scheduled in the interval I, and let TI denote the β-ary tree associated with the
pseudo-schedule in I. We partition the jobs JI into two sets, denoted early and late. The
early jobs are the jobs {j ∈ JI | rj ≤ τ} that are released not later than time τ . The pieces of
these jobs can be scheduled anywhere in I. Note that even though an early job k is scheduled
during the interval I, it does not pay the “penalty term” in the constraint (5). The late jobs
are the jobs {j ∈ JI | τ < rj < τ + βc} that are released in I. A piece of a late job j can be
scheduled no earlier than its release time rj . Note that a late job j pays the “penalty term”
in the constraint (5). We now describe our procedure fit, to convert the pseudo-schedule
into a feasible schedule. The following lemma shows that the schedule computed by the fit
procedure is feasible.

I Lemma 11. The schedule output by the fit procedure satisfies the following properties.
1. The pieces of jobs in JI are scheduled in the interval I such that no two pieces overlap.
2. Each piece of each early job in JI completes no later than its completion time in the

pseudo-schedule.
3. Each piece of each late job in JI starts no earlier than its start time in the pseudo-schedule,

and it completes within I.

5 The postorder traversal of a single-node tree v is defined as postorder(v) := v and that of a β-ary
tree T with root r and left-to-right sub-trees T1, . . . , Tβ is recursively defined as postorder(T) :=
postorder(T1), . . . , postorder(Tβ), r. Similarly, the preorder traversal of a single-node tree v is
defined as preorder(v) := v and that of a β-ary tree T with root r and left-to-right sub-trees T1, . . . , Tβ
is recursively defined as preorder(T) := r, preorder(T1), . . . , preorder(Tβ).

FSTTCS 2012

196 Scheduling with Setup Costs and Monotone Penalties

Proof. The first property follows from the observation that the total size of all the jobs in
JI is at most (2 + 1

β−1) times the length of the interval I and the fact that we shrink all the
pieces by a factor of (2 + 1

β−1). We now prove the second property. Consider a piece π of an
early job in JI . Let its completion time in the pseudo-schedule be τ + τπ. It is sufficient to
argue that the total size of pieces of early jobs (including π) that come no later than π in
postorder(TI) is at most τπ(2 + 1

β−1) before shrinking. To this end, consider the prefix
of postorder(TI) up to the tree-node corresponding to π. Let T1, . . . , Tq be the disjoint
subtrees of TI that are traversed in postorder(TI) up to node π. Note that the root of Tq
is π. Now let I1, . . . , Iq be the (disjoint) intervals occupied by the roots of T1, . . . , Tq. Note
that the total size of I1, . . . , Iq is precisely τπ. Furthermore, from Lemma 10-4, the total size
of pieces of jobs in JI that are contained in intervals I1, . . . , Iq is at most (2 + 1

β−1) times
the total size of these intervals. Thus, in particular, the total size of pieces of the early jobs
in these intervals is at most τπ(2 + 1

β−1), and the property follows. The third property can
be proved analogously, but with late jobs and preorder(TI). J

2.6 Step 5: Final Wrap-up
The solution obtained in step 4 is feasible on a processor with speedup factor 4β(2 + 1

β−1).
We now define pieces-wise average costs of a job j ∈ J in the pseudo-schedule and a schedule
computed by procedure fit.

I Definition 12. Consider a job j ∈ J . Let Aj = 1
nj

∑nj
i=1 fj(ti + pj) be the average cost of

job j in the pseudo-schedule where {[ti, ti + pj) | 1 ≤ i ≤ nj} denotes the set of intervals in
which the pseudo-schedule computed by Procedure round schedules job j. Furthermore let
A′j = 1

nj

∑nj
i=1 fj(t′i + p′j) be the average cost of job j in the feasible schedule computed by

Procedure fit. Here p′j = pj/(2 + 1
β−1) denotes the processing time of job j after the scaling

and {[t′i, t′i + p′j) | 1 ≤ i ≤ nj} denotes the set of intervals in which Procedure fit schedules
job j.

The following lemma bounds the expected average cost of a job in the feasible schedule.

I Lemma 13. For any job j ∈ J , the expected value of A′j is at most 2Wj.

Proof. From Lemma 10-1 and the constraint (4), it is clear that the expected value of Aj is
at most Wj . We next prove that the expected value of A′j −Aj is at most Wj .

To this end, fix a job j ∈ J and consider a piece πi = [ti, ti + pj), where 1 ≤ i ≤ nj in
the pseudo-schedule. During Procedure fit, job j was labelled as early for πi with a certain
probability and late for πi with a certain probability. From Lemma 11, if job j was labelled
as early for πi, the piece πi completed in the feasible schedule at or before its completion time
in the pseudo-schedule and thus its contribution to A′j −Aj is non-positive. Now suppose
that job j was labelled as late for πi. Let Imax denote the random variable denoting the
maximal interval that contains πi. For any interval I = [t, t + `) 3 rj , we have Imax = I

with probability at most
∑
t,`:rj∈(t,t+`)

∑
k:k 6=j,pk=` x(k, t). This follows from Lemma 10-1.

In the event that Imax = I, from Lemma 11, the piece πi completes by time t+ `. Thus the
expected contribution of πi to A′j −Aj is at most

1
nj

∑
t,`:rj∈(t,t+`)

∑
k:k 6=j,pk=`

x(k, t) · fj(t+ `) = 1
nj

∑
k 6=j

∑
t:rj∈(t,t+pk)

x(k, t) · fj(t+ pk).

Summing this over all pieces πi of job j, we get from constraint (5) that the expected value
of A′j −Aj is at most Wj . Hence the lemma holds. J

Rohit Khandekar, Kirsten Hildrum, Deepak Rajan, and Joel Wolf 197

Note that the actual cost of job j is the maximum value of fj(t′i + p′j) over all of its
pieces {[t′i, t′i + p′j) | 1 ≤ i ≤ nj}. For any non-decreasing cost function fj , this cost can be
arbitrarily larger than its average cost A′j . Using a simple trick to bound the actual cost of
the solution, we incur another factor α in speedup, where α > 1 is an integer to be fixed
later. We use the following simple observation. For a random variable x with range ∈ Z+
and a non-decreasing function w : Z+ → Z+, we have E[w(x)] ≥ Pr[x ≥ x0] · w(x0) for all
x0 ∈ Z+, where E denotes the expectation operator.

Suppose the pieces [t′i, t′i + p′j) for 1 ≤ i ≤ nj are sorted in the increasing order of their
completion times t′i + p′j in the feasible schedule. For any job j, shrink its processing time by
factor α and schedule α pieces in each of the intervals [t′i, t′i + p′j) for 1 ≤ i < i0 := dnj/αe
and at most α pieces in the interval [t′i0 , t

′
i0

+ p′j). It is easy to see that the actual cost of job
j is at most

fj(t′i0 + p′j) ≤
A′j

1− bnj/αcnj

≤
A′j

1− 1
α

=
αA′j
α− 1 .

Thus the expected actual cost of job j is at most 2αWj/(α− 1).
In summary, we obtain a randomized algorithm that gives a feasible schedule on a processor

with 4β(2 + 1
β−1)α speedup having expected cost at most 2α/(α − 1) times the optimum.

If α = β = 2, we get a randomized polynomial time 48-speed 4-approximation algorithm
for mpsp, and (from Lemma 5) a randomized polynomial time 96-speed 4-approximation
algorithm for gsp.

Acknowledgements. We thank Nikhil Bansal for useful discussions.

References
1 Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows : Theory,

Algorithms, and Applications. Prentice Hall, Englewood Cliffs, NJ, 1993.
2 A. Allahverdi, C. T. Ng, T. C. E. Cheng, and M. Y. Kovalyov. A survey of scheduling

problems with setup times or costs. European Journal on Operations Research, 2008.
3 N. Bansal, H.-L. Chan, R. Khandekar, K. Pruhs, C. Stein, and B. Schieber. Non-preemptive

min-sum scheduling with resource augmentation. In Proceedings of the 48th Annual Sym-
posium on Foundations of Computer Science, pages 614–624, 2007.

4 N. Bansal and K. Pruhs. Geometry of scheduling. In Proceedings of the 51st Annual
Symposium on Foundations of Computer Science, pages 81–90, 2004.

5 Ho-Leung Chan, Tak-Wah Lam, and Rongbin Li. Online flow time scheduling in the pres-
ence of preemption overhead. In Proceedings of International Workshop on Approximation
Algorithms for Combinatorial Optimization (APPROX), pages 85–97, 2012.

6 C. Chekuri, J. Vondrák, and R. Zenklusen. Multi-budgeted matchings and matroid inter-
section via dependent rounding. In ACM-SIAM Symposium on Discrete Algorithms, pages
1080–1097, 2011.

7 Srikrishnan Divakaran and Michael Saks. An online algorithm for a problem in scheduling
with set-ups and release times. Algorithmica, 56, 2009.

8 Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srinivasan. Depend-
ent rounding and its applications to approximation algorithms. J. ACM, 53(3):324–360,
2006.

9 Sungjin Im, Benjamin Moseley, and Kirk Pruhs. Online scheduling with general cost func-
tions. In ACM-SIAM Symposium on Discrete Algorithms, pages 1254–1265, 2012.

10 Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance. J. ACM,
47(4):617–643, 2000.

FSTTCS 2012

198 Scheduling with Setup Costs and Monotone Penalties

11 H. Kellerer, T. Tautenhahn, and G. J. Woeginger. Approximability and nonapproximability
results for minimizing total flow time on a single machine. In Proceedings of the 28th Annual
ACM Symposium on Theory of Computing, pages 418–426, May 1996.

12 Cynthia A. Phillips, Cliff Stein, Eric Torng, and Joel Wein. Optimal time-critical scheduling
via resource augmentation. Algorithmica, 32:163–200, 2001.

13 C.N. Potts and L.N. van Wassenhove. Integrating scheduling with batching and lotsizing: a
review of algorithms and complexity. Journal of the Operational Research Society, 43:395–
–406, 1992.

14 Petra Schuurman and Gerhard Woeginger. Preemptive scheduling with job dependent-
setup times. In Proceedings of the 10th ACM-SIAM Symposium on Discrete Algorithms,
pages 759–767, 1999.

	Introduction
	Our Results
	Our Techniques
	New: rounding using total unimodularity of network flows

	Related Work

	Algorithm for gsp
	Outline of the Algorithm
	Step 1: Reduction to mpsp and Restricting to Aligned Schedules
	Step 2: Solving the Linear Programming Relaxation
	Step 3: Obtaining a Pseudo-Schedule via Network Flows
	Creating a flow network

	Step 4: Converting the Pseudo-Schedule into a Feasible Schedule
	Step 5: Final Wrap-up

