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—— Abstract

We study the constraint satisfaction problem over the point algebra. In this problem, an instance
consists of a set of variables and a set of binary constraints of forms (z < y), (z < y),(z # y) or

(z = y). Then, the objective is to assign integers to variables so as to satisfy as many constraints
as possible. This problem contains many important problems such as Correlation Clustering,
Maximum Acyclic Subgraph, and Feedback Arc Set. )

We first give an exact algorithm that runs in O*(3%") time, which improves the previ-
ous best O*(3™) obtained by a standard dynamic programming. Our algorithm combines the
dynamic programming with the split-and-list technique. The split-and-list technique involves
matrix products and we make use of sparsity of matrices to speed up the computation.

As for approximation, we give a 0.4586-approximation algorithm when the objective is maxim-
izing the number of satisfied constraints, and give an O(logn loglogn)-approximation algorithm
when the objective is minimizing the number of unsatisfied constraints.
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1 Introduction

Problems involving temporal constraints arise in various areas of computer science such
as scheduling, program verification, and parallel computation. One of the most common
frameworks to express temporal constraints is temporal constraint satisfaction problems
(Temporal CSPs). In Temporal CSP, an instance consists of a set of variables and a set of
constraints defined by first-order sentences with the predicate (<), the strict total order
of integers. Then, the objective is to assign integers to variables so as to satisfy all the
constraints.!

One of most famous Temporal CSPs is the CSP over the point algebra, introduced by
Vilain and Kautz [18]. In this problem, we have constraints of forms (x < y), (v < y), (z # y)

! We often choose the domain as the set of rational numbers and the predicate (<) as the dense strict
total order of rational numbers (e.g., [5]). However, we choose the domain as the set of integers to
simplify our expositions.
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and (z = y). A considerably larger class of Temporal CSPs is the CSP over the Ord-Horn
relations, introduced by Nebel and Biirkert [13]. CSPs over the point algebra and over
Ord-Horn relations are known to be solvable in polynomial time [13, 18]. Also, Ordering
CSPs introduced in [9] can be formulated as Temporal CSPs in which all variables must be
assigned different integers.

Most existing works on Temporal CSPs are concerned with the problem of deciding whether
all constraints are satisfied [1, 5, 12, 18]. However, it is natural to ask for an assignment that
satisfies as many constraints as possible when all constraints are not satisfied simultaneously.
In this paper, we are especially interested in the CSP over the point algebra as it is the
most fundamental Temporal CSP. We can look at the problem in terms of maximizing the
number of satisfied constraints (Max-PA), or in terms of minimizing the number of unsatisfied
constraints (Min-PA). These two are equivalent at optimality but, as usual, differ from the
point of view of approximation.

First, we give an exact algorithm for Max-PA (and hence for Min-PA) running in O* (3%")
time, where n is the number of variables.?? This result improves the current best O*(3")
obtained by a standard dynamic programming. Our algorithm is obtained by combining the
dynamic programming with the split-and-list technique due to Ryan Williams [19]. That is,
we reduce computation of the dynamic programming to computation of matrix products.
The reduction is not trivial since the original split-and-list technique is only used to speed-up
exhaustive search. Using the current fastest algorithm for multiplying general square matrices
by Vassilevska Williams [20], we obtain an algorithm that runs in O*(3%:5") time, where
w < 2.3727 < log 6. However, one of the matrices generated by the reduction is sparse and
has some recursive structure. To make use of this property, we modify the algorithm due to
Bini et al. [3] and get an algorithm that runs in O*(3%") time.

Next, we give a 0.4586-approximation algorithm for Max-PA. The idea of our algorithm is
similar to [16]. We first solve a semidefinite relaxation and round the solution using three or
four hyperplanes (we take the better one). If two variables are in the same side for every
hyperplane, they will get the same value. Thus, we use at most 16 values. The ordering of
values assigned to different clusters is chosen randomly.

If we only use constraints of the form (z < y), then Max-PA coincides with Maximum
Acyclic Subgraph, in which we want to find an ordering of vertices in a digraph so as to
maximize the number of edges that go forward. It is NP-Hard to get a (0.5+ ¢)-approximation
for any € > 0 assuming Khot’s unique games conjecture [10, 11]. The hardness suggests that
it would be difficult to improve our approximation ratio significantly.

Finally, we give an O(lognloglogn)-approximation algorithm for Min-PA. If we only use
constraints of the form (z < y), then Min-PA coincides with Feedback Arc Set, in which we
want to find an ordering of vertices in a digraph so as to minimize the number of edges
that go backward. The best algorithm for Feedback Arc Set has an approximation ratio
O(lognloglogn) [8]. Thus, our algorithm can be seen as a generalization of the algorithm
for Feedback Arc Set. The idea of our algorithm is reducing the problem to a variant of
multicut problem, which we call the symmetric multicut problem. In this problem, we are
given a digraph G = (V, E), and a set of terminal pairs T = {(s1,%1),..., (Sk,tx)}. Then,
we want to find an edge set F' C F of minimum cardinality such that, for any terminal pair
(s,t) € T, G — F contains no path from s to ¢ or no path from ¢ to s. Then, we obtain an
O(log nloglog n)-approximation algorithm for the symmetric multicut problem.

2 0*(-) hides a factor polynomial in n.
3 'We denote by log the logarithm to the base 2.
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1.1 Related Works

By restricting types of constraints further, the CSP over the point algebra coincides with
many other problems. If we use constraints of the form (z = y) and (x # y) only, then we
get Correlation Clustering [2]. As far as we know, exact algorithms for Correlation Clustering is
not studied in the literature. However, we can easily obtain an O*(2™)-time algorithm by a
simple application of fast subset convolution by Bjorklund et al. [4] (see Section 3 for detail).
If the underlying graph is a complete graph, then the maximization version admits PTAS and
the minimization version can be approximated within a factor of 4 [6]. For general underlying
graphs, the maximization version can be approximated within a factor of 0.7666 [16] and the
minimization version can be approximated within a factor of O(logn) [6].

If we use constraints of the form (z < y) only, then Max-PA coincides with Maximum
Acyclic Subgraph and Min-PA coincides with Feedback Arc Set. The current fastest exact
algorithm for Maximum Acyclic Subgraph (and hence Feedback Arc Set) is a simple O*(2™)-time
dynamic programming. The current best approximation algorithm for Maximum Acyclic
Subgraph is just the random assignment and its approximation ratio is 1/2. As we mentioned,
Guruswami et al. [10] showed that it is NP-Hard to obtain (1/2 + ¢)-approximation for
any € > 0 assuming Khot’s unique games conjecture. As for Feedback Arc Set, there is an
O(log nloglog n)-approximation algorithm [8]. It is known that obtaining 1.36-approximation
is NP-Hard [7] and obtaining any constant approximation ratio is NP-Hard assuming Khot’s
unique games conjecture [10].

A Temporal CSP with a single predicate is called an Ordering CSP if all variables must
be assigned different values. Guruswami et al. [9, 10] considered the maximization version
of Ordering CSPs, and they showed that the random assignment always gives the best
approximation ratio assuming Khot’s unique games conjecture.

1.2 Organization

We give definitions used in this paper in Section 2. In Section 3, we show an O*(3%")—time
exact algorithm for Max-PA. Sections 4 and 5 are devoted to show a 0.4586-approximation
algorithm for Max-PA and an O(log nloglogn)-approximation algorithm for Min-PA, respect-
ively.

2 Preliminaries

For an integer n, we denote by [n] the set {1,...,n}. A (d-ary) relation over a domain
[k] is a subset of [k]¢, and a (d-ary) constraint is a pair of a tuple of d variables and a
d-ary relation. A constraint e = ({z1,...,2:}, R) is called satisfied by an assignment f if
(f(x1),..., f(x¢)) € R. Now, we define two problems, Max-PA, and Min-PA.

Max-PA

Input: A set of n variables V and a set of m constraints C. Each variable x € V takes value
from [n], and each constraint is of the forms (z < y), (x < y), (z # y) and (x = y).
Output: An assignment f : V — [n] that maximizes the number of satisfied constraints.

Min-PA
Input: Same as Max-PA.
Output: An assignment f :V — [n] that minimizes the number of unsatisfied constraints.

Since the number of unsatisfied constraints is the number of constraints minus the number
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of satisfied constraints, the optimal assignments for the two problems coincide. Thus, for the
exact algorithm, we deal with Max-PA only. In this paper, we only deal with unweighted
instances, but our argument can be easily extended to weighted instances, for which we want
to maximize (resp., minimize) the total weight of satisfied (resp., unsatisfied) constraints. If
weights are integers between —W and W, then the running time of our exact algorithm takes
additional O*(W) factor. Running times of our approximation algorithms do not change.

3 Exact Algorithms

In this section, we give an exact algorithm for Max-PA and prove the following theorem.

min(w,log 5)

» Theorem 1. Max-PA can be solved in O*(3™ 1ees ™) time and O*(3ﬁ") space, where
w 18 the matriz product exponent.

We cannot compare w and log 5 since we do not know the true value of w. The current best
bound on w is 2.3727 by Vassilevska Williams [20], which is larger than log5b < 2.3220.

Before proving Theorem 1, we first show an O*(2")-time algorithm for Correlation Clus-
tering to see the difficulty of Max-PA. We formalize Correlation Clustering as a dynamic
programming and solve it using fast subset convolution to achieve the time complexity
O*(2™). This can be done because of the simplicity of the recurrence in the dynamic
programming.

Then, we introduce a standard O*(3™)-time dynamic programming algorithm for Max-PA.
We will see that we cannot apply fast subset convolution to the recurrence. This is the
point we become apart from Correlation Clustering, and we improve the running time of the
algorithm to O*(3$") by applying the split-and-list technique to compute the recurrences.
Finally, we further improve the running time by using structure of matrices involved when
applying the split-and-list technique and give an O*(3%”)-time algorithm.

3.1 Algorithm for Correlation Clustering

We explain an O*(2™)-time dynamic programming algorithm for Correlation Clustering. Recall
that Correlation Clustering is a special case of Max-PA such that each constraint has the form
(r =y) and (z # y) only. First, we reduce an instance of unweighted Correlation Clustering
into an instance of weighted Correlation Clustering that has (=)-constraints only. This can be
done by replacing each constraint of the form (x # y) by a constraint (z = y) with weight
—1. If an assignment satisfies a removed constraint (x # y), then it does not satisfy the
added constraint (z = y) and contributes to the objective value of the reduced instance by
0. Otherwise it satisfies the added constraint and contributes to the objective value by —1.
Thus the difference of its contribution to the original instance and the reduced instance is
always a fixed constant. Therefore, the optimal assignment does not change through the
reduction.

Then, we solve the reduced instance by dynamic programming. For a subset S C V', we
define dp,(S) as the maximum total weight of satisfied constraints by assigning values from
[i] to S. When some variable in a constraint is not assigned any value, we simply regard that
the constraint is not satisfied. We define dp, () = 0 and dpy(S) = —occ for any S # (. The
optimal value can be obtained as dp,, (V). We can compute dp,,; from dp; by the following
recurrence:

dp; 1 (5) = T%lgg{dpi(T) +w(S\T)}, (1)
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where w(S) is the total weight of the constraints of the form (z = y) with z € S and
y € S. The running time of this dynamic programming is O*(}_1  (7)2") = O*(3").
Bjorklund et al. [4] showed that any recurrence of this form can be computed in O*(2™) time
by developing a technique called fast subset convolution. Thus, we can solve Correlation

Clustering in O*(2") time.

3.2 Standard Dynamic Programming Algorithm

We explain an O*(3™)-time dynamic programming algorithm for Max-PA. First, we reduce an
instance of unweighted Max-PA into an instance of weighted Max-PA that has (<)-constraints
only. This can be done by the following reduction.

For each constraint of the form (x < y), we set its weight as 1.

For each constraint of the form (z < y), we replace it by a constraint (z > y) with weight

—1.

For each constraint of the form (x # y), we replace it by two constraints (z < y) and

(x > y) with weight 1.

For each constraint of the form (x = y), we replace it by two constraints (z < y) and

(z > y) with weight —1.
If an assignment satisfies a removed constraint (z < y), then it does not satisfy the added
constraint (z > y) and contributes to the objective value of the reduced instance by 0.
Otherwise it satisfies the added constraint and contributes to the objective value by —1.
Thus the difference of its contribution to the original instance and the reduced instance is
always a fixed constant. We have the same property for constraints (z # y) and (z = y).
Therefore, the optimal assignment does not change through the reduction.

Then, we solve the reduced instance by dynamic programming. For a subset S C V', we
define dp;(S) as we did in the previous subsection. We can compute dp;,; from dp; by the
following recurrence:

dp;41(5) = g{lgg{dpi(T) +w(T, S\ T)}, (2)

where w(A, B) is the total weight of constraints of the form (z < y) with z € A and y € B.
The running time of this dynamic programming is O*(3™) and it uses O*(2") space.

Compare to the recurrence (1) for Correlation Clustering, w in this recurrence does not
have the form of w(S \ T') but has the form of w(T, S\ T) to which we cannot apply fast
subset convolution. This is because, in order to determine whether a constraint is satisfied,
we need to know not only how variables are partitioned into equal-valued sets, but also the
ordering of those sets.

3.3 Split-and-List Algorithm for Max-PA

In this subsection, we improve the standard dynamic programming algorithm in the previous
subsection by applying split-and-list technique. The original technique was developed to speed-
up the exhaustive search for Max 2-SAT by Ryan Williams [19], and here, we demonstrate that
it can be used to speed-up the computation of the recurrence in the dynamic programming.
In the original technique for Max 2-SAT, we split the variable set into three equal-sized parts
A, B, and C. Then we create two matrices X and Y from the number of satisfied clauses
by each assignment on AU B and B U C, respectively, so that we can obtain the maximum
number of satisfied clauses from the product XY. In our application, we create two matrices
X and Y from values of dp; so that we can obtain values of dp,;,; from the product XY.
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» Lemma 2. Max-PA can be solved in O*(3%™) time and O*(3%") space.

Proof. We divide the variables into two parts V; and V5 so that «|Vi| = |Va|, where a > 1 is
a parameter. Then, for S; C V; and Sy C V5, we can rewrite the recurrence of the dynamic
programming (2) as follows.

Apra($1U8:) = s {dp,(T) + (T (5 U5,) \ T))
—%Iléi%( 7{HaX {de(Tl U Tg) + ’U}(Tl U Ty, (Sl U SQ) \ (Tl U Tg))}

= max max {dpl(Tl U TQ) + w(Tl, S U Sg) + ’LU(TQ, S U 52)
T1C51 T5CSs

— ’LU(Tl UTQ,Tl U Tg)}

= jmax {’LU(Tl7 S U Sg)

qgngx {de(Tl U TQ) + w(Tg, Sl) (Tl UTy, Ty U TQ) + w(TQ, Sg)}}
2

We can reduce the computation of this recurrence into a product of the following two
matrices X and Y with an indeterminate t.

X(S )Ty = [TI C S ]tdpi(T1UT2)+w(T2,Sl)—w(TluTz,TluTz)
1,11),T2 )

YT2752 - [TQ c S ] t* TQ’SQ)

where T1,51 CV; and T, S2 C Va. Also, [-] has value 1 if the condition inside is true and
has value 0 otherwise. Indeed, the product XY can be expressed as

(XY)(Sl T ) S, — [Tl g Sl] Z tdpi(T1UT2)+w(T2,S1)—w(T1UT2,T1UT2)+w(T2,S2).
T>CS2

Thus, the value of dp, ,,(S1 U S2) coincides with the maximum degree of a non-zero term in

> eSO (XY ) 6, 1y s,
T:C5

Z tw(Tl,SluSQ) Z tdpi(TlUT2)+w(T2,Sl)—w(T1UT2,T1UT2)+w(T2,SQ)

T:CS, T>2CS2
_ E tdpl(T)+w(T7S1 USQ\T) .
TCS1US2

The number of choices for S; and T} with 7} C S; C V; is 37+, and the number of
choices for Tb C Vs is 27Fa. By setting o = log 3, sizes of matrices X and Y become
3% x 3W50 | and we can multiply them in O*(3%&5") time. After the multiplication, we can
compute the sum over T in O*(Sﬁn) time. In total, we can compute dp,,; from dp; in
O*(3%s™) time and O*(3$") space, and thus we can compute dp,, (V') in the same time
(up to a polynomial factor) and the same space. |

3.4 Utilizing Sparsity

Since Y7, g, in the previous subsection has non-zero value only when 75 C Sy, the matrix Y’
has only 3/Y2l non-zero entries. Moreover, by aligning indices of Y properly, we can see that
Y is a recursively partial matriz, defined as follows.
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» Definition 3 (Recursively Partial Matrix). Any matrix X with size 1 x 1 is a recursively
partial matrix. A square matrix X with size 2* is called recursively partial if when dividing
it into four submatrices of size 2=, the bottom left submatrix is a zero matrix and the
other three submatrices are recursively partial matrices.

To exploit this structure when computing matrix products, we use the following theorem due
to Bini et al. [3].

» Theorem 4 ([3]). We can compute an approzimate product of a 2 X 2 matriz of the form
a

0

b
] and any 2 X 2 matriz with 5 multiplications.
c

Here, approximate product means that for any € > 0, we can compute the product

with relative error depending on e and it convergences to the exact value when ¢ — 0.

Schonhage [14] observed that we can compute the exact matrix product by regarding e as an
indeterminate. This modification increases the running time by O(logn) factor. This type of
matrix product, which computes the product of matrices containing zeros in a structured
way, is called partial matriz product. The partial matrix product has been well studied for
obtaining a faster algorithm for square matrix product, however, in our case, we can use the
algorithm recursively to multiply a matrix X and a recursively partial matrix Y.

We give a detailed explanation of the algorithm. Let A be a 2* x 2% matrix, B be a
2k x 2F recursively partial matrix, and C be a product of A and B. We say that C’ is a
d-approzimate product of C' with an indeterminate € if for each index (i,7), C;; can be
written as C] ; = C; j + €P; j(¢) for some polynomial P of degree at most d — 1. Now, we
compute the k-approximate product C’ of C. We divide each matrix into four submatrices
of size 2°=1 x 28=1_ Then, the product of these two matrices is:

Ciy1 =A11B, Cio=A11B12+ A1,2Bs,
Ca1 =A21B11, Cro =A21B1 2+ A32B5 5.

We compute the (k — 1)-approximate products of the followings by applying the algorithm
recursively.

Zy =(Az1 + €Ay2) (B2 + €B12),
Zy =A11(B11 +€B12),

Z3 =A51Bo 9,

Zy =(A11 + A1+ €A1 2)By 1,
Z5 =(Az1 + €A12)(Ba2 + Bi1).

Then, we can obtain k-approximate product C’ from these products as follows:

C{,l :Z27 0172 :Gil(ZQ — 3 — Zy+ Z5),
Oé,l = Z3 + Z57 0572 2671(Z1 — Zg)

Therefore, we can compute k-approximate product of two matrices in O*(5*) time. Because
the degree of each polynomial P; ; is at most k — 1, we can compute the exact product C' by
running the algorithm k times and using the interpolation.

By using this partial matrix product algorithm, we can compute the product XY in

O*(51V2ly = O*(S%") time. Recall that [V = 4% = }gggn by our choice of & =log3. As

a result, we can solve Max-PA in O*(3%28") time and O*(3™s8™) space.
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4 Approximation Algorithms for Max-PA

In this section, we give a 0.4586-approximation algorithm for Max-PA. First, we reduce
an instance of general Max-PA into an instance of Max-PA that has (<)-constraints and
(=)-constraints only. This can be done by the following reduction.

For each constraint of the form (z < y), we replace it by two constraints (z < y) and

(z=1y).

For each constraint of the form (x # y), we replace it by two constraints (z < y) and

(y <)
The optimal value does not change through the reduction. This is because, for any assignment
f, if the removed constraint is satisfied by f, then exactly one of the added two constraints
is satisfied by f, and if the removed constraint is not satisfied by f, then none of the added
two constraints is satisfied by f.

After applying the reduction, consider the following SDP:

maximize Z (T, To) + Z (1 = (zy, Ty)),

(u=v)eC (u<v)eC
subject to lz, > =1 (YoeV),
(X, Tp) 20 (Vu,v € V),

where z, (v € V) is a real vector. To see that the SDP above is indeed a relaxation, let
f*:V — [n] be the optimal solution. Then, we set x, be the vector whose i-th coordinate
is 1 if f*(v) =4 and 0 otherwise. Note that (z,,z,) = 1 iff f*(u) = f*(v). In particular,
1 — (@, T,) has value 1 when the constraint (u < v) is satisfied. Therefore, the optimal SDP
value gives the upper bound on the optimal value of the original Max-PA.

We can solve the SDP in polynomial time and let * be the optimal SDP solution. We
create an assignment f by rounding z* as follows. First, we generate k random n-dimensional
unit vectors y1,...,yx, where k is a parameter. Then, we partition the variable set V into
2% groups according to the signs of k inner products (x},y;). For each group, we assign a
unique value to all variables in the group. Thus, we use at most 2* different values in total.
Finally, we introduce a random ordering among the values assigned to groups.

Now, we analyze the approximation ratio of this algorithm. A constraint (u = v) is
satisfied if u and v are in the same group. This event happens when they are in the same
side of every hyperplane (x,y;) = 0. Thus, the probability that (u = v) is satisfied is

o\
Pilf(w = f] = (1-2) .
where 6 is the angle between two vectors z}; and z}. In contrast, the constraint (v = v)
contributes to the SDP value by (x},z%) = cos6.
A constraint (u < v) is satisfied with probability § if they are in different groups. Thus,
the probability that the constraint is satisfied is

1 1 0\"
QPT[f(U)#f(U)]:2<1—(1—7T> )

In contrast, the constraint (u < v) contributes to the SDP value by 1 — (z},2%) =1 — cos 0.
The approximation ratio is a convex function of k and takes the maximum between k = 3
and k = 4. In order to take the balance, we run the algorithm by choosing k& = 3 with
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probability o and k = 4 with probability 1 — . Then, the approximation ratio is at least

mm{mm““— DHl-a-H* a(l-(1-2))+(1-a) (1(12)4)}
0 .

, min
cos 6 0 2(1 — cos6)
By setting a = %, the above value becomes % > 0.4586. The worst case is achieved when
¢ = % for (=)-constraints and § = § for (<)-constraints.

5 Approximation Algorithms for Min-PA

In this section, we give an O(logn loglogn)-approximation algorithm for Min-PA. First, we
reduce an instance of general Min-PA into an instance of Min-PA that has (<)-constraints
and (#)-constraints only. This can be done by the following reduction.

For each constraint of the form (x = y), we replace it by two constraints (z < y) and

(x> y).

For each constraint of the form (z < y), we replace it by two constraints (z < y) and

(x #y).
The optimal value does not change through the reduction. This is because, for any assignment
f, if the removed constraint is unsatisfied by f, then exactly one of the added two constraints
is unsatisfied by f, and if the removed constraints is not unsatisfied, then none of the added
two constraints is unsatisfied by f.

A sequence of variables (vq,...,vg) is called a (<)-path from vy to vy if a constraint
(vi < wi41) exists for every ¢ € [k — 1]. Using the notion of (<)-path, we can obtain the
following necessary and sufficient condition under which an instance is satisfiable.

» Lemma 5 ([17]). A CSP instance with (<)-constraints and (#)-constraints only is satisfiable
if and only if, for any constraint (x # y), we do not have a (<)-path from x to y and a
(<)-path from y to x simultaneously.

Due to Lemma 5, Min-PA with (<)-constraints and (#)-constraints only can be formulated
as the following integer programming.

minimize Z Te,
ecC
Ve= (u#v)eC
subject to Te + Z xy+ Z xp>1 VP, :a (<)-pathfromutov |, (3)
fE€Pu fEPy VP, :a (<)-path from v to u

z. € {0,1} (Ve € O).

Here, x, = 1 means that the constraint e is unsatisfied. Now we relax it to a linear
programming by changing the last constraint to x. > 0. The LP contains an exponential
number of constraints. However, we can solve it in polynomial time by using the ellipsoid
method since there is a polynomial-time separation oracle. More specifically, we construct
a digraph as follows to check constraints (3). That is, For each constraint of the form
e = (u < v), we make an edge (u,v) of length x.. Then, we check the corresponding
constraints (3) is satisfied for each constraint of the form e = (u = v). Here, >-,cp a5
(resp., ZfePu,U xy) can be computed as the length of the shortest path from u to v (resp., v
to u) in the digraph.

Let 2* be the optimal solution to the LP. We create a new LP by using x*. Let ¢ = (u # v)
be a constraint, P, , be a (<)-path from v to v and P, , be a (<)-path from v to u. We
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first remove the corresponding constraint (3). If 2% > %, then we add a constraint z. > 1 to
the new LP. Otherwise and hence if ZfePu,v T+ Efer,u i > 1, then we add a constraint
> tep,, Tf + 2 fep,, ¥f = 1 to the new LP. The optimal value of the new LP is at most
twice the optimal value of the original LP since 2x* is a feasible solution to the new LP, and
any feasible solution to the new LP is also a feasible solution to the original LP. Therefore,
an integer solution to the new LP whose value is at most k times the optimal value of the
new LP is a 2k-approximation solution to the original problem.

The obtained problem can be considered as a variant of the directed multicut problem:
given a digraph G = (V,F) and a set of terminal pairs T, find an edge set ' C E of
minimum cardinality such that for any terminal pair (u,v) € T, G — F contains no path
from u to v or no path from v to u. We call this problem as the symmetric multicut problem.
Also, we call a terminal pair (u,v) separated if there is no path from w to v or there is
no path from v to u. We note that, in the standard multicut problem, a terminal pair
(u,v) is also directed and we only care about deleting paths from u to v. We can obtain
an instance of the symmetric multicut problem by setting E = {(u,v) | (v <wv) € C}, and
T ={(u,v) |e=(u#v) €C,at <1}

To get approximation to the symmetric multicut problem, we consider the following LP

relaxation:
minimize Z Te,
ecE
Y(u,v) €T
subject to Z Ty + Z zy>1 | VP, :apath fromutow |, 4)
FEPu fEPyu VP, . :a path from v to u

ze >0 (Ve € E).

Even et al. [8] showed an O(lognloglogn)-approximation algorithm for the (standard)
multicut problem in some special kind of graphs, called circular networks. We use the same
approach to solve the symmetric multicut problem. The following theorem immediately gives
that the symmetric multicut problem and hence Min-PA can be approximated within a factor
of O(lognloglogn).

» Theorem 6. The solution to the symmetric multicut problem whose value is at most
O(lognloglogn) times the optimal value of the LP (4) can be obtained in polynomial time.

Proof. Let [ be twice the optimal value of the LP (4). For an edge set F C E, we define
I(F) =) .crl(e). We define the length of a path P as I(P), and the distance from u to v as
the length of the shortest path from w to v. For any terminal pair (s,t), the sum of distances
from s to t and from ¢ to s is at least 2.

We fix some terminal pair (s,t) and we assume that the distance from s to ¢ is at least 1.
Let d(v) be the distance from s to v. For any 0 < x < 1, we define edge sets A(z), L(z), and
B(x) as follows:

A(z) = {(u,v) € E[d(u),d(v) <z},

L(z) = {(uw,v) e E|du)<z<dw)}
B(z) = {(u,v) € E|z<d(u),d)}

Now we claim that there exists 0 < x < 1 such that

[L(2)| < p((E)) — p(l(A(2))) — pl(B(x))), ()
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where p(z) = 4z1n(4z)Inlog(4x). To show the claim, we use the following lemma by
Seymour [15].

» Lemma 7 ([15]). Let k > 0 be a real number, let y be a real-valued monotone increasing
function on [0, 1] such that y(0) > 0,y(1) <1 and for all h € [0,1] — I, where I C [0,1] is
some finite subset of [0,1], y is differentiable and % > % Then there exists h with
7<h< 3 h &1, such that

r Y

il < p(k) — p(ky(h)) — p(k(1 = y(h))).

This lemma is slightly different from the original one. In the original lemma, y is required to

be contiguous, and this implies that y is monotone increasing because Z—Z ’ > % Actually,
r=n

the same proof can be applied if y is not contiguous but monotone increasing.

We instantiate Lemma 7 with the following function y:

y(x):@ A@)+ Y (@—dw)

e=(u,v)€L(x)

Note that the function y(x) is not contiguous at a: = d(v) for v € V. An edge ¢ = (u,v)
contributes to y by M%)(x—d(u)) ife € L(x), and by 1)) l( )if e € A(x). Thus its contribution
changes from ﬁ(d(v) —d(u)) to (E)l( e) at ¢ = d( ). Because d(v) — d(u) < I(e) holds
for any edge e = (u,v), its contribution to y never decreases. Therefore, the function y is

monotone increasing For any differentiable point 0 < x < 1, the value of % is ‘ﬁ(]if))l, which

is at least 03] E) because L(z) # (). Therefore, there exists h such that:
wl =
< p(U(E)) = p(U(E)y(h)) — p((E)(1 = y(h)))
< p(U(E)) = pu(Ul(A(R))) = n(l(B(R))),

and the claim holds. Because there are essentially at most n choices for h, we can find it in
polynomial time.

To obtain a good cut, we just find a real number z satisfying the condition (5) and then
we remove the edge set L(x). Let V; be the set of vertices whose distances from s are at
most x and V3 be the set of vertices whose distances from s are greater than x. Then, L(z)
contains only edges from V; to V5 and does not contain any edge from V5 to V;. Nonetheless,
since all paths from V; to V, are cut, every terminal pair (u,v) with v € V5 and v € V,
become separated. In particular, the terminal pair (s,t) is separated.

Thus, we can consider two graphs G; = (V1, A(z)) and Gy = (V2, B(x)) separately, and
we can recursively solve the symmetric multicut problem on G; and G5 independently. We
can show that the total number of removed edges in recursive steps is at most u(l/(E)) by
induction on |E| because |L(x)| + p(l(A(z))) + p(I(B(z))) < u(l(E)). On the other hand,
since [ is twice the optimal LP solution, the optimal LP value is %Z(E) Thus we can obtain a
solution whose value is at most O(log nloglogn) times the optimal value of the LP (4). <«
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