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—— Abstract

We show an O* (2¥)-time polynomial space algorithm for the k-sized GRAPH MOTIF problem. We
also introduce a new optimization variant of the problem, called CLOSEST GRAPH MOTIF and
solve it within the same time bound. The CLOSEST GRAPH MOTIF problem encompasses several
previously studied optimization variants, like MAXIMUM GRAPH MOTIF, MIN-SUBSTITUTE, and
MIN-ADD.

Moreover, we provide a piece of evidence that our result might be essentially tight: the
existence of an O*((2—¢)*)-time algorithm for the GRAPH MOTIF problem implies an O((2—¢)")-
time algorithm for SET COVER.
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1 Introduction

The GRAPH MOTIF problem is defined as follows. We are given an undirected connected
graph G = (V, E), a vertex coloring ¢ : V' — C, and a multiset M consisting of colors in the
set C. The goal is to find a subset S C V such that the induced subgraph G[S] is connected,
and the multiset ¢(S) of colors of the vertices of S is equal to M. To avoid confusion, let
us stress that the input function c is arbitrary and it does not need to be a proper vertex
coloring. Let k = |S| denote the size of the solution (which is |M| in the case of GRAPH
MoTIF but may differ from |M| in variants of the problem also considered in this paper).

GRAPH MOTIF was introduced by Lacroix et al. [17] and motivated by applications in
bioinformatics, specifically in metabolic network analysis. It is known to be NP-hard even
when the given graph is a tree of maximum degree 3 and the motif is a set [11]. However,
in practice the size of M is expected to be small, what motivates the research on so-called
FPT algorithms parameterized by k, that is, algorithms with running times bounded from
above by a function f(k) times a function polynomial in the input size, which is commonly
abbreviated by O*(f(k)). Indeed, Fellows et al. [10] discovered that such an algorithm exists,
which was followed by a rapid series of improvements to f(k) (see Table 1).
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Table 1 The progress on FPT algorithms for the GRAPH MOTIF problem

Paper Running time Approach

Fellows et al. [10] O*(87%), implicit ~ Color-coding

Betzler et al. [1] 0" (4.32%) Color-coding

Guillemot and Sikora [12]  O*(4%) Multilinear detection

Koutis [15] 0*(2.54%) Constrained multilinear detection
this work 0*(27) Constrained multilinear detection

The two most recent results, namely the O*(4%) algorithm of Guillemot and Sikora [12]
and the O*(2.54%)-time algorithm of Koutis [15] apply the so-called multilinear detec-
tion technique. This technique was introduced by Koutis [13] and further developed by
Williams [20] and Koutis and Williams [16] to solve subgraph containment problems. In-
spired by the GRAPH MOTIF application and the reduction to multilinear detection [12],
Koutis [15] introduced a tailored variant of multilinear detection called constrained mul-
tilinear detection (abbreviated k-CMLD) to make further progress on the GRAPH MOTIF
problem. In the k-CMLD problem, we are given a multivariate polynomial represented as
an arithmetic circuit, and are asked determine whether the polynomial has a multilinear
monomial of degree k& with an odd coefficient, with the further constraint that the poly-
nomial indeterminates have colors associated to them, and the monomial must not exceed
a prescribed number of occurrences of each color. At a Dagstuhl seminar in 2010, Koutis
[14] posed the open problem of devising an O*(2¥)-time algorithm for k&-CMLD. His recent
paper [15] provides an O*(2.54%)-time algorithm for the problem where the worst case bound
results from a budget of at most three occurrences of every color.

In this paper we indirectly show an O*(2*)-time polynomial space algorithm for k-CMLD,
thereby answering Koutis’s open problem in the affirmative. Since the main application of
k-CMLD is the GRAPH MOTIF problem and its variants, we here present the result directly
in terms of graph motifs. In the full version of this paper we will give a self-contained
proof for the general k-CMLD (see also [4]). Our approach is inspired by Koutis’s beautiful
idea of assigning random subspaces of dimension equal to the prescribed multiplicities of
the colors. Koutis used group algebras F5[Z5] for his construction, whereas ours appear to
require an extension to Fys[Z5] for 8 = Q(log k). Rather than proving the result in terms of
a group algebra as Koutis suggests, we provide a construction using inclusion—exclusion over
labelled indeterminates. As in [3], a paper using the technique co- authored by a subset of
the present authors, we find it more convenient to work in this alternative setting.

A further contribution of the present work is to develop a generalization of GRAPH MOTIF
called CLOSEST GRAPH MOTIF. In particular, we introduce a notion of edit distance between
two multisets, and the objective is to find the subset S C V such that G[S] is connected and
the edit distance from M to ¢(S) is minimized (see Section 3 for a precise definition). In the
literature there are some more optimization variants of GRAPH MOTIF and our CLOSEST
GRAPH MOTIF generalizes three of them: MAXIMUM GRAPH MOTIF (see Section 2), MIN-
ADD, and MIN-SUBSTITUTE (see Section 3). The previous fastest algorithms for these
problems are due to Koutis [15]; he shows O*(2.54%)-time algorithms for MAXIMUM GRAPH
MoTiF and MIN-ADD, and an O*(5.08%)-time algorithm for MIN-SUBSTITUTE. We present
an O*(2%)-time algorithm for the general CLOSEST GRAPH MOTIF.

Similarly to the three previous FPT improvements on GRAPH MOTIF relative to the
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parameter k, our algorithm is Monte Carlo with one-sided error (with probability at most
1/2 the algorithm asserts the absence of a solution when in fact there is one; one can get
arbitrarily small error probability p by repeating the algorithm log,(1/p) times).

In addition to our algorithmic results, we give a piece of evidence that further improve-
ment on the running time is substantially harder. Namely, we show that for any ¢ > 0
the existence of an O*((2 — ¢€)*)-time algorithm for the GRAPH MOTIF problem implies an
O((2 — €)™)-time algorithm for the SET COVER problem, for some ¢ > 0. Thus, instead
of trying to improve our algorithm one should rather attack the more generic SET COVER.
After decades of research on the problem, an O((2 — €)")-time algorithm for SET COVER
would be a major breakthrough. Indeed, the nonexistence of such an algorithm has already
been used as an assumption for proving hardness results [5]. Furthermore, it is conjec-
tured [5] that an O((2 — €)™)-time algorithm for SET COVER contradicts the SETH (Strong
Exponential Time Hypothesis, which states that if k-CNF SAT can be solved in O*(c})
time, then limg_,.ocy = 2). This conjecture is supported by the fact that the number of
solutions to SET COVER cannot be computed in O((2 —€)™) time for any € > 0 unless SETH
fails [5]. Another consequence of such a counting algorithm would be the existence of an
O((2 — €)™)-time algorithm to compute the permanent of an n x n integer matrix, see [2].

This paper is organized as follows. In Section 2 we describe our O*(2¥)-time algorithm
for MAXIMUM GRAPH MOTIF, while in Section 3 we describe how our algorithm works for
the more general CLOSEST GRAPH MOTIF and how it encompasses earlier named variants.
In Section 4 we show the reduction from SET COVER.

2 An O*(2%)-time algorithm for Maximum Graph Motif

2.1 The general approach

In this section we will study a slight generalization of GRAPH MOTIF, namely the MAXIMUM
GRAPH MOTIF problem parameterized by the solution size k. That is, for a given instance
(G, ¢, M), the task is to decide whether there exists a subset S C V such that (i) the induced
subgraph G[S] is connected, (ii) |S| = k, and (iii) the multiset inclusion ¢(S) € M holds.

It is immediate that once we have an algorithm for the decision problem that runs in
T(n, k) time, we can find a solution in O(nT'(n, k)) time as follows. For every vertex v € V/,
check whether a solution exists if we remove v frmo G; if not, then put v back to G; in both
cases proceed to the next vertex. After iterating over all vertices, we are left with a desired
induced subgraph G[S].

To solve the decision problem we use the following approach. We define a multivariate
polynomial P that has two key properties: (1) P is not identically zero if and only if there
is a solution S, and (2) P can be evaluated fast (that is, in O*(2¥) time) at any given point.
Then an O*(2%)-time algorithm follows via the DeMillo-Lipton-Schwartz—Zippel Lemma
(see Section 2.6). We note that alternatively, instead of the polynomial approach one can
use the random weights approach and the Isolation Lemma (see e.g. [6]).

The main difference between the present approach and earlier works that deploy a similar
polynomial sieve is that we employ the same “labels” (the universe of k£ elements whose
subsets we use in sieving) to simultaneously accomplish two different tasks: (i) we sieve out
all homomorphisms that are not injective, and (ii) we sieve out all multisets that use too
many colors when compared with M.

The rest of the section is organized as follows. First we give some preliminaries and
notation on branching walks and labellings in Sections 2.2 and 2.3. In Section 2.4 we define
the polynomial P and we prove the property (1) as Lemma 1. In Section 2.5 we show
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property (2) and finally in Section 2.6 we describe the complete algorithm and analyze its
failure probability using the DeMillo-Lipton—Schwartz—Zippel Lemma.

2.2 Preliminaries on branching walks

The concept of branching walks was first introduced by Nederlof [18] to sieve for Steiner
trees. Here we provide a slightly modified definition of branching walks. Let G be a graph
with vertex set V = V(G) and edge set E = E(G). A mapping h : V(T) — V(G) is
a homomorphism from a graph T to a graph G if for all {u,v} € FE(T) it holds that
{h(u),h(v)} € E(G). We adopt the convention of calling the elements of V(T') nodes and
the elements of V(G) wvertices.

A branching walk G is a pair W = (T, h) where T is an ordered rooted tree with node
set V(T) ={1,2,...,|V(T)|} such that every node v € V(T) coincides with its rank in the
preorder traversal of T, and h : V(T) — V(G) is a homomorphism from T to G. For a
vertex r € V, we say that W starts from r if h(1) = r.

Let W = (T,h) be a branching walk in G. We define h(T') to be the subgraph of G
induced by the set of edges {{h(u),h(v)} : {u,v} € E(T)}. We observe that h(T) is not
necessarily a tree because h need not be injective. We say that W is simple if h(T) is
injective.

It will be convenient to assume that V(G) is totally ordered. Towards this end, let us
assume that V = V(G) = {1,2,...,n}. We say that a branching walk W = (T,h) in G is
properly ordered if any two sibling nodes u < v in T satisfy h(u) < h(v).

2.3 Labelling and shading

Let (G, c, M) be the input instance of the MAXIMUM GRAPH MOTIF problem and let m :
C — N be the multiplicity function for M. For each color ¢ € C and i = 1,2,...,m(q), let
us call the formal pair (q,7) the i-th shade of color q. In particular, the number of shades
for each color matches the multiplicity of the color in M. Let us write D(q) = {(g,%) : i =
1,2,...,m(q)} for the set of all shades of color ¢ € C, and D = UgecD(q) for the set of all
shades of all colors.

A branching walk (T, h) in G may be labelled with a function ¢ : V(T) — {1,2,...,k}.
The three-tuple (T h, ) is called a labelled branching walk, and the function ¢ is a labelling
of the branching walk.

A branching walk (T,h) in G may also be shaded with a function s : V(T) — D. A
shading may also be partial, that is, of the form s : U — D for a subset U C V(T). We say
that a (partial) shading s : U — D of a branching walk (T, h) is consistent with the input
coloring ¢ : V(G) — C' if for every node v € U we have s(v) € D(c(h(v))). For a branching
walk W = (T, h) and a subset U C V(T'), denote by Sy (W) the set of all consistent (partial)
shadings s : U — D. Let us abbreviate S(W) = Sy (1) (W).

2.4 The polynomial P

We use three different types of indeterminates in our polynomials. First, for each edge
{a,b} € E(G), introduce two indeterminates z,_; and x; 4. Second, for each vertex a € V(G)
and each shade t € D(c(a)), introduce an indeterminate y, . Third, for each shade ¢t € D
and each label j € {1,2,...,k}, introduce an indeterminate z; ;. Let us write x, y, z for the
sequences of all the z, p-type, y, -type, and z; j-type variables, respectively.
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Let W = (T, h) be a branching walk in G, let s : V(T) — D be a consistent shading of
W, and let £ : V(T) — {1,2,...,k} be a labelling of W. Associate with the consistently
shaded and labelled branching walk (W, s, £) the monomial

mon(W, s, () = H Th(u),h(v) Yh(v),s(v)Zs(v),L(v) -
{u,v}€E(T) veV (T)
u<v
Denote by W the set of all branching walks of W = (T, h) in G that are properly ordered
and satisfy |[V(T)| = k. Let 8 = [logk] + 3 and denote by F,s the finite field of order 2°.

Define the multivariate polynomial P with coefficients in Fys by setting

P(x,y z) = Z Z Z mon(W, s, () .

W=(T,h)eW seS(W) &:V(T)—{1,2,....k}
¢ bijective

» Lemma 1. We have P £ 0 if and only if there exists a solution S C V(G).

Proof. (<) Let T be a spanning tree of G[S]. Transform Ts into a rooted tree, and make
Ts an ordered tree so that the children of every vertex listed in tree order form an increasing
sequence. If we replace every vertex in Ts with its rank in a preorder traversal, we obtain a
properly ordered simple branching walk W = (T, h). Define the shading s : V(T') — D for
each node v € V(T') by setting

s(v) = (e(h(v)), {w € S : c(h(w)) = c(h(v)) and w < v}]).

Note that s is well-defined and consistent because S is a solution. Furthermore, observe
that s is injective. Finally, choose an arbitrary bijection ¢ : V(T) — {1,2,...,k}. We must
now have P # 0 because we can uniquely reconstruct any three-tuple (W, s, ¢) with a simple
W = (T,h) € W, an injective s € S(W), and a bijective ¢ : V(T) — {1,2,...,k} from its
monomial representation mon(W, s, £) — indeed, first recover W = (T, h) from the x, ,-type
indeterminates using the fact W is simple, properly ordered, and starts from the unique
vertex r such that mon(W,s, ) contains variables of the form x,, but does not contain
variables of the form x, ,; then recover s from the y, -type indeterminates using the fact
that h is injective; finally recover ¢ from the z, ;-type indeterminates using the fact that s
is injective.

(=) Since P # 0 there is a branching walk W = (T, h) € W, a shading s € S(W) and a
bijective labelling ¢ : V(T) — {1,2,...,k} such that the monomial mon(W, s, ¢) in P has a
nonzero coefficient. We must derive a solution S from (W, s, ¢).

Let us first show that mon(W, s, £) has zero coeflicient in P unless h is injective. Suppose
that h is not injective; that is, h(ug) = h(vo) for some distinct nodes ug, v € V(T'). If there
are many such pairs, take the minimum pair in the lexicographic ordering of 2-subsets of
V(T). Define ¢/ : V(T) — {1,2,...,k} for all v € V(T) by

L(vg) if v =y,
O (v) =< (ug) if v = vy,

£(v)  otherwise.
Similarly, define s’ : V(T') — D for all v € V(T') by

s(vg) if v = wo,

§'(v) = < s(ug) if v = vp,

s(v)  otherwise.
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We observe that ¢ is bijective and that ¢/ # ¢ because /¢ is bijective. Moreover, s’ is
consistent because ¢(h(ug)) = ¢(h(vg)) and s is consistent. In this way, to the triple (W, s, £)
we associated a different triple (W, s’,¢’) such that mon(W, s, £) = mon(W, s’, ¢'). Since Fqys
has characteristic 2, these two monomials cancel out in P. Conversely, if we begin from
(W, ', ¢") and follow the same association rule, we get (W, s,¢). Hence, the set of all triples
((T, h), s, £) in which the homomorphism h is not injective is partitioned into pairs, and the
two monomials corresponding to each pair cancel out. It follows that the homomorphism
h is injective in every triple ((T,h),s,£) in the preimage of a monomial with a nonzero
coefficient in P.

Next suppose that h is injective but s is not injective. Then there is pair of distinct
nodes ug,vg € V(T') that have the same shade s(ug) = s(vp). Again, if there are many such
pairs we take the lexicographic minimum pair. Define ¢ : V(T) — {1,2,...,k} as before.
Again, to the triple (W, s, £) we assigned a different triple (W, s, ¢’) and again one can verify
that mon(W, s, ¢) = mon(W,s,¢'). By a similar argument as above, we see that the two
monomials corresponding to these two triples cancel out. It follows that the shading s is
injective in every triple ((T, h), s, £) in the preimage of a monomial with a nonzero coefficient
in P.

So we must have that both h and s are injective in a three-tuple (T, h), s, £) where the
monomial mon(W,s,¢) in P has a nonzero coefficient. Let S = V(h(T)). Because h is
injective, |S| = k. Because T is connected and h is a homomorphism, we have that h(T) is
connected and hence so is G[S]. Since s is consistent and injective, S is a solution. |

2.5 Evaluating the polynomial in time O*(2%)

In this section we show that the polynomial P can be evaluated in a given point (x,y,z)
in time O*(2*). To this end, let us rewrite P as a sum of 2¥ polynomials such that each of
them can be evaluated in time polynomial in the input size. For each X C {1,2,...,k}, let

Px(x,y,z) = Z Z Z mon(W, s, £),

W=(T,h)eW seS(W) £:V(T)—»X
Note that we do not assume that the labellings in the third summation are bijective.
» Lemma 2. P(x,y,z) = Z Px(x,y,2).
XC{1,2,....k}

Proof. Let us fix a branching walk W = (T, h) € W such that |V (T')| = k and a shading
s € S(W). Because |V(T)| = k, a function ¢ : V(T) — {1,2,...,k} is bijective if and only
if it is surjective, so

Z mon(W, s, £) = Z mon(W, s, £). (1)

LV (T)—{1,2,....,k} LV (T)—{1,2,....,k}
¢ bijective ¢ surjective

Observing again that Fys has characteristic 2, and hence —1 = 1, we have, by the Principle
of Inclusion and Exclusion,

Z mon(W, s, £) = Z Z mon(W, s, {) . (2)

LV (T)—{1,2,....,k} XC{1,2,....,k} &V(T)—»X
¢ surjective

From (1) and (2) we immediately obtain

P(x,y,z) = Z Z Z Z mon(W, s, £) . (3)

=(T,h)EW seS(W) XC{1,2,...k} £V (T)—=X
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The claim follows by changing the order of summation. |

Now we are left with a tedious job of evaluating Px(x,y,z) in polynomial time. This
is slightly technical because we consider properly ordered branching walks. To simplify
notation in the running time bounds, let us write e for the number of edges in G, and
w = O(Blog Bloglog B) for the time needed to multiply or add two elements of Fqs.

» Lemma 3. Given a nonempty subset X C {1,2,...,k} and three vectors x,y,z of values
in Fys as input, the value of Px(x,y,z) can be computed by dynamic programming in time
O(k%ep) and space O(kef3).

Proof. Recall that we assume that V(G) = {1,2,...,n}. For a vertex a € V(G), denote the
ordered sequence of neighbors of @ in G by a; < az < -+ < dgeg,,(a)- For each a € V(G),
1 <4 < degg(a) + 1, and 0 < [ < k, denote by W(a,i,l) the set of properly ordered
branching walks W = (T, h) such that (i) W starts from a, (ii) for any child node u of 1 in
T it holds that h(u) = a; implies j > ¢, and (iii) |V(T)| = 1.

Our objective is to compute a three-dimensional array Ax whose entries are defined by

Axla,i,l] = > > >

W=(T,h)eW(a,i,l) SGS\/(T)\{]}(W) LV (THO\{1}—»X

H Th(u),h(v) H Yh(v),s(v)?s(v),L(v) -
{u,v}eE(T) veV(T)\{1}

The entries of Ax admit the following recurrence. For ¢ = degs(a) + 1 or I = 1, we have

1 ifi=1
Axla,i,l] = ’
x| ] { 0 otherwise.
For 1 <i <degg(a) and 2 < < k, we have
Ax[a,i,l] = Ax[a,i-i-Ll]—f—

xa,ai N Z Z yai,tzt,j . Z AX [aﬂi + 17 ll] : AX [aia 17 12] (4)

teD(c(a;)) JEX li+la=l
ly,l2>1

To see that the recurrence is correct, observe that the two lines above correspond to properly
ordered branching walks in W(a, ,1) where either (a) there is no child node u of 1 in T such
that h(u) = a; or (b) there is a unique such child. (At most one such child may exist because
the branching walk is properly ordered.)

To recover the value of the polynomial Px(x,y,z), we observe that

Px(x,y,z) = Z Z Z Yraze - Ax[r, 1,k]. (5)

reVteD(c(r)) jeX

The time bound follows by noting that the values of ZteD(c(a)) ZjeX Ya,t2t,j can be pre-
computed and tabulated in O(k?nu) time to accelerate the computations for the individual
entries of Ax. <
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2.6 The decision algorithm

» Lemma 4 (DeMillo and Lipton [7], Schwartz [19], Zippel [21]). Let P(x1,x2,...,Zm) be
a nonzero polynomial of degree at most d over a field F and let S be a finite subset of F.
Then, the probability that P evaluates to zero on a random element (a1, as,...,ay,) € S™
is bounded by d/|S)|.

» Theorem 5. The MAXIMUM GRAPH MOTIF problem admits a Monte Carlo algorithm
that runs in O(2Fk%ep) time and in polynomial space, with the following guarantees: (i) the
algorithm always returns NO when given a NO-instance as input, (i) the algorithm returns
YES with probability at least 1/2 when given a YES-instance as input.

Proof. The algorithm is as follows. Select values for the variables in x,y,z independently
and uniformly at random from Fos. Then iterate over all X C {1,2,...,k} and use the
algorithm in Lemma 3 to evaluate the value Px(x,y,z). Accumulate the sum of the values
Px(x,y,2) to obtain P(x,y,z) by Lemma 2. If P(x,y,z) # 0, answer YES and otherwise
answer NO.

When the input is a NO instance, the polynomial P is the zero polynomial by Lemma 1,
so the algorithm returns NO. When the input is a YES instance, by Lemma 1 the polynomial
P is nonzero. The degree of P is exactly 3k — 1, while the size of Fqs is 2108143 > gf.

s . 3k—1 _ 1
Thus, by Lemma 4 the probability that P evaluated to 0 is bounded by =5—= < 3. |

3 Variants of the Graph Motif Problem

In Section 2 we described an algorithm for MAXIMUM GRAPH MOTIF. It is easy to see
that the algorithm can also be used to solve classical GRAPH MOTIF by setting k = |M].
Another variant of the problem studied in the literature is the list version of the problem,
where every vertex a € V(G) is assigned a set of colors C(a) C C, not just one color ¢(a),
and for every vertex in a solution we can choose any of its colors to match the multiset
M. Tt is straightforward to modify our algorithm for MAXIMUM GRAPH MOTIF to solve
the list version: in the dynamic programming of Lemma 3, in (4) instead of summing over
t € D(c(a;)) we sum over ¢ € [ o4,y DP(q), and similarly in (5).
Although MAXIMUM GRAPH MOTIF (introduced in [8]) is a natural optimization version

of the problem, it is not the only one. Two more optimization variants were introduced in [9];
we describe their decision versions below.

MIN-ADD

Input: Graph G = (V, E), a coloring ¢: V — C, a multiset of colors M, and d € N.

Question: Is there a subset S C V such that G[S] is connected, M C ¢(S) and

e(8)\ M| < a7

MIN-SUBSTITUTE

Input: Graph G = (V, E), a coloring ¢ : V — C, a multiset of colors M, and d € N.
Question: Is there a subset S C V such that G[S] is connected and ¢(S) can be
obtained from M with at most d substitutions?

In this paper we introduce a new variant, which is a generalization of MAXIMUM GRAPH
Mortir, MIN-ADD and MIN-SUBSTITUTE. We believe that it might be useful in bioinfor-
matics applications.

Consider the following three operations on a multiset M over a set of colors C":

1. insertion (I): adds a copy of ¢ € C to M,
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2. deletion (D): removes a copy of ¢ € M from M,
3. substitution (S): removes a copy of ¢; € M from M and adds a copy of ¢a € C to M.

Associate with each of the three operations a nonnegative integer cost Ky, kp, kg. Consider
a sequence o of the three operations applied to a multiset M. Let mr, mp, mg be the
numbers of insertions, deletions, and substitutions in . Then the cost of ¢ is defined as
miky +mpkp + mgks. Moreover, for two multisets M and M’, the weighted edit distance is
defined as the minimum cost x(M, M') of a sequence of operations that turns M into M.

CLOSEST GRAPH MOTIF

Input: Graph G = (V, E), a coloring ¢: V — C, a multiset of colors M, and numbers
d, K1, kD, ks € N.

Question: Is there a subset S C V such that G[S] is connected and &(M, ¢(S)) < d?

Note that MIN ADD reduces to CLOSEST GRAPH MOTIF by settting k1 = 1, kp = kg =
d + 1. Similarly, for MIN SUBSTITUTE set ks =1, ki = kp =d + 1.

We next describe an algorithm for CLOSEST GRAPH MOTIF subject to the parameteri-
zation that we are given an additional integer k£ € N as input and the subset S must satisfy
|S| = k. We will present an O*(2¥)-time polynomial space algorithm, assuming that d is
bounded by a polynomial function in n. Note that when parameterized by the edit distance
(which also seems natural) the problem is unlikely to admit an FPT algorithm since GRAPH
Morir is NP-hard. Since the algorithm is a rather straightforward extension of the algo-
rithm for MAXIMUM GRAPH MOTIF presented in Section 2, we only sketch it by describing
the modifications needed to handle the more general problem.

We proceed to define an analog of the polynomial P from Section 2. We use the same
indeterminates as before, with additional indeterminates for tracking substitutions and the
edit distance. Towards this end, for each a € V(G), introduce the indeterminate w,. Denote
by w the sequence of all such indeterminates. Introduce one further indeterminate 7 for
tracking the edit distance.

Recall that in the polynomial P, every monomial corresponds to a consistently shaded
and bijectively labelled branching walk (W, s, ¢). In the new polynomial @, every monomial
corresponds to a quadruple (W, f, s, ¢), where f: V(T) — {0,1} is an indicator function for
substitutions. That is, f(v) = 1 and s(v) = (q,4) for a node v means that a copy of color
q (the copy corresponding to the ith shade of ¢) is substituted by the color ¢(h(v)). We
need to modify the set of shades in order to make it accept insertions. For a color ¢ € C
let D'(q) = {(¢,4) : i =1,2,...,m(q) + |[d/r1]} and let D" = {J,ccD'(q). In Q the
shading function s maps V(T) to D’. The meaning of this modification is that the shade
(g,1) for ¢ > m(q) corresponds to an inserted shade of color ¢q. Accordingly, the notion of
consistency of a shading requires a modification in order to accept substitutions. We say
that a (partial) shading s : U — D’ of a branching walk W = (T, h) and a substitution
indicator f : V(T) — {0,1} is consistent if for every node v € U C V(T) one of the
following conditions holds: (i) if f(v) = 0 then s(v) = (c(h(v)),) for some 4, or (ii) if
f(v) =1 then s(v) € D. For a given branching walk W = (T, h), a substitution indicator
f:V(T)—{0,1}, and a set U C V(T), denote by Sy (W, f) the set of all (partial) shadings
s:U — D" of W that are consistent. Let us abbreviate S(W, f) = Sy (r)(W, f).

The following lemma will be useful in the construction of Q.

» Lemma 6. Consider a sequence o of mj insertions, mg substitutions and a number of
deletions which transforms a multiset M into a multiset M’ of size k. Then, the cost of o
is equal to mi(kr+ kp) + msks + (|M| — k)kp.

Proof. Observe that o contains |M| + m; — k deletions. <
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By the above lemma, given a quadruple (W, f, s, £) the cost of the sequence of operations
corresponding to this quadruple is

Ld/ k1]
=D > Is7 (g mla) + )| | (k1 + 6p) + |FH (Dlks + (IM] = k)

qeC i=1

For a substitution indicator function f : V(T') — {0, 1} and a homomorphism h : V(T') —
V(G), let us write WfL = [luevr) wggzg for the indicator monomial of f given h.
Now we are ready to define the polynomial

Q(X7 y,z,wW, 77) = Z Z Z Z mon(W s, f)win”(fﬁs) .

W=(T,h)EW f:V(T)—={0,1} s€S(W,f) £:V(T)—{1,2,....k}
¢ bijective

> Lemma 7. Let Q(x,y,2,W,n) = >0 Qi(x,y,2,w)n'. Then, we have Q; # 0 for an

1 < d if and only if there exists a solution S C V(G) with x(M,c(S)) < d.

Proof. Analogous to the proof of Lemma 1, with the following modifications to handle the
substitution indicator f.

(<) Recover h as before, use the editing sequence for i = k(M, ¢(S)) < d to construct
a substitution indicator f, then define s and ¢. To conclude that @Q; # 0, reconstruct a
quadruple (W, s, f,£) from its monomial representation as before but with the additional
observation that when A is injective we can recover f from W{L.

(=) When h is not injective, define f’ from f by transposing the images of ug and vg
under f. When h is injective but s is not injective, proceed as before. Construct S as before.

From f and s we can read off a sequence of edits to transform M to ¢(S) with cost i < d. <«

It is immediate that once we can evaluate polynomial @ in a given vector (x,y,z, w,n) we
can test whether the polynomials @); are nonzero using the DeMillo—Lipton—Schwartz—Zippel
Lemma and Lagrange interpolation. By Lemma 2, the task of evaluating @ in time O*(2¥)
boils down to evaluating Q) x in polynomial time (where @ x is defined analogously as Px).
The evaluation proceeds as in Lemma 3, with minor changes to the dynamic programming
recurrence. In particular, in (4) we change the expression ZSQD(C(M)) ZjeX Ya;, 575, INLO

m(c(ai))+|d/r1]

Z Z yal,szs,]"' Z Z yaI (e(as), p)z (c(ai),p KH_KD"’_Z Z ya“szs,jwal

s€D(c(a;)) JEX p=m(c(a;))+1 jEX seDjeX

The three summands correspond to the three possibilities: (i) a; just gets a color from
M, (ii) a; gets a new copy of the color ¢(a;) that is inserted into M, (iii) one copy of a
color from M is substituted by one copy of the color ¢(a;). A similar change is required
for the expression (5), including also multiplication of the whole expression by nIMI=k)sp,
(Alternatively, one may offset the final edit distance by (|M| — k)kp.) Precomputing the
above expression takes O(nk(k + d + |M|)u) time so single evaluation of @ x is performed
in time O(k%eu + nk(k + d + |M|)u) = O((ke + nd + n|M|)kw).

We conclude with the following theorem which follows from considerations in this section.
The additional factor of (k + |M|)d in the running time is caused by the use of Lagrange
interpolation, which requires O((k + |M|)d) evaluations of Q). Note that the degree of n
in @ is bounded by (k + |M|)(k1 + kp + ks) = O((k + |M])d) because we can assume
K1, kD, ks < d 4+ 1. We also note that for every ¢ > 0, we have deg(Q;) < (3k — 1)k, so to
get the bound on the error probability as before, the size of the finite field Fys should be
at least 2(3k — 1)k. On the other hand, Lagrange interpolation requires Fys to have size at
least (k + |M]|)(x1 + kb + ks). It suffices to put § = max{[2log, k], [logs(k + |M|)d]} + 3.
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» Theorem 8. The CLOSEST GRAPH MOTIF problem admits a Monte Carlo algorithm that
runs in O(2F (ke +nd + n|M|)(k + |M|)dku) time and in polynomial space.

4 A reduction from Set Cover

In the SET COVER problem we are given an integer ¢ and a family of sets S = {51, .52, ..., S}
over the universe U = Ugnzl S; with n = |U|. The task is to determine whether there is a
subfamily of ¢ sets S;,, Si,, ..., S, such that U = U;Zl Si, .

Cygan et al. proved the following result (see Theorem 4.4 in [5]1).

» Theorem 9 (Cygan et al. [5]). If SET COVER can be solved in O((2—¢€)"**) time for some
€ > 0 then it can also be solved in O((2 — €')™) time, for some € > 0.

We use Theorem 9 to show the following.

» Theorem 10. If GRAPH MOTIF can be solved in O((2 — €)*) time for some € > 0 then
SET COVER can be solved in O((2 — €')") time, for some € > 0. Moreover, this holds even
for GRAPH MOTIF restricted to one of the following two extreme cases:

(1) M is a set,
(it) M has only two distinct colors.

Proof. Let (S,t) be an instance of SET COVER. We are going to show a polynomial-time
reduction to GRAPH MOTIF so that in the resulting instance (G, ¢, M) the multiset M has
cardinality n 4+t + 1. Clearly, combined with Theorem 9, this will prove our claim.

Graph G = (V, E) is defined as follows. The vertex set consists of U, ¢ copies of the
family S and a special vertex r, that is, V = U U {s{ i=12,...,m, y=1,2,..., ¢t} U{r}.
Moreover, E = {es? ie € Si}U{rsg ci=1,2,...,m, j=1,2,...,t}.

To establish case (i), let M = {1,2,...,n+t+ 1}. Moreover we put c(sz) = j for every
i=1,2,...,m, j=1,2,...,t. Further, ¢(r) =t+ 1. Then colors t +2,t+3,...,n+t+1
are assigned bijectively to the vertices from U. Now we show that (S,t) is a YES-instance
of SET CoVER iff (G, ¢, M) is a YES-instance of GRAPH MOTIF. Assume S;,,S;,,...,S;, is
a solution to SET COVER. Then let S = {r}UU U {ng 17 =1,2,...,t}. Tt is clear that the

multiset of colors on S matches M. Obviously, G[{r} U {ng :j=1,2,...,t}] is connected.

Since for every e € U there is j = 1,2,...,¢ such that e € S;;, so es{j € E(G[S)]). It follows
that G[S] is connected, and hence S is a solution for GRAPH MoOTIF. Conversely, if S is a
solution for GRAPH MOTIF in (G, ¢, M) then for every j = 1,2,...,t there is exactly one
i; € {1,2,...,m} such that sfj € S, since the colors of S match M. Moreover, since G[S]
is connected we infer that for every e € U there is j = 1,2,...,¢ such that es{j € E(G[9)).
However, then e € S;; and it follows that S;,,2,...,.S;, is a solution for SET COVER.

To establish case (ii), let M consist of n+ 1 copies of color 1 and t copies of color 2. We
put ¢(r) = 1 and c(e) = 1 for every e € U. All the remaining vertices are colored with 2.
The equivalence can be shown very similarly to the case (i), we skip the details. |
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