
The PCP theorem for NP over the reals∗

Martijn Baartse and Klaus Meer1

1 Computer Science Institute, BTU Cottbus
Platz der Deutschen Einheit 1
D-03046 Cottbus, Germany
martijnbaartse@msn.com,meer@informatik.tu-cottbus.de

Abstract
In this paper we show that the PCP theorem holds as well in the real number computational
model introduced by Blum, Shub, and Smale. More precisely, the real number counterpart NPR
of the classical Turing model class NP can be characterized as NPR = PCPR(O(logn), O(1)).
Our proof structurally follows the one by Dinur for classical NP. However, a lot of minor and
major changes are necessary due to the real numbers as underlying computational structure. The
analogue result holds for the complex numbers and NPC.

1998 ACM Subject Classification F.2.2 Complexity of Proof Procedures

Keywords and phrases PCP, real number computation, systems of polynomials

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.104

1 Introduction

One of the major achievements in theoretical computer science within the last two decades
certainly was the PCP theorem. It gave a new characterization of the complexity class NP
via so called probabilistically checkable proofs and had tremendous impact on the field of
approximation algorithms in combinatorial optimization.

Starting point for the present paper is the real number model of computation and its
related complexity theory as introduced by Blum, Shub, and Smale, henceforth called BSS-
model for short, see [6, 5]. The model focusses on algebraic aspects of computation over
arbitrary structures, and here in particular the real numbers. As with the Turing model the
major open question in this real number framework is whether the real complexity classes PR
and NPR of problems decidable and verifiable, respectively, in polynomial time are different.

The definition of probabilistically checkable proofs makes sense as well in the real number
model. Given the importance of the classical PCP theorem it is only natural to ask whether
the corresponding characterization holds as well in the BSS framework for NPR. The goal of
this paper is to prove the PCP theorem in this setting.

1.1 Previous work and outline of proof
For the classical PCP theorem, i.e., the equality PCP(O(logn), O(1)) = NP in the Turing
model two different proofs are known, the original proof by Arora et al. [3, 2] and, more
recently, the groundbreaking new proof by Dinur [7]. The first PCP type theorem for the
real number model was given in [9]. There, the existence of so called transparent long proofs

∗ We gratefully acknowledge support of both authors by project ME 1424/7-1 of the Deutsche Forschungs-
gemeinschaft DFG.

© Martijn Baartse and Klaus Meer;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 104–115

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.104
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Baartse and K. Meer 105

for the real counterpart NPR of NP is shown, see also [4]. Due to the reals as underlying
structure the proof needs considerable technical changes compared to the analogue discrete
result. The latter are mainly caused by the presence of unstructured domains of certain
linear real functions; on these domains, invariants of the uniform distribution on the vector
space GF (2n) are lost. Those invariants, however, play a central role in proving the Turing
model result.

The first characterization of real NPR by a PCPR class is presented in [10]: NPR =
PCPR(O(logn), polylog(n)). The proof faces similar difficulties as the one in [9], this time
dealing with low-degree polynomials as coding objects instead of linear functions on certain
real domains. The key point here is to embed and expand a so called low-degree test for
polynomials defined on (almost) arbitrary real domains given in [8] to construct a suitable
verifier for an NPR-complete problem.

Whereas the design of a long transparent proof goes into both existing proofs for the
PCP theorem in the Turing model, the construction of real low-degree tests structurally
follows the original proof by Arora and co-authors. It is, however, unclear to the authors of
this paper at the time being whether one can obtain the full real PCP theorem by continuing
the proof along these lines. We comment on that at the end of the paper. Thus, it is natural
to ask whether Dinur’s proof can be carried over to the real number model.

Dinur’s proof is based on constructing a certain reduction between 3-SAT formulas in
which for unsatisfiable formulas a so called gap amplification is obtained. The existence of
such a reduction is known to imply the PCP theorem. Nevertheless, at a first glance it is not
clear whether similar ideas could be used for an appropriate NPR-complete problem over the
reals. The reason is that Dinur’s proof heavily works with constraint systems that are to be
solved over different finite alphabets as domains. The proof constructs several transformations
between such finite alphabet constraint problems. It seems unclear whether the same can be
done over uncountable structures. However, it turns out that this part depends more on the
combinatorial structure of the constraints involved than on the question over which domains
they are to be solved. To see this, a view of real polynomial systems – the main objects
involved in real number computations – is taken that seems a bit uncommon in algorithmic
semi-algebraic geometry. The latter requires not only to consider the semi-algebraic solution
set of such a system (as it is usually done in algebraic geometry), but to put more focus on
a suitable grouping of the polynomials involved in the system. Then, it is more important
to argue about common semi-algebraic solutions of some of these groups than of the entire
system. It turns out that this can be accomplished as well over R. Consequently, at the
moment Dinur’s proof seems more appropriate for adaptation to real computational models
than the classical one. The arguments given hold as well for the complex number BSS model
and its corresponding PCPC classes and NPC. Since all required changes are minor below we
only add short remarks on the complex model where appropriate.

The paper is organized as follows. Section 2 introduces the main notions like real number
verifiers and PCPR classes as well as the central NPR-complete problem to be studied. It is
a particular form of deciding solvability of polynomial systems; the problem is defined in
such a way that the existence of a reduction amplifying the unsatisfiability gap will imply
the PCPR theorem. The construction of this reduction is given in Section 3. A discussion
about future questions ends the paper. All lacking proofs are postponed to the full version.

A word concerning the style of writing: We decided to extensively explain the flow of
ideas at the cost of having to omit most of the proofs due to lacking space. This hopefully
clarifies what is needed for a transformation of Dinur’s proof to the reals and why this indeed
is possible. A description of Dinur’s proof is given in the very recommendable textbook [1].

STACS’13

106 The PCP theorem for NP over the reals

2 Basic notions

We assume the reader to be familiar with real and complex number complexity theory, see
[5]. Very briefly, a BSS machine is a uniform Random Access Machine that computes with
real numbers as basic entities. An input x ∈ Rn is given the algebraic size sizeR(x) := n,

and each operation {+,−, ∗, :,≥ 0?} among real numbers can be performed with (algebraic)
costs 1. The complexity class NPR consists of all decision problems L for which there exists
a polynomial time verification procedure that satisfies the following requirements. Given
x ∈ L there is a proof y of polynomial size in the (algebraic) size of x such that the procedure
accepts (x, y). And for every x 6∈ L the procedure rejects all tuples (x, y), no matter what y
looks like. For complex computations inputs stem from some Cn and only equality tests are
allowed. The Quadratic Polynomial Systems problem introduced below is a typical example
of a problem in NPR or in NPC, respectively, depending on where coefficients lie and where
solutions are searched.

Usually, the natural verification procedures for NPR problems have to inspect all com-
ponents of y before the decision is made. The question one studies in relation with PCPs is
whether this has to be the case. It is formalized using special randomized algorithms.

I Definition 1 (Verifiers). Let r, q : N 7→ N be two functions. An (r(n), q(n))-restricted
verifier V in the BSS model is a particular randomized real number algorithm working in
three phases. For an input x ∈ R∗ :=

⋃
i≥1 Ri of algebraic size n and another vector y ∈ R∗

representing a potential membership proof of x in a certain set L ⊆ R∗, the verifier in a first
phase produces non-adaptively a sequence ρ of r(n) many random bits (under the uniform
distribution on {0, 1}r(n)). Given x and this sequence ρ of r(n) many random bits, in the
next phase, V computes deterministically the indices of q(n) many components of y. Finally,
in the decision phase V uses the input x, the random string ρ and the values of the chosen
components of y in order to perform a deterministic polynomial time algorithm in the BSS
model. At the end of this algorithm V either accepts or rejects the triple (x, y, ρ). For an
input x, a guess y and a sequence of random bits ρ we denote by V (x, y, ρ) ∈ {0, 1} the
result of V .

Though being a real number algorithm the verifier generates discrete random bits in
phase 1. The use of these bits is for addressing registers of the machine in which the basic
units of a proof y, i.e., real numbers are stored. Therefore it is appropriate to work with this
discrete kind of randomness. We can define the real language accepted by a verifier together
with complexity classes PCPR(r(n), q(n)) as follows.

I Definition 2 (PCPR-classes). Let r, q : N 7→ N; a real number decision problem L ⊆ R∗
is in class PCPR(r(n), q(n)) iff there exists an (r(n), q(n))-restricted verifier V such that
conditions a) and b) below hold:
a) For all x ∈ L there exists a y ∈ R∗ such that for all randomly generated strings

ρ ∈ {0, 1}r(sizeR(x)) the verifier accepts.
b) For any x 6∈ L and for all y ∈ R∗ the verifier rejects with probability at least 3

4 .

In both cases the probability is chosen uniformly over all random strings ρ.

We next introduce the central decision problem to consider in this paper. It deals with
polynomial systems and is a variant of the Hilbert Nullstellensatz problem. However, the
viewpoint under which we structure such systems is a bit unusual, so the definition at a first
glance might look confusing. The reason we take this unusual point of view is that we want
this decision problem to resemble the CSP problem which plays a main role in Dinur’s proof.
A clarifying example follows after the definition.

M. Baartse and K. Meer 107

I Definition 3. a) Let m, k, q, s be integers. An instance of the quadratic polynomial
systems decision problem QPS(m, k, q, s) is defined as follows. There are m constraints, each
of which is a group of at most k real polynomials. The polynomials depend on arrays of
real number variables. These arrays are disjoint, different arrays do not contain the same
variable. Each array has s components and thus represents a vector of variables ranging over
Rs. The single polynomials then depend on the variables that occur as components in one of
the arrays. All polynomials in one constraint have degree at most 2 and depend on at most
q many arrays, i.e., on at most qs many real variables altogether.

b) A constraint is satisfied by a point x ∈ Rqs if x is a common zero of all polynomials
in the constraint. The QPS(m, k, q, s)-instance is solvable if there is a common real solution
for all its constraints.

c) If above coefficients belong to C and solutions are searched in Cqs we obtain the
complex QPS(m, k, q, s) problem.

I Remark. a) Below, we usually consider the parameters k, q, s as constants, whereas m
is depending on the actual instance. In that sense it would be more correct to talk about
QPS(k, q, s)-instances; however, at many places we argue about the changes in the number
of constraints, so the above seems notationally easier.

b) Over the reals parameter k in principle is not necessary. Here, using basic arguments
from [6] we could always choose k = 1 and the corresponding constraint to be given by a
single polynomial equation f(x) = 0 of degree at most 4 with f being non-negative on a
corresponding Rn. However, we notationally prefer to take care of k. Firstly in order to
deal as well with the complex BSS model in which the above simplification does not work.
Secondly, in many cases below we believe specifying k increases readability to state explicitly
which polynomial equations enter into which constraints and might cause its unsatisfiability.

c) Since mqs is an upper bound for the number of variables an instance depends on at
many places below we do not specify this number for concrete instances more precisely.

I Example 4. It is well known that deciding existence of a real zero of a polynomial system
P := {p1, . . . , pm}, where each polynomial pi depends on at most three variables and has
degree at most two is NPR-complete, see [5]. We give two formulations of this question
in the new framework by specifying different choices of parameters. The examples show
NPR-completeness of the QPS problem for the given choices of k, q, and s.

i) The system P can be formulated as an instance in QPS(m, 1, 3, 1). Each constraint
consists of a single polynomial pi, thus k = 1; the variable arrays all have dimension s = 1
and each polynomial depends on at most 3 such arrays.

ii) If we take arrays of dimension s = 3, then in a first reduction step we consider all such
arrays as depending on different variables. Then additional constraints have to be added
to guarantee consistency between the same variables occurring in arrays of different
polynomials. Such a constraint has a single polynomial depending on two arrays. It
claims equality between variable components that have to be the same in the originally
given system. We thus obtain a QPS(m̃, 1, 2, 3) instance where m̃ is a bound for m plus
the number of different pairs of variable arrays.

Note that the above instances are equivalent to P as far as solvability is concerned. Below it
will be very important to argue about the number of constraints not satisfied if a system is
unsolvable. For these arguments it is crucial to group the single polynomials into constraints.

For what follows QPS-instances with parameter q = 2 are most important. This is due to
the possibility of canonically assigning a constraint graph to such an instance that connects

STACS’13

108 The PCP theorem for NP over the reals

arrays as vertices. It is then more important to argue about this graph than about the
semi-algebraic solution set of (subsets of) the polynomials involved in the system (though
the latter of course cannot not be completely disregarded).

The starting point of Dinur’s proof is a simple observation which implies the PCP theorem
if the existence of a very particular reduction can be established. We next recall this type of
reduction and state the corresponding easy lemma for QPS and the PCPR theorem.

I Definition 5. a) For a QPS(m, k, q, s)-instance φ denote by UNSAT (φ) the smallest
fraction of constraints in φ that cannot be satisfied in common. Thus, if φ is satisfiable
UNSAT (φ) = 0 and otherwise UNSAT (φ) ≥ 1

m .

b) A gap reduction for QPS-instances is a polynomial time BSS algorithm that works as
follows. There is a fixed ε > 0 such that given a QPS(m, k, q, s) instance φ the algorithm
computes an instance ψ in QPS(m′, k, q, s) satisfying the following:
i) if φ is satisfiable so is ψ;
ii) if φ is not satisfiable, then at most a fraction of (1− ε) many of the constraints of ψ are

satisfiable in common, i.e., UNSAT (ψ) ≥ ε.
Clearly, m′ is polynomially bounded in m.

The following lemma is easy to prove. Note, however, that it seems unclear whether its
converse holds as well as it does in the Turing model.

I Lemma 6. Suppose there exists a gap reduction for QPS with a fixed ε > 0. Then the
PCPR theorem follows, i.e., NPR = PCPR(O(logn), O(1)).

3 The main proof

We shall now turn to the main part of the proof, the construction of a gap reduction for
the NPR-complete problem QPS(m,C,Q, 1), see Example 4. The parameters C ≥ 1 and
Q ≥ 3 are constants that will be specified later. The structure of the proof is similar to
that of the classical PCP theorem by Dinur. Its basic idea is as follows. Starting from
a QPS(m,C,Q, 1)-instance φ which is unsatisfiable an amplification step is performed. It
constructs in polynomial time another QPS-instance ψ out of φ that has an increased
unsatisfiability ratio. More precisely, if UNSAT (φ) = ε, then UNSAT (ψ) ≥ c · ε for a
suitable constant c > 1 and ε small enough. Now in principle starting with UNSAT (φ) ≥ 1

m

and repeating this amplification logm times the gap is increased from at least one unsatisfied
constraint in φ to a constant fraction of unsatisfied constraints in the finally resulting instance.
However, the amplification step increases the dimension of the variable arrays too much.
Thus, before repeating amplification a dimension reduction step is performed that first
reduces the parameter s again. Note that dimension reduction in Dinur’s proof is called
alphabet reduction. Over the reals, however, parameter s refers to the dimension of variable
arrays, whereas the underlying alphabet is always infinite. We thus consider the changed
notion to be more appropriate here.

Amplification is performed on instances having particularly structured constraint graphs.
These are related to so called expanders. Therefore, in a preprocessing step it has to be
shown why it is possible to start with such particular instances.

The section is organized as follows. The first subsection collects the results necessary to
do the preprocessing. Since it closely follows the classical preprocessing step omit the proofs.
Next, the amplification step is described. Though basically Dinur’s idea works over the reals
as well, a lot of small details and calculations have to be changed. We thus include the full

M. Baartse and K. Meer 109

proof, always pointing out where differences to the discrete setting occur. The dimension
reduction step is given in subsection 3.3. It relies on the long transparent proofs for NPR,
see [9, 4].

3.1 Preprocessing
In order to apply below the main steps necessary to establish the existence of a gap reduction
for QPS, namely amplification and dimension reduction, we first have to preprocess a given
instance. The goal of this preprocessing step is to obtain a QPS instance that has a constraint
set which in a certain sense is highly structured. Such instances are called nice below.
Niceness is modelled using expanders, a well known concept from graph theory. Throughout
this section (except for the start of the first preprocessing step) we consider QPS instances
whose constraints depend on two variable arrays, i.e., for which parameter q = 2. This allows
to canonically attach a constraint graph to the instance.

I Definition 7. (Constraint graph) For a QPS(m, k, 2, s) instance φ we define its constraint
graph as the graph which uses the variable arrays of φ as vertices and where two of them are
connected iff they occur in a common constraint of φ.

Before the amplification step is performed it is necessary to guarantee that this constraint
graph has a particular structure.

We shall first give the necessary graph theoretical definitions and then show why without
loss of generality we can start from a nice QPS instance. Expanders are regular graphs
that in a certain sense exhibit properties of random regular graphs of the same degree of
regularity. In this section we define algebraic expanders.

For the definition of algebraic expansion we need the random walk matrix of a graph G.

I Definition 8. (Random walk matrix) Let G = (V,E) be a graph. The random walk matrix
A(G) of G is defined to be the |V | × |V | matrix in which the entry Aij equals the probability
that in a random walk on G vertex j is chosen after vertex i. Here each edge incident with
node i and not being a loop is chosen with the same probability, whereas loops are chosen
with twice this probability; see Remark 3.1 below.

I Definition 9. (Algebraic expansion) Let n, d ∈ N, λ < 1, and G = (V,E) a d-regular graph
with |V | = n. Let λ(G) be the second largest eigenvalue in absolute value of A(G). The
graph G is called a d-regular expander with expansion parameter λ if λ(G) ≤ λ.

The QPS-instances that are important below are required to have a constraint graph
which is an expander having additional properties. The corresponding definition is

I Definition 10. A QPS(m, k, q, s)-instance φ is called nice if the following conditions hold:

i) the number q of arrays on which each constraint depends is 2;
ii) the constraint graph G of φ is d-regular for some absolute constant d ∈ N which is in

particular independent of the parameter s. We allow G to have loops (resulting from
constraints that only depend on a single array); for each vertex of the graph one third of
the edges incident to that vertex are loops.

iii) The constraint graph is an expander with algebraic expansion parameter λ(G) ≤ 0.9.

I Remark. Our main purpose when considering random walks on a constraint graph is to
guarantee that all edges occur with the same probability as, say, first edge of such a walk if
a vertex is chosen at random. To achieve this property we consider loops as contributing one

STACS’13

110 The PCP theorem for NP over the reals

edge which, however, in a random walk is chosen with twice the probability of edges that are
no loops. There is still one constraint attached to a loop, and the loop contributes 2 to the
degree of its vertex. Consequently, for the random walk matrix a loop contributes 2

d to the
corresponding diagonal entry.

The following theorem summarizes preprocessing.

I Theorem 11. There exist a constant d ∈ N and a polytime computable function from QPS
instances to QPS instances which maps a QPS(m, k, q, s) instance φ to a nice instance ψ in
QPS(3qd2m, k + qs, 2, qs) such that
- if φ is satisfiable, then ψ is satisfiable;
- if φ is not satisfiable, then UNSAT(ψ) ≥ UNSAT(φ)/(240qd2).

It is important for what follows that above both the number of constraints is increased
and the unsatisfiability factor is decreased by a constant factor only.

3.2 Amplification
Given a nice QPS-instance the all-over purpose now is to perform a logarithmic number
of reduction rounds to increase the unsatisfiability gap. The first step in a round is an
amplification step which increases the ratio of unsatisfied constraints by a constant factor
> 1. After the amplification step a dimension reduction step reduces again the dimension
of the variable arrays which has been increased during amplification. In this subsection
amplification is explained.

Suppose a nice QPS(m, k, 2, s)-instance ψ is given. Let d denote the corresponding
regularity parameter and let n be the number of variable arrays. Our final goal is to construct
an instance which either is satisfiable if ψ was or in which for any assignment a constant
fraction εfinal > 0 (to be specified) of the constraints will not be satisfied. We will concentrate
our arguments on how amplification works for unsatisfiable instances ψ which have a gap
that is too small, i.e., smaller than εfinal. If UNSAT (ψ) is already large enough it will stay
above this εfinal after the reduction, see below.

So we assume that the input instance has a gap which is smaller than some constant
which we will specify later. Our goal is to construct in polynomial time an instance ψt in
some QPS(m(t), k(t), 2, s(t)) such that UNSAT (ψt) ≥ c ·UNSAT (ψ) for a suitable constant
c > 1. Here, t ∈ N is a suitably chosen constant that results from the construction. Before
going into details here is a brief outline of how amplification was done by Dinur, adapted to
the real case. The new instance ψt has the same number n of variable arrays as ψ. Whereas
the latter range over Rs the former range over an enlarged Rs(t), where s(t) := dt+

√
t+1 · s.

The constraints in the new instance are built on base of paths with 2t many edges in the
old constraint graph Gψ. Each such path results in an own constraint of ψt. Before defining
such a constraint it is necessary to describe the role of the variable arrays in ψt. For a vertex
i ∈ {1, . . . , n} the corresponding variable array yi ∈ Rs(t) consists of dt+

√
t+1 many blocks of

dimension s each (therefore s(t) = dt+
√
t+1 · s). Each block is thought of as an old variable

array of ψ that corresponds to a vertex in Gψ reachable within t+
√
t steps from i. Since Gψ

is d-regular there are at most dt+
√
t+1 many such vertices. In that sense we can say that an

assignment for all new variable arrays yi ∈ Rs(t), 1 ≤ i ≤ n, claims a value for all old arrays
xj for vertices j in a (t+

√
t)-neighborhood of vertex i. Of course, different yi might claim

different values on the same old array.
Now let p be a path of length 2t in Gψ from vertex i1 to i2t+1, say p := (i1, i2, . . . , i2t+1).

For each such path a constraint is added to ψt as follows: The constraint depends on the
two arrays yi1 and yi2t+1 and expresses two requirements:

M. Baartse and K. Meer 111

1. Consistency-between-new-variables requirement: Since yi1 claims values for xi1 , xi2 , . . . ,
xit+

√
t+1

and yi2t+1 claims values for xi2t+1 , xi2t
, . . . , xit−√t+1

, the old variables xij for
j ∈ {t−

√
t+ 1, . . . , t+

√
t+ 1} are covered by both new arrays. We thus include for all

those j linear equations expressing that that yi1 and yi2t+1 claim the same values on all
their components. This contributes (2

√
t+ 1) · s linear equations to the constraint. 1

2. Consistency-with-old-constraints requirement: As explained above edges (ij , ij+1) of Gψ
are covered by both variable arrays yi1 , yi2t+1 for j ∈ {t −

√
t + 1, . . . , t +

√
t}; to each

of these 2
√
t many edges there corresponds an old constraint of ψ. The new constraint

requires as well that those old constraints are satisfied by the values assigned to the old
variable arrays through yi1 (or equivalently, because of item 1., through yi2t+1).

Requirement 2. for each j is the same as in the given instance just changing variables. So
each constraint in ψt is made of ≤ k(t) := 2

√
tk + (2

√
t+ 1) · s many polynomial equations.

Since Gψ is regular there are at most m(t) := n · d2t many paths of length 2t, so this bounds
as well the number of constraints in ψt.

It is easy to see that a satisfying assignment for ψ extends to one for ψt. Just propagate
the assignment to the yi’s according to the first consistency requirement above. The hard
part to see is why an unsatisfiability ratio of a given (unsatisfiable) ψ is increased by the
construction. Towards this aim we relate any assignment for the new variable arrays to a
so-called plurality assignment for the old arrays. Assuming this plurality assignment (like
any other) to violate a fraction of UNSAT (ψ) many constraints in ψ it is then shown that
the given assignment y for ψt violates a ratio of ≥ c · UNSAT (ψ) many constraints of
ψt. This reasoning closely follows Dinur’s one. However, due to the fact that assignments
stem from the uncountable set Rs(t) instead of a finite set some arguments have to be
adjusted. One necessary change in order to perform this adjustment is the inclusion of the
consistency-between-new-variables requirement above.

Now towards the details. Given an assignment y = (y1, . . . , yn) ∈ Rn·s(t) for the n variable
arrays yi ∈ Rs(t) of ψt, we first define the plurality assignment inferred from it to the old
arrays xj ∈ Rs : Let t ∈ N be fixed. Consider a vertex v of Gψ together with a random walk
in Gψ of length t starting in v. Remember the way loops are treated in such a walk, see
Remark 3.1. With a certain probability the walk reaches a vertex u which obviously belongs
to the t-neighborhood of v. Then for this u there is a new variable array yu. Its assignment
in particular claims a value for the old array xv. The plurality assignment xpav for xv then
is defined to be the assignment resulting with highest probability from y according to the
above random walk process. Ties can be broken arbitrarily.

One technical difference to the discrete setting has to be pointed out here. Over the reals
there is no guarantee how often the plurality assignment occurs at least. It is only clear that
it occurs at least once. Contrary, if the variables take values over a finite alphabet there
is a constant lower bound on the probability with which the plurality assignment occurs;
this bound depends only on the alphabet size but not on t. This difference requires below a
modification of the discrete arguments.

Suppose then that ψ is unsatisfiable with UNSAT (ψ) = ε > 0. Let an arbitrary assignment
y for ψt and the related plurality assignment xpa for ψ be fixed. Every assignment xpa
violates ≥ m · ε constraints (where m denotes the number of constraints in ψ). Our goal is
to show that y violates at least a fraction of ε(t) = c · ε constraints in ψt for a large enough

1 These requirements are not included in the classical construction due to the underlying finite alphabets.
It will become obvious below why it is needed over the reals.

STACS’13

112 The PCP theorem for NP over the reals

value c > 1. This is achieved by analyzing two cases. Consider an edge e = (ij , ij+1) in Gψ
such that the plurality assignment (xpaij , x

pa
ij+1

) violates the corresponding constraint in ψ.

a) If the values xpaij , x
pa
ij+1

have been claimed by relatively many (to be specified) endpoints
of the corresponding random walks it is shown that many of the endpoints of 2t-step paths
of Gψ in which e occurs in the middle segment claim the plurality values for xpaij , x

pa
ij+1

,
i.e., y violates many constraints in ψt. This part is analyzed similarly as in the finite
alphabet situation.

b) If at least one of the values xpaij or xpaij+1
has been claimed by few endpoints only (but still

represents the majority of the occurring values) we show that y violates the consistency-
between-new-variables requirements in a lot of constraints. This case has to be handled
because of the reals as underlying structure.

We now calculate a lower bound for the expectation of a random variable V defined as
follows: V counts the number of edges e as mentioned above in a random path that cause
the corresponding constraint to be unsatisfied. We also calculate an upper bound for the
square E[V 2] of the number of such edges in a random path. Since for any nonnegative
random variable V taking integral values by an application of Chebychev’s inequality it is
Pr[V > 0] ≥ E[V]2/E[V 2] this will then give us a lower bound on the fraction of paths for
which the corresponding constraint in ψt is not satisfied.

Assume we have an edge e = (ij , ij+1) such that the corresponding constraint in ψ is
violated by the plurality assignment. We start by considering case a) and assume that the
plurality values of xij , xij+1 are claimed relatively often. At first sight this information seems
pretty useless because if we look at the set of paths in which e occurs in the middle segment
then it is obvious that for almost all of them the distance (along the path) from xij and xij+1

to the respective endpoints is not t. The plurality assignment was defined using random
walks of length t, so it does not say anything directly about walks which have a different
length. To solve this problem we need the many loops guaranteed to exist by the niceness
condition. Their existence implies that a random walk of t steps statistically is not too
different from a random walk which has a few steps more or less. If the random walk starts
in u, the probability that we end in v only changes very slightly if we make our walk a few
steps longer or shorter. The following lemma makes this precise.

I Lemma 12. Let t ∈ N, δ ≤ 1/160 and j ∈ {t − δ
√
t, . . . , t + δ

√
t}. If the plurality

assignments for xij and xij+1 both occur with probability at least 5
8 , then the following holds.

For a fraction of at least 1
4 of the paths of length 2t that have e = (ij , ij+1) as j-th edge the

values that the starting point yi1 and the endpoint yi2t+1 of the path claim for xij and xij+1 ,
respectively, agree with the plurality assignments for those arrays.

In order to obtain the desired lower bound for E[V] next we have to deal with the case
where the plurality assignment is claimed with a small probability only. The following shows
that in this case the corresponding edge e leads in a large fraction of the paths to a violation
of the corresponding constraint via case b).

I Lemma 13. Let t ∈ N, δ ≤ 1/160 and j ∈ {t−δ
√
t, . . . , t+δ

√
t}. If the plurality assignment

for xij occurs with probability less than 5
8 the following holds. For a fraction of at least 1

4 of
the paths of length 2t that have e as j-th edge the values that the starting point yi1 and the
endpoint yi2t+1 of the path claim for xij disagree.

The corresponding statement is true for xij+1 .

Let F denote the set of edges in the instance ψ such that the corresponding constraint
is violated by the plurality assignment. Recall that our goal is to prove a lower bound for

M. Baartse and K. Meer 113

Pr[V > 0], where V is the random variable which counts the number of edges e in a random
2t-step path that satisfy the following: e belongs to F , it is the j-th edge in the path for a
j ∈ {t− δ

√
t, . . . , t+ δ

√
t}, where δ = 1/160 and causes the corresponding constraint in ψt

to be unsatisfied by assignment y. We are now able to extract such a lower bound.

I Lemma 14. Let ε ≤ 1
d·
√
t
, let ψ be an instance with UNSAT (ψ) = ε and ψt be constructed

as above. For the random variable V as defined above it is Pr[V > 0] ≥ c · ε with c =
√
t

3520d .

The above lemmas result in

I Theorem 15. There exists an algorithm which works in polynomial time that maps a nice
QPS(m, k, 2, s) instance ψ to a QPS(d2tm, 2

√
tk + (2

√
t+ 1)s, 2, dt+

√
t+1s)-instance ψt and

has the following properties:
If ψ is satisfiable, then ψt is satisfiable.
If ψ is not satisfiable and UNSAT(ψ) < 1

d
√
t
, then UNSAT(ψt) ≥

√
t

3520d · UNSAT(ψ).

Note that the construction works precisely the same in the complex BSS model.

3.3 Dimension reduction
The amplification step increases an unsatisfiability ratio ε < 1

d
√
t
by a factor c ≥

√
t

3520d . Thus
starting with an unsatisfiable instance φ that has m constraints it would be sufficient to
repeat the amplification step Ω(logm) number of times in order to end with an instance
that has a constant unsatisfiability gap ≥ 1

d
√
t
. However, doing it naively the dimension

of arrays in the resulting instance would no longer remain constant. This would imply as
well the query complexity to be not any longer constant, compare Lemma 6. Therefore, the
dimension has to be reduced again each time an amplification step was applied. This has to
be done in such a way that we do not lose too much of the gap-increase the amplification
step gave.

To get around this problem one should first alter the instance in such a way that every
constraint depends on at most Q variables only. Here, Q is an absolute constant independent
of the array size. In Dinur’s proof this is done using so-called transparent long proofs
for NP. The corresponding construction is called alphabet-reduction there because the
different amplification steps deal with satisfiability problems over finite alphabets of different
cardinalities. With respect to the real number model it is more appropriate to consider it as
a dimension reduction. All instances that occur during amplification are to be solved over
the reals, i.e., there are no different ’alphabets’ to deal with.

Transparent long proofs have been used already in the first proof of the classical PCP
theorem, see [2], where they are crucial for applying a technique called verifier-composition.
In the real and complex number model [9, 4] show the existence of transparent long proofs for
all problems in NPR and NPC, respectively. More precisely, a verifier for an NPR-complete
problem is designed which uses a superpolynomial number of random bits and inspects a
constant number Q of proof components. As already said in the introduction proving this
requires considerable additional work in comparison to the Turing setting. The main task is
to design an algorithm for testing linearity of certain real number functions on unstructured
finite subsets of some Rn. Unstructured here means in particular that these domains are not
closed under addition and scalar multiplication. This causes certain invariance properties of
the uniform distribution to be violated. The latter, however, is crucially used in the finite
alphabet framework to show existence of long transparent proofs.

Long transparent proofs provide a way to replace each constraint in ψt by many constraints
all depending on at most Q real variables (i.e., arrays of dimension 1); Q denotes the constant

STACS’13

114 The PCP theorem for NP over the reals

query complexity of the long transparent proof and thus is independent of the instance. If
the old constraint is not satisfiable, then at least half of the new ones will not be satisfied.
Thus one gets a reduction from constraints considered as QPS-instances to QPS-instances
which blows up the gap to a constant. As seeming disadvantage the size of the long proof
becomes superpolynomial in the size of the instance. But the verification using long proofs
will be applied to instances of constant size only, namely single constraints in ψt. Thus
the length of the transparent long proofs in fact does not matter at all. The much more
important aspect is their structure which will not be explained here due to lack of space.
The main result of this subsection, of which we also omit the proof, is

I Theorem 16. There exists a reduction which works in polynomial time and maps a
QPS(m(t), k(t), 2, s(t))-instance ψt to a QPS(m̂(t), C,Q, 1)-instance ψ̂t, where C,Q are
constants, m̂(t) is linear in m(t) (the multiplication factor being double exponential in s(t))
and the following holds:

If ψt is satisfiable, then so is ψ̂t and
if ψt is unsatisfiable, then UNSAT(ψ̂t) ≥ UNSAT(ψt)/(160(d+ 1)2).

3.4 Putting all together
Let Q ≥ 3 be the O(1)-constant from long transparent proofs for QPS(m, 1, 3, 1) and let
C ≥ 1 be the number of polynomials in a proof check ,i.e., the number of polynomials in the
QPS-instance which the verifier computes out of the input instance and the random bits.

Given an instance φ of QPS(m,C,Q, 1), applying preprocessing yields a nice instance
of QPS(3Qd2m,C +Q, 2, Q) (Theorem 11), then applying amplification yields an instance
of QPS(3d2t+2Qm, 2

√
t(C +Q) + (

√
t+ 1)Q, 2, dt+

√
t+1Q), and finally applying dimension

reduction yields an instance ψ̂t of QPS(m′, C,Q, 1) with the following properties.
m′ is linear in m, the multiplication factor is double exponential in Qdt;
if φ is satisfiable so is ψ̂t;
if φ is unsatisfiable and UNSAT(φ) ≤ 1

d
√
t
, then UNSAT(ψ̂t) ≥ UNSAT(φ) ·

√
t

1010Qd4 .
Assume φ is not satisfiable. We now choose t = (2 · 1010Qd4)2 so that a gap which is smaller
than 1

d
√
t
will be amplified with a factor of at least 2 by this reduction. Thus from an instance

of QPS(m, 1, 3, 1), one builds in logm steps an instance with a gap of at least 1
d
√
t
.

Finally, since in every step the number of constraints increases linearly, after less than
logm steps the number of constraints in the final instance is polynomial in m. Using Lemma
6 we thus arrive at the Main Theorem:

I Theorem 17. It holds NPR = PCPR(O(logn), O(1)). The same is true in the BSS model
over C.

4 Open questions

First, we consider it interesting to figure out whether the theorem as well can be proved
along the lines of the first proof of the classical PCP theorem in [2, 3]. Its main ingredients
are certain property testing procedures as well as a technique called verifier composition.
Whereas the latter is very similar to the ideas behind the dimension reduction step above, the
different property testing algorithms necessary probably result in more severe difficulties in
the real number setting. Testing linear functions can be done similarly, as has been discussed
above in relation with transparent long proofs for NPR. In [10] a first characterization of NPR
via PCPR(O(logn), O(polylog(n))) was given by designing a real algorithm for testing low-
degree polynomials. This algorithm is based on testing the maximal degree of a polynomial

M. Baartse and K. Meer 115

with respect to its variables. In order to apply the verifier composition step the classical
proof of the PCP theorem puts such a low-degree test into a better structure by designing a
total-degree test. It is unclear whether such a test could be designed as well over the reals
without loosing other important properties such as the length of a proof.

Secondly, approximation problems have not yet been studied in real number complexity
to a comparable extent as in classical complexity theory. An important implication of the
classical PCP theory was the non-approximability of the MAX-3-SAT optimization problem
via so called polynomial time approximation schemes, see [1]. A natural problem to study in
this respect is to maximize the number of commonly solvable polynomial equations in a real
number polynomial system. A direct implication of the existence of a gap-reduction shows
that this maximum is not efficiently approximable. More precisely, given a system and an
arbitrary ε > 0, unless PR = NPR there is no real number algorithm running in polynomial
time in the system’s size which approximates the maximal number of commonly solvable
equations within a relative factor 1 + ε. A promising direction for future research seems to
get more (non)-approximability results of that type for natural real number optimization
problems as consequence of the PCPR theorem.

Thirdly, in view of the BSS model having been introduced for many further structures
like rings, vector spaces or groups one might ask whether the PCP theorem as well holds in
such structures.

Finally, there are of course many further questions that have been studied in the Turing
model as consequence of the PCP theorem which also make sense in the BSS-model. One
typical such is the problem to optimize the parameters in the PCPR theorem.

References
1 S. Arora, B. Barak: Computational Complexity: A Modern Approach. Cambridge Univer-

sity Press, 2009.
2 S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy: Proof verification and hardness of

approximation problems. Journal of the ACM 45 (3), 501–555, 1998. Preliminary version:
Proc. 33rd Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society, 14–23, 1992.

3 S. Arora, S. Safra: Probabilistic checking proofs: A new characterization of NP. Journal
of the ACM 45 (1), 70–122, 1998. Preliminary version: Proc. of the 33rd Annual IEEE
Symposium on the Foundations of Computer Science, 2–13, 1992.

4 M. Baartse, K. Meer: Topics in real and complex number complexity theory. Submitted
to: Proc. of the Santaló Summer School ”Real Computation and Complexity”, UIMP,
Santander, 2012.

5 L. Blum, F. Cucker, M. Shub, S. Smale: Complexity and Real Computation. Springer,
1998.

6 L. Blum, M. Shub, S. Smale: On a theory of computation and complexity over the real
numbers: NP-completeness, recursive functions and universal machines. Bull. AMS, vol.
21, 1–46, 1989.

7 I. Dinur: The PCP theorem by gap amplification. Journal of the ACM Vol. 54 (3), 2007.
8 K. Friedl, Z. Hátsági, A. Shen: Low-degree tests. Proc. SODA, 57–64, 1994.
9 K. Meer: Transparent long proofs: A first PCP theorem for NPR. Foundations of Compu-

tational Mathematics, Springer, Vol. 5, Nr. 3, 231–255, 2005.
10 K. Meer: Almost transparent short proofs for NPR. Extended abstract in: Proc. 18th In-

ternational Symposium on Fundamentals of Computation Theory FCT 2011, Oslo, Lecture
Notes in Computer Science 6914, 41–52, 2011.

STACS’13

	Introduction
	Previous work and outline of proof

	Basic notions
	The main proof
	Preprocessing
	Amplification
	Dimension reduction
	Putting all together

	Open questions

