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Abstract
Large software systems are developed by composing multiple programs. If the programs manip-
ulate and exchange complex data, such as network packets or files, it is essential to establish
that they follow compatible data formats. Most of the complexity of data formats is associated
with the headers. In this paper, we address compatibility of programs operating over headers
of network packets, files, images, etc. As format specifications are rarely available, we infer the
format associated with headers by a program as a set of guarded layouts. In terms of these
formats, we define and check compatibility of (a) producer-consumer programs and (b) different
versions of producer (or consumer) programs. A compatible producer-consumer pair is free of
type mismatches and logical incompatibilities such as the consumer rejecting valid outputs gen-
erated by the producer. A backward compatible producer (resp. consumer) is guaranteed to be
compatible with consumers (resp. producers) that were compatible with its older version. With
our prototype tool, we identified 5 known bugs and 1 potential bug in (a) sender-receiver modules
of Linux network drivers of 3 vendors and (b) different versions of a TIFF image library.
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1 Introduction

Large software systems are developed by composing multiple programs. For the composed
system to work as desired, it is essential that the component programs are compatible with
each other. Compatibility being a fundamental requirement in system integration, various
techniques for analyzing compatibility have been proposed. Finite state machines have been
used for checking compatibility of programs with respect to temporal aspects of method
calls or action sequences [14], message sequences [18, 33], and typed accesses to sequential
data [15]. When a component program evolves, the two versions can be compared to extend
compatibility guarantees of the older version to the newer version. Incompatibilities in
component upgrades have been identified by checking implication between logical summaries
of observed behaviors of the two versions [26]. Automata learning and model checking have
been combined for determining substitutability of programs [32, 11].

In many software systems, the component programs manipulate and exchange complex
data like network packets or files. Checking compatibility of such programs involves comparing
the data formats followed by them. A data format describes types and constraints on values
of the data elements. To be type-compatible, the programs must use compatible types while
accessing the same data elements. Type incompatibility between programs is observed
frequently in practice. As an example, consider the bug report [1] which describes a type
incompatibility between Atheros sender-receiver pair. For MAC frames that carry payload,
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Figure 1 Mis-interpretation of a MAC ACK frame by an Atheros receiver: (a) Layout of the
incoming ACK frame and (b) The type-incompatible layout computed by the receiver

the data following the control data is 4-byte aligned. ACK frames do not carry payload and
their control data is followed immediately by a CRC checksum. Figure 1(a) shows an ACK
frame received by the receiver. The receiver incorrectly computes the starting index of CRC
for the ACK frame as 12 by computing the next 4-byte aligned index after 10 (end-index of
the control data). As shown in Figure 1(b), it reads bytes 12− 15 as an integer containing
the CRC. This access overlaps with the last two bytes of the integer stored at offsets 10− 13
and offsets 14− 15 of the remaining data of the incoming frame.

Another reason for incompatibilities is the complexity of constraints over data values.
The formats of network packets, files, and images support a number of variants. For example,
an image can be an RGB or a grayscale image. A MAC frame can be a data, control, or
management frame. To distinguish between the variants, the format prescribes that the
producer program should constrain specific elements of the data to pre-determined values.
For example, a MAC frame is marked as a control frame by setting bits 2− 3 of the frame
control field to binary 10. A consumer program should check the same elements for equivalent
constraints to identify the variants. Thus, in addition to types, the compatibility between
a producer-consumer pair also depends on whether the consumer accepts all variants or
only some variants of the data generated by the producer. The latter case can give rise to
compatibility errors. As described in the bug report [2], an Intel receiver treats frames of
length < 30 as undersized (corrupt) and drops them. However, the minimum frame length
depends on the variant the frame belongs to. The check against the hard-coded value of 30
results in frames belonging to a variant being dropped. As a result, repeated attempts at
communication with a sender, that produces them, end in timeout of an ssh session.

The constraints required to identify variants of data are typically encoded in a pre-defined
region of data, called the meta-data or header, e.g., packet and file headers. We call the rest of
the data as the contents. A header determines interpretation of the contents. The mismatch
in processing of headers is therefore a key reason for data format incompatibilities (e.g., see
bug reports [1, 2, 3, 4, 5]). As the bug reports indicate, if incompatibilities are not detected
during system integration, they can cause a variety of runtime errors like incorrect output [4],
rejection of input [5], data corruption [1, 3], and non-termination [2]. In this paper, we
analyze compatibility of programs operating over headers of network packets, files, images,
etc. The headers are usually of fixed-length whereas the contents can be unbounded. We
consider headers of fixed-length. Variable-length headers are also common but their lengths
commonly vary over a finite set and are thus a simple extension of fixed-length headers.

As the data format specifications are not available to us, we design a static analysis of
sequential C programs to infer them. The approach presented in this paper applies to any
fixed-length data (including but not limited to headers) that programs may exchange, e.g.,
serialized data structures. We shall simply refer to these as (fixed-length) data and their
formats as data formats. A data format is formalized as a finite set of pairs of the form
(g, `), called guarded layouts, where g is a symbolic constraint over data elements, called the
guard, and the layout map ` maps types to sets of offsets into the fixed-length data. The
guard represents a set of data values and the layout map gives their type. We formalize
compatibility relations in terms of guarded layouts for (a) producer-consumer programs
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(b) two versions of producer (or consumer) programs. A compatible producer-consumer
pair is free of type incompatibilities and mismatch in processing of variants of data. The
version-related programs are executed individually without any direct data exchange between
them. Nevertheless, they are expected to work with the same programs. A backward
compatible producer (resp. consumer) is guaranteed to be compatible with consumers (resp.
producers) that were compatible with its older version.

We are not aware of any approach for compatibility checking that models both types
and constraints in data format specifications. The approaches [18, 33, 15] model types of
data elements but not constraints over them. As noted earlier, constraints are essential for
accurate description of formats and to find subtle compatibility bugs. The data description
languages PacketTypes [27], DataScript [8], and PADS [17] do permit modeling of both
types and constraints. LearnPADS++ [35] even generates data descriptions automatically
from the example data. However, their goal is to generate parsers, type checkers, etc. for
data formats. In contrast, our goal is to infer the formats from C programs and use them to
check program compatibility. Further, the above compatibility checking approaches consider
programs which access data sequentially from FIFO channels [18, 33] or as data streams [15].
In our case, a program accesses the data as an in-memory data structure. These accesses
are not necessarily sequential. Unlike the other approaches, we formalize compatibility of
version-related producer/consumer programs as well.

We have applied our prototype tool to check data format compatibility of several programs.
The producer-consumer case studies include sender-receiver modules for IEEE 802.11 MAC
frame headers of Linux network drivers of 3 vendors, namely, Atheros, Intel, and Intersil
obtained from the Linux distributions. The version-related case study involves 48 functions
operating over meta-data of TIFF files from 2 pairs of different versions of libtiff [6], a popular
image processing library. We identify 5 known bug and 1 potential bug in these programs.
In two cases, bug fixes are available for known bugs. Our static analysis confirms that the
fixes resolve the compatibility issues. In summary,

The paper defines data formats as guarded layouts for fixed-length data like packet and
file headers. The formats are inferred by static analysis of C programs (Section 3).
Compatibility relations over data formats and runtime guarantees provided by them are
formalized for producer-consumer and version-related programs (Section 4).
The approach is implemented and used for finding bugs and proving compatibility of
real-world programs (Section 5). Finally, the work is compared with related approaches
(Section 6) and future work is discussed (Section 7).

2 Overview

In this section, we present an overview of our approach with examples. Consider the programs
producer and consumer given in Figure 2. These are inspired by sender and receiver modules
that prepare and interpret network packet headers. We shall consider a modified version of
producer to illustrate compatibility of version-related programs.

The program producer prepends a header to the frame received through buf. The user
designates buf as its output variable. It can encode three variants of headers declared as
struct hdr, qhdr, and lhdr. It accesses buf by overlaying buf with all of them. The program
consumer reads the header from the (user-designated) input variable buf. For each of the
designated variables, the user provides the starting offset and length of the sequential
data that can be accessed through it. In the case of pointer variables, the accesses are by
dereferencing the pointers. In this example, buf points to offset 0 in each program. The
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1 int devmode, qosmode; // global variables configured by other components
2 struct hdr { short tods,fromds,type; char restofhdr[14]; int len; };
3 struct qhdr { short tods,fromds,type,qos; char restofhdr[14]; int len; };
4 struct lhdr { short tods,fromds,type; char restofhdr[20]; int len; };

5 int producer(char* buf, short qos, int blen) {
6 struct hdr* hd = (struct hdr*) buf;
7 struct qhdr* qhd = (struct qhdr*) buf;
8 struct lhdr* lhd = (struct lhdr*) buf;
9

10 if(devmode == 0) {
11 hd->tods = 0; hd->fromds = 1;
12 if(qosmode == 1) {
13 qhd->type = 1;
14 qhd->qos = qos;
15 qhd->len = blen + 26;
16 } else {
17 hd->type = 0;
18 hd->len = blen + 24;
19 }
20 } else if(devmode == 1) {
21 lhd->tods = lhd->fromds = 1;
22 lhd->type = 0;
23 lhd->len = blen + 30;
24 } else return ERR; // error return
25

26 return 0; // normal return
27 }

28 int consumer(char* buf) {
29 int len = 0;
30 struct hdr* hd = (struct hdr*) buf;
31

32 if(hd->len < sizeof(struct ldr))
33 return ERR; // error return
34

35 if(hd->tods == 1 && hd->fromds == 1)
36 return ERR; // error return
37

38 if(hd->tods == 0 && hd->fromds == 1)
39 len = hd->len;
40

41 return len; // normal return
42 }

Figure 2 Example of a producer-consumer pair of programs

other interface variables and global variables of producer are initialized by its environment
and are not part of the data being exchanged. The length of the data is given to be 30. It
can accommodate any of the three variants of the header. The user classifies the return
statements into error and normal return as annotated in Figure 2.

The two programs do not run on the same machine. The actual transportation of data
between them is handled by I/O routines which are not part of the analysis. Since the data
exchange may happen across platforms, compatibility issues like differences in endian-ness
may arise at lower-levels of abstraction. These issues are outside the scope of this paper.

Static inference of data formats. The two programs being checked for compatibility can
use different type declarations and variable names, e.g., programs developed by different
vendors. Using structure declarations as data formats to check compatibility is not sufficient
as they do not capture the constraints over data elements. Moreover, since data is often
manipulated using pointers and type casts, structure declarations do not always indicate the
layout map used to access the data. Hence, we infer data formats using static analysis. We
represent data formats in a program-independent manner so that they can be compared. We
consider the primitive types like characters and integers instead of user-defined types like hdr
and qhdr. Thus, our layout maps are at a lower-level of abstraction than the types appearing
in the programs. Further, we follow a uniform naming convention of data elements based
on their offsets into the data and sizes. The guards are defined over these uniformly-named
data elements. Since we want guarded layouts of output of a producer, we perform a forward
analysis. Analogously, we perform a backward analysis of consumers.

In Figure 2, lines 6-8 type-cast and create aliases to buf. There are 3 paths in producer
that reach the normal return at line 26. The return at line 24 is an error return and the
output produced when this return is reached is not considered to be a valid output. Consider
the path P through the first 2 if-branches (lines 10 and 12) and ending at the normal return.
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The data format (set of guarded layouts) of producer is {(g1, `1), (g2, `2), (g3, `3)} where
g1 : d[0 : 1] = 0 ∧ d[2 : 3] = 1 ∧ d[4 : 5] = 1
`1 : [short 7→ {0, 2, 4, 6}, int 7→ {22}, x 7→ {8, . . . , 21, 26, . . . , 29}]
g2 : d[0 : 1] = 0 ∧ d[2 : 3] = 1 ∧ d[4 : 5] = 0
`2 : [short 7→ {0, 2, 4}, int 7→ {20}, x 7→ {6, . . . , 19, 24, . . . , 29}]
g3 : d[0 : 1] = 1 ∧ d[2 : 3] = 1 ∧ d[4 : 5] = 0
`3 : [short 7→ {0, 2, 4}, int 7→ {26}, x 7→ {6, . . . , 25}]

The data format of consumer is {(g4, `4)} where
g4 : d[0 : 1] = 0 ∧ d[2 : 3] = 1 ∧ d[20 : 23] ≥ 30
`4 : [short 7→ {0, 2}, int 7→ {20}, x 7→ {4, . . . , 19, 24, . . . , 29}]

Figure 4 Data formats inferred from producer and consumer programs of Figure 2

The set of typed-accesses to the data through the pointers along this path (see Figure 3)
determine the layout map. The layout map according to these accesses is given as `1 in
Figure 4. The type x is a special type, called don’t care, which indicates that there was no
access to the byte. It allows us to detect if two programs make non-identical accesses.

Now, consider the symbolic path condition and program state at the end of the path. As
the variables devmode, qosmode, qos, and blen are not among the designated variables, we forget
constraints over them. This is because these variables are not visible to the consumer and its

buf
hd
qhd
lhd

short short short short . . . int . . .

0 2 4 6 22

tods fromds type qos len
hd-> hd-> qhd-> qhd-> qhd->

Figure 3 Pictorial view of the typed-accesses
along path P to the data prepared by producer

processing of the data cannot depend on
them. In order to compare guards across
programs, we uniformly name the fields ac-
cessed through hd, qhd, and lhd as d[i : j]
where i is the starting offset of the field and
j = i + k− 1 with k equal to size of the field.
The guard g1 corresponding to the layout
map `1 is shown in Figure 4. As the values
of arguments qos and blen are unconstrained,

the values of data elements d[6 : 7] and d[22 : 25] assigned from them also remain uncon-
strained and are not shown in g1. For consumer, there is only one path that leads to a normal
return (line 41). The data formats of the programs are given in Figure 4.

Producer-consumer compatibility. The compatibility of a pair of programs can be
checked using the inferred data formats. One of the program acts as a producer and another
as a consumer. The same program may act as a producer or a consumer depending on
the context. Programs like network protocol implementations exchange data interactively
and the complete analysis of compatibility between them additionally requires analysis of
temporal ordering of data exchanges. Our computation of data formats yields the set of
guarded layouts exchanged from all possible protocol-states (if any) of such a program. This
suffices to identify data format incompatibilities.

As a compatibility question, we can ask (1) whether the consumer accesses data elements
with types compatible with those of the producer? The answer for our example is no, as
g1 ∧ g4 is satisfiable but `4(int) 6⊆ `1(int). As the conjunction of guards is satisfiable, there is
some datum generated by producer that consumer accepts. However, consumer accesses offsets
20-23 of the datum as an int unlike producer. We can also ask (2) whether consumer accepts
every output of producer (in a type-compatible manner)? The answer is no, as g2 6→ g4, since
d[20 : 23] (denoting hd−>len) is unconstrained in g2. We shall formalize the above questions
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respectively as weak and strong compatibility requirements.

Compatibility of version-related programs. Let us now consider a newer version of
producer by removing lines 20-23. Can we substitute the newer version in place of the older
version? The answer in this case is affirmative. The data format of the newer version is
{(g1, `1), (g2, `2)}. Thus, the newer version produces a subset of the outputs produced by the
older version and associates the same layout maps to the common outputs. We call the newer
version of the producer backward compatible in this case. If a consumer is type-safe (weakly
compatible) with the older version of producer, then it will be type-safe with the newer version
also. We shall similarly infer how strong compatibility is preserved by a backward compatible
producer. Backward compatibility is also defined for consumers.

False positives and negatives. The guards inferred by a sound static analysis can be over-
approximations of conditional accesses to the data by the programs. The over-approximations
in points-to information can also cause imprecision. A compatibility result with imprecise
formats can be a false positive or negative (discussed in Section 4). Similar limitations apply
to related approaches [26, 15]. In the case of [26], the limitation stems from implication
checks between dynamically inferred constraints which can be unsound (under-approximate)
or imprecise (over-approximate). The automata computed in [15] are over-approximate.
Therefore, the language containment between such automata may result in a false positive or
negative. We control the false positives and negatives for our case studies by designing a
sufficiently precise analysis with a suitable choice of abstract domain.

3 Static Inference of Data Formats

Since C programs routinely use pointers, we perform a points-to analysis to identify (abstract)
memory locations that a pointer may point to. The precision of points-to information is
important to us to avoid coarse over-approximations of the analysis results. We therefore
perform a flow-sensitive may points-to analysis based on [16]. Points-to analysis and the
memory model used are discussed further in the extended version [7]. We first formalize the
notion of data formats for fixed-length data.

I Definition 1. A data format is a finite non-empty set of pairs of the form (g, `), called
guarded layouts, where g is a symbolic constraint over data elements, called the guard, and
the layout map ` maps primitive types to subsets of the set OL of offset-based locations.

Intuitively, every guarded layout represents a variant supported by the data format and
encoded in the program. For a layout map ` and a type t, if k ∈ `(t) then it indicates that a
data element of type t resides at offset k and it occupies offsets {k, . . . , k + sizeof(t)− 1}.
Every offset-based location in OL must belong to the set of offsets occupied by exactly
one data element. The type of an offset is inferred only if it is accessed in the program.
Unaccessed bytes are assigned the don’t care type x. As discussed in Section 2, if an element
of type t resides at offset i then it is named as d[i : j] where j = i + sizeof(t) − 1. The
guards are symbolic constraints over these uniformly-named data elements.

In order to compute a sound over-approximation of the set of guarded layouts, we perform
abstract interpretation [13]. Our analysis computes layout maps and the corresponding sets
of reachable states at every control location in the program. The reachable state-sets are
represented using an abstract domain. The abstract domain is defined over uniformly-named
data elements as well as program variables which do not refer to the offset-based locations.
This is essential to capture all possible dependences between program variables. We call these
as extended guards. The data format (the set of guarded layouts) is obtained by restricting
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the extended guards to the data elements, at appropriate control locations. For a producer,
the format is obtained at program exits whereas for a consumer it is obtained at the program
entry. Due to space constraints, we discuss analysis of producers only.

Abstract domains. Let G = (G,vG,tG,uG,⊥G,>G) be an abstract lattice to represent
extended guards, with vG as the partial order, tG as join, uG as meet, and ⊥G, >G resp. as
bottom and top elements. Since the values of data elements can range over infinite domains,
we require G to be equipped with a widening operator. Let L = (L,vL,tL,uL,⊥L,>L) be
the finite lattice of layout maps of a fixed length. We have ` vL `′ if `(x) ⊇ `′(x) and for
each primitive type t 6= x, `(t) ⊆ `′(t). Let D = G × L be the domain of layout maps with
extended guards. We denote an extended guard with ĝ and a guard restricted to only data
elements by g.

Transfer functions. Let (ĝ, `) ∈ D be the abstract element before the current control
location. If the statement contains a pointer r that may point to multiple memory locations
then, for each of the memory locations, we create a separate transformed guarded layout.
Thus, (ĝ, `) may map to a set of guarded layouts. This is to keep the guarded layouts
precise individually at the cost of increase in the number of guarded layouts. The guarded
layout (ĝ, `) is updated by considering the same memory location simultaneously in transfer
functions of both ĝ and `. Within a loop, we consider all memory locations simultaneously.
The transfer functions for extended guards are defined by the chosen abstract interpretation
over the domain G. The choice of G is an implementation issue.

The transfer functions for layout maps are now presented. The types of offset-based
locations are inferred based on accesses to them. For a producer, we infer the layout maps
by considering both read and write accesses to offset-based locations. The offset-based
locations can be accessed through any valid C expression involving a user-designated variable
or pointer (and aliases to it). The space of syntactic expressions is large and we consider
only some representative cases. Let us denote a pointer by r, a structure (or union) by s, a
structure field by f , a type by t, and a scalar variable by v. Let us denote the points-to map
at a control location by PM and the compiler assigned type of an expression e by typeof(e).
Consider the commonly used expressions v, ∗r, s.f , and r->f . Let E be an expression
occurring at the current control location and subexp(E) be the set of subexpressions of E

which fall into the above expression classes. An incoming layout map ` is potentially updated
by each subexpression e ∈ subexp(E). Operators in E do not play any role in updating of
layout maps. In the case of v and s.f , an incoming layout map is updated only if v and s

are user-designated variables. In the case of ∗r and r->f , we check whether PM(r) ∩OL is
empty or not. If it is empty then the expression is ignored.

For a suitable expression e, the offset-based location k accessed by it is computed. For
v, it is the user-designated offset. For ∗r, it is an offset-based location in PM(r). For s.f

and r->f , let b be the user-given offset of (the first field of) s or an offset-based location in
PM(r). Suppose the type of s is struct T and of r is pointer to struct T. The offset-based
location k corresponding to s.f or r->f is obtained by incrementing b by the cumulative sum
of sizes of fields preceding the field f in struct T. The type of k in the layout map ` is changed
to t = typeof(e) as follows: `′ := `[t 7→ `(t) ∪ {k}, x 7→ `(x) \ {k, . . . , k + sizeof(t)− 1}]. If
an offset ends up getting assigned to multiple data elements in a layout map, then we have
found a potential type error and the analysis stops.

For example, the incoming set of guarded layouts at Line 11 of Figure 2 consists of a
single guarded layout (ĝ, `) where ĝ is devmode = 0 (corresponding to the predicate of the
conditional at Line 10) and ` is ⊥L. Note that ĝ is an extended guard and hence is not



P. Devaki and A. Kanade 529

restricted to constraints over data elements only. ` is ⊥L as no access to data is made
yet in the program. At Line 11, (ĝ, `) is transformed into (ĝ′, `′), where ĝ′ is devmode = 0
∧ d[0 : 1] = 0 ∧ d[2 : 3] = 1 and `′ is [short 7→ {0, 2}, int 7→ {}, x 7→ {4, . . . , 29}], to capture
the effect of the assignment statements and the accesses to data at offsets 0 and 2 (through
hd−>tods and hd−>fromds).

The overall analysis. Based on our experience with the case studies, we realize that
maintaining branch-correlations is useful. We therefore perform a forward path-sensitive
analysis by taking union of sets of guarded layouts at join points (outside loops). For a loop,
the incoming set of guarded layouts is treated as an ordered set. The termination of the
analysis is ensured by avoiding (potentially unbounded) growth in the number of guarded
layouts and using the widening operator of domain G. For statements within a loop, the
transfer functions map a guarded layout to a single transformed guarded layout and at join
points, we take element-wise join of the ordered sets of guarded layouts.

We compute procedure summaries bottom-up and use them at procedure call sites. Let
(ĝ, `) be an extended guarded layout at a call site. The constraints over variables or memory
locations in the calling context that are written into by the callee are forgotten from ĝ. If
a formal parameter is not written into by the callee then its constraints in the procedure
summary are transferred to the corresponding actual. The guard ĝ is combined with every
guard ĝ′ in the procedure summary as ĝ uG ĝ′. The matching layout map is obtained by
`tL `′. Finally, the assignment of the return value to the LHS of the call (if any) is processed.
The guard is then restricted to variables in the calling context.

4 Compatibility Relations

We assume that precise data format specifications, in the form of sets of guarded layouts,
are available. We define the compatibility relations over them and discuss the effect of
imprecision in the format specifications, obtained by static analysis, subsequently.

Consider two layout maps ` and `′ defined over the same set of offset-based locations.
The layout map ` is compatible with `′, denoted by ` � `′, if `(x) ⊇ `′(x) and for every
t 6= x, `(t) ⊆ `′(t). Equality of layout maps (=) is obtained by replacing ⊆ and ⊇ with =
in the above definition. If ` � `′, then every datum produced with layout map `′ can be
consumed at runtime with layout map ` without type incompatibilities. Given a set G of
guarded layouts of a program, the program is locally compatible if the guards in G with
different layout maps are pairwise disjoint. If a datum can be produced with different layout
maps, consumers cannot know which layout map to use for it. In the following discussion,
we assume that the programs are locally compatible.

Producer-consumer programs. We define two compatibility relations between producer-
consumer programs. Weak compatibility guarantees that if a consumer consumes a datum
produced by a producer, it accesses it using a compatible layout map. Strong compatibility
ensures, in addition, that every datum produced by a producer is consumed by the consumer.
Strong compatibility implies weak compatibility.

I Definition 2. Let G and G′ be sets of guarded layouts representing the data formats of a
producer program P and a consumer program C respectively. P is weakly compatible with
C, denoted by WC�(P, C), if for every (g, `)∈G and (g′, `′)∈G′, if g ∧ g′ is satisfiable, then
`′�`. P is strongly compatible with C, denoted by SC�(P, C), if for every (g, `)∈G, there
exists a (g′, `′)∈G′ such that g ⇒ g′ and `′�`.
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Stricter variants of the above definitions, WC=(P, C) and SC=(P, C), are obtained by
replacing layout compatibility (�) with layout equality (=) in them. These are useful to
identify whether the two programs access the same set of offsets or not.

Version-related programs. Our definition of backward compatibility allows a newer
version of a producer to initialize more offsets of the data, but restricts it to produce a
subset of values taken by the data elements. If the producer initializes less offsets then they
remain unconstrained and the set of data values produced is more. For a newer version of a
consumer, consuming more data values is allowed, but reading from more offsets of the data
is disallowed.

I Definition 3. Let G and G′ be sets of guarded layouts representing the data formats of
two versions P and P ′ of a producer or two versions C and C ′ of a consumer.
1. The producer P ′ is backward compatible with P , denoted by BC�(P ′, P ), if for every

(g′, `′) ∈ G′, there exists (g, `) ∈ G such that g′ ⇒ g and ` � `′.
2. The consumer C ′ is backward compatible with C, denoted by BC�(C ′, C), if for every

(g, `) ∈ G, there exists (g′, `′) ∈ G′ such that g ⇒ g′ and `′ � `.

Stricter versions of backward compatibility can be obtained by using layout equality (=)
in place of layout compatibility (�). A backward compatible producer can be substituted for
its older version while preserving the compatibility relations of the older version. A backward
compatible consumer preserves strong compatibility but does not necessarily preserve weak
compatibility. The precise formulation of compatibility relations preserved by backward
compatible programs and their proofs are discussed in the extended version [7].

Analysis of false positives and negatives. The guards obtained by static analysis can
be over-approximations of the precise constraints associated with a layout map. Both local
and weak compatibility definitions require checking satisfiability of g ∧ g′. Since the check is
done using the over-approximated guards, the satisfiability can be spuriously true. Thus,
compatibility of layout maps of disjoint guards may have to be checked and it can fail. Hence,
local and weak compatibility checks are sound with respect to guards, but can result in
false positives. The layout maps can also over-approximate the sets of typed-accesses. Thus,
compatibility check over them may result in a false positive or negative, due to set inclusion
over offset-sets used in layout map compatibility. The strong and backward compatibility
require checking implication between guards. Because of over-approximation, this check can
result in either a false positive or negative.

5 Experimental Evaluation

This section summarizes the experimental results. We have prototyped our approach in
OCaml using CIL [29] and the octagon library [28]. The complexity of most of the operations
over octagons is cubic in the size of the octagon.

Producer-consumer programs. We analyze sender-receiver modules of Linux (version
2.6.33.3) wireless LAN drivers of three vendors, namely, Atheros, Intel, and Intersil. They
operate over IEEE 802.11 MAC frame headers. We bit-blast some fields of the headers. In
addition, we consider a pair of programs from libtiff [6]: set/get routines that allow clients
to get and set TIFF directory attributes. In all, 9 programs – 3 producers and 6 consumers
– were analyzed. Of these, two consumers were with fixed versions of programs. These
programs are a few hundreds of lines in size and the number of guarded layouts range from a
few tens to over 100. All programs were analyzed in about 75 seconds. All variants of weak
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No. Programs Bug Description Failed
Check

1. Atheros-Atheros Consumer reads offsets not written by the producer [1] WC�
2. Intersil-Intel Valid packets are discarded by the consumer [2] SC�
3. TIFF set-get An offset is written as a short and read as an int [3] WC�
4. tiffwrite (7 programs) New version of the producers start producing images with BC�

field_planarconfig = 0 [4]
5. tiffread (14 programs) New version of the consumers access more offsets BC�
6. tiffcp New version of the consumer accesses more offsets [5] BC�

Figure 5 Description of data format compatibility bugs found by our tool

and strong compatibility were checked for 6 producer-consumer pairs. Figure 5 describes the
bugs found by our tool. Both Atheros and Intersil-Intel bugs were discussed in the Section 1.
The TIFF set-get routines fail the weak compatibility check as they access an offset with
different types. All compatibility checks were evaluated in about 26 seconds.

Version-related programs. We analyze the TIFF directory manipulation routines of two
versions, 3.7.4 and 3.9.4, of libtiff [6] and two versions, 3.5 and 3.6, of the TIFF copy tool
tiffcp. In all, 42 libtiff routines (26 producers from tiffwrite module and 16 consumers from
tiffread module) and 6 tiffcp routines (both as producers and consumers) were analyzed in
about 7 minutes. These versions are several hundreds of lines of code in size and generate
tens to over 150 guarded layouts. The newer versions of the producer routines of tiffwrite
module produce images with field_planarconfig = 0, which the older version did not produce.
Some of the tiffread routines of the newer version access more offsets of the data than the
older version. This bug was not reported earlier. Similarly, one tiffcp consumer accesses more
offsets than its older version. All compatibility checks were evaluated in about 21 seconds.

False positives and false negatives. The backward compatibility checks for tiffread and
tiffcp fail due to two reasons: (1) For some guard g of the older version of a consumer, there
is no guard g′ in the newer version such that g =⇒ g′. (2) The newer consumer reads more
offsets. The second reason is a true positive (bug). The first reason is a false positive for
these examples. The newer consumers have case splits on a particular value. The associated
layout maps are equal and if we take union of the guards then g implies the union. However,
as union in octagonal domain is not precise, we do not perform it by default. There were no
false negatives in the case studies.

6 Related Work

Compatibility checking. In Section 1, we have compared our work with related work on
compatibility of producer-consumer programs [18, 33, 15]. Our intuition that a backward-
compatible producer should produce less and a backward-compatible consumer should
consume more is similar to behavioral subtyping [24] over class hierarchies. The refinement
of interface automata [14] and implications between pre/post conditions in [26] model similar
constraints for version-related programs. Substitutability analysis [32, 11] allows the newer
version to exhibit more behaviors provided it preserves system-level safety properties.

Representation dependence testing [20] evaluates forward compatibility of consumers by
simulating a large class of producers by sequentially composing a specification program and
its algorithmically derived inverse. Compatibility tests have been generated from behavioral
models of components which include sequences of actions and constraints over data being
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exchanged [25]. However, the models are synthesized from observed behaviors of programs
and do not identify type incompatibilities. Fingerprint generation [9] generates inputs that
take two implementations of a protocol to different states. They symbolically execute binaries
and use decision procedures to generate inputs.

Data format specification and inference. Data description languages [27, 8, 17] permit
more expressive specifications than our guarded layouts, e.g., they provide type constructors
for unbounded data. However, their goal is to generate supporting tools like parsers and type
checkers for analysis of data according to the specifications. Polyglot [10] extracts protocol
message formats by dynamic analysis of binaries. Static analysis has been used to extract
output formats from stripped executables [23] and data models from programs [21].

Type inference. Physical type checking [12] computes the in-memory layout of C structures
to prove type safety of field accesses in presence of pointer type-casts. Our layout maps are
defined over an ordered set of offset-based memory locations and are associated with guards.
Type inferencing approaches [30, 22] have been used for extracting data abstractions from
Cobol programs. Our idea of inferring concrete types based on accesses rather than on type
declarations is similar to the use of access patterns in a specific program for identification of
aggregate structures [30]. Our offset-based uniform naming is similar to their atomization
notion. Our analysis is however aimed at C programs and we associate guards with layout
maps. There are several other type systems, like dependent types for imperative languages [34],
liquid types [31], and predicated type hierarchy [19], which associate guards with types.

7 Conclusions and Future Work

We presented an approach to check data format compatibility of C programs. Our approach
infers data formats by static analysis of programs and checks various notions of compatibility
of producer-consumer and version-related programs. It was shown to be effective in finding
bugs in real programs. We plan to extend the approach to unbounded-length data and
explore its use in improving regression testing on data formats. The integration of guarded
layouts with finite state machine specifications of protocols can help in checking richer notions
of compatibility of communicating programs.
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