
On Pairwise Spanners∗

Marek Cygan1, Fabrizio Grandoni1, and Telikepalli Kavitha2

1 IDSIA, University of Lugano, Switzerland; {marek, fabrizio}@idsia.ch
2 Tata Institute of Fundamental Research, India; kavitha@tcs.tifr.res.in

Abstract
Given an undirected n-node unweighted graph G = (V,E), a spanner with stretch function f(·)
is a subgraph H ⊆ G such that, if two nodes are at distance d in G, then they are at distance at
most f(d) in H. Spanners are very well studied in the literature. The typical goal is to construct
the sparsest possible spanner for a given stretch function.

In this paper we study pairwise spanners, where we require to approximate the u-v distance
only for pairs (u, v) in a given set P ⊆ V × V . Such P-spanners were studied before [Copper-
smith,Elkin’05] only in the special case that f(·) is the identity function, i.e. distances between
relevant pairs must be preserved exactly (a.k.a. pairwise preservers).

Here we present pairwise spanners which are at the same time sparser than the best known
preservers (on the same P) and of the best known spanners (with the same f(·)). In more
detail, for arbitrary P, we show that there exists a P-spanner of size O(n(|P| logn)1/4) with
f(d) = d+4 logn. Alternatively, for any ε > 0, there exists a P-spanner of size O(n|P|1/4

√
logn
ε )

with f(d) = (1 + ε)d+ 4. We also consider the relevant special case that there is a critical set of
nodes S ⊆ V , and we wish to approximate either the distances within nodes in S or from nodes
in S to any other node. We show that there exists an (S × S)-spanner of size O(n

√
|S|) with

f(d) = d + 2, and an (S × V )-spanner of size O(n
√
|S| logn) with f(d) = d + 2 logn. All the

mentioned pairwise spanners can be constructed in polynomial time.

1998 ACM Subject Classification G.2.2 Graphs Algorithms

Keywords and phrases Undirected graphs, shortest paths, additive spanners, distance preservers

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.209

1 Introduction

Let G = (V,E) be an undirected unweighted graph. A subgraph H of G is a spanner with
stretch function f(·) if, given any two nodes s, t ∈ V at distance δG(s, t) in G, the distance
δH(s, t) between the same two nodes in H is at most f(δG(s, t)). An (α, β) spanner is a
spanner with stretch functions f(d) = α · d+ β. (α and β are the multiplicative stretch and
additive stretch of the spanner, respectively). If β = 0 the spanner is called multiplicative,
and if α = 1 the spanner is called purely-additive. Spanners are very well studied in the
literature (see Section 1.2). The typical goal is to achieve the sparsest possible spanner for
a given stretch function f(·) [4, 5, 11, 12, 13, 15, 17, 19, 20, 22].

In this paper we address the natural problem of finding (even sparser) spanners in the
case that we want to approximately preserve distances only among a given subset P ⊆ V ×V
of pairs. More formally a pairwise spanner on pairs P, or P-spanner for short, with stretch
function f(·) is a subgraph H ⊆ G such that, for any (s, t) ∈ P, δH(s, t) ≤ f(δG(s, t)). In

∗ Partially supported by the ERC Starting Grant NEWNET 279352. This work was partially done while
the third author was visiting IDSIA.

© Marek Cygan, Fabrizio Grandoni, Telikepalli Kavitha;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 209–220

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.209
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


210 On Pairwise Spanners

particular, a classical (all-pairs) spanner is a (V × V )-spanner. Pairwise spanners capture
scenarios where we only (or mostly) care about some distances in the graph.

To the best of our knowledge, pairwise spanners were studied before only in the spe-
cial case that f(·) is the identity function, i.e. distances between relevant pairs have to be
preserved exactly. Coppersmith and Elkin [8] call such spanners pairwise (distance) pre-
servers, and show that one can compute pairwise preservers of size (i.e., number of edges)
O(min

{
|P|
√
n, n

√
|P|
}

).
The authors left it as an open problem to study the approximate variants of these pre-

servers, i.e. what we call pairwise spanners here. This paper takes the first step in answering
this question. We show that (for suitable P) it is possible to achieve P-spanners which are
at the same time sparser than the preservers in [8] (on the same set P) and than the sparsest
known classical spanners (with the same stretch function).

1.1 Our Results and Techniques
In this paper we present some polynomial-time algorithms to construct (α, β) P-spanners
for unweighted graphs. Our spanners are either purely-additive (i.e. α = 1) or near-additive
(i.e. α = 1 + ε for an arbitrarily small ε > 0). For arbitrary P, we achieve the following
main results (see Section 5).

I Theorem 1. (near-additive pairwise) For any ε > 0 and any P ⊆ V × V , there is a
polynomial time algorithm to compute a (1 + ε, 4) P-spanner of size O(n|P|1/4

√
logn/ε).

I Theorem 2. (purely-additive pairwise) For any integer k ≥ 1 and any P ⊆ V × V ,
there is a polynomial time algorithm to compute a (1, 4k) P-spanner of size
O(n1+1/(2k+1)(

√
(4k + 5)|P|)k/(2k+1)).

We also consider the relevant special case that all the pairs involve at least one node from
a critical set S ⊆ V . More precisely, we distinguish two types of such pairwise spanners: in
subsetwise spanners (see Section 3) we wish to approximate distances between nodes in S,
i.e. P = S × S; in sourcewise spanners (see Section 4) we wish to approximate distances
from nodes in S, i.e. P = S×V . We obtain the following improved results for the mentioned
cases.

I Theorem 3. (subsetwise) For any S ⊆ V , there is a polynomial time algorithm to
compute a (1, 2) (S × S)-spanner of size O(n

√
|S|).

I Theorem 4. (sourcewise) For any S ⊆ V and any integer k ≥ 1, there is a polynomial
time algorithm to compute a (1, 2k) (S × V )-spanner of size O(n1+1/(2k+1)(k|S|)k/(2k+1)) .

In particular, by choosing k = logn, we obtain a (1, 2 logn) sourcewise spanner of size
O(n

√
|S| logn), and a (1, 4 logn) pairwise spanner of size O(n(|P| logn)1/4).

All our spanners rely on a path-buying strategy which was first exploited in the (1, 6)
spanner by Baswana et al. [4]. The high-level idea is as follows. There is an initial clustering
phase, where we compute a suitable clustering of the nodes, and an associated subset of edges
which are added to the spanner. Then there is a path-buying phase, where we consider an
appropriate sequence of paths, and decide whether to add or not each path in the spanner
under construction1. In particular, each path has a cost which is given by the number of

1 In the spanner from Theorem 1 there is also a final step where we add a multiplicative (2 logn, 0)-
spanner.



M. Cygan, F. Grandoni, and T. Kavitha 211

edges of the path not already contained in the spanner, and a value which measures how
much the path helps to satisfy the considered set of constraints on pairwise distances. If
the value is sufficiently larger than the cost, we add the considered path to the spanner,
otherwise we do not.

In more detail, all our pairwise spanners exploit the same clustering phase. We compute
a partition C = {C1, . . . , Cq} of a subset of the nodes, and call unclustered the remaining
nodes V −∪iCi. The initial value of the spanner is GC = (V,EC), where EC contains all the
edges of G but possibly a subset of the inter-cluster edges (with endpoints in two different
clusters). The common clustering phase is described in Section 2.

During the path-buying phase we add to the spanner some extra inter-cluster edges.
Here we need to finely tune the sequence of paths that we consider, and also the definition
of value of a path. In our subsetwise and sourcewise spanners the value of a path ρ reflects
the number of pairs (v, C), where v is the endpoint of some pair and C is a cluster, such
that adding ρ to the current spanner decreases the distance between v and (the closest node
in) C. In the remaining pairwise spanners, we use a similar notion of value, but considering
the distance between pairs of clusters (C ′, C ′′).

The sequence of paths used in our subsetwise spanner and near-additive pairwise spanner
is simply given by the shortest paths among the relevant pairs. This naturally generalizes
the set of paths considered in [4]. However, for the sourcewise spanner and the purely-
additive pairwise spanner we need to consider a carefully constructed sequence of paths,
which includes slightly suboptimal paths. In more detail, we start with the set of shortest
paths between the relevant pairs. Then, for each such path ρ, if the cost of ρ is sufficiently
smaller than its value, we include ρ in the spanner. Otherwise, we replace ρ with a slightly
longer path ρ′ between the same endpoints which is much cheaper, and iterate the process
on ρ′. After a small number of iterations, the considered path becomes cheap enough and
hence we include it in the spanner. This (non-trivial) iterative construction of candidate
paths during the path-buying phase is probably the main algorithmic contribution of this
paper.

1.2 Related Work
Graph spanners were introduced by Peleg and Schaffer [17] in 1989. Spanners have been
extensively studied since then, and there are numerous applications involving spanners, such
as algorithms for approximate shortest paths [1, 7, 12], labeling schemes [16, 14], approximate
distance oracles [21, 6, 3], routing [2, 9, 10], and network design [18].

There are several algorithms for computing multiplicative and additive spanners in
weighted and unweighted graphs. In unweighted graphs, for any integer k ≥ 1, Halperin
and Zwick [15] gave a linear time algorithm to compute a multiplicative (2k− 1, 0)-spanner
of size O(n1+1/k), where n is the number of vertices. Note that for k = logn one obtains
a spanner with multiplicative stretch O(logn) and with size O(n): we will use this type of
spanner in Theorem 1. Analogous results are also known for weighted graphs [5, 20, 19].

The first purely-additive spanner (for unweighted graphs) is due to Dor et al. [11].
They describe a (1, 2) spanner of size O(n3/2 logn). This was subsequently improved to
O(n3/2) [13]. Note that our subsetwise spanner from Theorem 3 generalizes this result: in
particular, it has the same stretch function and is sparser whenever |S| = o(n). Baswana et
al. [4] describe a (1, 6)-spanner of size O(n4/3). Whenever |P| = O(n4/3−δ) for some con-
stant δ > 0, we achieve an asymptotically sparser pairwise spanner with constant additive
stretch (depending on δ). The same holds for our sourcewise spanner if |S| = O(n2/3−δ).

The result in [15] shows an elegant trade-off between the size of the spanner and its

STACS’13



212 On Pairwise Spanners

multiplicative stretch. No such trade-off is known for purely-additive spanners. In particular,
the spanner in [4] is the sparsest known purely-additive spanner. Theorems 2 and 4 show a
non-trivial trade-off between the size and additive stretch of pairwise spanners.

There have also been several results on near-additive spanners [13, 12, 22]. For example,
there is a (1 + ε, 4)-spanner of size O(n

4/3

ε ) for any ε > 0 [13]. Our pairwise spanner from
Theorem 1 has the same stretch function, and is sparser for |P| = o(n4/3/(ε logn)2).

Compared to the preservers in [8], we achieve sparser pairwise spanners with additive
stretch O(logn) for |P| = ω(n2/3 log1/3 n), and a sparser subsetwise spanners for |S| =
ω(n1/3). Interestingly, our sourcewise spanners are always sparser than the pairwise pre-
servers from [8].

2 Clustering

A clustering of a graph G = (V,E) is a collection C = {C1, . . . , Cq} of pairwise disjoint
subsets of nodes Ci ⊆ V . Note that we do not require C to span all the nodes V : we call
unclustered the nodes V − ∪iCi.

We will crucially exploit the following construction of a clustering C and of an associated
cluster subgraph GC .

I Lemma 5. There is a polynomial time algorithm which, given β ∈ [0, 1] and a graph
G = (V,E), computes a clustering C with at most n1−β clusters and a subgraph GC of size
O(n1+β) such that:
1. (missing-edge property) If an edge uv ∈ E is absent in GC, then u and v belong to

two different clusters.
2. (cluster-diameter property) The distance in GC between any two vertices of the same

cluster is at most 2.

Proof. Let U be the set of nodes which are not yet clustered (initially we set U := V ). As
long as there exists a vertex v ∈ V with at least dnβe neighbors in U , let C contain exactly
dnβe arbitrary neighbors of v in U . Add C to C, set U := U \C and add to GC all the edges
of G with both endpoints in C ∪ {v}. When no node v satisfies the mentioned property, we
stop creating new clusters and add to GC all the edges incident to the final set of unclustered
nodes U .

By construction, clusters are pairwise disjoint. Each time we create a new cluster, the
size of U decreases by at least nβ , hence there cannot be more than n1−β clusters. Any
two nodes in the same cluster C have some common neighbor v in GC , hence Property 2 is
satisfied. By construction, all the edges incident to unclustered nodes plus the intra-cluster
edges (with both endpoints in the same cluster) belong to GC , which implies Property 1.

It remains to bound the number of edges of GC . Each time we create a new cluster, the
number of edges of GC grows by at most O(n2β): this gives O(n1−βn2β) = O(n1+β) edges
altogether. When we stop creating clusters, each (clustered or unclustered) node v has at
most nβ neighbors in U : consequently the number of edges incident to unclustered nodes
that we add at the end of the procedure is at most O(n1+β). J

The following technical lemma turns out to be useful in the remaining sections.

I Lemma 6. Let C and GC be constructed with the procedure from Lemma 5 w.r.t. a given
graph G = (V,E). If the shortest path ρ in G between any two nodes u, v ∈ V contains
t edges that are absent in GC, then there are at least t/2 clusters of C having at least one
vertex on ρ.



M. Cygan, F. Grandoni, and T. Kavitha 213

Proof. We prove the lemma by counting pairs (u, e), where e is an edge of ρ absent in GC
and u is one of the endpoints of e: let S be the set of such pairs. Since ρ contains t edges
that are absent in GC there are exactly 2t pairs in S (each edge e = uv belongs to two
pairs: (u, e) and (v, e)). We say that a cluster C ∈ C owns a pair (u, e) if u ∈ C. By the
missing-edge property, each edge e of ρ absent in GC has both endpoints clustered, hence
each pair of S is owned by some cluster.

Let us assume that there are x clusters of C having at least one vertex on ρ. By the
cluster-diameter property any cluster C ∈ C contains at most 3 vertices on ρ, since otherwise
ρ would not be a shortest path between u and v. However, if a cluster C ∈ C contains exactly
3 vertices on ρ, those have to be consecutive vertices a, b, c of ρ, since ρ is a shortest path and
we know by the cluster-diameter property that there is a path of length at most 2 between
every pair in {a, b, c}. By the missing-edge property both edges ab and bc are present in
GC , and consequently C owns at most two pairs of S. Clearly if a cluster C ∈ C contains
at most 2 vertices on ρ, then it owns at most 4 pairs of S. Therefore each cluster owns at
most 4 pairs of S: since S has 2t pairs we have x ≥ t/2. J

3 Subsetwise Spanners

In this section we present our algorithm to compute a subsetwise spanner, and prove The-
orem 3.

Our algorithm consists of two main phases: a clustering phase and a path-buying phase.
In the clustering phase we invoke Lemma 5 and obtain a cluster subgraph GC of G of size
O(n1+β), together with a set C of at most n1−β clusters. The value of β will be defined
later.

In the path-buying phase we proceed as follows. Initially set G0 := GC and let
{ρ1, . . . , ρz} denote the set of z =

(|S|
2
)
shortest paths between all pairs of vertices in S. We

let (ui, vi) denote the endpoints of ρi. Next, we iterate over the paths ρi for i = 1, . . . , z.
To determine which paths are affordable, we define the functions value(·) and cost(·):

let cost(ρi) be the number of edges of ρi that are absent in Gi−1
let value(ρi) be the number of pairs (x,C), where x ∈ {ui, vi} and C ∈ C is a cluster,
such that ρi contains at least one vertex of C and the distance between x and C in the
graph Gi−1 is strictly greater than the distance between u and C in ρi, i.e., δGi−1(x,C) >
δρi(x,C).

Our path-buying strategy is as follows. If

cost(ρi) ≤ 2 value(ρi)

then we buy the path ρi, that is we set Gi := Gi−1 ∪ ρi (in words, Gi is given by Gi−1 plus
the edges of ρi not in Gi−1). Otherwise (i.e., 2value(ρi) < cost(ρi)), we do not buy ρi and
set Gi := Gi−1. The subsetwise spanner is given by Gs := Gz.

The next two lemmas bound the stretch and the size of the constructed spanner Gs,
respectively

I Lemma 7. For any (ui, vi) ∈ P, δGs
(ui, vi) ≤ δG(ui, vi) + 2.

Proof. Clearly the claim holds if our algorithm bought the path ρi, hence we assume
2value(ρi) < cost(ρi). Let cost(ρi) = t, that is there are exactly t edges of ρi which are
not present in the graph Gi−1. By Lemma 6 there are at least t/2 clusters having at least
one vertex on ρi. If there is no cluster C among them such that δGi−1(ui, C) = δG(ui, C) and
δGi−1(vi, C) = δG(vi, C), then all these clusters would contribute to value(ρi) (either with

STACS’13



214 On Pairwise Spanners

ui or with vi or both) which leads to a contradiction, because t = 2 · (t/2) ≤ 2value(ρi) <
cost(ρi) = t.

Thus there is a cluster C having a vertex of ρi such that δGi−1(ui, C) = δG(ui, C) and
δGi−1(vi, C) = δG(vi, C). This implies:

δGs(ui, vi) ≤ δGi−1(ui, vi) ≤ δGi−1(ui, C) + δGi−1(vi, C) + 2
≤ δG(ui, C) + δG(vi, C) + 2
≤ δG(ui, vi) + 2,

where the first inequality is because Gi−1 is a subgraph of Gs, the second inequality holds
since any two vertices of C are at distance at most two in GC ⊆ Gi−1 (by the cluster-diameter
property) and the last inequality follows from the assumption that C contains a vertex of
ρi. J

I Lemma 8. For β such that nβ =
√
|S| the graph Gs contains O(n

√
|S|) edges.

Proof. The clustering phase produces a graph with O(n1+β) = O(n
√
|S|) edges. Let B

be the set of paths bought in the path-buying phase. The total number of edges that
appear in B and do not appear in GC is equal to

∑
ρi∈B cost(ρi), which is upper bounded

by
∑
ρi∈B 2value(ρi). Observe that after the first contribution of a pair (x,C) to the above

sum, the distance between x and C is at most δG(x,C) + 2, hence each pair (x,C) can
contribute to the sum at most 3 times. Therefore the total number of edges added in the
second phase of our algorithm is upper bounded by O(n1−β |S|) = O(n

√
|S|). J

The proof of Theorem 3 follows from Lemmas 7 and 8.

4 Sourcewise spanners

In this section we present our algorithm to compute a sourcewise spanner from sources S,
and prove Theorem 4.

Our algorithm again consists of two phases, where the first is a clustering phase and the
second is a path-buying phase. The clustering phase is as in the algorithm from previous
section, for a proper value of β to be defined later. Let C and GC be the resulting clustering
and cluster subgraph.

At the start of the second phase we set G0 := GC and define {ρ1, . . . , ρz} as the set of
shortest paths between any two vertices of V such that at least one of them belongs to S.
Let us assume that the path ρi is a shortest path between ui ∈ S and vi ∈ V . Next, we
iterate over paths ρi for i = 1, . . . , z. For a given i we are going to define paths ρji , where
0 ≤ j ≤ k, maintaining the following invariants:

(i) ρji is a path between ui and vi in G of length at most δG(ui, vi) + 2j,
(ii) any cluster C ∈ C contains at most three vertices of ρji ,
(iii) cost(ρji ) ≤ 2n1−β/γj , where cost(ρji ) is the number of edges of ρji absent in Gi−1, and

γ = (3n1−β)1/k.

Our algorithm will buy exactly one path ρji for 0 ≤ j ≤ k, which will ensure (by Invariant
(i)) that in Gi, the distance between ui and vi is at most δG(ui, vi) + 2k.

We set ρ0
i := ρi. Observe that for j = 0, Invariant (i) is trivially satisfied, Invariant (ii)

is satisfied by the cluster-diameter property (otherwise ρi would not be a shortest path),
and Invariant (iii) is satisfied because there are at most n1−β clusters in C and consequently
by Lemma 6 cost(ρi) ≤ 2n1−β .



M. Cygan, F. Grandoni, and T. Kavitha 215

ui vi

y

x

R

Figure 1 The solid edges represent a path ρj
i , while the dashed edges denote the new prefix of

the path ρj+1
i .

Say we have constructed ρji , where j ∈ {0, . . . , k}. Let us define the function value(ρji )
as the number of clusters C ∈ C such that C contains a vertex of ρji and the distance
between ui and C in Gi−1 is strictly greater than the distance between ui and C in ρji , i.e.,
δGi−1(ui, C) > δρj

i
(ui, C). Now we check the condition

cost(ρji ) ≤ 3γvalue(ρji ).

If that is the case, then we buy the path ρji . That is, Gi is set to Gi−1 ∪ ρji . We ignore
the remaining values of j and proceed with the next value of i. Else we construct ρj+1

i as
follows:

Let R be the longest suffix of ρji containing exactly bcost(ρji )/γc edges that are absent
in Gi−1. Observe that the first node of R is clustered: by the maximality of R, the edge
e of ρji preceding R is absent in Gi−1, and hence both the endpoints of e (one of which is
the first node of R) are clustered by the missing-edge property of GC . Consequently at least
1 + bcost(ρji )/γc ≥ cost(ρji )/γ vertices of R are clustered, as R contains bcost(ρji )/γc edges
absent in Gi−1 and the endpoints of these edges are clustered.

By Invariant (ii) there are at least cost(ρji )/(3γ) clusters in C having at least one vertex
of R. Since we did not buy ρji , there exists a cluster C ∈ C containing a vertex x ∈ C of R
such that the distance between ui and C in Gi−1 is at most the distance between ui and x
in ρji . We construct the path ρj+1

i by taking a shortest path in Gi−1 from ui to the closest
node y ∈ C, then we add a path of length at most two between y and x (which exists in GC
hence in Gi−1 by the cluster-diameter property), and finally add the suffix of R starting at
x (see Fig. 1).

Let us show that ρj+1
i maintains the invariants. Note that by construction, Invariant

(i) is satisfied, since the length of ρj+1
i is at most the length of ρji plus 2. Then, as long as

there is a cluster C ∈ C containing at least four vertices on ρj+1
i , we let a, b be the vertices

of ρj+1
i closest to ui and vi respectively. Note that there are at least three edges on ρj+1

i

between a and b, hence we can replace the subpath of ρj+1
i by adding the at most two edges

of GC guaranteed by the cluster-diameter property. Consequently, Invariant (ii) is satisfied.
Moreover, by the choice of R, Invariant (iii) is also satisfied. This finishes the construction
of ρj+1

i .
Observe that by Invariant (iii) we have cost(ρki ) ≤ 2/3: since cost(·) has only integral

values, it has to be that cost(ρki ) = 0, which ensures that we buy a path ρji for some j ≤ k.
Finally, as our spanner Gs we take Gs := Gz.

I Lemma 9. For any pair (ui, vi) ∈ P, δGs
(ui, vi) ≤ δG(ui, vi) + 2k.

Proof. From the above discussion, we buy at least one path ρji for some 0 ≤ j ≤ k. By
Invariant (i), the length of the latter path is at most the length of the shortest path ρi
between ui and vi plus 2k. J

STACS’13



216 On Pairwise Spanners

I Lemma 10. For β such that nβ = (n1/k(2k + 3)|S|)k/(2k+1), the subgraph Gs contains
O(n1+1/(2k+1)(k|S|)k/(2k+1)) edges.

Proof. To bound the size of Gs we recall that in the first phase we have inserted O(n1+β)
edges. Let 0 ≤ ji ≤ k be the index of a path ρji

i bought for a given i. We claim, that any
cluster C contributes to value(ρji

i ) of at most |S|(2k+ 3) bought paths. This holds because
when for ui ∈ S a supported path is bought the distance between ui and C is at most 2k+2
greater than the distance between ui and C in G: otherwise one could shorten ρji

i by more
than 2k, obtaining a contradiction with Invariant (i). Therefore the total number of edges
added during the second phase is upper bounded by

∑z
i=1 cost(ρji

i ) ≤
∑z
i=1 3γvalue(ρji

i ) ≤
3γ(2k+3)|S|n1−β , since each cluster C ∈ C supports at most |S|(2k+3) bought paths. The
claim follows. J

The proof of Theorem 4 follows from Lemmas 9 and 10.

5 Pairwise spanners

In this section we present our pairwise spanners for arbitrary P. We start with a near-
additive spanner (see Section 5.1) and then present a purely-additive spanner (see Section
5.2). In both cases we let P = {(s1, t1), . . . , (sN , tN )} denote the set of pairs, N = |P|.

5.1 A Near-Additive Pairwise Spanner
Our algorithm to construct the near-additive P-spanner from Theorem 1 consists of three
phases. First, we use Lemma 5 with the value of β to be determined later, obtaining a
cluster subgraph GC of G of size O(n1+β) together with a set C of at most n1−β clusters.

At the start of the second phase we set G0 := GC and consider the set of paths
{ρ1, . . . , ρN}, where ρi is a shortest path between si and ti in G. Next we iterate over
the paths ρi for i = 1, . . . , N . By cost(ρi) we denote the number of edges of ρi absent in
Gi−1, and by value(ρi) we denote the number of pairs of clusters (C1, C2) ∈ C, such that
both C1 and C2 contain at least one vertex of ρi and δρi

(C1, C2) < δGi−1(C1, C2). For a
given i if

cost(ρi) ≤
12 logn

ε

√
value(ρi),

then we buy ρi, that is we set Gi := Gi−1 ∪ ρi. Otherwise we set Gi := Gi−1.
In the third phase we add to GN the multiplicative (2 logn, 0) spanner of size O(n) given

in [15]: this way we obtain the desired spanner Gs.
In the following two lemmas we bound the stretch and size of Gs, respectively.

I Lemma 11. For each (si, ti) ∈ P, δGs
(si, ti) ≤ (1 + ε)δG(si, ti) + 4.

Proof. Clearly we can assume that the path ρi was not bought in the second phase, since
otherwise the claim trivially holds. Therefore cost(ρi) > 12 logn

ε

√
value(ρi).

Let ρi = (v0 = si, v1, . . . , v`−1, v` = ti) and let I ⊆ {0, . . . , `} be the set of all indices
j such that vj is clustered. Observe that if |I| ≤ 1, then by the missing-edge property the
whole path ρi is present in GC , and hence the claim holds. Therefore denote I = {i0, . . . , iw},
where i0 < i1 < . . . < iw and w ≥ 1. Let 0 ≤ a ≤ b ≤ w be two indices, such that via ∈ C1,
vib ∈ C2 (for some C1, C2 ∈ C), δρi

(C1, C2) ≥ δGi−1(C1, C2) and the value of b − a is
maximized. Note that such a pair of indices a, b always exists, since we can take a = b.

Let x = a + (w − b). Observe that any cluster C ∈ C contains at most 3 vertices of
VI = {vij : 0 ≤ j ≤ w}, since otherwise by the cluster-diameter property ρi would not be a



M. Cygan, F. Grandoni, and T. Kavitha 217

si tivia vib

≥ δGs(si, ti)

≤ δρi(si, via) + 2a log n ≤ δρi(via , vib) + 4 ≤ δρi(vib , ti) + 2(w − b) log n

Figure 2 Illustration of the three paths concatenation in the proof of Lemma 11.

shortest si-ti path. Therefore there are at least x/6 clusters C′ having at least one vertex
in the set {vij : 0 ≤ j < dx/2e}, and at least x/6 clusters C′′ having at least one vertex in
the set {vij : w − dx/2e < j ≤ w}. However, each of the at least (x/6)2 pairs of clusters
in C′ ×C′′ contributes to value(ρi) since the difference between indices in the corresponding
set is at least w − dx/2e+ 1− (dx/2e − 1) > w − x. Therefore w ≥ cost(ρi) > 12 logn

ε
x
6 and

hence x ≤ wε
2 logn .

The latter bound on x is sufficient to prove the claim. In fact, consider the path between
si and ti in Gs obtained by concatenating the following paths (as illustrated in Fig. 2):

A shortest path in Gs from si to via . Note that in the prefix of ρi between si and via
there are a+1 clustered nodes and hence at most a edges absent in Gi−1 (by the missing-
edge property). Since Gs contains the (2 logn, 0)-spanner added in the third phase, each
missing edge can be replaced by at path of length 2 logn. Consequently, there is a path
from si to via of length at most δρi

(si, via) + 2a logn in Gs.
A shortest path in Gs from via to vib . Let C1, C2 ∈ C be the clusters containing via and
vib respectively. We know that in Gi−1 there is a path from C1 to C2 of length at most
δρi

(via , vib), which can be extended to a path between via and vib in Gi−1 by adding at
most 4 edges (by the cluster-diameter property).
A shortest path in Gs from vib to ti. Observe that in the suffix of ρi between vib and ti
there are at most w − b edges absent in Gi−1 by the same argument as above. Hence,
thanks to the (2 logn, 0)-spanner added in the third phase, there is a path from vib to ti
of length at most δρi

(vib , ti) + (w − b)2 logn in Gs.
The resulting path is of length at most

δρi
(si, via) + 2a logn+ δρi

(via , vib) + 4 + δρi
(vib , ti) + (w − b)2 logn

= δG(si, ti) + 2x logn+ 4 ≤ (1 + ε)δG(si, ti) + 4,

where the last inequality follows from x ≤ εw
2 logn together with w ≤ δG(si, ti). J

Due to space limitation we postpone the proof of the following lemma to the full version.

I Lemma 12. For β such that n2β =
√
N logn

ε the size of Gs is O(nN1/4
√

logn/ε).

Having Lemmas 11 and 12, the proof of Theorem 1 follows.

5.2 A Purely-Additive Pairwise Spanner
In this section we describe an algorithm to compute the purely-additive P-spanner from
Theorem 2. To that aim we will combine ideas from the proofs of Theorems 1 and 4.

Our algorithm consists of the usual clustering phase (for an appropriate parameter β)
followed by a path-buying phase that we next describe.

Let C and GC be the clustering and the associated cluster graph. At the beginning of
the path-buying phase, we set G0 := GC and consider the set {ρ1, . . . , ρN}, where ρi is a

STACS’13



218 On Pairwise Spanners

shortest path between si and ti in G. Next we iterate over the paths ρi for i = 1, . . . , N .
For a given i we are going to define paths ρji , where 0 ≤ j ≤ k, maintaining the following
invariants:

(i) ρji is a path between si and ti in G of length at most δG(si, ti) + 4j,
(ii) any cluster C ∈ C contains at most three vertices of ρji ,
(iii) cost(ρji ) ≤ 2n1−β/γj , where cost(ρji ) is the number of edges of ρji absent in Gi−1, and

γ = (3n1−β)1/k.

Our algorithm will buy exactly one path ρji , which will ensure by Invariant (i) that in Gi the
distance between si and ti is at most δG(ui, vi) + 4k. By value(ρji ) let us denote the number
of pairs of clusters C1, C2 ∈ C, such that both C1 and C2 contain at least one vertex of ρji
and δρj

i
(C1, C2) < δGi−1(C1, C2).

We set ρ0
i := ρi. Observe that for j = 0 Invariant (i) is trivially satisfied, Invariant (ii) is

satisfied by the cluster-diameter property (otherwise ρi would not be a shortest path), and
Invariant (iii) is satisfied because there are at most n1−β clusters in C and consequently by
Lemma 6, cost(ρi) ≤ 2n1−β .

Say we have constructed ρji , where j ∈ {0, . . . , k}. If

cost(ρji ) ≤ 6γ
√

value(ρji ) ,

then we buy the path ρji , i.e. as Gi we take the union of Gi−1 and ρji , ignore remaining
values of j and proceed with the next value of i. Otherwise (i.e., cost(ρji ) > 6γ

√
value(ρji )),

we construct a path ρj+1
i as follows:

Let ρji = (v0 = si, v1, . . . , v`−1, v` = ti) and let I ⊆ {0, . . . , `} be the set of all indices
j such that vj is clustered. Observe that if |I| ≤ 1, then by the missing-edge property the
whole path ρji is present in GC , and hence it is of zero cost, which contradicts the assumption
cost(ρji ) > 6γ

√
value(ρji ). Therefore denote I = {i0, . . . , iw}, where i0 < i1 < . . . < iw and

w ≥ 1. Let 0 ≤ a ≤ b ≤ w be two indices, such that via ∈ C1, vib ∈ C2 (for some C1, C2 ∈ C),
δρj

i
(C1, C2) ≥ δGi−1(C1, C2) and the value of b − a is maximized. Note that such a pair of

indices a, b always exists, since we can take a = b.
Let x = a + (w − b). By Invariant (ii) there are at least x/6 clusters C′ having at least

one vertex in the set {vij : 0 ≤ j < dx/2e}, and at least x/6 clusters C′′ having at least
one vertex in the set {vij : w − dx/2e < j ≤ w}. However, each of the at least (x/6)2 pairs
of clusters in C′ × C′′ contributes to value(ρji ) since the difference between indices in the
corresponding set is at least w − dx/2e+ 1− (dx/2e − 1) > w − x. Therefore

cost(ρji ) > 6γ
√

value(ρji ) ≥ 6γ
√(x

6

)2
= γ x ⇒ x ≤ cost(ρji )/γ. (1)

We construct the path ρj+1
i by appending the following three paths A, B, and C:

As A we take the prefix of ρji from si to via . Note that this prefix contains a+1 clustered
nodes and hence at most a edges absent in Gi−1 (by the missing-edge property of GC).
Let C1, C2 ∈ C be the clusters containing via and vib respectively. We know that in Gi−1
there is a path from C1 to C2 of length at most δρj

i
(via , vib), which can be extended to a

path B between via and vib in Gi−1 by adding at most 4 edges (by the cluster-diameter
property).
As C we take the suffix of ρji from vib to ti, which contains at most w − b edges absent
in Gi−1 by the same argument as above.



M. Cygan, F. Grandoni, and T. Kavitha 219

Observe that ρj+1
i contains at most a+ (w − b) = x edges absent in Gi−1, hence by (1) we

ensure Invariant (iii). Moreover the length of ρj+1
i is at most the length of ρji plus 4, which

ensures Invariant (i). In order to ensure Invariant (ii), as long as there exists a cluster C ∈ C
containing at least 4 vertices of ρj+1

i we let u and v be two such vertices closest to si and ti
on ρj+1

i respectively and replace the subpath of ρj+1
i between u and v (which is of length at

least three) by a path of length at most two in Gi−1 (which exists by the cluster-diameter
property).

Observe that by Invariant (iii) we have cost(ρki ) ≤ 2/3, hence cost(ρki ) = 0 which ensures
that we buy a path ρji for some j ≤ k. Finally, as our spanner Gs we take Gs := GN .

I Lemma 13. For each (si, ti) ∈ P, δGs
(si, ti) ≤ δG(si, ti) + 4k.

Proof. From the above discussion, Gs contains at least one path ρji between si and ti for
some 0 ≤ j ≤ k. The claim follows by Invariant (i). J

I Lemma 14. For β such that nβ = (6n1/k
√

(4k + 5)N)k/(2k+1) the size of Gs is
O(n1+1/(2k+1)(

√
(4k + 5)N)k/(2k+1)).

Proof. The clustering phase gives O(n1+β) edges, which matches the desired bound on
Gs. Let 0 ≤ ji ≤ k be the index of a path ρji

i bought for a given i. We claim, that
any pair of clusters contributes to value(ρji

i ) of at most (4k + 5) bought paths. Observe,
that if a pair of clusters C1, C2 contributes to value(ρji

i ), then when ρji

i is bought we have
δGi(C1, C2) ≤ δG(C1, C2) + 4k + 4, since otherwise the subpath of ρji

i between C1 and C2
might be shortened by more than 4k, contradicting Invariant (i). The total number of edges
added in the second phase is upper bounded by∑

1≤i≤N
cost(ρji

i ) ≤
∑

1≤i≤N
6γ
√

value(ρji

i )

Cauchy-Schwarz
inequality
≤ 6γ

√ ∑
1≤i≤N

value(ρji

i )
√
N

≤ 6γ
√

4k + 5n1−β
√
N .

By substituting γ and β the claim follows. J

Theorem 2 follows from Lemmas 13 and 14

6 Conclusions

We considered a natural extension to the problem of computing a sparse spanner in an
undirected unweighted graph. Along with the input graph G = (V,E), a subset P ⊆ V × V
of relevant pairs of vertices is also given here and we seek a sparse subgraph H of G such
that for every pair (u, v) in P, the u-v distance δH(u, v) in the subgraph is close to the u-v
distance δG(u, v) in G. We showed sparse subgraphs H where δH(u, v) is a small additive
or near-additive stretch away from δG(u, v).

The pairwise preservers in [8] are at the same time more accurate and sparser than our
spanners for small enough values of |P|. In particular, in that range of values of |P| the
authors exploit a construction which does not seem to benefit from allowing a larger stretch.
The authors also present lower bounds on the size of any preserver, however it is unclear
whether those lower bounds extend to the case of pairwise spanners (where distances have
to be approximated rather than preserved). Obtaining sparser pairwise spanners for very
small |P|, if possible, is an interesting open problem.

STACS’13



220 On Pairwise Spanners

References
1 B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Near-linear time construction of sparse

neighborhood covers. SIAM Journal on Computing, 28(1):263-277, 1998.
2 B. Awerbuch and D. Peleg. Routing with polynomial communication-space trade-off. SIAM

Journal on Discrete Math., 5(2):151-162, 1992.
3 S. Baswana and T. Kavitha. Faster algorithms for all-pairs approximate shortest paths in

undirected graphs. SIAM Journal on Computing, 39(7):2865-2896, 2010.
4 S. Baswana, T. Kavitha, K. Mehlhorn, S. Pettie. Additive Spanners and (α, β)-Spanners.

ACM Transactions on Algorithms, 7(1): 5, 2010.
5 S. Baswana and S. Sen. A simple linear time algorithm for computing a (2k − 1)-spanner

of O(n1+1/k) size in weighted graphs. In Proc. 30th Int. Colloq. on Automata, Languages,
and Programming (ICALP), pages 384-396, 2003.

6 S. Baswana and S. Sen. Approximate distance oracles for unweighted graphs in O(n2 logn)
time. In Proc. 15th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 271-
280, 2004.

7 E. Cohen. Fast algorithms for constructing t-spanners and paths of stretch t. In Proc. 34th
IEEE Symp. on Foundations of Computer Science (FOCS), pages 648-658, 1993.

8 D. Coppersmith and M. Elkin. Sparse source-wise and pair-wise distance preservers. In
Proc. 16th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 660-669, 2005.

9 L. J. Cowen. Compact routing with minimum stretch. Journal of Algorithms, 28:170-183,
2001.

10 L. J. Cowen and C. G. Wagner. Compact roundtrip routing in directed networks. Journal
of Algorithms, 50(1):79-95, 2004.

11 D. Dor, S. Halperin, and U. Zwick. All-pairs almost shortest paths. SIAM Journal on
Computing, 29(5):1740-1759, 2004.

12 M. Elkin. Computing almost shortest paths. In ACM Transactions on Algorithms, 1(2):283-
323, 2005.

13 M. Elkin and D. Peleg. (1 + ε, β)-spanner construction for general graphs. SIAM Journal
on Computing, 33(3):608-631, 2004.

14 C. Gavoille, D. Peleg, S. Perennes, and R. Raz. Distance labeling in graphs. In Proc. 12th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 210-219, 2001.

15 S. Halperin and U. Zwick. Unpublished result, 1996.
16 D. Peleg. Proximity-preserving labeling schemes. Journal of Graph Theory, 33(3):167-176,

2000.
17 D. Peleg and A. A. Schaffer. Graph Spanners. Journal of Graph Theory, 13:99-116, 1989.
18 D. Peleg and J. D. Ullman. An optimal synchronizer for the hypercube. SIAM Journal on

Computing, 18:740-747, 1989.
19 L. Roditty and U. Zwick. On dynamic shortest paths problems. In Proc. 12th Annual

European Symposium on Algorithms (ESA), pages 580-591, 2004.
20 L. Roditty, M. Thorup, and U. Zwick. Deterministic constructions of approximate distance

oracles and spanners. In Proc. 32nd Int. Colloq. on Automata, Languages, and Programming
(ICALP), pages 261-272, 2005.

21 M. Thorup and U. Zwick. Approximate Distance Oracles. Journal of the ACM, 52(1):1-24,
2005.

22 M. Thorup and U. Zwick. Spanners and emulators with sublinear distance errors. In Proc.
17th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 802-809, 2006.


	Introduction
	Our Results and Techniques
	Related Work

	Clustering
	Subsetwise Spanners
	Sourcewise spanners
	Pairwise spanners
	A Near-Additive Pairwise Spanner
	A Purely-Additive Pairwise Spanner

	Conclusions

