Excluded vertex-minors for graphs of linear rank-width at most \boldsymbol{k}

Jisu Jeong ${ }^{1}$, O-joung Kwon ${ }^{2}$, and Sang-il Oum*3
1,2,3Department of Mathematical Sciences, KAIST
291 Daehak-ro Yuseong-gu Daejeon, 305-701 South Korea
1 jjisu@kaist.ac.kr
2 ilkof@kaist.ac.kr
3 sangil@kaist.edu

Abstract

Linear rank-width is a graph width parameter, which is a variation of rank-width by restricting its tree to a caterpillar. As a corollary of known theorems, for each k, there is a finite set \mathcal{O}_{k} of graphs such that a graph G has linear rank-width at most k if and only if no vertex-minor of G is isomorphic to a graph in \mathcal{O}_{k}. However, no attempts have been made to bound the number of graphs in \mathcal{O}_{k} for $k \geq 2$. We construct, for each $k, 2^{\Omega\left(3^{k}\right)}$ pairwise locally non-equivalent graphs that are excluded vertex-minors for graphs of linear rank-width at most k. Therefore the number of graphs in \mathcal{O}_{k} is at least double exponential.

1998 ACM Subject Classification G.2.1 Combinatorics, G.2.2 Graph Theory

Keywords and phrases rank-width, linear rank-width, vertex-minor, well-quasi-ordering
Digital Object Identifier 10.4230/LIPIcs.STACS.2013.221

1 Introduction

Linear rank-width is a width parameter of graphs motivated by rank-width of graphs by Oum and Seymour [11]. A vertex-minor relation is a graph containment relation such that rank-width and linear rank-width cannot increase when taking vertex-minors of a graph. Two graphs G, H are called locally equivalent if H is a vertex-minor of G and $|V(H)|=|V(G)|$. The definitions can be found in Section 2.

Oum [10] proved that for every infinite sequence G_{1}, G_{2}, \ldots of graphs of bounded rankwidth, there exist $i<j$ such G_{i} is isomorphic to a vertex-minor of G_{j}. As a corollary, we immediately obtain the following theorem.

- Theorem 1 (Oum [10]). For every vertex-minor closed class \mathcal{C} of graphs of bounded rankwidth, there is a finite list of graphs $G_{1}, G_{2}, \ldots, G_{m}$ such that a graph is in \mathcal{C} if and only if it does not have a vertex-minor isomorphic to G_{i} for some i.

Because the rank-width of a graph is less than or equal to the linear rank-width of the graph, we deduce the following.

- Corollary 2. For a fixed k, there is a finite set \mathcal{O}_{k} of graphs $G_{1}, G_{2}, \ldots, G_{m}$ such that a graph has linear rank-width at most k if and only if it does not have a vertex-minor isomorphic to G_{i} for some $i \in\{1,2, \ldots, m\}$.

[^0]LIPICS Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Figure 1 Graphs in \mathcal{O}_{1}.

However, Theorem 1 does not produce an explicit upper or lower bound on the number of graphs in \mathcal{O}_{k} for Corollary 2. We aim to provide a lower bound on $\left|\mathcal{O}_{k}\right|$.

Our main result is the following.

- Theorem 3. Let $k \geq 2$ be an integer. Then $\left|\mathcal{O}_{k}\right| \geq 2^{\Omega\left(3^{k}\right)}$. In other words, there are at least $2^{\Omega\left(3^{k}\right)}$ pairwise locally non-equivalent graphs that are vertex-minor minimal with the property that they have linear rank-width larger than k.

When \mathcal{C} is the set of all graphs having rank-width at most k, Theorem 1 implies that there are finitely many graphs $G_{1}, G_{2}, \ldots, G_{m}$ such that a graph has rank-width at most k if and only if it has no vertex-minor isomorphic to G_{i} for some i. Again Theorem 1 does not provide a lower or upper bound on m for graphs of rank-width at most k. However, for the upper bound, Oum [9] proved that $\left|V\left(G_{i}\right)\right| \leq\left(6^{k+1}-1\right) / 5$ for each i. No analogous result is known for linear rank-width.

Characterizing graphs of linear rank-width at most k in terms of forbidden vertex-minors seems hard. So far only 1 case is known. For $k=1$, Adler, Farley, and Proskurowski [1] characterized the graphs of linear rank-width at most 1 by a set \mathcal{O}_{1} of three graphs in Figure 1. A structural characterization of graphs of linear rank-width 1 was given by Ganian [6].

There have been similar results on the number of forbidden minors for various graph width parameters; for instance, path-width [12], linear-width [13], tree-width [8], branch-width [7], tree-depth [5].

The paper is organized as follows. We present the definitions of linear rank-width and vertex-minor. In Section 3, we construct a set Δ_{k} of graphs for every non-negative integer k, and prove that every graph in Δ_{k} has linear rank-width $k+1$ but every proper vertex-minor has linear rank-width at most k. Roughly speaking, $\Delta_{0}=\left\{K_{2}\right\}$ and for $k \geq 1$, the set Δ_{k} consists of all graphs obtained from a disjoint union of three graphs in Δ_{k-1} by connecting them with a triangle. In Section 4 , we show that no two graphs in Δ_{k} are locally equivalent. At last, we show that the size of Δ_{k} is $2^{\Omega\left(3^{k}\right)}$ in Section 5 , and we conclude that $\left|\mathcal{O}_{k}\right| \geq 2^{\Omega\left(3^{k}\right)}$.

2 Preliminaries

In this paper, graphs have no loops and parallel edges. Let G be a graph. For $S \subseteq V(G)$, $G[S]$ denotes the subgraph of G induced on S. For $S \subseteq V(G), N_{G}(S)$ denotes the set of vertices of $V(G) \backslash S$ adjacent to a vertex in S. And for $v \in V(G)$, we let $N_{G}(v)=N_{G}(\{v\})$. A vertex v in G is a leaf if $\left|N_{G}(v)\right|=1$. A graph G is a star if G is isomorphic to $K_{1, n}$ for some $n \geq 1$.

For an $X \times Y$ matrix M and subsets $A \subseteq X$ and $B \subseteq Y, M[A, B]$ denotes the $A \times B$ submatrix $\left(m_{i, j}\right)_{i \in A, j \in B}$ of M. If $A=B$, then $M[A]=M[A, A]$ is called a principal submatrix of M.

Figure 2 Pivoting an edge $a b$.

Vertex-minors.

The local complementation at a vertex v of a graph $G=(V, E)$ is an operation to obtain a graph $G * v$ from G by replacing the subgraph $G\left[N_{G}(v)\right]$ with the complementary subgraph of $G\left[N_{G}(v)\right]$. The graph obtained from G by pivoting an edge $u v$ is defined by $G \wedge u v=G * u * v * u$.

To see how we obtain the resulting graph by pivoting an edge $u v$, let $V_{1}=N_{G}(u) \cap N_{G}(v)$, $V_{2}=N_{G}(u) \backslash N_{G}(v) \backslash\{v\}$, and $V_{3}=N_{G}(v) \backslash N_{G}(u) \backslash\{u\}$. One can easily verify that $G \wedge u v$ is identical to the graph obtained from G by complementing adjacency of vertices between distinct sets V_{i} and V_{j}, and swapping the vertices u and v [9]. See Figure 2 for an example.

A graph H is a vertex-minor of G if H can be obtained from G by applying a sequence of vertex deletions and local complementations. A graph H is locally equivalent to G if H can be obtained from G by applying a sequence of local complementations.

A vertex-minor H of G is elementary if $|V(H)|=|V(G)|-1$. A vertex-minor H of G is proper if $|V(H)|<|V(G)|$. A graph G is an excluded vertex-minor for a vertex-minor closed set \mathcal{C} of graphs if $G \notin \mathcal{C}$ and $H \in \mathcal{C}$ for every proper vertex-minor H of G.

Linear rank-width.

The adjacency matrix of a graph G, which is a $(0,1)$-matrix over the binary field, will be denoted by $A(G)$. The cut-rank function cutrk ${ }_{G}: 2^{V} \rightarrow \mathbb{Z}$ of a graph $G=(V, E)$ is defined by

$$
\operatorname{cutrk}_{G}(X)=\operatorname{rank}(A(G)[X, V \backslash X])
$$

A linear layout L of G is a sequence $\left(v_{1}, v_{2}, \ldots, v_{|V(G)|}\right)$ of $V(G)$. For a linear layout L of G and $a, b \in V(G)$, we denote $a \leq_{L} b$ if $a=b$ or a appears before b in L. For two sequences $L_{1}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ and $L_{2}=\left(w_{1}, w_{2}, \ldots, w_{m}\right)$, we define $L_{1} \oplus L_{2}=$ $\left(v_{1}, v_{2}, \ldots, v_{n}, w_{1}, w_{2}, \ldots, w_{m}\right)$.

The width of a linear layout L in G, denoted by $\operatorname{lrw}_{L}(G)$, is defined as the maximum over all $\operatorname{cutrk}_{G}\left(\left\{w: w \leq_{L} v\right\}\right)$ for $v \in V(G)$. The linear rank-width of G, denoted by $\operatorname{lrw}(G)$, is the minimum width of all linear layouts of G. The next proposition shows the relation between the cut-rank function and local complementation.

- Proposition 4 (Oum [9]). Let G be a graph and $v \in V(G)$. Then for every $X \subseteq V(G)$,

$$
\operatorname{cutrk}_{G}(X)=\operatorname{cutrk}_{G * v}(X)
$$

By Proposition 4, $\operatorname{lrw}(G)=\operatorname{lrw}(G * v)$ for every $v \in V(G)$. Thus, we immediately obtain that if H is locally equivalent to G, then $\operatorname{lrw}(H)=\operatorname{lrw}(G)$. And if a graph H is a vertex-minor of a graph G, then $\operatorname{lrw}(H) \leq \operatorname{lrw}(G)$.

Figure 3 All graphs in Δ_{2}.

3 Excluded vertex-minors for graphs of bounded linear rank-width

To prove Theorem 3, for each non-negative integer k, we construct a set Δ_{k} of graphs such that every graph in Δ_{k} has linear rank-width $k+1$ but every proper vertex-minor has linear rank-width at most k.

A delta composition G of graphs G_{1}, G_{2}, and G_{3} is a graph obtained from the disjoint union of G_{1}, G_{2}, and G_{3} by adding a triangle $v_{1} v_{2} v_{3}$ where $v_{i} \in V\left(G_{i}\right)$ for $i=1,2,3$. We call $v_{1} v_{2} v_{3}$ the main triangle of G. For a non-negative integer k, we define Δ_{k} as follows.

1. $\Delta_{0}=\left\{K_{2}\right\}$.
2. For $i \geq 1, \Delta_{i}$ is the set of all delta compositions of 3 graphs in Δ_{i-1}.

The main theorem of this section is as follows.

- Theorem 5. Let k be a non-negative integer. Every graph in Δ_{k} is an excluded vertex-minor for graphs of linear rank-width at most k.

First, we prove that every graph in Δ_{k} has linear rank-width $k+1$.

- Proposition 6. Let k be a non-negative integer and $G \in \Delta_{k}$. Then G has linear rank-width $k+1$. Moreover, for $w \in V(G)$, there is a linear layout of G having width $k+1$ such that the first vertex of the linear layout is w.

Proof. We use induction on k. If $k=0$, then $G=K_{2}$. If $V(G)=\{x, y\}$, then both (x, y) and (y, x) are linear layouts of G having width 1 . Hence, the statements are true. We may assume that $k \geq 1$. Since $G \in \Delta_{k}, G$ is a delta composition of G_{1}, G_{2}, and G_{3} in Δ_{k-1}. Let $v_{1} v_{2} v_{3}$ be the main triangle of G such that $v_{i} \in V\left(G_{i}\right)$ for $i=1,2,3$.

We first show that $\operatorname{lrw}(G) \geq k+1$. Suppose that G has linear rank-width at most k. Since $G_{1} \in \Delta_{k-1}$, by induction hypothesis, G_{1} has linear rank-width k. Since $\operatorname{lrw}(G) \geq$ $\operatorname{lrw}\left(G_{1}\right)=k, G$ has linear rank-width k. Let L be a linear layout of G having width k. And for a vertex v in G, we define $S_{v}=\left\{x \in V(G): x \leq_{L} v\right\}$ and $T_{v}=V(G) \backslash S_{v}$.

Let a and b be the first and the last vertices in L such that $\operatorname{cutrk}_{G}\left(S_{a}\right)=\operatorname{cutrk}_{G}\left(S_{b}\right)=k$. Without loss of generality, we may assume that $\{a, b\} \subseteq V\left(G_{2}\right) \cup V\left(G_{3}\right)$. We want to show that G_{1} has linear rank-width at most $k-1$. If it is true, then we obtain a contradiction because $\operatorname{lrw}\left(G_{1}\right)=k$. Let $L_{G_{1}}$ be the subsequence of L whose elements are the vertices of G_{1}.

We claim that $L_{G_{1}}$ is a linear layout of G_{1} having width at most $k-1$. Let $v \in V\left(G_{1}\right)$. It is sufficient to show that $\operatorname{cutrk}_{G_{1}}\left(S_{v} \cap V\left(G_{1}\right)\right) \leq k-1$. Note that $v \neq a$ and $v \neq b$. If $v<_{L} a$ or $v>_{L} b$, then

$$
\begin{aligned}
\operatorname{cutrk}_{G_{1}}\left(S_{v} \cap V\left(G_{1}\right)\right) & \leq \operatorname{cutrk}_{G}\left(S_{v}\right) \\
& \leq k-1
\end{aligned}
$$

So we may assume that $a<_{L} v<_{L} b$. Note that one of $S_{v} \cap V\left(G_{1}\right)$ and $T_{v} \cap V\left(G_{1}\right)$ does not have a neighbor in $G \backslash V\left(G_{1}\right)$ because v_{1} is the unique vertex in G_{1} which has a neighbor in $G \backslash V\left(G_{1}\right)$. And since $G\left[V\left(G_{2}\right) \cup V\left(G_{3}\right)\right]$ is connected and $a \in S_{v}$ and $b \notin S_{v}$, there is an edge $u_{1} u_{2}$ in $G \backslash V\left(G_{1}\right)$ such that $u_{1} \in S_{v}$ and $u_{2} \notin S_{v}$. So $A(G)\left[S_{v} \backslash V\left(G_{1}\right), T_{v} \backslash V\left(G_{1}\right)\right]$ is a non-zero matrix. Depending on whether $v_{1} \in S_{v} \cap V\left(G_{1}\right)$ or $v_{1} \in T_{v} \cap V\left(G_{1}\right)$,

$$
\begin{aligned}
& \operatorname{cutrk}_{G}\left(S_{v}\right)=\operatorname{rank}\left(\begin{array} { c }
{ \quad T _ { v } \cap V (G _ { 1 }) } \\
{ S _ { v } \backslash V (G _ { 1 }) } \\
{ S _ { v } \cap V (G _ { 1 }) } \\
{ S _ { v } \backslash V (G _ { 1 }) }
\end{array} \left(\begin{array}{c}
* \\
*
\end{array}\right.\right. \\
& \quad \geq \operatorname{rank}\left(A(G)\left[S_{v} \cap V\left(G_{1}\right), T_{v} \cap V\left(G_{1}\right)\right]\right)+\operatorname{rank}\left(A(G)\left[S_{v} \backslash V\left(G_{1}\right), T_{v} \backslash V\left(G_{1}\right)\right]\right),
\end{aligned}
$$

or

$$
\begin{aligned}
& \operatorname{cutrk}_{G}\left(S_{v}\right)=\operatorname{rank}\left(\begin{array}{ccc}
& T_{v} \cap V\left(G_{1}\right) & T_{v} \backslash V\left(G_{1}\right) \\
S_{v} \cap V\left(G_{1}\right) \\
S_{v} \backslash V\left(G_{1}\right) & * & * \\
& 0 & *
\end{array}\right) \\
& \geq \operatorname{rank}\left(A(G)\left[S_{v} \cap V\left(G_{1}\right), T_{v} \cap V\left(G_{1}\right)\right]\right)+\operatorname{rank}\left(A(G)\left[S_{v} \backslash V\left(G_{1}\right), T_{v} \backslash V\left(G_{1}\right)\right]\right),
\end{aligned}
$$

respectively. Thus, we have

$$
\begin{aligned}
\operatorname{cutrk}_{G_{1}}\left(S_{v} \cap V\left(G_{1}\right)\right) & =\operatorname{rank}\left(A(G)\left[S_{v} \cap V\left(G_{1}\right), T_{v} \cap V\left(G_{1}\right)\right]\right) \\
& \leq \operatorname{cutrk}_{G}\left(S_{c}\right)-\operatorname{rank}\left(A(G)\left[S_{v} \backslash V\left(G_{1}\right), T_{v} \backslash V\left(G_{1}\right)\right]\right) \\
& \leq \operatorname{cutrk}_{G}\left(S_{v}\right)-1 \leq k-1
\end{aligned}
$$

So $L_{G_{1}}$ is a linear layout of G_{1} having width at most $k-1$, which is a contradiction. Hence, $\operatorname{lrw}(G) \geq k+1$.

Now we show that there is a linear layout of G having width $k+1$ with a given starting vertex. Let $v \in V(G)$. Without loss of generality, we assume that $v \in V\left(G_{1}\right)$. By induction hypothesis, there is a linear layout L_{1} of G_{1} having width k such that the first vertex of L_{1} is v. And, for $j=2,3$, there is a linear layout L_{j} of G_{j} having width k such that the first vertex of L_{j} is v_{j}. It is easy to check that $L_{1} \oplus L_{2} \oplus L_{3}$ is a linear layout of G having width at most $k+1$. Since this linear layout starts at v, we conclude the result.

Of course, for $v \in V(G)$, there is also a linear layout having width $k+1$ such that the last vertex of the linear layout is v. Let $v \in V(G)$. A vertex $w, w \neq v$, in G is a twin of v if $N_{G}(w) \backslash v=N_{G}(v) \backslash w$. A twin w of v is a false twin if w is not adjacent to v. And a twin w of v is a true twin if w is adjacent to v.

Now we prove that every elementary vertex-minor of G in Δ_{k} has linear rank-width k. To prove it, we will use the following lemmata.

Lemma 7 (Bouchet [2]). Let G be a graph, $v \in V(G)$, and H be a vertex-minor of G such that $V(G) \backslash V(H)=\{v\}$. If w is an arbitrary neighbor of v, then H is locally equivalent to either $G \backslash v, G * v \backslash v$, or $G \wedge v w \backslash v$.

- Lemma 8 (Oum [9]). Let G be a graph and $v v_{1}, v v_{2} \in E(G)$. Then $v_{1} v_{2} \in E\left(G \wedge v v_{1}\right)$ and $G \wedge v v_{1} \wedge v_{1} v_{2}=G \wedge v v_{2}$.
- Lemma 9. Let k be a positive integer. Let $G_{1}, G_{2} \in \Delta_{k-1}$, and let G_{3} be a graph having linear rank-width at most $k-1$. Then every delta composition of G_{1}, G_{2}, and G_{3} has linear rank-width k. Also, if a graph is obtained from the disjoint union of G_{1} and G_{2} by adding an edge $w_{1} w_{2}$ where $w_{1} \in V\left(G_{1}\right)$ and $w_{2} \in V\left(G_{2}\right)$, then it has linear rank-width k.
- Lemma 10. Let k be a non-negative integer. Let $G \in \Delta_{k}, v \in V(G)$, and H be a graph obtained from G by adding a twin w of v. Then there is a linear layout L of H having width $k+1$ such that the first vertex of L is v and the last vertex of L is w.

We are ready to prove the main combinatorial result in this paper.

- Proposition 11. Let k be a non-negative integer and $G \in \Delta_{k}$. Then every elementary vertex-minor of G has linear rank-width k.

Proof. Note that for $v \in V(G)$ and $S \subseteq V(G), \operatorname{cutrk}_{G \backslash v}(S \backslash v) \geq \operatorname{cutrk}_{G}(S)-1$ because exactly one column or one row of $A(G)[S, V(G) \backslash S]$ is removed. Thus by Proposition 6 , if H is an elementary vertex-minor of G, then $\operatorname{lrw}(H) \geq \operatorname{lrw}(G)-1=(k+1)-1=k$. Therefore, it is sufficient to prove that every elementary vertex-minor of G in Δ_{k} has linear rank-width at most k.

We use induction on k. If $k=0$, then $G=K_{2}$ and every elementary vertex-minor of G is isomorphic to K_{1}, so it has linear rank-width 0 . We assume that $k \geq 1$. Since $G \in \Delta_{k}$, G is a delta composition of G_{1}, G_{2}, and G_{3} in Δ_{k-1}. Let $v_{1} v_{2} v_{3}$ be the main triangle of G such that $v_{i} \in V\left(G_{i}\right)$ for $i=1,2,3$. Let H be an elementary vertex-minor of G and $V(G) \backslash V(H)=\{v\}$. By Lemma 7, for a neighbor w of v, H is locally equivalent to one of three graphs $G \backslash v, G * v \backslash v$, and $G \wedge v w \backslash v$. Without loss of generality, we may assume that $v \in V\left(G_{1}\right)$. Since $G_{1} \in \Delta_{k-1}$, by induction hypothesis, $G_{1} \backslash v$ has linear rank-width at most $k-1$. Thus, by Lemma $9, G \backslash v$ has linear rank-width k. What remains to be proved is that for a neighbor w of $v, G * v \backslash v$ and $G \wedge v w \backslash v$ have linear rank-width at most k.

First, suppose that $v \neq v_{1}$. If $N_{G}(v)=\left\{v_{1}\right\}$, then $G * v \backslash v=G \backslash v$ and $G \wedge v v_{1} \backslash v$ is isomorphic to $G \backslash v_{1}$. Therefore, by Lemma 9 , they have linear rank-width k. If v has a neighbor w other than v_{1}, then

$$
(G * v)\left[V\left(G_{2}\right) \cup V\left(G_{3}\right) \cup\left\{v_{1}\right\}\right]=(G \wedge v w)\left[V\left(G_{2}\right) \cup V\left(G_{3}\right) \cup\left\{v_{1}\right\}\right]=G\left[V\left(G_{2}\right) \cup V\left(G_{3}\right) \cup\left\{v_{1}\right\}\right] .
$$

Hence, both $G * v \backslash v$ and $G \wedge v w \backslash v$ are delta compositions of two graphs in Δ_{k-1} and one graph having linear rank-width at most $k-1$. Thus, by Lemma 9, they have linear rank-width k.

$G\left[\left\{v_{2}, v_{3}\right\} \cup V\left(G_{1}\right)\right]$

$$
G_{1}^{\prime}=(G * v \backslash v)\left[\left\{v_{2}, v_{3}\right\} \cup V\left(G_{1}\right)\right]
$$

$$
G_{1}^{\prime} * v_{2}
$$

Figure 4 The case $G * v \backslash v$ where $v=v_{1}$.

$$
G\left[\left\{v_{2}, v_{3}\right\} \cup V\left(G_{1}\right)\right]
$$

$$
\begin{aligned}
G_{1}^{\prime \prime} \wedge v_{2} w & =(G \wedge v w \backslash v)\left[\left\{v_{2}, v_{3}\right\} \cup V\left(G_{1}\right)\right] \wedge v_{2} w \\
& =G\left[\left\{v_{2}, v_{3}\right\} \cup V\left(G_{1}\right)\right] \wedge v v_{2} \backslash v
\end{aligned}
$$

Figure 5 The case $G \wedge v w \backslash v$ where $v=v_{1}$.

Now we consider $v=v_{1}$. Let w be a neighbor of v in G_{1}. By Proposition 6 , there is a linear layout $L_{G_{2}}$ of G_{2} having width k such that the end vertex of $L_{G_{2}}$ is v_{2}, and there is a linear layout $L_{G_{3}}$ of G_{3} having width k such that the first vertex of $L_{G_{3}}$ is v_{3}. We denote $G_{1}^{\prime}=(G * v \backslash v)\left[\left\{v_{2}, v_{3}\right\} \cup V\left(G_{1}\right)\right]$ and $G_{1}^{\prime \prime}=(G \wedge v w \backslash v)\left[\left\{v_{2}, v_{3}\right\} \cup V\left(G_{1}\right)\right]$.

We first show that $G * v \backslash v$ has linear rank-width at most k. To prove it, we will find a linear layout L^{\prime} of G_{1}^{\prime} having width k such that the first vertex of L^{\prime} is v_{2} and the last vertex of L^{\prime} is v_{3}. In Figure 4, we can observe that $N_{G_{1}}(v)=N_{G_{1}^{\prime} * v_{2}}\left(v_{2}\right)=N_{G_{1}^{\prime} * v_{2}}\left(v_{3}\right)$ and $A(G)\left[N_{G_{1}}(v)\right]=A\left(G_{1}^{\prime} * v_{2}\right)\left[N_{G_{1}}(v)\right]$. Hence, the graph $G_{1}^{\prime} * v_{2}$ is isomorphic to the graph obtained from G_{1} by adding a false twin of v. By Proposition 10, there is a linear layout L^{\prime} of $G_{1}^{\prime} * v_{2}$ having width k such that the first vertex of L^{\prime} is v_{2} and the last vertex of L^{\prime} is v_{3}. Let $L_{G_{1}}$ be the sequence obtained from L^{\prime} by deleting v_{2} and v_{3}.

We show that $L=L_{G_{2}} \oplus L_{G_{1}} \oplus L_{G_{3}}$ is a linear layout of $G * v \backslash v$ having width at most k. If $x \in V\left(G_{2}\right) \cup V\left(G_{3}\right)$, then clearly $\operatorname{cutrk}_{G * v \backslash v}\left(\left\{y: y \leq_{L} x\right\}\right) \leq k$. If $x \in V\left(G_{1}\right) \backslash v$, then by Proposition 4,

$$
\begin{aligned}
\operatorname{cutrk}_{G * v \backslash v}\left(\left\{y: y \leq_{L} x\right\}\right) & =\operatorname{cutrk}_{G_{1}^{\prime}}\left(\left\{y: y \leq_{L^{\prime}} x\right\}\right) \\
& =\operatorname{cutrk}_{G_{1}^{\prime} * v_{2}}\left(\left\{y: y \leq_{L^{\prime}} x\right\}\right) \leq k .
\end{aligned}
$$

Therefore, $G * v \backslash v$ has linear rank-width at most k.
Now we show that $G \wedge v w \backslash v$ has linear rank-width at most k. By the same argument in the previous case, it is sufficient to prove that there is a linear layout $L^{\prime \prime}$ of $G_{1}^{\prime \prime}$ having width k such that the first vertex is v_{2} and the last vertex is v_{3}. We claim that $G_{1}^{\prime \prime} \wedge v_{2} w=$ $G\left[\left\{v_{2}, v_{3}\right\} \cup V\left(G_{1}\right)\right] \wedge v v_{2} \backslash v$. Note that

$$
\begin{aligned}
G_{1}^{\prime \prime} \wedge v_{2} w & =(G \wedge v w \backslash v)\left[\left\{v_{2}, v_{3}\right\} \cup V\left(G_{1}\right)\right] \wedge v_{2} w \\
& =G\left[\left\{v_{2}, v_{3}\right\} \cup V\left(G_{1}\right)\right] \wedge v w \backslash v \wedge v_{2} w \\
& =G\left[\left\{v_{2}, v_{3}\right\} \cup V\left(G_{1}\right)\right] \wedge v w \wedge v_{2} w \backslash v .
\end{aligned}
$$

And by Lemma 8,

$$
G\left[\left\{v_{2}, v_{3}\right\} \cup V\left(G_{1}\right)\right] \wedge v w \wedge v_{2} w \backslash v=G\left[\left\{v_{2}, v_{3}\right\} \cup V\left(G_{1}\right)\right] \wedge v v_{2} \backslash v
$$

In Figure 5, we can observe that $G_{1}^{\prime \prime} \wedge v_{2} w$ is isomorphic to the graph obtained from G_{1} by adding a true twin of v. Thus, by Proposition 10, there is a linear layout $L^{\prime \prime}$ of $G_{1}^{\prime \prime} \wedge v_{2} w$ having width k such that the first vertex of $L^{\prime \prime}$ is v_{2} and the last vertex of $L^{\prime \prime}$ is v_{3}. Also, for $x \in V\left(G_{1}\right) \backslash v$,

$$
\operatorname{cutrk}_{G_{1}^{\prime \prime}}\left(\left\{y: y \leq_{L^{\prime \prime}} x\right\}\right)=\operatorname{cutrk}_{G_{1}^{\prime \prime} \wedge v v_{2}}\left(\left\{y: y \leq_{L^{\prime \prime}} x\right\}\right) \leq k
$$

Figure 6 A split-decomposition D of a graph G, and $D * v_{2}$. The marked edges of D are depicted as wavy edges, and the desendants of the vertex v_{2} in D is a and f. Note that $D * v_{2}$ is a split decomposition of $G * v_{2}$.

Therefore, we conclude that $G \wedge v w \backslash v$ has linear rank-width at most k.
Proof of Theorem 5. Let $G \in \Delta_{k}$. By Proposition 6, G has linear rank-width $k+1$. And by Proposition 11, every elementary vertex-minor of G has linear rank-width k. So every proper vertex-minor of G has linear rank-width at most k. Therefore, G is an excluded vertex-minor for graphs of linear rank-width at most k.

4 No two graphs in Δ_{k} are locally equivalent.

In this section, we show that no two graphs in Δ_{k} are locally equivalent.

- Theorem 12. Let k be a non-negative integer and $G, H \in \Delta_{k}$. If G and H are locally equivalent, then G and H are isomorphic.

To prove it, we will use the canonical split-decompositions of graphs in Δ_{k}.

Split-decomposition.

Let G be a graph. A partition (A, B) of $V(G)$ is a split if $|A| \geq 2,|B| \geq 2$, and for every $v \in N_{G}(B)$ and $w \in N_{G}(A), v w \in E(G)$. If G has no split and $|V(G)| \geq 5$, then we call G a prime graph. If G has a split (A, B), then we define a graph G^{\prime}, called a simple decomposition of G, as the graph obtained from G by deleting all edges between $N_{G}(A)$ and $N_{G}(B)$, and adding two vertices w_{1}, w_{2} and adding edges $\left\{w_{1} w_{2}\right\} \cup\left\{v w_{1}: v \in N_{G}(B)\right\} \cup\left\{w_{2} v: v \in N_{G}(A)\right\}$. We call $w_{1} w_{2}$ a marked edge of G^{\prime}. A graph is a marked graph if it has marked edges, and for a marked graph D, we define $M(D)$ as the set of marked edges of D. A split-decomposition of G is recursively defined to be either G or a marked graph obtained from a split-decomposition D by replacing a component H of $D \backslash M(D)$ with a simple decomposition of H. Two components C_{1} and C_{2} of $D \backslash M(D)$ are neighbors if there exist $v_{1} \in V\left(C_{1}\right), v_{2} \in V\left(C_{2}\right)$ such that $v_{1} v_{2} \in M(D)$. A split-decompositon D of a graph is canonical if it satisfies the following:
(i) each component of $D \backslash M(D)$ is either a prime graph or a star or a complete graph,
(ii) no two complete components are neighbors,
(iii) if two star components are neighbors, then two ends of the marked edge are both centers or both leaves of each components.

Two split-decompositions D_{1} and D_{2} of a graph G are equivalent if there is a graph isomorphism f from D_{1} to D_{2} such that f preserves the marked edges and $\left.f\right|_{V(G)}$ is an identity function. We need the following result.

- Lemma 13 (Cunningham [4]). Canonical split-decompositions of a graph are equivalent.

Let D be the canonical split-decomposition of G and $C(D)=\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}$ be the components of $D \backslash M(D)$. A tree T_{G} is a canonical tree of G if $V\left(T_{G}\right)=\left\{v_{C_{1}}, v_{C_{2}}, \ldots, v_{C_{n}}\right\}$ and $v_{C_{i}}$ is adjacent to $v_{C_{j}}$ if and only if two components C_{i} and C_{j} are neighbors in D. We call f the canonical map from T_{G} to D if it is the bijection from $V\left(T_{G}\right)$ to $C(D)$ such that $f\left(v_{C_{k}}\right)=C_{k}$.

For $v \in V(G) \subseteq V(D)$, a vertex w in D is a descendant of v if either $w=v$ or w is the end of a path starting from v, whose successive edges are alternatively non-marked and marked edges, and the last edge is marked. Note that each component of $D \backslash M(D)$ has at most 1 descendant of a vertex because every marked edge in D is a cut-edge. For $v \in V(G)$, we define $D * v$ as the marked graph obtained from D by replacing each component H of $D \backslash M(D)$ having a descendant w of v by $H * w$.

- Lemma 14 (Bouchet [3]). If D is a canonical split-decomposition of a graph G and $v \in V(G)$, then $D * v$ is a canonical split-decomposition of the graph $G * v$.

By Lemma 14, if G and H are locally equivalent, then G and H have isomorphic canonical trees. Hence, it is sufficient to prove that for $G, H \in \Delta_{k}$, if G and H have isomorphic canonical trees, then G is isomorphic to H. To show this, we explicitly describe the canonical decompositions of graphs in Δ_{k}.

Clearly, K_{2} has itself as a canonical split-decomposition. Let $k \geq 1$ and $G \in \Delta_{k}$. Note that for a non-leaf vertex v in G, v is incident with exactly one cut-edge and meets at least one triangles. For a non-leaf vertex v in G, let l_{v} be the star on the vertex set $V\left(l_{v}\right)=$ $\left\{v, a^{v}, b_{C_{1}}^{v}, b_{C_{2}}^{v}, \ldots, b_{C_{m}}^{v}\right\}$ with the center v, where v is incident with a cut-edge e and meets trianges $C_{1}, C_{2}, \ldots, C_{m}$. And for each triangle C in G, let t_{C} be the triangle on the vertex set $\left\{d_{C}^{a}, d_{C}^{b}, d_{C}^{c}\right\}$ where $V(C)=\{a, b, c\}$. We define the graph D_{G} as the graph obtained from the disjoint union of all graphs in $\left\{l_{v}: v\right.$ is a non-leaf vertex in $\left.G\right\} \cup\left\{t_{C}: C\right.$ is a triangle in $\left.G\right\}$ by adding the marked edge set $M\left(D_{G}\right)$ which consists of
(i) $b_{C}^{v} d_{C}^{v}$ if v meets a triangle C,
(ii) $a^{v} a^{w}$ if $v w$ is a cut-edge of G and both v and w are not leaves of G.

We can verify that the marked graph D_{G} with $M\left(D_{G}\right)$ of the third graph G in Figure 3 is the first graph in Figure 7. In general, we can show that for $G \in \Delta_{k}, D_{G}$ with the marked edge set $M\left(D_{G}\right)$ is indeed a canonical split-decomposition of G.

- Lemma 15. Let k be a non-negative integer and $G \in \Delta_{k}$. The graph D_{G} is a canonical split-decomposition of G with the set $M\left(D_{G}\right)$ of marked edges.

We can observe the following.

- Lemma 16. Let k be a non-negative integer and $G \in \Delta_{k}$. Let T_{G} be a canonical tree of G and f be the canonical map from T_{G} to D_{G}. Let B be the set of vertices of T_{G} mapped by f to a complete graph. Then the following are true.
(i) If $v \in B$, then $N_{T_{G}}(v) \cap B=\emptyset$ and $\left|N_{T_{G}}(v)\right|=3$.
(ii) Every component of $T_{G}\left[V\left(T_{G}\right) \backslash B\right]$ has at most 2 vertices.
(iii) If $w \in V\left(T_{G}\right) \backslash B$, then the component $f(w)$ is a star, and the center of $f(w)$ is a non-leaf vertex in G, say u. Suppose that u meets m triangles in G. Then u is adjacent with $m+1$ vertices in $f(w)$.

Figure 7 The canonical split-decomposition D_{G} and the canonical tree T_{G} of the third graph G in Figure 3. The black vertices in T_{G} are the vertices mapped by the canonical map to a triangle of D_{G}.

Proposition 17. Let k be a non-negative integer and $G, H \in \Delta_{k}$. If G, H have isomorphic canonical trees, then G is isomorphic to H.

Proof. Let T be a canonical tree of both G and H. Let f_{G} be the canonical map from T to D_{G}, and let B_{G} be the set of vertices mapped by f_{G} to a complete graph of D_{G}. Similarly, let f_{H} be the canonical map from T to D_{H}, and let B_{H} be the set of vertices mapped by f_{H} to a complete graph in D_{H}.

We first show that $B_{G}=B_{H}$. Suppose that $B_{G} \neq B_{H}$. Since G and H have the same number of triangles, $\left|B_{G}\right|=\left|B_{H}\right|$. So we can choose $v_{1} \in B_{G} \backslash B_{H}$ and a maximal path $P=v_{1} v_{2} \ldots v_{n}$ in T such that
(i) P contains vertices from B_{G} and from $V(T) \backslash B_{G}$, alternatively, and
(ii) P also contains vertices from $V(T) \backslash B_{H}$ and from B_{H}, alternatively.

Suppose v_{n} is not a leaf. By the symmetry, we assume that $v_{n} \in B_{G}$ and $v_{n} \in V(T) \backslash B_{H}$. Since $v_{n} \in B_{G}$, by Lemma $16, v_{n}$ has 3 neighbors in T, which are contained in $V(T) \backslash B_{G}$. And since $v_{n} \in V(T) \backslash B_{H}$, by Lemma 16, v_{n} has at most 1 neighbor of $V(T) \backslash B_{H}$. Hence, there exists a vertex in $\left(N_{T}\left(v_{n}\right) \backslash V(P)\right) \cap B_{H}$, say v_{n+1}. Thus, $v_{n+1} \in V(T) \backslash B_{G}$ and $v_{n+1} \in B_{H}$, and $v_{1} v_{2}, \ldots, v_{n} v_{n+1}$ is also a path in T satisfying (i) and (ii). It contradicts to the maximality of P. Thus, v_{n} is a leaf in T. But if v_{n} is a leaf in T, neither $f_{G}\left(v_{n}\right)$ nor $f_{H}\left(v_{n}\right)$ is a triangle, so it is a contradiction. Therefore, $B_{G}=B_{H}$, and we call this set B.

Clearly, for $v \in B, f_{G}(v)$ and $f_{H}(v)$ are triangles. And by Lemma 16 , for $v \in V(T) \backslash B$, the components $f_{G}(v)$ and $f_{H}(v)$ are uniquely determined by the neighbors of v in T_{G}. Therefore, the graphs D_{G} and D_{H} are isomorphic, and G is isomorphic to H.

Proof of Theorem 12. Since G and H are locally equivalent, there is a sequence $v_{1}, v_{2}, \ldots v_{m}$ of $V(G)$ such that $G * v_{1} * v_{2} \ldots * v_{m}=H$. By Lemma $14, G$ and $G * v_{1} * v_{2} \ldots * v_{m}$ have isomorphic canonical trees. And since $G * v_{1} * v_{2} \ldots * v_{m}=H$, by Lemma 13, $G * v_{1} * v_{2} \ldots * v_{m}$ and H have isomorphic canonical trees. Thus G and H have isomorphic canonical trees. Since $G, H \in \Delta_{k}$, by Proposition 17, G is isomorphic to H.

5 The size of Δ_{k} is $2^{\Omega\left(3^{k}\right)}$

In this section, we determine the number of graphs in Δ_{k} for each non-negative integer k. The main theorem of this section is as follows.

- Theorem 18. Let $k \geq 2$ be an integer. The size of Δ_{k} is $2^{\Omega\left(3^{k}\right)}$.

For graphs G, G^{\prime} and $v \in V(G)$ and $v^{\prime} \in V\left(G^{\prime}\right)$, two pairs (G, v) and $\left(G^{\prime}, v^{\prime}\right)$ are isomorphic if there exists a graph isomorphism ϕ from G to G^{\prime} such that $\phi(v)=v^{\prime}$. To prove Theorem 18, for a positive integer k, we partition Δ_{k} into A_{k}, B_{k}, and C_{k} as follows:
(i) $G \in A_{k}$ if $\left(G_{1}, v_{1}\right),\left(G_{2}, v_{2}\right)$, and $\left(G_{3}, v_{3}\right)$ are isomorphic,
(ii) $G \in B_{k}$ if only two of $\left(G_{1}, v_{1}\right),\left(G_{2}, v_{2}\right),\left(G_{3}, v_{3}\right)$ are isomorphic,
(iii) $G \in C_{k}$ otherwise,
where G is a delta composition of G_{1}, G_{2}, and G_{3} in Δ_{k-1}, and $v_{1} v_{2} v_{3}$ is the main triangle of G such that $v_{i} \in V\left(G_{i}\right)$ for $i=1,2,3$. If p_{k} is the number of non-isomorphic pairs (G, v) where $G \in \Delta_{k}$ and $v \in V(G)$, we can easily verify that

$$
\left|A_{k}\right|=p_{k-1}, \quad\left|B_{k}\right|=p_{k-1}\left(p_{k-1}-1\right), \quad\left|C_{k}\right|=\frac{1}{6} p_{k-1}\left(p_{k-1}-1\right)\left(p_{k-1}-2\right) .
$$

We will give a lower bound of p_{k} from $\left|A_{k}\right|,\left|B_{k}\right|,\left|C_{k}\right|$, and obtain a recurrence relation.
For a graph G and $v, w \in V(G)$, we denote $v \simeq_{G} w$ if (G, v) and (G, w) are isomorphic. We consider the equivalent classes $V(G) / \simeq_{G}$. We denote $[v]$ as an element of $V(G) / \simeq_{G}$. For a non-negative integer k, let $P_{k}=\left\{(G,[v]): G \in \Delta_{k},[v] \in V(G) / \simeq_{G}\right\}$ and $p_{k}=\left|P_{k}\right|$. Then p_{k} is exactly the number of all non-isomorphic pairs (G, v) where $G \in \Delta_{k}$ and $v \in V(G)$. It is obvious that $p_{0}=1, p_{1}=2$. And we can see that $p_{2}=24$ in Figure 3. We need the following lemma.

Lemma 19. Let k be a positive integer and $G \in \Delta_{k}$.

1. If $G \in A_{k}$, then $\left|V(G) / \simeq_{G}\right| \geq 2^{k}$.
2. If $G \in B_{k}$, then $\left|V(G) / \simeq_{G}\right| \geq 2 \cdot 2^{k}$.
3. If $G \in C_{k}$, then $\left|V(G) / \simeq_{G}\right| \geq 3 \cdot 2^{k}$.

Proof of Theorem 18. By Lemma 19,

$$
p_{k}=\sum_{G \in A_{k} \cup B_{k} \cup C_{k}}\left|V(G) / \simeq_{G}\right| \geq 2^{k}\left|A_{k}\right|+2 \cdot 2^{k}\left|B_{k}\right|+3 \cdot 2^{k}\left|C_{k}\right| .
$$

Since $\left|A_{k}\right|=p_{k-1},\left|B_{k}\right|=p_{k-1}\left(p_{k-1}-1\right)$ and $\left|C_{k}\right|=\frac{1}{6} p_{k-1}\left(p_{k-1}-1\right)\left(p_{k-1}-2\right)$, we obtain the following recurrence relation,

$$
\begin{aligned}
\left|A_{k+1}\right|=p_{k} & \geq 2^{k}\left|A_{k}\right|+2 \cdot 2^{k}\left|B_{k}\right|+3 \cdot 2^{k}\left|C_{k}\right| \\
& \geq 2^{k-1}\left|A_{k}\right|^{3}
\end{aligned}
$$

and $\left|A_{2}\right|=2$.
This means $\left|A_{k}\right|=2^{\Omega\left(3^{k}\right)}$ for $k \geq 3$. Because $\left|\Delta_{2}\right|=4$ and $\left|\Delta_{k}\right| \geq\left|A_{k}\right|=2^{\Omega\left(3^{k}\right)}$ for $k \geq 3$, we conclude that $\left|\Delta_{k}\right|=2^{\Omega\left(3^{k}\right)}$ for $k \geq 2$.

Proof of Theorem 3. By Theorems 5 and 12, $\left|\mathcal{O}_{k}\right| \geq\left|\Delta_{k}\right|$. And by Theorem 18, $\left|\Delta_{k}\right| \geq$ $2^{\Omega\left(3^{k}\right)}$. Therefore, $\left|\mathcal{O}_{k}\right| \geq 2^{\Omega\left(3^{k}\right)}$.

1 Isolde Adler, Arthur M. Farley, and Andrzej Proskurowski. Obstructions for linear rankwidth at most 1. arXiv:1106.2533, 2011.
2 André Bouchet. Graphic presentations of isotropic systems. J. Combin. Theory Ser. B, 45(1):58-76, 1988.
3 André Bouchet. Transforming trees by successive local complementations. J. Graph Theory, 12(2):195-207, 1988.

4 William H. Cunningham. Decomposition of directed graphs. SIAM J. Algebraic Discrete Methods, 3(2):214-228, 1982.
5 Zdeněk Dvořák, Archontia C. Giannopoulou, and Dimitrios M. Thilikos. Forbidden graphs for tree-depth. European J. Combin., 33(5):969-979, 2012.
6 Robert Ganian. Thread graphs, linear rank-width and their algorithmic applications. In Combinatorial Algorithms, volume 6460 of Lecture Notes in Comput. Sci., pages 38-42. Springer, 2011.
7 J. F. Geelen, A. M. H. Gerards, N. Robertson, and G. P. Whittle. On the excluded minors for the matroids of branch-width k. J. Combin. Theory Ser. B, 88(2):261-265, 2003.
8 Arvind Gupta, Damon Kaller, and Thomas Shermer. On the complements of partial k trees. In Automata, languages and programming (Prague, 1999), volume 1644 of Lecture Notes in Comput. Sci., pages 382-391. Springer, Berlin, 1999.
9 Sang-il Oum. Rank-width and vertex-minors. J. Combin. Theory Ser. B, 95(1):79-100, 2005.

10 Sang-il Oum. Rank-width and well-quasi-ordering. SIAM J. Discrete Math., 22(2):666-682, 2008.

11 Sang-il Oum and Paul Seymour. Approximating clique-width and branch-width. J. Combin. Theory Ser. B, 96(4):514-528, 2006.
12 Atsushi Takahashi, Shuichi Ueno, and Yoji Kajitani. Minimal acyclic forbidden minors for the family of graphs with bounded path-width. Discrete Math., 127(1-3):293-304, 1994. Graph theory and applications (Hakone, 1990).
13 Dimitrios M. Thilikos. Algorithms and obstructions for linear-width and related search parameters. Discrete Appl. Math., 105(1-3):239-271, 2000.

[^0]: * Supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(2012-0004119).

