
Randomly-oriented k-d Trees Adapt to Intrinsic
Dimension
Santosh S. Vempala∗

School of Computer Science
Georgia Tech
vempala@gatech.edu

Abstract
The classic k-d tree data structure continues to be widely used in spite of its vulnerability to the
so-called curse of dimensionality. Here we provide a rigorous explanation: for randomly rotated
data, a k-d tree adapts to the intrinsic dimension of the data and is not affected by the ambient
dimension, thus keeping the data structure efficient for objects such as low-dimensional manifolds
and sparse data. The main insight of the analysis can be used as an algorithmic pre-processing
step to realize the same benefit: rotate the data randomly; then build a k-d tree. Our work can be
seen as a refinement of Random Projection trees [7], which also adapt to intrinsic dimension but
incur higher traversal costs as the resulting cells are polyhedra and not cuboids. Using k-d trees
after a random rotation results in cells that are cuboids, thus preserving the traversal efficiency
of standard k-d trees.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, E.1 Data
Structures, G.3 Probability and Statistics

Keywords and phrases Data structures, Nearest Neighbors, Intrinsic Dimension, k-d Tree

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2012.48

1 Introduction

The k-d tree, introduced by Bentley [4], is a classic data structure for nearest neighbor
search. Roughly speaking, a k-d tree is constructed by recursively partitioning space using
axis-parallel cuts, with each cut placed at the median of the point set along some axis. It is
widely used in machine learning, computer vision, bioinformatics, astronomy and other fields.

For the ubiquitous nearest neighbor problem, k-d trees are the method of choice. Although
other more sophisticated algorithms have been proposed in the nearly forty years since the
invention of k-d trees, they remain the default approach to nearest neighbor problems in
a variety of settings. They are space efficient, being only linear in size with respect to the
number of points, and they are easy to construct and query.

Although they are so popular, k-d trees do have a major weakness. As the dimension n
becomes large, in the worst case, nearest neighbor queries can take time close to linear in the
total number of points (a manifestation of the “curse of dimensionality"). Thus our current
state of knowledge is that k-d trees are an efficient heuristic approach in low dimension
(without precise knowledge of running times) and their performance can degrade significantly
as the dimension increases.

To overcome the the challenge of high dimensionality, researchers have designed other
data structures for nearest neighbor search. These include tree-based structures such as

∗ Supported in part by NSF award AF-0915903

© Santosh S. Vempala;
licensed under Creative Commons License NC-ND

32nd Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012).
Editors: D. D’Souza, J. Radhakrishnan, and K. Telikepalli; pp. 48–57

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.48
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. S. Vempala 49

approximate Voronoi diagrams [12], cover trees [5], PCA trees [19] and navigating nets [17].
Another algorithmic solution is based on random projection [18], inspired by the Johnson-
Lindenstrauss Lemma [15]. This idea was subsequently developed by applying a series of
random projections together as locality-sensitive hash functions [14, 13, 1], leading to the
strongest known upper bounds for approximate nearest neighbor search. Roughly speaking,
these bounds allow for fixed polynomial (slightly superlinear) storage space and sublinear
query time, in return for constant-factor approximations to the nearest neighbor distance.

A different line of research has focused on exploiting some form of low-dimensional
structure in the data, e.g., cover trees [5] and random projection trees [7, 10]. The idea
here is that the ambient dimension is not the critical factor in the complexity, but rather
some much smaller quantity that corresponds to the intrinsic dimension of the data set.
An important notion of intrinsic dimension is the Assouad (or doubling) dimension [11], a
slight variant of a concept defined by Assouad [3]. Let B(x, r) be the closed ball of radius r
centered at x.

I Definition 1. The doubling dimension of a set S ⊆ Rn is the smallest integer d s.t. for
every x ∈ Rn and r > 0, B(x, r) ∩ S can be covered by at most 2d balls of radius r/2.

An interval in R has doubling dimension 1. Any subset of Rk has doubling dimension O(k);
so subsets restricted to k-dimensional subspaces in Rn have doubling dimension O(k). The
union over 1 ≤ i ≤ n of the intervals [−ei, ei] has doubling dimension logn (where e1, . . . , en
are the canonical unit vectors). This sparse example can be generalized — if every point in
S ⊂ Rn has at most d nonzero coordinates, then the doubling dimension of S is O(d logn)
[6].

Dasgupta and Freund’s random projection trees (RP trees) are built as follows: pick a
random direction at every partitioning step, independently for each cell, and split the current
cell at a random point within a small interval of the median of the current data points. These
trees have the property that the diameter of cells in the data structure decreases quickly
with the number of splits – it takes roughly O(d log d) splits to halve the diameter where d is
the intrinsic dimension. Dasgupta and Freund termed this behavior “adapting to Assouad
dimension”. Subsequently, the RP tree has found applications in other settings including
tree-based vector quantization [8] and regression [16]. The random directions used to build
an RP tree are not orthogonal to each other and at each level of the tree, there are many
different cuts used, leading to a data structure whose cells are general polyhedra rather than
cuboids as in standard k-d trees. One advantage of the standard k-d tree that is lost here is
that traversing the tree only needs comparison on a single coordinate at a time, while for
RP trees this goes up by at least a factor of n (since one has to compare along a random
direction). Moreover, computing the distance of a point to a cell, which is now a general
polyhedron, is substantially more complicated. Indeed, their original paper does not give a
nearest neighbor algorithm.

On the other hand, k-d trees do not have a nice dependence on doubling dimension while
RP trees do. This is seen in the example of a points distributed along n orthogonal lines,
one parallel to each axis. In this example, halving the diameter requires n splits, i.e., depth
n, even though the doubling dimension is only log(2n).

In this paper, we propose a conceptually simple and algorithmically efficient variant of k-d
trees that adapts to intrinsic dimension. In fact, our algorithm is essentially a pre-processing
step for a k-d tree. The preprocessing consists of a random rotation of the ambient space, i.e.,
instead of the standard basis for constructing a tree, we use a random basis. The overhead
in the running time could be negligible as the database would be rotated in advance, and a
query point only has to be mapped once to the chosen basis before the search is carried out.

FSTTCS 2012

50 Randomly-oriented k-d Trees

Our main theorem asserts that such a transformation leads to a strong guarantee for k-d
trees, namely that they adapt to the intrinsic dimension, in the same way that RP trees do.
The Randomized k-d tree algorithm is described precisely in the next section.

I Theorem 2 (Main). Let S ⊂ Rn be a finite set with m points and doubling dimension d.
Assuming d log d ≤ c0n, for the Randomized k-d tree, with probability at least 1−me−c1n,
for any cell C of the tree and every cell C ′ that is at least c2d log d levels below C, we have

diam(C ′ ∩ S) ≤ 1
2diam(C ∩ S)

where c0, c1, c2 are absolute constants.

In other words, when the doubling dimension is low, it takes only a small number of rounds
of splits to halve the diameter of cells. A stronger guarantee would be to give an actual
bound on the query time based on doubling dimension. However, we are not aware of such a
connection between cell diameter and query times.

This theorem also provides an intriguing perspective on the standard use of k-d trees
showing that simply taking a random rotation of the data could yield a configuration of the
dataset more amenable to nearest neighbor search via k-d trees. Alternatively, one can also
view this result as an explanation of the success of k-d trees, namely if one assumes that the
basis in which measurements are made is essentially random, then these trees adapt to the
intrinsic dimension, i.e., they work well on average, if one views the data as coming from a
randomly chosen basis. Both these perspectives are supportive of the idea that k-d trees are
actually an excellent choice whenever the intrinsic dimension is significantly lower than the
ambient dimension.

We note that this is a technically simple paper, based heavily on techniques from the
literature. The main obstacle we overcome in the analysis is that the splits used in our method
are not independent, unlike RP trees where each splitting direction is chosen independently
of all others. As far as we know, the simple idea of a random rotation in advance does provide
the first reasonable explanation of the performance of k-d trees with increasing dimension
on real data sets (as they might have low Assouad dimension). Moreover, the insight of
the analysis can be made algorithmic: rotate the data randomly; then build a k-d tree. It
remains to be seen whether this pre-processing step is useful in practice.

2 Algorithm

As mentioned in the introduction, our algorithm is the following: we pick a random orthogonal
basis for space and then build a k-d tree using this basis. The only change we make is that
we make is that instead of splitting at the median when we partition a cell, we split at a
random point in an interval around the median (this modification was also used by Dasgupta
and Freund [7]). It is conceivable that perturbation near the median can be avoided by
adding some random points to the data before building the tree; we do not explore this here.

3 Analysis

3.1 Outline
Our goal is to show that any subset S of bounded diameter will be partitioned into cells
of at most half the diameter within O(d log d) levels of partitioning applied to the subset.
To prove this, we first cover S with balls of significantly smaller diameter, then show that

S. S. Vempala 51

Randomized k-d Tree.
1. Pick a random basis V = {v1, . . . vn} of Rn.
2. Run KD-Tree(S, V, 1).

KD-Tree(S, V, i).
If |S| = 1, return S.
1. Let 2∆ be the diameter of S.
2. Let m be the median of S along vi and δ be uniform random in

[
− 6∆√

n
, 6∆√

n

]
.

3. S− = {x ∈ S : 〈x, vi〉 ≤ m+ δ}; S+ = S \ S−.
4. T− = KD-Tree(S−, V, i mod n+ 1); T+ = KD-Tree(S+, V, i mod n+ 1).
5. Return [T−, T+].

Figure 1 Randomized k-d Tree Algorithm

with good probability, our partitioning procedure separates any pair of balls that are far
enough part into different cells within O(d log d) levels of partitioning. The cells obtained
at the end of this process will have the claimed diameter bound. Dasgupta and Freund use
random independent splits for each cell, and a union bound for the failure probability. In our
case, the splits come from a single basis and the same split direction is applied to all cells
at one level, so we have to analyze the resulting conditioning and dependencies. RP trees
pick a completely random direction to make the next split, our trees pick the next vector in
the random basis. To argue that the latter achieves similar performance, we observe that a
random basis can be chosen by picking a random unit vector, then a random unit vector
orthogonal to it, and so on, each time picking a random unit vector orthogonal to the span
of the vectors chosen so far. Our analysis idea is to consider the projection orthogonal to all
basis vectors used for cuts so far and argue that this projection does not collapse points or
shrink balls too much as long as not too many vectors have been chosen. Once we condition
on this, a random vector in the remaining subspace is almost as good as a random vector in
the full space.

It is, however, necessary that we incur some dependence on the number of points, since
we are picking only a fixed basis, i.e., the total randomness is bounded. We could set up a
large enough point set such that for any chosen basis, eventually we reach a cell that takes
much more than O(d log d) cuts to halve in diameter. We get around this issue by assuming
that the total number of points is at most exponential in the ambient dimension, i.e., at
most 2cn for some constant c.

3.2 Preliminaries
Our main tool is the Johnson-Lindenstrauss Lemma [15]. For a subspace V of Rn, let πV (.)
denote orthogonal projection to the subspace V . We will use the following version from
[2, 20] (see also [9, 13]).

I Lemma 3. Fix a unit vector u ∈ Rn, let V be a random k dimensional subspace where
k < n, and ε > 0 then:

Pr
(
‖πV (u)‖2 > (1 + ε)k

n

)
≤ e−

k
4 (ε2−ε3)

Pr
(
‖πV (u)‖2 < (1− ε)k

n

)
≤ e−

k
4 (ε2−ε3).

FSTTCS 2012

52 Randomly-oriented k-d Trees

As a direct implication, for any finite set of points S in Rn, with probability at least

1− 2
(
|S|
2

)
e−

k
4 (ε2−ε3),

we have

∀u, v ∈ S, (1− ε)k
n
‖u− v‖2 < ‖πV (u− v)‖2 < (1 + ε)k

n
‖u− v‖2 .

We also use the following standard bounds for k = 1.

I Lemma 4. Let u ∈ Rn and v ∈ Rn be a random unit vector. For any β > 0,

Pr
(
‖πv(u)‖ > β√

n
‖u‖
)
≤ 2

β
e−

β2
2

Pr
(
‖πv(u)‖ ≤ β√

n
‖u‖
)
≤ α

√
2
π
.

3.3 Projection properties
The next lemma is a structural property that uses the doubling dimension, and is similar to
what was shown in [7] for RP trees.

I Lemma 5. Let S ⊂ B(x, r) be a set of doubling dimension d. Let V be an arbitrary
k-dimensional subspace of Rn, v be a random unit vector orthogonal to V , 1 > δ > 0 and

r′ = 3r√
n− k

√
2 (d+ log(2/δ))

Then πv(S) ⊆ [πv(x)− r′, πv(x) + r′] with probability at least 1− δ.

Proof. We consider a projection orthogonal to the given subspace V first, then a projection
to a random vector in this subspace W = V ⊥. Since W has sufficiently large dimension, this
will be nearly as good as projecting to a random vector in the full space.

Let C1 be a minimum cover of S consisting of balls of radius r/2. From the definition of
doubling dimension, C1 has at most 2d elements. Similarly C2 will be a cover of C1 ∩ S with
balls of radius r/4; at level i, Ci will be cover of Ci−1 ∩ S using at most 2d balls of radius
r/2i for each element of Ci−1.

Fix a ball B(c, r/2i) at level i and consider one of the balls, B(c′, r/2i+1), which covers
it. Let W = V ⊥. We have for c and c′, the center of these balls that

‖c− c′‖ ≤ r

2i .

Next we compute the following:

Pr
(
‖πv(c− c′)‖ ≥ β

r

2i

√
i+ 1
n− k

)
≤ Pr

(
‖πv(c− c′)‖ ≥ β

‖πW (c− c′)‖√
n− k

√
i+ 1

)
= Pr

(
‖πv(πW (c− c′))‖ ≥ β ‖πW (c− c′)‖√

n− k
√
i+ 1

)
≤ 2

β
√
i+ 1

e−
β2
2 (i+1)

≤ δ

β

(
δ

2

)i
e−d(i+1)

S. S. Vempala 53

where β =
√

2(d+ log(2/δ)). Now we take a union bound over all balls used in covers at all
levels. For level i, there are 2id2d = 2(i+1)d pairs we need to consider. Thus, via a standard
chaining argument a la Dudley,

Pr
(
∃c, c′st ‖πv(c− c′)‖ ≥ β

r

2i

√
i+ 1
n− k

)
≤

∞∑
i=0

2(i+1)d δ

β

(
δ

2

)i
e−d(i+1)

≤ δ

β

1
1− δ/2

≤ δ.

So with probability at least 1− δ, every point y ∈ S satisfies

‖πv(y)− πv(x)‖ ≤ βr√
n− k

∞∑
i=0

√
i+ 1
2i ≤ 3r√

n− k
√

2 (d+ log(2/δ)).

J

The next lemma is from [7].

I Lemma 6. For S ⊂ B(x,∆), δ ∈ (0, 2/e2] and a random unit vector v ∈ Rn, with
probability at least 1− δ,

‖median(πv(S))− πv(x)‖ ≤ ∆
√

2 log (2/δ)
n

I Lemma 7. Let S ⊆ B(x,∆) and z ∈ B(x,∆). Let V be a k-dimensional subspace of Rn
with k < n/9 and v be a random unit vector orthogonal to V . Then, with probability at least
0.95,

‖median(πv(S))− πv(z)‖ ≤
6∆√
n

Proof. By the triangle inequality, it suffices to show that ‖πv(z − x)‖ ≤ 3∆/
√
n and that

‖median(πv(S))− πv(x)‖ ≤ 3∆/
√
n. The first bound uses Lemma 4 setting β =

√
8:

Pr
(
‖πv(z − x)‖ ≥ β ‖z − x‖√

n− k

)
≤ 2
β
e−

β2
2 ≤ 1√

2e4
.

Next, since k < n/9,

β
‖z − x‖√
n− k

≤ 3‖z − x‖√
n

.

Therefore,

Pr
(
‖πv(z − x)‖ ≥ 3‖z − x‖√

n

)
≤ 1√

2e4
.

The second inequality is derived using Lemma 6 with δ = 2/e4.

‖median(πv(S))− πv(x)‖ ≤ ∆√
n− k

√
2 log

(
2
δ

)
≤ 3∆√

n
.

Putting these inequalities together completes the proof, with a total failure probability of at
most (1/

√
2e4) + (2/e4) < 1/20. J

FSTTCS 2012

54 Randomly-oriented k-d Trees

3.4 Proof of Main Theorem
We are now ready to prove the main theorem. Let S be a set of points contained in a cell C
of the tree with ∆ = diam(C ∩ S), i,e., S ⊆ B(x,∆).

Since S has doubling dimension d, we can cover it using 100dd/2 balls of radius r =
∆/100

√
d.

Let k < c0n and {v1, . . . , vn} be a set of random orthonormal vectors with W =
span (v1, . . . , vk)⊥. By by Lemma 3 and the remark following it, we have that for all
centers u and v of our ball cover (including the center x) at all of at most m nodes of the
tree,

Pr
(
∀u, v : 9

10
‖u− v‖2 (n− k)

n
< ‖πW (u− v)‖2 < 11

10
‖u− v‖2 (n− k)

n

)
≥ 1− 104ddme−

n−k
4 (1

100−
1

1000)

≥ 1− 104mec0ne−
n

500

≥ 1− 104me−
n

1000

with c0 ≤ 1/1000. We will assume that this distortion bound holds for the rest of the proof.
Now consider two balls in this cover, B = B(z, r) and B′ = B(z′, r) where z, z′ ∈ B(x,∆)

and are more than ∆/2 − r apart. For each split there are three possibilities: either the
partition separates B and B′ (which we call a “good split”), or it intersects both B and B′
(a “bad split”) or the partition only intersects one or none of the two balls (“neutral split”).
In the case of a “bad split”, we have to now separate the four parts of B and B′, and in the
case of a “neutral split”, we still only have to separate two objects. We will bound these
probabilities for single steps in Lemmas 8 and 9 (whose proofs we defer to the end of this
section).

I Lemma 8 (Good splits). Let S ⊂ B(x,∆) ⊂ Rn have doubling dimension d. Fix two balls
B(z, r) and B(z′, r) and a subspace V of dimension k ≤ n/9 where:
1. z, z′ ∈ B(x,∆).
2. ‖z − z′‖ ≥ ∆/2− r.
3. r ≤ ∆/(100

√
d).

4. The squared distances between x, z and z′ are distorted by at most 1/10 in V ⊥.
Let v be a random unit vector orthogonal to V , and s be a point uniformly at random in the
interval

[median(πv(S))− 6∆/
√
n,median(πv(S)) + 6∆/

√
n].

Then with probability at least 1/200, πv(B) and πv(B′) lie on different sides of s.

I Lemma 9 (Bad splits). Under the above hypotheses of Lemma 8, then probability at most
1/300, s is contained in the supports of πv(B) and πv(B′).

We prove these lemmas at the end of this section. To complete the mian proof, following [7],
let pi, be the probability that B and B′ share a cell after i levels, i.e., they are not completely
separated. Clearly, p1 ≤ 199/200 using Lemma 8. Moreover,

pi ≤ Pr (good split)× 0 + 2pi−1Pr (bad split) + Pr (neutral split) pi−1

≤ 1
200 · 0 + 2

300pi−1 +
(

1− 1
200 −

1
300

)
pi−1

≤ 599
600pi−1.

S. S. Vempala 55

Thus we have pk as being exponentially small in k. Denote α = 599/600. If we take:

k = 1
log(α) (d log d+ 5 log 10)

rounds of partitioning, then each pair of balls is in the same cell with probability at most
1/(105dd). Hence, by taking a union bound over all pairs of balls, no pair is in the same
partition with probability at least 9/10.

To extend the analysis to the entire tree, we simply note that with m points in S, there
are at most m covers (one for each internal node of the tree) of 104dd/2 balls where we have
to preserve the distances between the centers.

We conclude this section with the proofs of the claims regarding good and bad splits.

Proof of Lemma 8. In Lemma 5, if we take δ = 2/e9 and r ≤ ∆/100
√
d, then we find that

πv(B) lies in an interval of radius 3r√
n−k

√
2(d+ log(2/δ)):

3r√
n− k

√
2(d+ log(2/δ)) ≤ 3∆

100

√
2(d+ 9)
d(n− k)

≤ ∆
16
√
n− k

Next we show that with good probability,

‖πv(z − z′)‖ ≥ ∆/(4
√
n− k).

To see this, note that projecting z−z′ to v is equivalent to projecting πW (z−z′) to a random
unit vector in W . We can apply Lemma 4 with β =

√
10
9 /4

Pr
(
‖πvπW (z − z′)‖ ≤ β ‖πW (z − z′)‖√

n− k

)
≤ β

√
2
π

Pr
(
‖πvπW (z − z′)‖ ≤ β

√
9/10‖z − z

′‖√
n− k

)
≤ β

√
2
π

Pr
(
‖πvπW (z − z′)‖ ≤ ∆

4
√
n− k

)
≤

√
20
π

1
12 < 0.42.

Thus, with probability at least 0.68, there is a gap of at least

∆
4
√
n− k

− 2 ∆
16
√
n− k

≥ ∆
8
√
n

between πv(B) and πv(B′). On the other hand, by Lemma 7 applied to the centers of
these balls, with probability at least 0.9, they are both within 6∆/

√
n of the median of

the projection. Thus, with probability greater than 1/2, we have both events: a large gap
between the balls and both balls intersecting the interval around the median. The probability
that random partition hits this gap, conditioned on these events is:

∆/8
√
n

12∆/
√
n
≥ 1

96

This gives us a final success probability of at least 1/200. J

FSTTCS 2012

56 Randomly-oriented k-d Trees

Proof of Lemma 9. As in the previous proof, we will assume that πv(B) and πv(B′) con-
centrate in intervals of radius ∆/16

√
n around πv(z) and πv(z′) respectively (this happens

with probability 1− 2δ). Now the probability that s intersects πv(B) is 1/96, since πv(B) is
contained in a ball of diameter ∆/8

√
n and the partition occurs uniformly in an interval of

12∆/
√
n. Using Lemma 4, the probability that πv(B) and πv(B′) intersect is bounded as

follows:

Pr
(
‖πv(πW (z − z′))‖ ≤ ∆

8
√
n

)
≤ Pr

(
‖πv(πW (z − z′))‖ ≤

(
∆

8
√
n

√
n− k

‖πW (z − z′)‖

)
‖πW (z − z)‖√

n− k

)
≤

√
2
π

∆
8
√
n

√
n− k

‖πW (z − z′)‖

≤
√

2
π

1
8

√
8
9

∆√
9/10‖z − z′‖

≤ 1
18

√
10
π

∆
(∆/2)− r

≤ 0.2.

The probability of a bad split is upper bounded by

2δ + Pr (πv(B) ∩ πv(B′) 6= ∅) Pr (s ∈ πv(B)) < 4
e9 + 0.2

96 <
1

300 .

J

References
1 Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for near neighbor

problem in high dimensions. In STOC, 2006.
2 Rosa Arriaga and Santosh Vempala. An algorithmic theory of learning: Robust concepts

and random projection. Mach. Learn., 63:161–182, May 2006.
3 P. Assouad. Plongements lipschitziens dans rn. Bull. Soc. Math. France, 111:429–448, 1983.
4 Jon Bentley. Multidimensional binary search trees used for associative searching. Commu-

nications of the ACM, 18(9):509–517, 1975.
5 Alina Beygelzimer, Sham Kakade, and John Langford. Cover tree for nearest neighbor. In

ICML, 2006.
6 Sanjoy Dasgupta. Hierarchical clustering with performance guarantees. In Hermann

Locarek-Junge and Claus Weihs, editors, Proceedings of the 11th IFCS Biennial Confer-
ence and 33rd Annual Conference of the Gesellschaft für Klassifikation e.V., Studies in
Classification, Data Analysis, and Knowledge Organization. Springer-Verlag, 2010.

7 Sanjoy Dasgupta and Yoav Freund. Random projection trees and low dimensional manifolds.
In STOC, 2008.

8 Sanjoy Dasgupta and Yoav Freund. Random projection trees for vector quantization. IEEE
Trans. Inf. Theor., 55:3229–3242, July 2009.

9 Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson and
lindenstrauss. Random Structures and Algorithms, 22(1):60–65, 2003.

10 Aman Dhesi and Purushottam Kar. Random projection trees revisited. In NIPS, pages
496–504, 2010.

11 Anupam Gupta, Robert Krauthgamer, and James R. Lee. Bounded geometries, fractals,
and low-distortion embeddings. In FOCS, pages 534–543, 2003.

S. S. Vempala 57

12 Sariel Har-Peled. A replacement for voronoi diagrams of near linear size. In FOCS, 2001.
13 Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the

curse of dimensionality. In STOC, 1998.
14 Piotr Indyk, Rajeev Motwani, Prabhakar Raghavan, and Santosh Vempala. Locality-

preserving hashing in multidimensional spaces. In STOC, 1997.
15 William Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert

space. Contemporary Mathematics, 26:189–206, 1984.
16 Samory Kpotufe. Escaping the curse of dimensionality with a tree-based regressor. In

Conference on Computational Learning Theory, 2009.
17 Robert Krauthgamer and James Lee. Navigating nets: simple algorithms for proximity

search. In SODA, 2004.
18 Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani. Efficient search for approximate

nearest neighbor in high dimensional spaces. SIAM J. Comput., 30(2):457–474, 2000.
19 Robert Sproull. Refinements to nearest-neighbor searching in k-dimensional trees. Algorith-

mica, 6:579–589, 1991.
20 Santosh S. Vempala. The Random Projection Method. The American Mathematical Society,

2004.

FSTTCS 2012

	Introduction
	Algorithm
	Analysis
	Outline
	Preliminaries
	Projection properties
	Proof of Main Theorem

