
Automated Reasoning and Natural Proofs for
Programs Manipulating Data Structures
P. Madhusudan

University of Illinois at Urbana-Champaign, USA
and visiting Microsoft Research, Bangalore, INDIA
madhu@illinois.edu

Abstract
We consider the problem of automatically verifying programs that manipulate a dynamic heap,
maintaining complex and multiple data-structures, given modular pre-post conditions and loop
invariants. We discuss specification logics for heaps, and discuss two classes of automatic proced-
ures for reasoning with these logics. The first identifies fragments of logics that admit completely
decidable reasoning. The second is a new approach called the natural proof method that builds
proof procedures for very expressive logics that are automatic and sound (but incomplete), and
that embody natural proof tactics learnt from manual verification.

1998 ACM Subject Classification D.2.4 Software/Program Verification, F.3.1 Specifying and
Verifying and Reasoning about Programs, F.4.1 Mathematical Logic

Keywords and phrases logic, heap structures, data structures, program verification

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2012.34

Summary

One of the most promising paradigms of software verification is automated deductive verifica-
tion, which combines user written modular annotations for specifications as well as invariants
(pre/post conditions, loop invariants, assertions, ghost code, etc.) and automatic theorem
proving of the resulting verification conditions. This paradigm is extremely powerful as
it appears to be a rich enough paradigm using which any reliable software can be built
(unlike completely automatic approaches) and because the user needs to specify only modular
and loop annotations, leaving reasoning entirely to automatic techniques. Several success
stories of large software verification projects attest to the power of this paradigm (the Verve
OS project [8], the Microsoft hypervisor verification project using VCC [1], and a recent
verified-for-security OS+browser for mobile applications [5], to name a few).

Verification conditions do not, however, always fall into decidable theories. In particular,
the verification of properties of the dynamically modified heap is a big challenge for logical
methods. The dynamically manipulated heap poses several challenges, as typical correctness
properties of heaps require complex combinations of structure (e.g., p points to a tree
structure, or to a doubly-linked list, or to an almost balanced tree, with respect to certain
pointer-fields), data (the integers stored in data-fields of the tree respect the binary search
tree property, or the data stored in a tree is a max-heap), and separation (the procedure
modifies one list and not the other and leaves the two lists disjoint at exit, etc.). The fact
that the dynamic heap contains an unbounded number of locations means that expressing
the above properties requires quantification in some form, which immediately precludes the
use of most decidable theories currently handled by SMT solvers.

We will discuss two logics that have emerged in this regime— classical logic augmented
with ghost-code and separation logic [6]. We will then discuss two thrusts in automatically
verifying the resulting verification conditions— decidable logics and natural proofs.

© P. Madhusudan;
licensed under Creative Commons License NC-ND

32nd Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012).
Editors: D. D’Souza, J. Radhakrishnan, and K. Telikepalli; pp. 34–35

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.34
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


P. Madhusudan 35

Decidable logics: We discuss several decidable logics that restrict classical logics with
quantification so that they are amenable to automated reasoning. In particular, we will
discuss the class of Strand logics [2, 3] that admit decision procedures for data-structures
combining tree-interpretable structure and data, with restriction of relations to be elastic.
We will explore the boundary between decidability and undecidability in this domain.

Decidable logics that are expressive enough to handle common data-structures and their
correctness quickly become awkward, and perhaps more importantly, their decision procedures
get incredibly complex, failing to mimic the simple proofs that are sufficient to prove many
correct programs correct. This leads us to the quest for simple proofs.
Natural proofs: Natural proofs [4, 7] aim at discovering simple proofs— proofs that
mimic human reasoning of programs, which often rely on induction on the shape of the
data-structure, and combine unfolding recursive definitions on data-structures followed by
unification and simple quantifier-free reasoning over specific theories. Natural proofs exploit
a fixed set of proof tactics, keeping the expressiveness of powerful logics, retaining the
automated nature of proving validity, but giving up on completeness (giving up decidability,
retaining soundness).

We discuss the logic Dryad, a dialect of separation logic, with no explicit (classical)
quantification but with recursive definitions to express second-order properties. We show
that Dryad is both powerful in terms of expressiveness, and closed under the strongest-post
with respect to bounded code segments. We also show that Dryad can be systematically
converted to classical logic using the theory of sets, and develop a natural proof mechanism
for classical logics with recursion and sets that implements a sound but incomplete reduction
to decidable theories that can be handled by an SMT solver.

We show, using a large class of correct programs manipulating lists, trees, cyclic lists, and
doubly linked lists as well as multiple data-structures of these kinds, that the natural proof
mechanism often succeeds in proving programs automatically. These programs are drawn
from a range of sources, from textbook data-structure routines (binary search trees, red-black
trees, etc.) to routines from Glib low-level C-routines used in GTK+/Gnome to routines
implementing file-systems, a routine from the Schorr-Waite garbage collection algorithm, to
several programs from a recent secure framework developed for mobile applications [5].

References
1 Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach, Michal Moskal,

Thomas Santen, Wolfram Schulte, and Stephan Tobies. VCC: A practical system for veri-
fying concurrent C. In TPHOLs’09, volume 5674 of LNCS, pages 23–42. Springer, 2009.

2 P. Madhusudan, Gennaro Parlato, and Xiaokang Qiu. Decidable logics combining heap
structures and data. In POPL’11, pages 611–622. ACM, 2011.

3 P. Madhusudan and Xiaokang Qiu. Efficient decision procedures for heaps using STRAND.
In SAS’11, volume 6887 of LNCS, pages 43–59. Springer, 2011.

4 P. Madhusudan, Xiaokang Qiu, and Andrei Stefanescu. Recursive proofs for inductive tree
data-structures. In POPL’12, pages 123–136. ACM, 2012.

5 Haohui Mai, Edgar Pek, Hui Xue, P. Madhusudan, and Samuel King. Building a secure
foundation for mobile apps. In ASPLOS’13. to appear, 2013.

6 Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about programs
that alter data structures. In CSL’01, volume 2142 of LNCS, pages 1–19. Springer, 2001.

7 Xiaokang Qiu, Pranav Garg, Andrei Stefanescu, and P. Madhusudan. Natural proofs for
structure, data, and separation. Unpublished manuscript, 2012.

8 Jean Yang and Chris Hawblitzel. Safe to the last instruction: automated verification of a
type-safe operating system. In PLDI’10, pages 99–110. ACM, 2010.

FSTTCS 2012


