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Abstract
Linear rank-width is a graph width parameter, which is a variation of rank-width by restricting
its tree to a caterpillar. As a corollary of known theorems, for each k, there is a finite set Ok of
graphs such that a graph G has linear rank-width at most k if and only if no vertex-minor of G
is isomorphic to a graph in Ok. However, no attempts have been made to bound the number of
graphs in Ok for k ≥ 2. We construct, for each k, 2Ω(3k) pairwise locally non-equivalent graphs
that are excluded vertex-minors for graphs of linear rank-width at most k. Therefore the number
of graphs in Ok is at least double exponential.
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1 Introduction

Linear rank-width is a width parameter of graphs motivated by rank-width of graphs by
Oum and Seymour [11]. A vertex-minor relation is a graph containment relation such that
rank-width and linear rank-width cannot increase when taking vertex-minors of a graph. Two
graphs G, H are called locally equivalent if H is a vertex-minor of G and |V (H)| = |V (G)|.
The definitions can be found in Section 2.

Oum [10] proved that for every infinite sequence G1, G2, . . . of graphs of bounded rank-
width, there exist i < j such Gi is isomorphic to a vertex-minor of Gj . As a corollary, we
immediately obtain the following theorem.

I Theorem 1 (Oum [10]). For every vertex-minor closed class C of graphs of bounded rank-
width, there is a finite list of graphs G1, G2, . . . , Gm such that a graph is in C if and only if
it does not have a vertex-minor isomorphic to Gi for some i.

Because the rank-width of a graph is less than or equal to the linear rank-width of the
graph, we deduce the following.

I Corollary 2. For a fixed k, there is a finite set Ok of graphs G1, G2, . . . , Gm such that a
graph has linear rank-width at most k if and only if it does not have a vertex-minor isomorphic
to Gi for some i ∈ {1, 2, . . . ,m}.
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Figure 1 Graphs in O1.

However, Theorem 1 does not produce an explicit upper or lower bound on the number
of graphs in Ok for Corollary 2. We aim to provide a lower bound on |Ok|.

Our main result is the following.

I Theorem 3. Let k ≥ 2 be an integer. Then |Ok| ≥ 2Ω(3k). In other words, there are at
least 2Ω(3k) pairwise locally non-equivalent graphs that are vertex-minor minimal with the
property that they have linear rank-width larger than k.

When C is the set of all graphs having rank-width at most k, Theorem 1 implies that
there are finitely many graphs G1, G2, . . . , Gm such that a graph has rank-width at most k
if and only if it has no vertex-minor isomorphic to Gi for some i. Again Theorem 1 does not
provide a lower or upper bound on m for graphs of rank-width at most k. However, for the
upper bound, Oum [9] proved that |V (Gi)| ≤ (6k+1 − 1)/5 for each i. No analogous result is
known for linear rank-width.

Characterizing graphs of linear rank-width at most k in terms of forbidden vertex-minors
seems hard. So far only 1 case is known. For k = 1, Adler, Farley, and Proskurowski [1]
characterized the graphs of linear rank-width at most 1 by a set O1 of three graphs in Figure 1.
A structural characterization of graphs of linear rank-width 1 was given by Ganian [6].

There have been similar results on the number of forbidden minors for various graph width
parameters; for instance, path-width [12], linear-width [13], tree-width [8], branch-width [7],
tree-depth [5].

The paper is organized as follows. We present the definitions of linear rank-width and
vertex-minor. In Section 3, we construct a set ∆k of graphs for every non-negative integer k,
and prove that every graph in ∆k has linear rank-width k + 1 but every proper vertex-minor
has linear rank-width at most k. Roughly speaking, ∆0 = {K2} and for k ≥ 1, the set ∆k

consists of all graphs obtained from a disjoint union of three graphs in ∆k−1 by connecting
them with a triangle. In Section 4, we show that no two graphs in ∆k are locally equivalent.
At last, we show that the size of ∆k is 2Ω(3k) in Section 5, and we conclude that |Ok| ≥ 2Ω(3k).

2 Preliminaries

In this paper, graphs have no loops and parallel edges. Let G be a graph. For S ⊆ V (G),
G[S] denotes the subgraph of G induced on S. For S ⊆ V (G), NG(S) denotes the set of
vertices of V (G) \ S adjacent to a vertex in S. And for v ∈ V (G), we let NG(v) = NG({v}).
A vertex v in G is a leaf if |NG(v)| = 1. A graph G is a star if G is isomorphic to K1,n for
some n ≥ 1.

For an X × Y matrix M and subsets A ⊆ X and B ⊆ Y , M [A,B] denotes the A × B
submatrix (mi,j)i∈A,j∈B of M . If A = B, then M [A] = M [A,A] is called a principal
submatrix of M .
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Figure 2 Pivoting an edge ab.

Vertex-minors.

The local complementation at a vertex v of a graph G = (V,E) is an operation to obtain a
graph G∗v from G by replacing the subgraph G[NG(v)] with the complementary subgraph of
G[NG(v)]. The graph obtained from G by pivoting an edge uv is defined by G∧uv = G∗u∗v∗u.

To see how we obtain the resulting graph by pivoting an edge uv, let V1 = NG(u)∩NG(v),
V2 = NG(u)\NG(v)\{v}, and V3 = NG(v)\NG(u)\{u}. One can easily verify that G ∧ uv
is identical to the graph obtained from G by complementing adjacency of vertices between
distinct sets Vi and Vj , and swapping the vertices u and v [9]. See Figure 2 for an example.

A graph H is a vertex-minor of G if H can be obtained from G by applying a sequence
of vertex deletions and local complementations. A graph H is locally equivalent to G if H
can be obtained from G by applying a sequence of local complementations.

A vertex-minor H of G is elementary if |V (H)| = |V (G)| − 1. A vertex-minor H of G is
proper if |V (H)| < |V (G)|. A graph G is an excluded vertex-minor for a vertex-minor closed
set C of graphs if G /∈ C and H ∈ C for every proper vertex-minor H of G.

Linear rank-width.

The adjacency matrix of a graph G, which is a (0, 1)-matrix over the binary field, will be
denoted by A(G). The cut-rank function cutrkG : 2V → Z of a graph G = (V,E) is defined
by

cutrkG(X) = rank(A(G)[X,V \X]).

A linear layout L of G is a sequence (v1, v2, . . . , v|V (G)|) of V (G). For a linear layout
L of G and a, b ∈ V (G), we denote a ≤L b if a = b or a appears before b in L. For
two sequences L1 = (v1, v2, . . . , vn) and L2 = (w1, w2, . . . , wm), we define L1 ⊕ L2 =
(v1, v2, . . . , vn, w1, w2, . . . , wm).

The width of a linear layout L in G, denoted by lrwL(G), is defined as the maximum
over all cutrkG({w : w ≤L v}) for v ∈ V (G). The linear rank-width of G, denoted by lrw(G),
is the minimum width of all linear layouts of G. The next proposition shows the relation
between the cut-rank function and local complementation.

I Proposition 4 (Oum [9]). Let G be a graph and v ∈ V (G). Then for every X ⊆ V (G),

cutrkG(X) = cutrkG∗v(X).

By Proposition 4, lrw(G) = lrw(G ∗ v) for every v ∈ V (G). Thus, we immediately
obtain that if H is locally equivalent to G, then lrw(H) = lrw(G). And if a graph H is a
vertex-minor of a graph G, then lrw(H) ≤ lrw(G).

STACS’13
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Figure 3 All graphs in ∆2.

3 Excluded vertex-minors for graphs of bounded linear rank-width

To prove Theorem 3, for each non-negative integer k, we construct a set ∆k of graphs such
that every graph in ∆k has linear rank-width k + 1 but every proper vertex-minor has linear
rank-width at most k.

A delta composition G of graphs G1, G2, and G3 is a graph obtained from the disjoint
union of G1, G2, and G3 by adding a triangle v1v2v3 where vi ∈ V (Gi) for i = 1, 2, 3. We
call v1v2v3 the main triangle of G. For a non-negative integer k, we define ∆k as follows.

1. ∆0 = {K2}.
2. For i ≥ 1, ∆i is the set of all delta compositions of 3 graphs in ∆i−1.

The main theorem of this section is as follows.

I Theorem 5. Let k be a non-negative integer. Every graph in ∆k is an excluded vertex-minor
for graphs of linear rank-width at most k.

First, we prove that every graph in ∆k has linear rank-width k + 1.

I Proposition 6. Let k be a non-negative integer and G ∈ ∆k. Then G has linear rank-width
k + 1. Moreover, for w ∈ V (G), there is a linear layout of G having width k + 1 such that
the first vertex of the linear layout is w.

Proof. We use induction on k. If k = 0, then G = K2. If V (G) = {x, y}, then both (x, y)
and (y, x) are linear layouts of G having width 1. Hence, the statements are true. We may
assume that k ≥ 1. Since G ∈ ∆k, G is a delta composition of G1, G2, and G3 in ∆k−1. Let
v1v2v3 be the main triangle of G such that vi ∈ V (Gi) for i = 1, 2, 3.

We first show that lrw(G) ≥ k + 1. Suppose that G has linear rank-width at most k.
Since G1 ∈ ∆k−1, by induction hypothesis, G1 has linear rank-width k. Since lrw(G) ≥
lrw(G1) = k, G has linear rank-width k. Let L be a linear layout of G having width k. And
for a vertex v in G, we define Sv = {x ∈ V (G) : x ≤L v} and Tv = V (G) \ Sv.

Let a and b be the first and the last vertices in L such that cutrkG(Sa) = cutrkG(Sb) = k.
Without loss of generality, we may assume that {a, b} ⊆ V (G2) ∪ V (G3). We want to show
that G1 has linear rank-width at most k − 1. If it is true, then we obtain a contradiction
because lrw(G1) = k. Let LG1 be the subsequence of L whose elements are the vertices of
G1.
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We claim that LG1 is a linear layout of G1 having width at most k − 1. Let v ∈ V (G1).
It is sufficient to show that cutrkG1(Sv ∩ V (G1)) ≤ k − 1. Note that v 6= a and v 6= b. If
v <L a or v >L b, then

cutrkG1(Sv ∩ V (G1)) ≤ cutrkG(Sv)
≤ k − 1.

So we may assume that a <L v <L b. Note that one of Sv ∩ V (G1) and Tv ∩ V (G1) does not
have a neighbor in G \ V (G1) because v1 is the unique vertex in G1 which has a neighbor in
G \ V (G1). And since G[V (G2) ∪ V (G3)] is connected and a ∈ Sv and b /∈ Sv, there is an
edge u1u2 in G \ V (G1) such that u1 ∈ Sv and u2 /∈ Sv. So A(G)[Sv \ V (G1), Tv \ V (G1)] is
a non-zero matrix. Depending on whether v1 ∈ Sv ∩ V (G1) or v1 ∈ Tv ∩ V (G1),

cutrkG(Sv) = rank


Tv ∩ V (G1) Tv \ V (G1)( )

Sv ∩ V (G1) ∗ 0
Sv \ V (G1) ∗ ∗


≥ rank (A(G)[Sv ∩ V (G1), Tv ∩ V (G1)]) + rank (A(G)[Sv \ V (G1), Tv \ V (G1)]) ,

or

cutrkG(Sv) = rank


Tv ∩ V (G1) Tv \ V (G1)( )

Sv ∩ V (G1) ∗ ∗
Sv \ V (G1) 0 ∗


≥ rank (A(G)[Sv ∩ V (G1), Tv ∩ V (G1)]) + rank (A(G)[Sv \ V (G1), Tv \ V (G1)]) ,

respectively. Thus, we have

cutrkG1(Sv ∩ V (G1)) = rank (A(G)[Sv ∩ V (G1), Tv ∩ V (G1)])
≤ cutrkG(Sc)− rank (A(G)[Sv \ V (G1), Tv \ V (G1)])
≤ cutrkG(Sv)− 1 ≤ k − 1.

So LG1 is a linear layout of G1 having width at most k − 1, which is a contradiction. Hence,
lrw(G) ≥ k + 1.

Now we show that there is a linear layout of G having width k + 1 with a given starting
vertex. Let v ∈ V (G). Without loss of generality, we assume that v ∈ V (G1). By induction
hypothesis, there is a linear layout L1 of G1 having width k such that the first vertex of L1
is v. And, for j = 2, 3, there is a linear layout Lj of Gj having width k such that the first
vertex of Lj is vj . It is easy to check that L1 ⊕ L2 ⊕ L3 is a linear layout of G having width
at most k + 1. Since this linear layout starts at v, we conclude the result. J

Of course, for v ∈ V (G), there is also a linear layout having width k + 1 such that the
last vertex of the linear layout is v. Let v ∈ V (G). A vertex w, w 6= v, in G is a twin of v if
NG(w) \ v = NG(v) \ w. A twin w of v is a false twin if w is not adjacent to v. And a twin
w of v is a true twin if w is adjacent to v.

Now we prove that every elementary vertex-minor of G in ∆k has linear rank-width k.
To prove it, we will use the following lemmata.

I Lemma 7 (Bouchet [2]). Let G be a graph, v ∈ V (G), and H be a vertex-minor of G such
that V (G) \ V (H) = {v}. If w is an arbitrary neighbor of v, then H is locally equivalent to
either G \ v, G ∗ v \ v, or G ∧ vw \ v.

STACS’13
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I Lemma 8 (Oum [9]). Let G be a graph and vv1, vv2 ∈ E(G). Then v1v2 ∈ E(G∧ vv1) and
G ∧ vv1 ∧ v1v2 = G ∧ vv2.

I Lemma 9. Let k be a positive integer. Let G1, G2 ∈ ∆k−1, and let G3 be a graph having
linear rank-width at most k − 1. Then every delta composition of G1, G2, and G3 has linear
rank-width k. Also, if a graph is obtained from the disjoint union of G1 and G2 by adding
an edge w1w2 where w1 ∈ V (G1) and w2 ∈ V (G2), then it has linear rank-width k.

I Lemma 10. Let k be a non-negative integer. Let G ∈ ∆k, v ∈ V (G), and H be a graph
obtained from G by adding a twin w of v. Then there is a linear layout L of H having width
k + 1 such that the first vertex of L is v and the last vertex of L is w.

We are ready to prove the main combinatorial result in this paper.
I Proposition 11. Let k be a non-negative integer and G ∈ ∆k. Then every elementary
vertex-minor of G has linear rank-width k.

Proof. Note that for v ∈ V (G) and S ⊆ V (G), cutrkG\v(S \ v) ≥ cutrkG(S) − 1 because
exactly one column or one row of A(G)[S, V (G) \S] is removed. Thus by Proposition 6, if H
is an elementary vertex-minor of G, then lrw(H) ≥ lrw(G)− 1 = (k + 1)− 1 = k. Therefore,
it is sufficient to prove that every elementary vertex-minor of G in ∆k has linear rank-width
at most k.

We use induction on k. If k = 0, then G = K2 and every elementary vertex-minor of G
is isomorphic to K1, so it has linear rank-width 0. We assume that k ≥ 1. Since G ∈ ∆k,
G is a delta composition of G1, G2, and G3 in ∆k−1. Let v1v2v3 be the main triangle of
G such that vi ∈ V (Gi) for i = 1, 2, 3. Let H be an elementary vertex-minor of G and
V (G) \ V (H) = {v}. By Lemma 7, for a neighbor w of v, H is locally equivalent to one of
three graphs G \ v, G ∗ v \ v, and G ∧ vw \ v. Without loss of generality, we may assume
that v ∈ V (G1). Since G1 ∈ ∆k−1, by induction hypothesis, G1 \ v has linear rank-width at
most k − 1. Thus, by Lemma 9, G \ v has linear rank-width k. What remains to be proved
is that for a neighbor w of v, G ∗ v \ v and G ∧ vw \ v have linear rank-width at most k.

First, suppose that v 6= v1. If NG(v) = {v1}, then G ∗ v \ v = G \ v and G ∧ vv1 \ v is
isomorphic to G \ v1. Therefore, by Lemma 9, they have linear rank-width k. If v has a
neighbor w other than v1, then

(G∗v)[V (G2)∪V (G3)∪{v1}] = (G∧vw)[V (G2)∪V (G3)∪{v1}] = G[V (G2)∪V (G3)∪{v1}].

Hence, both G ∗ v \ v and G ∧ vw \ v are delta compositions of two graphs in ∆k−1 and
one graph having linear rank-width at most k − 1. Thus, by Lemma 9, they have linear
rank-width k.

v2 v3

v = v1

G[{v2, v3} ∪ V (G1)]

v2 v3

v = v1

G′1 = (G ∗ v \ v)[{v2, v3} ∪ V (G1)]

v2 v3

G′1 ∗ v2

Figure 4 The case G ∗ v \ v where v = v1.
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v2 v3

v = v1

G[{v2, v3} ∪ V (G1)]

v v3

v2

G′′1 ∧ v2w = (G ∧ vw \ v)[{v2, v3} ∪ V (G1)] ∧ v2w

= G[{v2, v3} ∪ V (G1)] ∧ vv2 \ v

Figure 5 The case G ∧ vw \ v where v = v1.

Now we consider v = v1. Let w be a neighbor of v in G1. By Proposition 6, there is a
linear layout LG2 of G2 having width k such that the end vertex of LG2 is v2, and there is a
linear layout LG3 of G3 having width k such that the first vertex of LG3 is v3. We denote
G′1 = (G ∗ v \ v)[{v2, v3} ∪ V (G1)] and G′′1 = (G ∧ vw \ v)[{v2, v3} ∪ V (G1)].

We first show that G ∗ v \ v has linear rank-width at most k. To prove it, we will find
a linear layout L′ of G′1 having width k such that the first vertex of L′ is v2 and the last
vertex of L′ is v3. In Figure 4, we can observe that NG1(v) = NG′

1∗v2(v2) = NG′
1∗v2(v3) and

A(G)[NG1(v)] = A(G′1 ∗ v2)[NG1(v)]. Hence, the graph G′1 ∗ v2 is isomorphic to the graph
obtained from G1 by adding a false twin of v. By Proposition 10, there is a linear layout L′
of G′1 ∗ v2 having width k such that the first vertex of L′ is v2 and the last vertex of L′ is v3.
Let LG1 be the sequence obtained from L′ by deleting v2 and v3.

We show that L = LG2 ⊕ LG1 ⊕ LG3 is a linear layout of G ∗ v \ v having width at most
k. If x ∈ V (G2) ∪ V (G3), then clearly cutrkG∗v\v({y : y ≤L x}) ≤ k. If x ∈ V (G1) \ v, then
by Proposition 4,

cutrkG∗v\v({y : y ≤L x}) = cutrkG′
1
({y : y ≤L′ x})

= cutrkG′
1∗v2({y : y ≤L′ x}) ≤ k.

Therefore, G ∗ v \ v has linear rank-width at most k.
Now we show that G ∧ vw \ v has linear rank-width at most k. By the same argument

in the previous case, it is sufficient to prove that there is a linear layout L′′ of G′′1 having
width k such that the first vertex is v2 and the last vertex is v3. We claim that G′′1 ∧ v2w =
G[{v2, v3} ∪ V (G1)] ∧ vv2 \ v. Note that

G′′1 ∧ v2w = (G ∧ vw \ v)[{v2, v3} ∪ V (G1)] ∧ v2w

= G[{v2, v3} ∪ V (G1)] ∧ vw \ v ∧ v2w

= G[{v2, v3} ∪ V (G1)] ∧ vw ∧ v2w \ v.

And by Lemma 8,

G[{v2, v3} ∪ V (G1)] ∧ vw ∧ v2w \ v = G[{v2, v3} ∪ V (G1)] ∧ vv2 \ v.

In Figure 5, we can observe that G′′1 ∧ v2w is isomorphic to the graph obtained from G1 by
adding a true twin of v. Thus, by Proposition 10, there is a linear layout L′′ of G′′1 ∧ v2w

having width k such that the first vertex of L′′ is v2 and the last vertex of L′′ is v3. Also, for
x ∈ V (G1) \ v,

cutrkG′′
1
({y : y ≤L′′ x}) = cutrkG′′

1∧vv2({y : y ≤L′′ x}) ≤ k.

STACS’13
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v1 v2 v3
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c
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D ∗ v2

v1 v2 v3

v4

v5

v6

v7

Figure 6 A split-decomposition D of a graph G, and D ∗ v2. The marked edges of D are depicted
as wavy edges, and the desendants of the vertex v2 in D is a and f . Note that D ∗ v2 is a split
decomposition of G ∗ v2.

Therefore, we conclude that G ∧ vw \ v has linear rank-width at most k. J

Proof of Theorem 5. Let G ∈ ∆k. By Proposition 6, G has linear rank-width k + 1. And
by Proposition 11, every elementary vertex-minor of G has linear rank-width k. So every
proper vertex-minor of G has linear rank-width at most k. Therefore, G is an excluded
vertex-minor for graphs of linear rank-width at most k. J

4 No two graphs in ∆k are locally equivalent.

In this section, we show that no two graphs in ∆k are locally equivalent.

I Theorem 12. Let k be a non-negative integer and G,H ∈ ∆k. If G and H are locally
equivalent, then G and H are isomorphic.

To prove it, we will use the canonical split-decompositions of graphs in ∆k.

Split-decomposition.
Let G be a graph. A partition (A,B) of V (G) is a split if |A| ≥ 2, |B| ≥ 2, and for every
v ∈ NG(B) and w ∈ NG(A), vw ∈ E(G). If G has no split and |V (G)| ≥ 5, then we call G a
prime graph. If G has a split (A,B), then we define a graph G′, called a simple decomposition
of G, as the graph obtained from G by deleting all edges between NG(A) and NG(B), and
adding two vertices w1,w2 and adding edges {w1w2}∪{vw1 : v ∈ NG(B)}∪{w2v : v ∈ NG(A)}.
We call w1w2 a marked edge of G′. A graph is a marked graph if it has marked edges, and for
a marked graph D, we define M(D) as the set of marked edges of D. A split-decomposition of
G is recursively defined to be either G or a marked graph obtained from a split-decomposition
D by replacing a component H of D \ M(D) with a simple decomposition of H. Two
components C1 and C2 of D \M(D) are neighbors if there exist v1 ∈ V (C1), v2 ∈ V (C2)
such that v1v2 ∈ M(D). A split-decompositon D of a graph is canonical if it satisfies the
following:

(i) each component of D \M(D) is either a prime graph or a star or a complete graph,
(ii) no two complete components are neighbors,
(iii) if two star components are neighbors, then two ends of the marked edge are both centers

or both leaves of each components.

Two split-decompositions D1 and D2 of a graph G are equivalent if there is a graph
isomorphism f from D1 to D2 such that f preserves the marked edges and f |V (G) is an
identity function. We need the following result.
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I Lemma 13 (Cunningham [4]). Canonical split-decompositions of a graph are equivalent.

Let D be the canonical split-decomposition of G and C(D) = {C1, C2, . . . , Cn} be the
components of D \M(D). A tree TG is a canonical tree of G if V (TG) = {vC1 , vC2 , . . . , vCn}
and vCi

is adjacent to vCj
if and only if two components Ci and Cj are neighbors in D. We

call f the canonical map from TG to D if it is the bijection from V (TG) to C(D) such that
f(vCk

) = Ck.
For v ∈ V (G) ⊆ V (D), a vertex w in D is a descendant of v if either w = v or w is

the end of a path starting from v, whose successive edges are alternatively non-marked and
marked edges, and the last edge is marked. Note that each component of D \M(D) has at
most 1 descendant of a vertex because every marked edge in D is a cut-edge. For v ∈ V (G),
we define D ∗ v as the marked graph obtained from D by replacing each component H of
D \M(D) having a descendant w of v by H ∗ w.

I Lemma 14 (Bouchet [3]). If D is a canonical split-decomposition of a graph G and
v ∈ V (G), then D ∗ v is a canonical split-decomposition of the graph G ∗ v.

By Lemma 14, if G and H are locally equivalent, then G and H have isomorphic
canonical trees. Hence, it is sufficient to prove that for G,H ∈ ∆k, if G and H have
isomorphic canonical trees, then G is isomorphic to H. To show this, we explicitly describe
the canonical decompositions of graphs in ∆k.

Clearly, K2 has itself as a canonical split-decomposition. Let k ≥ 1 and G ∈ ∆k. Note
that for a non-leaf vertex v in G, v is incident with exactly one cut-edge and meets at least
one triangles. For a non-leaf vertex v in G, let lv be the star on the vertex set V (lv) =
{v, av, bv

C1
, bv

C2
, . . . , bv

Cm
} with the center v, where v is incident with a cut-edge e and meets

trianges C1, C2, . . . , Cm. And for each triangle C in G, let tC be the triangle on the vertex set
{da

C , d
b
C , d

c
C} where V (C) = {a, b, c}. We define the graph DG as the graph obtained from the

disjoint union of all graphs in {lv : v is a non-leaf vertex in G} ∪ {tC : C is a triangle in G}
by adding the marked edge set M(DG) which consists of

(i) bv
Cd

v
C if v meets a triangle C,

(ii) avaw if vw is a cut-edge of G and both v and w are not leaves of G.

We can verify that the marked graph DG with M(DG) of the third graph G in Figure 3
is the first graph in Figure 7. In general, we can show that for G ∈ ∆k, DG with the marked
edge set M(DG) is indeed a canonical split-decomposition of G.

I Lemma 15. Let k be a non-negative integer and G ∈ ∆k. The graph DG is a canonical
split-decomposition of G with the set M(DG) of marked edges.

We can observe the following.

I Lemma 16. Let k be a non-negative integer and G ∈ ∆k. Let TG be a canonical tree of G
and f be the canonical map from TG to DG. Let B be the set of vertices of TG mapped by f
to a complete graph. Then the following are true.

(i) If v ∈ B, then NTG
(v) ∩B = ∅ and |NTG

(v)| = 3.
(ii) Every component of TG[V (TG) \B] has at most 2 vertices.
(iii) If w ∈ V (TG) \ B, then the component f(w) is a star, and the center of f(w) is a

non-leaf vertex in G, say u. Suppose that u meets m triangles in G. Then u is adjacent
with m+ 1 vertices in f(w).
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DG TG

Figure 7 The canonical split-decomposition DG and the canonical tree TG of the third graph G

in Figure 3. The black vertices in TG are the vertices mapped by the canonical map to a triangle of
DG.

I Proposition 17. Let k be a non-negative integer and G,H ∈ ∆k. If G, H have isomorphic
canonical trees, then G is isomorphic to H.

Proof. Let T be a canonical tree of both G and H. Let fG be the canonical map from T to
DG, and let BG be the set of vertices mapped by fG to a complete graph of DG. Similarly,
let fH be the canonical map from T to DH , and let BH be the set of vertices mapped by fH

to a complete graph in DH .
We first show that BG = BH . Suppose that BG 6= BH . Since G and H have the same

number of triangles, |BG| = |BH |. So we can choose v1 ∈ BG \ BH and a maximal path
P = v1v2 . . . vn in T such that

(i) P contains vertices from BG and from V (T ) \BG, alternatively, and
(ii) P also contains vertices from V (T ) \BH and from BH , alternatively.

Suppose vn is not a leaf. By the symmetry, we assume that vn ∈ BG and vn ∈ V (T ) \BH .
Since vn ∈ BG, by Lemma 16, vn has 3 neighbors in T , which are contained in V (T ) \BG.
And since vn ∈ V (T ) \BH , by Lemma 16, vn has at most 1 neighbor of V (T ) \BH . Hence,
there exists a vertex in (NT (vn) \ V (P )) ∩ BH , say vn+1. Thus, vn+1 ∈ V (T ) \ BG and
vn+1 ∈ BH , and v1v2, . . . , vnvn+1 is also a path in T satisfying (i) and (ii). It contradicts to
the maximality of P . Thus, vn is a leaf in T . But if vn is a leaf in T , neither fG(vn) nor
fH(vn) is a triangle, so it is a contradiction. Therefore, BG = BH , and we call this set B.

Clearly, for v ∈ B, fG(v) and fH(v) are triangles. And by Lemma 16, for v ∈ V (T ) \B,
the components fG(v) and fH(v) are uniquely determined by the neighbors of v in TG.
Therefore, the graphs DG and DH are isomorphic, and G is isomorphic to H. J

Proof of Theorem 12. Since G andH are locally equivalent, there is a sequence v1, v2, . . . vm

of V (G) such that G ∗ v1 ∗ v2 . . . ∗ vm = H. By Lemma 14, G and G ∗ v1 ∗ v2 . . . ∗ vm have
isomorphic canonical trees. And since G∗v1∗v2 . . .∗vm = H, by Lemma 13, G∗v1∗v2 . . .∗vm

and H have isomorphic canonical trees. Thus G and H have isomorphic canonical trees.
Since G,H ∈ ∆k, by Proposition 17, G is isomorphic to H. J

5 The size of ∆k is 2Ω(3k)

In this section, we determine the number of graphs in ∆k for each non-negative integer k.
The main theorem of this section is as follows.

I Theorem 18. Let k ≥ 2 be an integer. The size of ∆k is 2Ω(3k).
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For graphs G,G′ and v ∈ V (G) and v′ ∈ V (G′), two pairs (G, v) and (G′, v′) are
isomorphic if there exists a graph isomorphism φ from G to G′ such that φ(v) = v′. To prove
Theorem 18, for a positive integer k, we partition ∆k into Ak, Bk, and Ck as follows:

(i) G ∈ Ak if (G1, v1), (G2, v2), and (G3, v3) are isomorphic,
(ii) G ∈ Bk if only two of (G1, v1), (G2, v2), (G3, v3) are isomorphic,
(iii) G ∈ Ck otherwise,
where G is a delta composition of G1, G2, and G3 in ∆k−1, and v1v2v3 is the main triangle
of G such that vi ∈ V (Gi) for i = 1, 2, 3. If pk is the number of non-isomorphic pairs (G, v)
where G ∈ ∆k and v ∈ V (G), we can easily verify that

|Ak| = pk−1, |Bk| = pk−1(pk−1 − 1), |Ck| =
1
6pk−1(pk−1 − 1)(pk−1 − 2).

We will give a lower bound of pk from |Ak|, |Bk|, |Ck|, and obtain a recurrence relation.
For a graph G and v, w ∈ V (G), we denote v 'G w if (G, v) and (G,w) are isomorphic.

We consider the equivalent classes V (G)/'G. We denote [v] as an element of V (G)/'G. For
a non-negative integer k, let Pk = {(G, [v]) : G ∈ ∆k, [v] ∈ V (G)/'G} and pk = |Pk|. Then
pk is exactly the number of all non-isomorphic pairs (G, v) where G ∈ ∆k and v ∈ V (G).
It is obvious that p0 = 1, p1 = 2. And we can see that p2 = 24 in Figure 3. We need the
following lemma.

I Lemma 19. Let k be a positive integer and G ∈ ∆k.

1. If G ∈ Ak, then |V (G)/'G| ≥ 2k.
2. If G ∈ Bk, then |V (G)/'G| ≥ 2 · 2k.
3. If G ∈ Ck, then |V (G)/'G| ≥ 3 · 2k.

Proof of Theorem 18. By Lemma 19,

pk =
∑

G∈Ak∪Bk∪Ck

|V (G)/'G| ≥ 2k|Ak|+ 2 · 2k|Bk|+ 3 · 2k|Ck|.

Since |Ak| = pk−1, |Bk| = pk−1(pk−1 − 1) and |Ck| = 1
6pk−1(pk−1 − 1)(pk−1 − 2), we obtain

the following recurrence relation,

|Ak+1| = pk ≥ 2k|Ak|+ 2 · 2k|Bk|+ 3 · 2k|Ck|
≥ 2k−1|Ak|3

and |A2| = 2.
This means |Ak| = 2Ω(3k) for k ≥ 3. Because |∆2| = 4 and |∆k| ≥ |Ak| = 2Ω(3k) for

k ≥ 3, we conclude that |∆k| = 2Ω(3k) for k ≥ 2. J

Proof of Theorem 3. By Theorems 5 and 12, |Ok| ≥ |∆k|. And by Theorem 18, |∆k| ≥
2Ω(3k). Therefore, |Ok| ≥ 2Ω(3k). J
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