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Abstract

We investigate the impact of dynamic topology reconfiguration on the complexity of verification

problems for models of protocols with broadcast communication. We first consider reachability

of a configuration with a given set of control states and show that parameterized verification is

decidable with polynomial time complexity. We then move to richer queries and show how the

complexity changes when considering properties with negation or cardinality constraints.
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1 Introduction

Broadcast communication is often used in networks in which individual nodes have no precise

information about the underlying connection topology (e.g. ad hoc wireless networks). As

shown in [4, 14, 15, 18, 19], this type of communication can naturally be specified in models

of computation in which a network configuration is represented as a graph and in which

individual nodes run an instance of a common protocol. A protocol typically specifies a

sequence of control states in which a node can send a message (emitter role), wait for a

message (receiver role), or perform an update of its internal state.

Already at this level of abstraction, verification of protocols with broadcast commu-

nication turns out to be a very difficult task. A formal account of this problem is given

in [3, 4], where parameterized control state reachability is proved to be undecidable in an

automata-based protocol model in which configurations are arbitrary graphs. The para-

meterized control state reachability problem consists in verifying the existence of an initial

network configuration (with unknown size and topology) that may evolve into a configura-

tion in which at least one node is in a given control state. If such a control state represents

a protocol error, then this problem naturally expresses (the complement of) a safety veri-

fication task in a setting in which nodes have no information a priori about the size and

connection topology of the underlying network.

In presence of non-deterministic reconfigurations of the network topology during an ex-

ecution, parameterized control state reachability becomes decidable [3]. Reconfiguration

models spontaneous node movement, i.e. each node can dynamically connect (resp. dis-

connect) to (resp. from) any other node in the network. Furthermore, it also models the

dynamic addition (resp. removal) of nodes by means of connection to the network of a pre-

viously disconnected idle node (resp. the definitive disconnection of a previously connected
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node). The decidability proof in [3] does not give exact complexity bounds of the problem; it

simply gives a reduction to Petri net coverability, an ExpSpace-complete problem [13, 20].

The precise complexity of parameterized reachability was left as an open problem in [3].

In this paper we present a comprehensive analysis of the complexity of reachability

problems for reconfigurable broadcast networks. We start by generalizing the problem by

considering reachability queries defined over assertions that: (i) check the presence or ab-

sence of control states in a given configuration generated by some initial configuration, and

(ii) cardinality queries that define lower and upper bounds for the number of occurrences

of control states in a reachable configuration. In any case the problems require, at least in

principle, the exploration of an infinite-state space. Indeed they are formulated for arbitrary

initial configurations, and upper bounds to the number of processes per control state are

not mandatory in case (ii). We then move to the analysis of the complexity of the con-

sidered problems by showing that reachability queries for constraints that only check for

the presence of a control state can be checked in polynomial time. When considering both

constraints for checking presence and absence of control states the problem turns out to be

NP-complete. Finally, we show that the problem becomes PSpace-complete for cardinality

queries.

Related Work. As mentioned in the introduction no precise complexity bounds were

given for the parameterized control state reachability problem proved decidable in [3] via a

reduction to Petri net marking coverability. In the present paper we attack this problem for

different types of reachability queries. The interreducibility of control state reachability in

models with dynamic reconfiguration, spontaneous mobility, and node-, message-, or link-

failures has been formally studied in [5]. Based on the results in [5], the PTime-algorithm

presented in the current paper can be applied not only to reconfigurable networks but also

to a variety of protocols models with failures.

Symbolic backward exploration procedures for network protocols specified in graph re-

writing have been presented in [11] (termination guaranteed for ring topologies) and [17]

(approximations without termination guarantees). Decidability issues for broadcast commu-

nication in unstructured concurrent systems (or, equivalently, in fully connected networks)

have been studied, e.g., in [8], whereas verification of unreliable communicating FIFO sys-

tems has been studied, e.g., in [1].

To our knowledge, exact algorithms (and relative complexity) for parameterized veri-

fication has not been studied in previous work on graph-based models of synchronous or

asynchronous broadcast communication like [16, 18, 19, 15, 7, 9, 10, 14, 17, 11].

Notes. Sketches of the proofs are included in the body of the paper; detailed proofs are

given in [6].

2 A Model for Reconfigurable Broadcast Networks

2.1 Syntax and semantics

Our model for reconfigurable broadcast networks is defined in two steps. We first define

graphs used to denote network configurations and then define protocols running on each

node. The label of a node denotes its current control state. Finally, we give a transition

system for describing the interaction of a vicinity during the execution of the same protocol

on each node.

◮ Definition 2.1. A Q-graph is a labeled undirected graph γ = 〈V, E, L〉, where V is a finite

set of nodes, E ⊆ V × V \ {〈v, v〉 | v ∈ V } is a finite set of edges, and L is a labeling function

from V to a set of labels Q.
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We use L(γ) to represent all the labels present in γ (i.e. the image of the function L). The

nodes belonging to an edge are called the endpoints of the edge. For an edge 〈u, v〉 in E, we

use the notation u ∼γ v and say that the vertices u and v are adjacent one to another in

the graph γ. We omit γ, and simply write u ∼ v, when it is made clear by the context.

◮ Definition 2.2. A process is a tuple P = 〈Q, Σ, R, Q0〉, where Q is a finite set of control

states, Σ is a finite alphabet, R ⊆ Q × ({!!a, ??a | a ∈ Σ}) × Q is the transition relation, and

Q0 ⊆ Q is a set of initial control states.

The label !!a [resp. ??a] represents the capability of broadcasting [resp. receiving] a message

a ∈ Σ. For q ∈ Q and a ∈ Σ, we define the set Ra(q) = {q′ ∈ Q | 〈q, ??a, q′〉 ∈ R} which

contains the states that can be reached from the state q when receiving the message a.

We assume that Ra(q) is non empty for every a and q, i.e. nodes always react to broadcast

messages. Local transitions (denoted by the special label τ) can be derived by using a special

message mτ such that 〈q, ??mτ , q′〉 ∈ R implies q′ = q for every q, q′ ∈ Q (i.e. receivers do

not modify their local states).

Given a process P = 〈Q, Σ, R, Q0〉, in the corresponding Reconfigurable Broadcast Net-

work (RBN) a configuration is a Q-graph and an initial configuration is a Q0-graph. We

use Γ [resp. Γ0] to denote the set of configurations [resp. initial configurations] associated

to P . Note that even if Q0 is finite, there are infinitely many possible initial configurations

(the number of Q0-graphs). We assume that each node of the graph is a process that

runs a common predefined protocol defined by a communicating automaton with a finite

set Q of control states. Communication is achieved via selective broadcast, which means

that a broadcasted message is received by the nodes which are adjacent to the sender. Non-

determinism in reception is modeled by means of graph reconfigurations. We next formalize

this intuition.

Given a process P = 〈Q, Σ, R, Q0〉, a reconfigurable broadcast network is defined by the

transition system RBN(P) = 〈Γ, →, Γ0〉 where the transition relation →⊆ Γ × Γ is such

that: for γ, γ′ ∈ Γ with γ = 〈V, E, L〉, we have γ → γ′ iff γ′ = 〈V, E′, L′〉 and one of the

following conditions holds:

Broadcast E′ = E and ∃v ∈ V s.t. 〈L(v), !!a, L′(v)〉 ∈ R and L′(u) ∈ Ra(L(u)) for every

u ∼ v, and L(w) = L′(w) for any other node w.

Graph reconfiguration E′ ⊆ V × V \ {〈v, v〉 | v ∈ V } and L = L′.

We use →∗ to denote the reflexive and transitive closure of →. RBN is an adequate formalism

to abstractly represent broadcast communication with features like spontaneous mobility,

node-, message- and link-failures.

2.2 Parameterized Reachability Problems

Given a process P = 〈Q, Σ, R, Q0〉, a cardinality constraint ϕ over P is a formula which

defines lower and upper bounds for the number of occurrences of each control state in a

configuration. The formulae are defined by the following grammar, where a ∈ N, q ∈ Q, and

b ∈ (N \ {0}) ∪ {+∞}:

ϕ ::= a ≤ #q < b | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ

We denote by CC the class of cardinality constraints, by CC[≥ 1] the class in which negation

is forbidden and atomic proposition have only the form #q ≥ 1 (there exists at least one

occurrence of q), and finally by CC[≥ 1, = 0] the class of cardinality constraints as in CC[≥ 1]

but where atoms can also be of the form #q = 0. Given a configuration γ = 〈V, E, L〉

FSTTCS 2012
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of P and q ∈ Q, we denote by #γ(q) the number of vertices in γ labeled by q, that is

#γ(q) = |{v ∈ V | L(v) = q}|. The satisfaction relation |= for atomic formulas is defined as

follows γ |= a ≤ #q < b iff a ≤ #γ(q) < b. It is defined in the natural way for compound

formulas.

We are now ready to state the cardinality reachability problem (CRP):

Input: A process P with RBN(P) = 〈Γ, →, Γ0〉 and a cardinality constraint ϕ.

Output: Yes, if ∃γ0 ∈ Γ0 and γ1 ∈ Γ s.t. γ0 →∗ γ1 and γ1 |= ϕ; no, otherwise.

If the answer to this problem is yes, we will write P |= ♦ϕ. Note that when dealing with

the complexity of this problem we will suppose that the size of the input is the size of the

process defined by the product of the number of states times the number of edges added to

the size of the formula in which the integer values are encoded in unary.

We use the term parameterized to remark that the initial configuration is not fixed a

priori. In fact, the only constraint that we put on the initial configuration is that the nodes

have labels taken from Q0 without any information on their number or connection links.

As a special case we can define the control state reachability problems studied in [3] as the

CRP for the simple constraint #q ≥ 1 (i.e. is there a reachable configuration in which the

state q is exposed?). Similarly, we can define the target reachability problem studied in [3]

as an instance of CRP in which control states that must not occur in a target configuration

are constrained by formulas like #q = 0.

According to our semantics, the number of nodes stays constant in each execution starting

from the same initial configuration. As a consequence, when fixing the initial configuration

γ0, we obtain finitely many possible reachable configurations. Thus, checking if there exists

γ1 reachable from a given γ0 s.t. γ1 |= ϕ for a constraint ϕ is a decidable problem. On

the other hand, checking the parameterized version of the reachability problem is in general

much more difficult. E.g. consider constraints of the form #q ≥ 1: CRP is undecidable

for a semantics without non-deterministic graph reconfigurations [3]. In [3] it is also proved

that CRP for the same class of constraints is decidable. However, the proposed decidability

proof is based on a reduction to the problem of coverability in Petri nets which is known to

be ExpSpace-complete [20, 13]. Since no lower-bound was provided, the precise complexity

of CRP with simple constraints was left as an open problem that we close in this paper by

showing that it is PTime-complete.

3 CRP restricted to constraints in CC[≥ 1]

In this section, we study CRP restricted to CC[≥ 1]. These constraints characterize config-

urations in which a given set of control states is present but they cannot express neither the

absence of states nor the number of their occurrences. We first give a lower bound for this

problem.

◮ Proposition 3.1. CRP restricted to CC[≥ 1] is PTime-hard.

Sketch of proof. The idea for the proof is based on a LogSpace-reduction from the

Circuit Value Problem (CVP), which is know to be PTime-complete [12]. The protocol

P built from the CVP instance has an initial state for each of the input variables which

broadcasts its truth assignment, and another one for each gate of the input circuit. In the

sub-protocol associated to individual gates, a process waits for messages representing inputs

and then broadcasts messages representing outputs in such a way that CVP is satisfied iff

P |= ♦#ok ≥ 1, where ok is a state reached only when the last gate produces the expected

output. ◭
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We now show that CRP restricted to CC[≥ 1] is in PTime. We first observe that,

in order to decide if control state q can be reached, we can focus our attention on initial

configurations in which the topology is fully connected (i.e. graphs in which all pairs of

nodes are connected). Indeed, graph reconfigurations can be applied to non-deterministically

transform a topology into any other one.

Another key observation is that if the control state q is reached once from the initial

configuration γ0, then it can be reached an arbitrary number of times by considering larger

and larger initial configurations γ′
0. More specifically, the initial configuration γ′

0 is obtained

by replicating several times the initial graph γ0. The replicated parts are then connected

in all possible ways (to obtain a fully connected topology). We can then use dynamic

reconfiguration in order to mimic parallel executions of the original system and reach a

configuration with several repeated occurrences of state q.

For what concerns constraints in CC[≥ 1] this property of CRP avoids the need of

counting the occurrences of states. We just have to remember which states can be gener-

ated by repeatedly applying process rules. As a consequence, in order to define a decision

Algorithm 1 Computing the set of control states reachable in a RBN

Input : P = 〈Q, Σ, R, Q0〉 a proce s s
Output : S ⊆ Q the s e t o f reachable cont ro l s t a t e s in RBN(P)

S := Q0

oldS := ∅
while S 6= oldS do

oldS := S
for a l l 〈q1, !!a, q2〉 ∈ R such that q1 ∈ oldS do

S := S ∪ {q2} ∪ {q′ ∈ Q | 〈q, ??a, q′〉 ∈ R ∧ q ∈ oldS}
end for

end while

procedure for checking control state reachability we can take the following assumptions: (i)

forget about the topology underlying the initial configuration; (ii) forget about the number

of occurrences of control states in a configuration; (iii) consider a single symbolic path in

which at each step we apply all possible rules whose preconditions can be satisfied in the

current set and then collect the resulting set of computed states.

We now formalize the previous observations. Let P = 〈Q, Σ, R, Q0〉 be a process with

RBN(P) = 〈Γ, →, Γ0〉 and let Reach(P) be the set of reachable control states equals to

{q ∈ Q | ∃γ ∈ Γ0.∃γ′ ∈ Γ. s.t. γ →∗ γ′ and q ∈ L(γ′)}. We will now prove that Algorithm

1 computes Reach(P). Let S be the result of the Algorithm 1 (note that this algorithm

necessarily terminates because the while-loop is performed at most |Q| times). We have

then the following lemma.

◮ Lemma 3.2. The two following properties hold:

(i) There exist two configurations γ0 ∈ Γ0 and γ ∈ Γ such that γ0 →∗ γ and L(γ) = S.

(ii) S = Reach(P).

Proof. We first prove (i). We denote by S0, S1, . . . , Sn the content of S after each iteration

of the loop of the Algorithm 1. We recall that an undirected graph γ = 〈V, E, L〉 is complete

if 〈v, v′〉 ∈ E for all v, v′ ∈ V . We will now consider the following statement: for all

j ∈ {0, . . . , n}, for all k ∈ N, there exists a complete graph γj,k = 〈V, E, L〉 in Γ verifying

the two following points:

1. L(γj,k) = Sj and for each q ∈ Sj , the set {v ∈ V | L(v) = q} has more than k elements

(i.e. for each element q of Sj there are more than k nodes in γj,k labeled with q),
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2. there exits γ0 ∈ Γ0 such that γ0 →∗ γj,k.

To prove this statement we reason by induction on j. First, for j = 0, the property is true,

because for each k ∈ N, the graph γ0,k corresponds to the complete graphs where each of the

initial control states appears at least k times. We now assume that the property is true for

all naturals smaller than j (with j < n) and we will show it is true for j + 1. We define Ca

as the set {〈〈q1, !!a, q2〉, 〈q, ??a, q′〉〉 ∈ R × R | q1, q ∈ Sj} and M its cardinality. Let k ∈ N

and let N = k + 2 ∗ k ∗ M . We consider the graph γj,N where each control state present in

Sj appears at least N times (such a graph exists by the induction hypothesis). From γj,N ,

we build the graph γj+1,k obtained by repeating k times the following operations:

for each pair 〈〈q1, !!a, q2〉, 〈q, ??a, q′〉〉 ∈ Ca, select a node labeled by q1 and one labeled

by q and update their label respectively to q2 and q′ (this simulates a broadcast from

the node labeled by q1 received by the node labeled q in the configuration in which all

the other nodes have been disconnected thanks to the reconfiguration and reconnected

after). Note that the two selected nodes can communicate because the graph is complete.

By applying these rules it is then clear that γj,N →∗ γj+1,k and also that γj+1,k verifies

the property 1 of the statement. Since by induction hypothesis, we have that there exists

γ0 ∈ Γ0 such that γ0 →∗ γj,N , we also deduce that γ0 →∗ γj+1,k, hence the property 2 of

the statement also holds. From this we deduce that (i) is true.

To prove (ii), from (i) we have that S ⊆ Reach(P) and we now prove that Reach(P) ⊆ S.

Let q ∈ Reach(P). We show that q ∈ S by induction on the minimal length of an execution

path γ0 →∗ γ such that γ0 ∈ Γ0 and q ∈ L(γ). If the length is 0 then q ∈ Q0 hence also q ∈ S.

Otherwise, let γ′ → γ be the last transition of the execution. We have that there exists

q1 ∈ L(γ′) such that 〈q1, !!a, q〉 ∈ R [or q1, q2 ∈ L(γ′) such that 〈q1, !!a, q3〉, 〈q2, ??a, q〉 ∈ R].

By induction hypothesis we have that q1 ∈ S [or q1, q2 ∈ S]. By construction, we can

conclude that also q ∈ S. ◭

Since constraints in CC[≥ 1] check only the presence of states and do not contain negation,

given a configuration γ and a constraint ϕ in CC[≥ 1] such that γ |= ϕ, we also have that

γ′ |= ϕ for every γ′ such that L(γ) ⊆ L(γ′). Moreover, given a process P , by definition of

Reach(P) we have that L(γ) ⊆ Reach(P) for every reachable configuration γ, and by Lemma

3.2 there exists a reachable configuration γf such that L(γf ) = Reach(P). Hence, to check

P |= ♦ϕ it is sufficient to verify whether γf |= ϕ for such a configuration γf . This can be

done algorithmically as follows: once the set Reach(P) is computed, check if the boolean

formula obtained from ϕ by replacing each atomic constraint of the form #q ≥ 1 by true if

q ∈ Reach(P) and by false otherwise is valid. This allows us to state the following theorem.

◮ Theorem 3.3. CRP restricted to CC[≥ 1] is PTime-complete.

Proof. The lower bound is given by Proposition 3.1. To obtain the upper bound, it suffices

to remark that the Algorithm 1 is in PTime since it requires at most |Q| iterations each

one requiring at most |R|2 look-ups (of active broadcast/receive transitions) for computing

new states to be included, and also that evaluating the validity of a boolean formula can be

done in polynomial time. ◭

4 CRP restricted to constraints in CC[≥ 1, = 0]

We consider now decidability and complexity of CRP for constraints in CC[≥ 1, = 0]. This

kind of queries can be used to specify that a given control state is not present in a config-

uration (using atomic constraints of the form #q = 0).
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◮ Proposition 4.1. CRP for constraints in CC[≥ 1, = 0] is NP-hard.

Sketch of proof. The proof is based on a reduction of the boolean satisfiability problem

(SAT), which is known to be NP-complete. The encoding of the SAT instance for a boolean

formula Φ with variables in V is based on a protocol with only local transitions from a single

initial state into states that encode truth assignments in {v, v | v ∈ V }. A CC[≥ 1, = 0] query

is then built in order to guarantee that there are no contradicting assignments to variables.

The query also ensures that the selected assignments satisfy the formula Φ, where positive

literals v are replaced by #v ≥ 1 and negative literals ¬v are replaced by #v = 0. ◭

We will now give an algorithm in NP to solve CRP for constraints in CC[≥ 1, = 0]. As

for Algorithm 1, this new algorithm works on sets of control states. The algorithm works

in two main phases. In a first phase it generates an increasing sequence of sets of control

states that can be reached in the considered process definition. At each step the algorithm

adds the control states obtained from the application of the process rules to the current set

of labels. Unlike the Algorithm 1, this new algorithm does not merge different branches,

i.e. application of distinct rules may lead to different sequences of sets of control states. In

a second phase the algorithm only removes control states applying again process rules in

order to reach a set of control states that satisfies the given constraint.

Algorithm 2 Solving CRP for constraints in CC[≥ 1, = 0]

Input : P = 〈Q, Σ, R, Q0〉 a proce s s and ϕ a c o n s t r a i n t over P in CC[≥ 1, = 0]
Output : Does P |= ♦ϕ ?

guess S0, . . . , Sm, T1, . . . , Tn ⊆ Q with m, n ≤ |Q|
i f S0 6⊆ Q0 then return f a l s e
for a l l i ∈ {0, . . . , m − 1} do

i f Si+1 6∈ postAdd(P , Si) then return f a l s e
end for
T0 = Sm

for a l l i ∈ {0, . . . , n − 1} do
i f Ti+1 6∈ postDel(P , Ti) then return f a l s e

end for
I f Tn s a t i s f i e s ϕ then return true else return f a l s e

For a process P = 〈Q, Σ, R, Q0〉 and a set S ⊆ Q, we define the operator postAdd(P , S) ⊆

2Q as follows: S′ ∈ postAdd(P , S) if and only if the two following conditions are satisfied:

(i) S ⊆ S′ and (ii) for all q′ ∈ S′ \ S, there exists a rule 〈q, !!a, q′〉 ∈ R such that q ∈ S

(q′ is produced by a broadcast) or there exist rules 〈p, !!a, p′〉 and 〈q, ??a, q′〉 ∈ R such that

q, p ∈ S and p′ ∈ S′ (q′ is produced by a reception). In other words, all the states in S′ ∈

postAdd(P , S) are either in S or states obtained from the application of broadcast/reception

rules to labels in S. Similarly, we define the operator postDel(P , S) ⊆ 2Q as follows: S′ ∈

postDel(P , S) if and only if S′ ⊆ S and one of the following conditions hold: either S\S′ = ∅

or [S \ S′ = {q} and there exists a rule 〈q, !!a, q′〉 ∈ R such that q′ ∈ S′] or [S \ S′ = {q} and

there exist two rules 〈p, !!a, p′〉, 〈q, ??a, q′〉 ∈ R such that p, p′, q′ ∈ S′ (q is consumed by a

broadcast)] or [S \ S′ = {p, q} and there exist two rules 〈p, !!a, p′〉, 〈q, ??a, q′〉 ∈ R such that

p′, q′ ∈ S′ (p and q are consumed by a broadcast)].

Finally, we say that a set S ⊆ Q satisfies an atom #q = 0 if q 6∈ S and it satisfies an

atom #q ≥ 1 if q ∈ S; satisfiability for composite boolean formulae of CC[≥ 1, = 0] is then

defined in the natural way. We have then the following Lemma.

◮ Lemma 4.2. There is an execution of Algorithm 2 which answers YES on input P and ϕ

iff P |= ♦ϕ.
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Figure 1 Simulation of a transition t with •t = {p1, . . . , pn} and t• = {q1, . . . , qm}.

It is then clear that each check performed by the Algorithm 2 (i.e. S0 ⊆ Q0 and Si+1 ∈

postAdd(P , Si) and Ti+1 ∈ postAdd(P , Ti) and Tn satisfies ϕ) can be performed in polyno-

mial time in the size of the process P and of the formula ϕ and since m and n are smaller

than the number of control states in P , we deduce the following theorem (the lower bound

being given by Proposition 4.1).

◮ Theorem 4.3. CRP for constraints in CC[≥ 1, = 0] is NP-complete.

5 Complexity of CRP in Full CC

In this section we will show that CRP for the entire class of cardinality constraints CC is

PSpace-complete. First we prove the lower bound.

◮ Proposition 5.1. CRP is PSpace-hard.

Proof. We use a reduction from reachability in 1-safe Petri nets. A Petri net N is a tuple

N = 〈P, T, ~m0〉, where P is a finite set of places, T is a finite set of transitions t, such that
•t and t• are multisets of places (pre- and post-conditions of t), and ~m0 is a multiset of

places that indicates how many tokens are located in each place in the initial net marking.

Given a marking ~m, the firing of a transition t such that •t ⊆ ~m leads to a new marking ~m′

obtained as ~m′ = ~m \• t ∪ t•. A Petri net P is 1-safe if in every reachable marking every

place has at most one token. Reachability of a specific marking ~m1 from the initial marking

~m0 is decidable for Petri nets, and PSpace-complete for 1-safe nets [2].

Given a 1-safe net N = 〈P, T, ~m0〉 and a marking ~m1, we encode the reachability problem

as a CRP problem for the process P and cardinality constraint ϕ defined next. For each

place p ∈ P , we introduce control states p1 and p0 to denote the presence or absence of the

token in p, respectively. Furthermore, we introduce a special control state ok. The control

state is used to control the net simulation. Transitions of the controller are depicted in the

upper part of Fig. 1. The first rule of the controller selects the current transition to simulate.

The simulation of the transition t with •t = {p1, . . . , pn} and t• = {q1, . . . , qm} is defined

via two sequences of messages (we denote •t and t• as sets instead of multisets because

we are considering a 1-safe net and it is hence not possible that a transition consumes or

produces more than one token for each place). The first one is used to remove the token

from p1, . . . , pn, whereas the second one is used to put the token in q1, . . . , qm. To guarantee

that every involved place reacts to the protocol —i.e. messages are not lost— the controller

waits for an acknowledgement from each of them. Transitions of places are depicted in

the lower part of Fig. 1. It is not restrictive to assume that there is only one token in

the initial marking ~m0 (otherwise we add an auxiliary initial place and a transition that

generates ~m0 by consuming the initial token). Let p0 be such a place. We define the
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initial states Q0 of the process P as {p0
1, ok} ∪ {p0 | p ∈ P \ {p0}}, in order to initially

admit control states representing the controller, the presence of the initial token, and the

absence of tokens in other places. The reduction does not work if there are several copies of

controller nodes and/or place representations (i.e. p1, p0, . . .) interacting during a simulation

(interferences between distinct nodes representing controllers/places may lead to incorrect

results). However we can ensure that the reduction is accurate by checking the number of

occurrences of states exposed in the final configuration: it is sufficient to check that only one

controller and only one node per place in the net are present. Besides making this check,

the cardinality constraint ϕ should also verify that the represented net marking coincides

with ~m1. Namely, we define ϕ as follows:

ϕ =
∧

p∈ ~m1,t∈T

(

#p1 = 1 ∧ #p0 = 0 ∧ #auxa
t,p = 0 ∧ #auxb

t,p = 0
)

∧

∧

q 6∈ ~m1,t∈T

(

#q1 = 0 ∧ #q0 = 1 ∧ #auxa
t,q = 0 ∧ #auxb

t,q = 0
)

∧ #ok = 1∧

∧

t∈T

(#okt = 0) ∧
∧

t∈T,q∈P

(

#at,q = 0 ∧ #bt,q = 0 ∧ #aack
t,q = 0 ∧ #back

t,q = 0
)

Since the number of nodes stays constant during an execution, the post-condition specified

by ϕ is propagated back to the initial configuration. Therefore, if the protocol satisfies CRP

for ϕ, then in the initial configuration there must be one single controller node with state ok,

and for each place p one single node with either state p1 or state p0. Under this assumption,

it is easy to check that a run of the protocol corresponds precisely to a firing sequence in the

1-safe net. Thus an execution run satisfies ϕ if and only if the corresponding firing sequence

reaches the marking ~m1. ◭

We now show that there exists an algorithm to solve CRP in PSpace. The main idea

is to use a symbolic representation of configurations in which the behavior of a network is

observed exactly for a fixed number of nodes only. For all the other nodes, we only maintain

the control state they are labeled with and not their precise number.

Without loss of generality, we consider for simplicity only processes with Q0 = {q0}, as

multiple initial states can be encoded through local transitions from q0. Given a process

P = 〈Q, Σ, R, {q0}〉 and a cardinality constraint ϕ over P we denote by val(ϕ) ∈ N the largest

natural constant that appears in ϕ. We then denote by psize(ϕ) the natural |Q| ∗ val(ϕ).

Intuitively psize(ϕ) is the number of witness nodes we keep track of: we reserve val(ϕ)

processes to each control state that may appear in ϕ.

A symbolic configuration for P and ϕ is then a pair θ = 〈v, S〉 where v ∈ Qpsize(ϕ) is a

vector of psize(ϕ) elements of Q and S ⊆ Q. For q ∈ Q, we then write #v(q) to indicate the

number of occurrences of q in the vector v. Note that by definition 0 ≤ #v(q) ≤ psize(ϕ)

for every q ∈ Q and that
∑

q∈Q #v(q) = psize(ϕ). This allows us to describe the set of

configurations [[θ]] ⊆ Γ characterized by a symbolic configuration θ = 〈v, S〉 as follows: we

have γ ∈ [[θ]] if and only #γ(q) > #v(q) for every q ∈ S and #γ(q) = #v(q) for every

q ∈ Q \ S. Hence a symbolic configuration θ = 〈v, S〉 represents all the configurations such

that the number of occurrences of a control state q is greater than the number of occurrences

of q in v if q ∈ S, or equal when q /∈ S. We will say that a symbolic configuration θ satisfies

the cardinality constraint ϕ, written θ |= ϕ, iff γ |= ϕ for all γ ∈ [[θ]]. We use Θ to represent

the set of symbolic configurations.

We make the following non restrictive assumptions: there is no constraint on the unique

initial state q0 in the cardinality constraints, the only outgoing transitions from the state q0
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are local transitions (labelled with τ), in the symbolic configurations 〈v, S〉 we always have

q0 ∈ S, and the initial configuration θ0 is 〈(q0, . . . , q0), {q0}〉. The most important assump-

tion is the first one about the absence of constraints on q0: it is needed to guarantee the cor-

rectness of our symbolic procedure. For instance, consider a process P = 〈{q0}, Σ, R, {q0}〉

and a cardinality constraint ϕ of the form 1 ≤ #q0 < 2. We have then psize(ϕ) = 2 and the

symbolic configurations are of the form 〈(q0, q0), S〉. It is then obvious that all the symbolic

configurations do not satisfy ϕ while the initial concrete configuration with only one node

does. The above assumptions are not restrictive because given a process P = 〈Q, Σ, R, {q0}〉

and a cardinality constraint ϕ, we can define a new process P ′ = 〈Q′, Σ, R′, {qinit}〉 where

Q′ = Q ∪ {qinit} and R′ = R ∪ {〈qinit, τ, q0〉}, i.e. qinit is a new initial state from which the

process is enabled to go to q0 thanks to a local transition. As there is no constraint in ϕ

about qinit it is immediate to prove the following Lemma:

◮ Lemma 5.2. P |= ♦ϕ if and only if P ′ |= ♦ϕ.

We now define a relation on the symbolic configurations to represent the effect that

process rules have on symbolic configurations. Let P = 〈Q, Σ, R, {q0}〉 be a process, ϕ a

cardinality constraint and θ the associated set of symbolic configurations. For each rule

r ∈ R of form 〈q, !!a, q′〉, we define the symbolic transition relation  r⊆ Θ × Θ as follows,

we have 〈v, S〉 r 〈v′, S′〉 if and only if at least one of the two following conditions holds:

1. (broadcast from a state in v) there exists i ∈ {1, . . . , psize(ϕ)} such that v[i] = q and

v′[i] = q′ (i.e. the sending process switches state according to r) and:

for all j ∈ {1, . . . , psize(ϕ)}\{i} we have either v[j] = v′[j] or there exists 〈qr, ??a, q′
r〉 ∈

R such that v[j] = qr and v′[j] = q′
r (i.e. other processes in the pool may or may not

react to the broadcast);

for each qs ∈ Q \ {q0}:

if qs ∈ S′ \ S then there exists q′
s ∈ S and 〈q′

s, ??a, qs〉 ∈ R,

if qs ∈ S \ S′ then there exists q′
s ∈ S′ and 〈qs, ??a, q′

s〉 ∈ R.

2. (broadcast from a state in S) we have q ∈ S and q′ ∈ S′ (note that we could have that

q ∈ S′ or q /∈ S′), and the following conditions hold:

for all j ∈ {1, . . . , psize(ϕ)} we have either v[j] = v′[j] or there exists 〈qr, ??a, q′
r〉 ∈ R

such that v[j] = qr ∧ v′[j] = q′
r;

for each qs ∈ Q \ {q, q′}, we have:

if qs ∈ S′ \ S then there exists 〈q′
s, ??a, qs〉 ∈ R with q′

s ∈ S,

if qs ∈ S \ S′ then there exists 〈qs, ??a, q′
s〉 ∈ R with q′

s ∈ S′.

We denote by  ⊆ Θ × Θ the relation such that θ  θ′ if and only if there exists a

rule r ∈ R such that θ  r θ′, and  ∗ represents its reflexive and transitive closure. The

intuition behind this construction is that we do not perform any abstraction on the states

present in the vector v but only on the states present in S, this because the states present

in v are used as witnesses to satisfy the cardinality constraint ϕ.

As an example, for psize(ϕ) = 5, let 〈(q1, q2, q0, q0, q0), {q0, q1, q2}〉 be a symbolic con-

figuration, and 〈q1, !!a, q′
1〉 and 〈q2, ??a, q′

2〉 be two transition rules. With a broadcast from

a process in the vector we may reach, among others, 〈(q′
1, q2, q0, q0, q0), {q0, q1, q2}〉, 〈(q′

1,

q′
2, q0, q0, q0), {q0, q1, q2, q′

2}〉, or 〈(q′
1, q′

2, q0, q0, q0), {q0, q1, q′
2}〉, whereas a broadcast from a

process in the set may lead to 〈(q1, q2, q0, q0, q0), {q0, q1, q2, q′
1}〉, 〈(q1, q2, q0, q0, q0), {q0, q1,

q′
1, q′

2}〉, 〈(q1, q′
2, q0, q0, q0), {q0, q1, q2, q′

1, q′
2}〉, or 〈(q1, q′

2, q0, q0, q0), {q0, q′
1, q′

2}〉.

We will now prove that the symbolic configurations are well-suited to solve CRP. First, we

show that if a symbolic configuration which satisfies ϕ is reachable from the initial symbolic
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configuration, then there is a concrete configuration reachable from an initial configuration

in γ0 which also satisfies ϕ. This ensures a sound reasoning on symbolic configurations.

◮ Lemma 5.3. If there exists θ ∈ Θ such that θ0  
∗ θ and θ |= ϕ, then P |= ♦ϕ.

Sketch of proof. For a symbolic θ = 〈v, S〉 in Θ and N ∈ N, we denote by [[θ]]N = {γ ∈ [[θ]] |

∀q ∈ S.#γ(q) > (N + #v(q))}, i.e. the set of configurations which belong to [[θ]] in which

for each q ∈ S, there are at least N vertices (in addition to those already in the vector v).

Note that with this definition [[θ]]0 = [[θ]]. We then can prove the following property: given

θ ∈ Θ such that θ0  
∗ θ, there exists N ∈ N such that for all γ ∈ [[θ]]N , there exists an

initial configuration γ0 ∈ Γ0 such that γ0 →∗ γ. To show that this property is true, we

reason by induction on the length of the execution choosing the N adequately at each step

of the induction. Then if there exists θ ∈ Θ such that θ0  
∗ θ and θ |= ϕ, then there exists

γ0 ∈ θ0 and γ ∈ [[θ]] such that γ0 →∗ γ, and by the definition of |= for symbolic configuration

we deduce also that γ |= ϕ. Hence P |= ♦ϕ. ◭

We will now show that a reasoning on symbolic configurations leads to completeness, in

other words that if there is a reachable configuration that satisfies the cardinality constraint

ϕ, then there is a reachable symbolic configuration that satisfies ϕ.

◮ Lemma 5.4. If P |= ♦ϕ, then there exists θ ∈ Θ such that θ0  
∗ θ and θ |= ϕ.

Sketch of proof. In order to prove this Lemma, we need to introduce some auxiliary notations.

Given a configuration γ ∈ Γ, we define ↑q0
γ as the set {γ′ ∈ Γ | ∀q ∈ Q \ {q0}. #γ′(q) =

#γ(q)}. The above definition is needed because we could reach a configuration γ which

does not have enough processes to be represented by a symbolic configuration, but we

can complete it by adding new vertices labelled by the initial state q0 in order to solve the

problem. We can then prove the following property by induction on the length of the concrete

execution: for γ0 ∈ Γ0 and γ ∈ Γ such that γ0 →∗ γ, for all θ ∈ Θ verifying ↑q0
γ ∩ [[θ]] 6= ∅,

we have θ0  
∗ θ. Basically, this property stipulates that given a reachable configuration γ,

each symbolic configuration θ whose semantics [[θ]] contains γ (modulo processes in state q0)

is also reachable.

The next step consists in proving that if γ ∈ Γ is a configuration satisfying γ |= ϕ then

there exists θ ∈ Θ such that ↑q0
γ ∩ [[θ]] 6= ∅ and θ |= ϕ. This can be proved providing an

algorithm that builds θ = 〈v, S〉 such that, for each q ∈ Q, either the processes in state q can

be exactly represented within v only when #γ(q) ≤ val(ϕ), or #v(q) = val(ϕ) and q ∈ S

when #γ(q) > val(ϕ) (i.e. v is not large enough, recall that, apart for the states q0 used to

fill the "holes" in v, we reserve only up to val(ϕ) processes per state in v). Consider, e.g.,

a process with states Q = {q0, q1, q2}, the formula ϕ = 0 ≤ #q1 < 3 ∧ 1 ≤ #q2 < +∞ and

the configuration with five processes γ = 〈q1, q2, q2, q2, q2〉 such that γ |= ϕ. The symbolic

configuration θ obtained is then 〈(q1, q2, q2, q2, q0, q0, q0, q0, q0), {q0, q2}〉.

Since P |= ♦ϕ, there exists an initial configuration γ0 ∈ Γ0 and a configuration γ ∈ Γ

such that γ0 →∗ γ and γ |= ϕ. By the second property we know there exists θ ∈ Θ such

that ↑q0
γ ∩ [[θ]] 6= ∅ and θ |= ϕ, and the first property allows us to say that θ0  

∗ θ. ◭

We will now explain why CRP is in PSpace. The main idea is that we can reason on the

graph of symbolic configurations. Note that by definition, since Θ = Qpsize(ϕ) ×2Q, the total

number of symbolic configurations is |Θ| = |Q|psize(ϕ) ∗ 2|Q|. Furthermore, checking whether

a symbolic configuration satisfies a cardinality constraint can be done in PTime and checking

whether two symbolic configurations belong to the symbolic transition relation  can also

be done in PTime. The PSpace algorithm (which is in reality an NPSpace algorithm)

at each step guesses a new symbolic configuration, checks whether it is reachable from the

previous guessed one and verifies whether it satisfies ϕ. When it encounters a symbolic
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configuration that satisfies ϕ, it returns that P |= ♦ϕ. Note that this algorithm needs only

to store the number of configurations it has seen until now, and when this number reaches

|Q|psize(ϕ)∗2|Q|, it means that the algorithm have seen all the symbolic configurations. Hence

to store this number and the current and next symbolic configurations, the algorithm needs

polynomial space (a number smaller than |Q|psize(ϕ) ∗2|Q| can be stored into a counter which

requires at most psize(ϕ) ∗ log (|Q|) + |Q| log (2) space). Finally, lemmas 5.3 and 5.4 ensure

us that such an algorithm is sound and complete and from Proposition 5.1 we have also a

lower bound for CRP. Hence we deduce the main result of this paper.

◮ Theorem 5.5. CRP is PSpace-complete.
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