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Abstract
We study the complexity of approximation for a weighted counting constraint satisfaction problem
#CSP(F). In the conservative case, where F contains all unary functions, a classification is
known for the Boolean domain. We give a classification for problems with general finite domain.
We define weak log-modularity and weak log-supermodularity, and show that #CSP(F) is in FP
if F is weakly log-modular. Otherwise, it is at least as hard to approximate as #BIS, counting
independent sets in bipartite graphs, which is believed to be intractable. We further sub-divide
the #BIS-hard case. If F is weakly log-supermodular, we show that #CSP(F) is as easy as
Boolean log-supermodular weighted #CSP. Otherwise, it is NP-hard to approximate. Finally,
we give a trichotomy for the arity-2 case. Then, #CSP(F) is in FP, is #BIS-equivalent, or is
equivalent to #SAT, the problem of approximately counting satisfying assignments of a CNF
Boolean formula.
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1 Introduction

A weighted counting constraint satisfaction problem has a fixed finite domain D and a fixed
finite “weighted constraint language” F , a set of functions. Every F ∈ F maps a tuple of
domain elements to a value called a “weight”. In the computational problem #CSP(F), an
instance consists of a set V = {v1, . . . , vn} of variables and a set of “weighted constraints”.
A weighted constraint applies a function from F to an appropriate-sized tuple of variables.

For example, with Boolean domain D = {0, 1}, F might contain a single binary (arity-2)
function F defined by F (0, 0) = F (0, 1) = F (1, 0) = 1 and F (1, 1) = 2. An instance might
have variables v1, v2, v3 and weighted constraints F (v1, v2), F (v2, v3). If x = (x1, x2, x3) is
an assignment of domain elements to the variables, the total weight associated with x is the
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product of the weighted constraints, evaluated at x. The computational problem is to evaluate
the sum of weights of all assignments. In our example, this is

∑
x∈{0,1}3 F (x1, x2)F (x2, x3) =

1 + 1 + 1 + 2 + 1 + 1 + 2 + 4 = 13.
There has been a lot of work on classifying the computational difficulty of exactly solving

#CSP(F). For some F , this task is computationally easy; for others it is intractable. We
briefly summarise what is known: see the surveys of Chen [10] and Lu [21] for more detail.

First, suppose the domain D is Boolean (that is, D = {0, 1}). Creignou and Hermann [14]
showed that, when the weights also lie in {0, 1}, #CSP(F) is in FP (functions computable in
polynomial time) if all F ∈ F are affine but, otherwise, it is #P-complete. Dyer, Goldberg,
and Jerrum [16] extended this dichotomy to non-negative rational weights, showing that
the problem is polynomial-time solvable if (1) every F ∈ F is expressible as a product of
unary functions, equalities and disequalities, or (2) every F ∈ F is a constant multiple of an
affine function. Otherwise, the problem is complete in the complexity class FP#P. We do not
deal with negative weights but the above results have been extended to these [4] and also to
complex [9] weights. A dichotomy exists for the related Holant∗ problem [8] (see also [21]).

Next, consider arbitrary finite D. For {0, 1} weights, Bulatov’s breakthrough [2] showed
that #CSP(F) is always either in FP or #P-hard. This was simplified by Dyer and
Richerby [18], using a new criterion called “strong balance”, and extended to non-negative
rational weights by Bulatov et al. [3] and to all non-negative algebraic weights by Cai, Chen
and Lu [7], using a generalised notion of balance that we use here. Finally, Cai and Chen [6]
extended the dichotomy to complex algebraic weights. The criteria for the above dichotomies
are known to be decidable [7, 18], except for the complex case, which remains open.

Less is known about the complexity of approximation for #CSP(F). The complexity of
approximate counting within #P was studied by Dyer, Goldberg, Greenhill and Jerrum [15],
who identified three complexity classes for approximation problems within #P:
1. the class of problems with a fully-polynomial randomised approximation scheme (FPRAS),
2. a logically-defined complexity class called #RHΠ1, and
3. a class of problems for which approximation is NP-hard.
A typical complete problem in #RHΠ1 is #BIS, approximately counting independent sets
in bipartite graphs. Either all complete problems in #RHΠ1 have an FPRAS, or none
do; it is conjectured that none do [19]. #SAT, counting satisfying assignments of CNF
Boolean formulas, is complete in class 3. Another important concept in the classification of
approximate counting CSPs is log-supermodularity [5]. A function with Boolean domain is
log-supermodular if its logarithm is supermodular; we give a formal definition later.

Over the Boolean domain, Dyer, Goldberg and Jerrum [17] gave a trichotomy for the
complexity of approximately solving #CSP for {0, 1} weights. If every F ∈ F is affine, then
#CSP(F) is in FP. Otherwise, it is at least as hard to approximate as #BIS. The hard
approximation problems can be divided into #BIS-equivalent cases and #SAT-equivalent
cases. When the domain D is Boolean, but arbitrary non-negative weights are allowed, no
complete classification is known. However, Bulatov et al. [5] gave a classification for the
so-called “conservative” case, where F contains all unary functions. Informally,

if every function in F can be expressed in a certain simple way using disequality and
unary functions, then, for any finite G ⊂ F , #CSP(G) has an FPRAS;
otherwise,

for some finite G ⊂ F , #CSP(G) is at least as hard to approximate as #BIS and,
if F contains any function that is not log-supermodular, then there is a finite G ⊂ F
such that #CSP(G) is as hard to approximate as #SAT.
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Yamakami [26] gave an approximation dichotomy when further unary functions are in F
(including those with negative values). The negative weights cause more constraint languages
to become intractable [26]. Here, we allow only non-negative weights, since more subtle
complexity classifications arise.

Prior to this paper, no complexity classification was known for approximation of #CSP(F)
when the domain is not Boolean. This is the problem that we address. Our main result,
Theorem 2, is a classification for the conservative case (where all unary functions are in F).
An informal description is given below. The technical concepts are defined in §1.1.

If F is “weakly log-modular” then, for any finite G ⊂ F , #CSP(G) is in FP.
Otherwise, for some finite G ⊂ F , #CSP(G) is at least as hard to approximate as #BIS,
and

if F is “weakly log-supermodular” then, for any finite G ⊂ F , there is a finite set G′ of
log-supermodular functions on the Boolean domain such that #CSP(G) is at least as
easy to approximate as #CSP(G′);
otherwise, #CSP(G) is as hard to approximate as #SAT.

Our hardness results build on the approximation classification in the Boolean case [5]
and on the key role played by log-supermodular functions. The easiness results use the
classification of the exact evaluation of #CSP(F) in the general case [7] and balance, in
particular. The results concerning weak log-supermodularity build on key studies of the
complexity of optimisation CSPs by Takhanov [24], Cohen, Cooper and Jeavons [12] and
Kolmogorov and Živný [20]. We use arguments and ideas from these papers, and not merely
their results. Thus, we must delve into them in some detail.

Our final result is a trichotomy for the binary case, where all F ∈ F have arity at most 2.
This additionally uses work of Rudolf and Woeginger [23] on decomposing Monge matrices.

If F is weakly log-modular then, for any finite G ⊂ F , #CSP(G) is in FP.
Otherwise, if F is weakly log-supermodular, then

for every finite G ⊂ F , #CSP(G) is at least as easy to approximate as #BIS and
for some finite G ⊂ F , #CSP(G) is at least as hard to approximate as #BIS.

Otherwise, for some finite G ⊂ F , #CSP(G) is as hard to approximate as #SAT.

1.1 Preliminaries and statement of results
IfD is a finite domain with |D| ≥ 2, we denote the set of functionsDk → R, for some codomain
R, by Funck(D,R) and then Func(D,R) =

⋃∞
k=0 Funck(D,R). Let EQ be the binary equality

function defined by EQ(x, x) = 1 and EQ(x, y) = 0 for x 6= y; let NEQ(x, y) = 1− EQ(x, y).
We use the following definitions from [5]. Let F ⊆ Func(D,R) and let V = {v1, . . . , vn} be

a set of variables. Atomic formulas have the form ϕ = G(vi1 , . . . , via) where G ∈ F , a = a(G)
is the arity of G, and (vi1 , vi2 , . . . , via) ∈ V a is the “scope”. (The vij need not be distinct.)
The associated function is Fϕ : Dn → R, where Fϕ(x) = G(x(vi1), . . . ,x(via)) and x : V → D

is an assignment. To simplify notation, we write xj = x(vj) so Fϕ(x) = G(xi1 , . . . , xia).
A pps-formula (“primitive product summation formula”) is a sum of products of atomic

formulas. A pps-formula ψ over F in variables V ′ = {v1, . . . , vn+k} and its associated
function Fψ : Dn → R are defined as follows.

ψ =
∑

vn+1,...,vn+k

m∏
j=1

ϕj , Fψ(x) =
∑

y∈Dk

m∏
j=1

Fϕj
(x,y) . (1)
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Here ϕj are atomic formulas over F in the variables V ′. (The variables in V = {v1, . . . , vn}
are free and those in V ′ \ V are bound). The vectors x and y are assignments x : V → D

and y : V ′ \ V → D. The functional clone 〈F〉# generated by F is the set of functions
representable by pps-formulas over F ∪ {EQ}. Note that 〈〈F〉#〉# = 〈F〉# by [5, Lemma 1].
We will rely on this transitivity property implicitly.

I Definition 1.

1. A weighted constraint language F is a subset of Func(D,Q≥0). Functions in F are called
weight functions.

2. A weighted constraint language F is conservative if UD ⊆ F , where UD = Func1(D,Q≥0).
3. A weighted constraint language F is weakly log-modular if, for all binary functions F ∈
〈F〉# and all elements a, b ∈ D, F (a, a)F (b, b) = F (a, b)F (b, a), or F (a, a) = F (b, b) = 0,
or F (a, b) = F (b, a) = 0.

4. F is weakly log-supermodular if, for all binary functions F ∈ 〈F〉# and elements a, b ∈ D,
F (a, a)F (b, b) ≥ F (a, b)F (b, a) or F (a, a) = F (b, b) = 0.

5. A function F ∈ Funck({0, 1},Q≥0) is log-supermodular if F (x ∨ y)F (x ∧ y) ≥ F (x)F (y),
for all x,y ∈ {0, 1}k, where ∧ (min) and ∨ (max) are applied component-wise. LSM is the
set of all log-supermodular functions in Func({0, 1},Q≥0). 〈LSM〉# = LSM [5, Lemma 7].

Note that, in §4, we introduce valued constraint languages and cost functions, for optim-
isation CSPs. These should be distinguished from the weighted version, for counting.

The counting problem #CSP(F) over a finite, weighted constraint language F is:

Instance. A pps-formula ψ, consisting of a product of m atomic F-formulas over n free
variables x. (Thus, ψ has no bound variables.)

Output. The value
∑

x∈Dn Fψ(x), where Fψ is the function defined by ψ.

Where convenient, we write #CSP(F ) to mean #CSP({F}) and write #CSP(F ,F ′) to
mean #CSP(F∪F ′). As in [5] and other works, we take the size of a #CSP(F) instance to be
n+m, where n is the number of (free) variables and m is the number of weighted constraints
(atomic formulas). In contrast to the unweighted case, the multiplicity of constraints matters,
so we cannot bound m in terms of n. We typically denote an instance of #CSP(F) by I and
the output by Z(I), which is often called the “partition function”.

A counting problem, for our purposes, is any function from instances, encoded as words
over a finite alphabet Σ, to Q≥0. A randomised approximation scheme for a counting
problem #X is a randomised algorithm that takes an instance w and returns an approximation
Y to #X(w), where a parameter ε ∈ (0, 1) specifies the error tolerance. Since the algorithm
is randomised, the output Y is a random variable depending on the “coin tosses” made by
the algorithm. We require that, for every instance w and every ε ∈ (0, 1),

Pr
[
e−ε#X(w) ≤ Y ≤ eε#X(w)

]
≥ 3/4 .

The randomised approximation scheme is said to be a fully polynomial randomised
approximation scheme, or FPRAS, if it runs in time bounded by a polynomial in |w| (the
length of the word w) and ε−1. See Mitzenmacher and Upfal [22, Definition 10.2].

If #X and #Y are counting problems, an “approximation-preserving reduction” [15] (AP-
reduction) turns an FPRAS for #Y into an FPRAS for #X. Specifically, an AP-reduction
from #X to #Y is a randomised algorithm A for computing #X using an oracle for #Y . A’s
input is a pair (w, ε) ∈ Σ∗×(0, 1), and: (i) oracle calls made by A are of the form (v, δ), where
v ∈ Σ∗ is an instance of #Y , and 0 < δ < 1 is an error bound with δ−1 ≤ poly(|w|, ε−1);
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(ii) A is a randomised approximation scheme for #X whenever the oracle is a randomised
approximation scheme for #Y ; and (iii) the run-time of A is polynomial in |w| and ε−1. If
an AP-reduction from #X to #Y exists, we write #X ≤AP #Y . A counting problem #X
is #Y -easy if #X ≤AP #Y and it is #Y -hard if #Y ≤AP #X. A problem #X is LSM-easy
if there is a finite, weighted constraint language F ⊂ LSM such that #X ≤AP #CSP(F).

The notion of pps-definability is closely related to AP-reductions. In particular, [5,
Lemma 17] shows that G ∈ 〈F〉# implies that #CSP(F , G) ≤AP #CSP(F). We will use
this fact without comment. Note that, subsequent to [15], the notation ≤AP has been used
for a different approximation-preserving reduction which applies to optimisation problems.
Since our emphasis is on counting problems, this should not cause confusion.

We now state our main theorem. Note that we have only defined #CSP(F) for finite F .

I Theorem 2. Let F be a conservative weighted constraint language taking values in Q≥0.
1. If F is weakly log-modular then #CSP(G) is in FP for every finite G ⊂ F .
2. If F is weakly log-supermodular but not weakly log-modular, then #CSP(G) is LSM-easy

for every finite G ⊂ F and #BIS-hard for some such G.
3. If F is weakly log-supermodular but not weakly log-modular and consists of functions

of arity at most two, then #CSP(G) is #BIS-easy for every finite G ⊂ F and #BIS-
equivalent for some such G.

4. If F is not weakly log-supermodular, then #CSP(G) is #SAT-easy for every finite G ⊂ F
and #SAT-equivalent for some such G.

In particular, among conservative #CSPs, there are no new complexity classes below
#BIS or above LSM; furthermore there is a trichotomy for conservative weighted constraint
languages with no functions of arity greater than two.

#BIS-hardness and relationships with #SAT are proved in §2, restated as Theorem 4.
Membership in FP is Theorem 7 in §3. LSM-easiness and #BIS-easiness are established by
Theorem 29 in §6. Further, there is an algorithm that determines which case of Theorem 2
holds for H ∪ UD where H is finite, as shown in §7. Full proofs are in [11].

2 Hardness results

Our hardness results use the following special case of [5, Theorem 18]. That result is
expressed in terms of efficiently computable reals and we restrict to rationals for simplicity.
The statement of [5, Theorem 18] does not imply our lemma but the proof does.

I Lemma 3. Let F be a function in Func2({0, 1},Q≥0).
If F /∈ 〈NEQ,U{0,1}〉#, then #CSP(G) is #BIS-hard for some finite G ⊂ {F} ∪ U{0,1}.
If F /∈ 〈NEQ,U{0,1}〉# ∪ LSM, then #CSP(G) is #SAT-hard for some finite G ⊂ {F} ∪
U{0,1}.

I Theorem 4. Let F be a conservative weighted constraint language taking values in Q≥0.
If F is not weakly log-modular, #CSP(G) is #BIS-hard for some finite G ⊂ F .
If F is not weakly log-supermodular, #CSP(G) is #SAT-hard for some finite G ⊂ F .
For all finite G ⊂ F , #CSP(G) is #SAT-easy.

Proof (sketch). Functions in 〈NEQ,U{0,1}〉# can have only certain forms. If F is not weakly
log-modular, we construct F ∈ 〈F〉# that does not have any of these forms and #BIS-
hardness follows from Lemma 3. The proof of #SAT-hardness is similar. #SAT-easiness
follows from the reduction to the unweighted case [3], which is #SAT-easy [15]. J
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3 Balance and weak log-modularity

In this section we use the notion of balance to show that weak log-modularity implies
tractability. We may associate a matrix M with an undirected bipartite graph GM whose
vertex partition consists of the set of rows R and columns C of M. A pair (r, c) ∈ R×C is an
edge of GM if, and only if, Mrc 6= 0. A block of M is a submatrix whose rows and columns
form a connected component in GM. M has block-rank 1 if all its blocks have rank 1.

A weighted constraint language F is balanced [7,18] if, for every function F (x1, . . . , xn) ∈
〈F〉# with arity n ≥ 2, and every k with 0 < k < n, the |D|k×|D|n−k matrix F ((x1, . . . , xk),
(xk+1, . . . , xn)) has block-rank 1.

A function F : {0, 1}n → R has rank 1 if it has the form F (x1, . . . , xk) = U1(x1) · · ·Uk(xk).
A function F : Dn → Q≥0 is essentially pseudo-Boolean if its support is a subset of D1×· · ·×
Dn with |D1|, . . . , |Dn| ≤ 2. The projection of a relation R ⊆ Dn onto indices 1 ≤ i < j ≤ n
is the set of (a, b) ∈ D2 such that there exists x ∈ R with xi = a and xj = b. A generalised
NEQ is a relation {(xi, xj), (yi, yj)} ⊂ D2 for some xi 6= yi and xj 6= yj .

I Lemma 5. Let F : Dn → Q≥0 be an essentially pseudo-Boolean function which is not of
rank 1. If {F} ∪ UD is weakly log-modular, then some binary projection of the support of F
is a generalised NEQ.

I Lemma 6. Every conservative weakly log-modular weighted constraint language is balanced.

Proof (sketch). If F is not balanced, there is a function F ∈ 〈F〉# and a partition of its
variables for which the corresponding matrix M is not block-rank-1. We show that M
has a 2 × 2 submatrix that is not block-rank-1 and use this to construct an essentially
pseudo-Boolean function G that is not of rank 1 and none of whose binary projections is a
generalised NEQ. Now, use Lemma 5. J

This, along with the dichotomy of Cai, Chen and Lu [7] for the complexity of exact
evaluation of #CSP, gives us the tractable case of Theorem 2, since balanced problems can
be solved exactly, in polynomial time.

I Theorem 7. Let F be a conservative weighted constraint language taking values in Q≥0.
If F is weakly log-modular then, for any finite G ⊂ F , #CSP(G) ∈ FP.

4 Valued clones, valued CSPs and relational clones

To define valued clones, we use the same set-up as §1.1 except that summation is replaced
by minimisation and product is replaced by sum. Let D be a finite domain with |D| ≥ 2
and let R be a codomain with {0,∞} ⊆ R, where ∞ obeys the following rules for all
x ∈ R: x +∞ = ∞, x ≤ ∞ and min{x,∞} = x. Let Φ be a subset of Func(D,R). Let
V = {v1, . . . , vn} be a set of variables. For each atomic formula ϕ = G(vi1 , . . . , via) we use
the notation fϕ to denote the function represented by ϕ, so fϕ(x) = G(xi1 , . . . , xia).

A psm-formula (“primitive sum minimisation formula”) is a minimisation of a sum of
atomic formulas. A psm-formula ψ over Φ in variables V ′ = {v1, . . . , vn+k}, and its associated
function fψ are defined, analogously to (1), by

ψ = min
vn+1,...,vn+k

m∑
j=1

ϕj , fψ(x) = min
y∈Dk

m∑
j=1

fϕj
(x,y),

where the ϕj are atomic formulas and x : {v1, . . . , vn} → D, y : {vn+1, . . . , vn+k} → D are
assignments.
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The valued clone 〈Φ〉V generated by Φ is the set of all functions that can be represented
by a psm-formula over Φ ∪ {eq}, where eq is the binary equality function on D given by
eq(x, x) = 0 and eq(x, y) =∞ for x 6= y.

We next introduce valued constraint satisfaction problems (VCSPs), which are optimisa-
tion problems. In the work of Kolmogorov and Živný [20], the codomain is R = Q≥0 ∪ {∞}.
It will be useful to extend the codomain to include irrational numbers. This causes no
problems since, apart from Theorem 23, we use only calculations from their papers, not
complexity results. For Theorem 23, we avoid irrational numbers and, in fact, restrict to
cost functions taking values in {0,∞} ⊂ R. Furthermore, all the real numbers we use are
either rationals, or their logarithms, so are efficiently computable.

Let R≥0 = R≥0 ∪ {∞} be the set of non-negative real numbers together with ∞.

I Definition 8. A cost function is a function Dk → R≥0. A valued constraint language is a
set of cost functions Φ ⊆ Func(D,R≥0).

For a valued constraint language Φ, a problem in VCSP(Φ) has instance ψ, a psm-formula
which is a sum of m atomic Φ-formulas in n free variables x, and computes the value

minCost(ψ) = min
x∈Dn

fψ(x) , where fψ is the function defined by ψ.

We typically use the notation of Kolmogorov and Živný. An instance is usually denoted
by the letter I. In this case, we use fI to denote the function specified by the psm-formula
corresponding to instance I, so the value of the instance is denoted by minCost(I). The
psm-formula corresponding to I is a sum of atomic formulas (since all of the variables are
free variables). We refer to each of these atomic formulas as a valued constraint and we
represent these by the multiset T of all valued constraints in the instance I. For each valued
constraint t ∈ T we use kt to denote its arity, ft to denote the function represented by
the corresponding atomic formula, and σt to denote its scope, which is given as a tuple
(i(t, 1), . . . , i(t, kt)) ∈ {1, . . . , n}kt containing the indices of the variables in the scope. Thus,

fI(x) =
∑
t∈T

ft(xi(t,1), . . . , xi(t,kt)) . (2)

We will use x[σt] as an abbreviation for the tuple (xi(t,1), . . . , xi(t,kt)). In this abbreviated
notation, the function defined by instance I may be written as fI(x) =

∑
t∈T ft(x[σt]).

Now, let [0, 1]Q = [0, 1] ∩Q. For reasons which will be clear below, it will be useful to
work with weight functions in Func(D, [0, 1]Q). For such a weight function F , let the cost
function `(F ) ∈ Func(D,R≥0) be the function defined by

(`(F ))(x) =
{
− lnF (x) if F (x) > 0
∞ if F (x) = 0.

For example, `(EQ) = eq. For a weighted constraint language F ⊆ Func(D, [0, 1]Q), let `(F)
be the valued constraint language defined by `(F) = {`(F ) | F ∈ F}.

There is a bijection between instances of #CSP(F) and VCSP(`(F)), given by replacing
each function Ft in the former by the function ft = `(Ft) in the latter, with scopes unchanged.
Note that fI(x) = − lnFI(x), for any assignment x, with the convention − ln 0 =∞.

I Definition 9. A valued constraint language is conservative if it contains all arity-1 cost
functions D → R≥0.

The mapping F 7→ `(F ) from Func(D, [0, 1]Q) to Func(D,R≥0) is not surjective since not
all real numbers are logarithms of rationals. Similarly, for any weighted constraint language
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F , the valued constraint language `(F) is not conservative. Finally, note that we define `(F )
only for F ∈ Func(D, [0, 1]Q). The extension to F ∈ Func(D,Q≥0) produces negative-valued
cost functions. We wish to avoid this since Kolmogorov and Živný [20] do not allow it.

I Definition 10. A cost function is crisp [13] if f(x) ∈ {0,∞} for all x.

I Definition 11. For a cost function f , let Feas(f) be the relation Feas(f) = {x | f(x) <∞}.

Thus, any cost function f can be associated with its underlying relation. Similarly, we can
represent any relation by a crisp cost function f for which f(x) = 0 if and only if x is in the
relation. A crisp constraint language is a set of relations, which we always represent as crisp
cost functions, not as functions with codomain {0, 1}. For a valued constraint language Φ,
the crisp constraint language Feas(Φ) is given by Feas(Φ) = {Feas(f) | f ∈ Φ}. A relational
clone is simply a crisp constraint language Feas(〈Φ〉V ) for a valued constraint language Φ.

I Lemma 12. Suppose Φ ⊆ Func(D,R≥0). Then 〈Feas(Φ)〉V = Feas(〈Φ〉V ).

Proof. The mapping ρ : R≥0 → {0,∞} defined by ρ(∞) =∞ and ρ(x) = 0, for all x <∞,
is a homomorphism of semirings, from (R≥0,min,+) to ({0,∞},min,+). J

I Definition 13. A crisp constraint language is conservative if it includes all arity-1 relations.

5 STP/MJN multimorphisms and weak log-supermodularity

In [20, Corollary 12], Kolmogorov and Živný showed that the VCSP associated with a
conservative valued constraint language Φ is tractable iff Φ has an STP/MJN multimorphism.

We define STP/MJN multimorphisms below. In this section, we show that, if a weighted
constraint language F ∈ Func(D, [0, 1]Q) is weakly log-supermodular, the corresponding
valued constraint language `(F) has an STP/MJN multimorphism. In §6, this will enable us
to use such a multimorphism (via the work of Kolmogorov and Živný [20] and Cohen, Cooper
and Jeavons [12]) to prove #BIS-easiness and LSM-easiness of the weighted counting CSP.

Our proofs rely on work of Kolmogorov and Živný [20] and Takhanov [24]. We start with
some general definitions. Note that some of these definitions in [20] differ from those in [12].

I Definition 14.

1. A k-ary operation on D is a function from Dk to D. An operation on D is a k-ary
operation, for some k. We omit “on D” when the domain D is clear from the context.

2. A k-tuple 〈ρ1, . . . , ρk〉 of k-ary operations ρ1, . . . , ρk is conservative if the multisets
{{x1, . . . , xk}} and {{ρ1(x), . . . , ρk(x)}} are equal for all x = (x1, . . . , xk) ∈ Dk.

3. 〈ρ1, . . . , ρk〉 is a multimorphism of an arity-r cost function f if:

k∑
i=1

f(ρi(x1
1, . . . , x

k
1), . . . , ρi(x1

r, . . . , x
k
r )) ≤

k∑
i=1

f(xi) for all x1, . . . ,xk ∈ Dr.

4. 〈ρ1, . . . , ρk〉 is a multimorphism of a valued constraint language Φ if it is a multimorphism
of every f ∈ Φ.

Note that we have defined “conservative” for operations and constraint languages
(weighted, valued and crisp). These notions are connected, but we do not need that here.

I Observation 15. If 〈ρ1, . . . , ρk〉 is conservative, it is a multimorphism of every unary f .
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I Definition 16.

1. Suppose M ⊆ D2. A pair 〈u,t〉 of binary operations is a symmetric tournament pair
(STP) on M if it is conservative and both operations are commutative on M . We say
that it is an STP if it is an STP on D2.

2. Suppose M ⊆ D2. A triple 〈Mj1, Mj2, Mn3〉 of ternary operations is an MJN on M if it is
conservative and, for all triples (a, b, c) ∈ D3 with {{a, b, c}} = {{x, x, y}} where x 6= y

and (x, y) ∈M , we have Mj1(a, b, c) = Mj2(a, b, c) = x and Mn3(a, b, c) = y.
3. An STP/MJN multimorphism of a valued constraint language Φ consists of a pair of

operations 〈u,t〉 and a triple of operations 〈Mj1, Mj2, Mn3〉, both of which are multimorph-
isms of Φ, for which, for some symmetric subset M of D2, 〈u,t〉 is an STP on M and
〈Mj1, Mj2, Mn3〉 is an MJN on {(a, b) ∈ D2 \M | a 6= b}.

4. Φ ⊆ Func(D,R≥0) is weakly submodular if, for all binary f ∈ 〈Φ〉V and a, b ∈ D,
f(a, a) + f(b, b) ≤ f(a, b) + f(b, a) or f(a, a) = f(b, b) =∞.

Our definition of weak submodularity for cost functions restates Kolmogorov and Živný’s
“Assumption 3”. It is nontrivial that weak log-supermodularity for F is related to weak
submodularity for `(F). In particular, we cannot expect 〈`(F)〉V = `(〈F〉#) to hold in
general. However, the following is suitable for our purposes.

I Lemma 17. Suppose F ⊆ Func(D, [0, 1]Q) and let Φ = `(F). If F is weakly log-
supermodular then Φ is weakly submodular.

Proof (sketch). For the contrapositive, take a binary f ∈ 〈Φ〉V that is not weakly submodular
and let F (k) ∈ 〈F〉# be the function defined by replacing every atomic formula g(x,y) in the
definition of f with G(x,y)k, where g = `(G). For k large enough, F (k)(x)1/k is close enough
to the maximum value taken by any G(x,y) in the definition of F . But this maximum value
is exp(−f(x)) and we can now show that F (k) is not weakly log-supermodular. J

Let Γ be a crisp constraint language. Amajority polymorphism of Γ is a ternary operation ρ
such that ρ(a, a, b) = ρ(a, b, a) = ρ(b, a, a) = a for all a, b ∈ D, and for all k-ary relations
R ∈ Γ, x,y, z ∈ R implies that (ρ(x1, y1, z1), . . . , ρ(xk, yk, zk)) ∈ R.

The formulation of the following theorem is essentially [24, Theorem 9.1] (but note that
Takhanov uses the term “functional clone” in a different way to us).

I Theorem 18 (Takhanov). Let N(a, b, c, d) be the relation {(a, c), (b, c), (a, d)}, and let Γ
be a conservative relational clone with domain D. At least one of the following holds.

There are distinct a, b ∈ D such that N(a, b, a, b) ∈ Γ.
There are distinct a, b ∈ D such that {(a, a, a), (a, b, b), (b, a, b), (b, b, a)} ∈ Γ.
For some k ≥ 1, there are a0, . . . , a2k, b0, . . . , b2k ∈ D such that, for each 0 ≤ i ≤ 2k,
ai 6= bi and, for each 0 ≤ i ≤ 2k − 1, N(ai, bi, ai+1, bi+1) ∈ Γ and N(a2k, b2k, a0, b0) ∈ Γ.
Γ has a majority polymorphism.

To prove the following lemma, we show that the first three bullets of Takhanov’s theorem
cannot hold, so the fourth must.

I Lemma 19. If Φ ⊆ Func(D,R≥0) is conservative and weakly submodular then Γ =
〈Feas(Φ)〉V has a majority polymorphism.

The main theorem of this section now follows from Lemmas 17 and 19. The final
construction of the STP/MJN multimorphism comes from [20, §§6.1–6.4].

I Theorem 20. Let F be a weighted constraint language with Func1(D, [0, 1]Q) ⊆ F ⊆
Func(D, [0, 1]Q). If F is weakly log-supermodular then `(F) has an STP/MJN multimorphism.
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6 LSM-easiness and #BIS-easiness

Our aim is to show that F is LSM-easy if `(F) has an STP/MJN multimorphism. This
will use arguments from [12] and [20], but we try, as far as possible, to avoid going into the
details of their proofs. We start by generalising the notion of an STP multimorphism.

I Definition 21. Let f be an arity-k cost function. A generalised STP multimorphism of f
is a pair 〈u,t〉, defined as follows. For 1 ≤ i ≤ k, ui and ti are operations on the set
Di = {a ∈ D | ∃x : xi = a and f(x) <∞}, and 〈ui,ti〉 is an STP of {f}.

The operation u is the binary operation on D1× · · · ×Dk defined by applying u1, . . . ,uk
component-wise. Similarly, t is defined by applying t1, . . . ,tk component-wise. We require
that, for all x,y ∈ Dk, f(t(x,y)) + f(u(x,y)) ≤ f(x) + f(y). Equivalently, we require that
f(t1(x1, y1), . . . ,tk(xk, yk)) + f(u1(x1, y1), . . . ,uk(xk, yk)) ≤ f(x) + f(y).

Theorem 22 is closely related to [20, Theorem 11]. Its proof is the same but we stop
when [20, Lemma 35] has been proved. We also need an algorithmic consequence.

I Theorem 22 (Kolmogorov and Živný). Suppose Φ0 is a finite, valued constraint language
which has an STP/MJN multimorphism. Then there is a polynomial-time algorithm that
takes an instance I of VCSP(Φ0) and returns a generalised STP multimorphism 〈u,t〉 of
fI . The pair 〈u,t〉 depends only on the STP/MJN multimorphism of Φ0 and on the relation
Feas(fI) underlying fI . It does not depend in any other way on I.

I Theorem 23 (Kolmogorov and Živný). If Φ0 is a finite, crisp constraint language that has
an STP/MJN multimorphism, then there is a polynomial-time algorithm for VCSP(Φ0).

For our eventual construction, we would like 〈u,t〉 to induce a generalised STP mul-
timorphism of ft for each individual valued constraint t in the instance. We do not know
whether this is true of the generalised STP multimorphism provided by Kolmogorov and
Živný’s algorithm, but something sufficiently close to this is true.

I Definition 24. For an instance I, a valued constraint t and a length-kt vector a, define
RI,t(a) = 0 if there exists x with x[σt] = a and fI(x) < ∞ and RI,t(a) = ∞, otherwise.
Define f ′t = ft +RI,t. Thus, f ′t is a “trimmed” version of ft whose domain is precisely the
kt-tuples of values that can actually arise in feasible solutions to instance I.

We will see that, if the scope σt contains variables with indices i(t, 1), . . . , i(t, kt), then〈
u[σt],t[σt]

〉
=
〈
(ui(t,1), . . . ,ui(t,kt)), (ti(t,1), . . . ,ti(t,kt))

〉
is a generalised STP multimorph-

ism of f ′t , even though it might not necessarily be a generalised STP multimorphism of ft.
Note that Theorem 23 has the following consequence.

I Corollary 25. Let Φ0 be a finite, valued constraint language that has an STP/MJN
multimorphism. There is a polynomial-time algorithm that takes an instance I of VCSP(Φ0),
a valued constraint t and a length-kt vector a and returns a (finite) truth table for f ′t.

I Theorem 26 (Extends Theorem 22). Suppose Φ0 is a finite, valued constraint language which
has an STP/MJN multimorphism. Consider the algorithm from Theorem 22 which takes an
instance I of VCSP(Φ0) (in the form (2)) and returns a generalised STP multimorphism
〈u,t〉 of fI . Then, for all t ∈ T ,

〈
u[σt],t[σt]

〉
is a generalised STP multimorphism of f ′t.

We say that two n-variable instances I and I ′ of VCSP(Φ) are equivalent if fI(x) = fI′(x)
for all x ∈ Dn. Given a finite, valued constraint language Φ0 ⊂ Func(D,R≥0), let Φ′0 be
the set of functions of the form f +R, for f ∈ Φ0 ∩ Funck(D,R≥0), R ∈ Funck(D, {0,∞})
and k ∈ N. Note that Φ′0 is finite because Funck(D, {0,∞}) is finite for any finite k. These
definitions, along with Corollary 25 and Theorem 26 allow us to prove the following.
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I Lemma 27. Suppose Φ0 is a finite, valued constraint language which has an STP/MJN
multimorphism. Consider an instance I of VCSP(Φ0). There is an equivalent instance I ′ of
VCSP(Φ′0) and a generalised STP multimorphism 〈u,t〉 of fI′ which induces a generalised
STP multimorphism of ft for each valued constraint t of I ′. Both I ′ and 〈u,t〉 are polynomial-
time computable (given I). Moreover, each operation ui and ti induces a total order.

The proof of the next lemma uses a reduction from the given #CSP problem over
domain D to a Boolean problem. A variable x ranging over D is simulated by Boolean
variables {xd | d ∈ D} and an assignment x = a is simulated by setting xb = 1 for all
b < a and xb = 0, otherwise, where “b < a” is determined by the appropriate total order
from the multimorphism. The constraints needed to prevent assignments to the xd that
do not correspond to an assignment to x can be represented by LSM functions, as can the
corresponding translation of a weight function f : Dk → [0, 1]Q to f ′ : {0, 1}kd → [0, 1]Q.
In the case where all functions in F have arity at most 2, it can be shown that all of the
necessary constraints can be implemented using Boolean implication and unary weights.

I Lemma 28. If F ⊆ Func(D, [0, 1]Q) and `(F) has an STP/MJN multimorphism, then,
for every finite G ⊂ F , #CSP(G) is LSM-easy, and #BIS-easy if every weight function has
arity at most 2.

Our main theorem, Theorem 2, now follows from Theorems 4 and 7 and the following.

I Theorem 29. Let F be a weakly log-supermodular, conservative weighted constraint lan-
guage taking values in Q≥0.

For any finite G ⊂ F , there is a finite G′ ⊂ LSM such that #CSP(G) ≤AP #CSP(G′).
If all F ∈ F have arity at most two, then #CSP(G) is #BIS-easy for any finite G ⊂ F .

Proof (sketch). Scale F to obtain a weakly log-supermodular weighted constraint language
F ′ where all weights are in [0, 1]Q. By Theorem 20, `(F ′) has an STP/MJN multimorphism.
The result follows from Lemma 28 and the fact that the scaling does not affect complexity. J

7 Algorithmic aspects

Finally, we show that there is an algorithm that determines the complexity of approximating
#CSP with constraints from the language H ∪ UD for finite H. The proof is by reduction
to determining whether a certain finite subset of H ∪ UD is balanced, whether `(H) has an
STP/MJN multimorphism and whether H’s weight functions have arity at most 2. Balance
is decidable by [7], the existence of an STP/MJN multimorphism can be checked by brute
force, since H is finite, and we can clearly check the maximum arity of the weight functions.

I Theorem 30. There is an algorithm that, given a finite, weighted constraint language H
taking values in Q≥0, correctly makes one of the following deductions, where F = H ∪ UD:
1. #CSP(G) is in FP for every finite G ⊂ F ;
2. #CSP(G) is LSM-easy for every finite G ⊂ F and #BIS-hard for some such G;
3. #CSP(G) is #BIS-easy for all finite G ⊂ F and #BIS-equivalent for some such G;
4. #CSP(G) is #SAT-easy for all finite G ⊂ F and #SAT-equivalent for some such G.
If every function in H has arity at most 2, the output is not deduction 2.
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