
FO2 with one transitive relation is decidable
Wiesław Szwast1 and Lidia Tendera∗1

1 Institute of Mathematics and Informatics,
Opole University, Oleska 48, 45-052 Opole, Poland
[szwast,tendera]@math.uni.opole.pl

Abstract
We show that the satisfiability problem for the two-variable first-order logic, FO2, over transitive
structures when only one relation is required to be transitive, is decidable. The result is optimal,
as FO2 over structures with two transitive relations, or with one transitive and one equivalence
relation, are known to be undecidable, so in fact, our result completes the classification of FO2-
logics over transitive structures with respect to decidability. We show that the satisfiability
problem is in 2-NExpTime. Decidability of the finite satisfiability problem remains open.
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1 Introduction

FO2 is the restriction of the classical first-order logic over relational signatures to formulae
with at most two distinct variables. It is well-known that FO2 enjoys the finite model
property [20], and its satisfiability (hence also finite satisfiability) problem is NExpTime-
complete [5].

One particular drawback of FO2 is that it can neither express transitivity of a binary
relation nor say that a binary relation is a partial (or linear) order, or an equivalence
relation. These natural properties are important for practical applications, thus research has
started to investigate FO2 over restricted classes of structures in which some distinguished
binary symbols are required to be interpreted as transitive relations, orders, equivalences,
etc. The idea comes from modal correspondence theory, where various conditions on the
accessibility relations allow to restrict the class of Kripke structures considered, e.g. to
transitive structures for the modal logic K4 or equivalence structures for the modal logic S5.
Orderings, on the other hand, are very natural when considering temporal logics, where they
model time flow, but they also are used in different scenarios, e.g. in databases or description
logics, to compare objects with respect to some parameters.

Unfortunately, the remarkably robust decidability of modal logics and its various exten-
sions towards greater expressibility does not transfer immediately to extensions of FO2, and
the picture for FO2 is more complex and to some extent less understood. It appeared that
both the satisfiability and the finite satisfiability problems for FO2 are undecidable in the
presence of several equivalence or several transitive relations [6, 7]. These results were later
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strengthened: FO2 is undecidable in the presence of two transitive relations [11, 9], three
equivalence relations [15], one transitive and one equivalence relation [17], or three linear
orders [12].

On the positive side it is known that FO2 with one or two equivalence relations is
decidable [16, 17, 14]. The same holds for FO2 with one linear order [22]. The intriguing
questions left open by this research was the case of FO2 with one transitive relation and
FO2 with two linear orders.

In this paper we answer the first question positively: we prove that the satisfiability
problem for the extension of FO2 where exactly one binary relation is required to be trans-
itive, FO2

T , is decidable in 2-NExpTime. The result completes the classification of variants
of FO2 over transitive structures with respect to decidability.

For the special case of two linear orders, ExpSpace-completeness of finite satisfiability
is shown, subject to certain restrictions on signatures, in [24]. (The case of unrestricted
signatures, and decidability of the general satisfiability problem are currently open.)

It is also worth to compare the above results with results concerning GF2 i.e. the two-
variable restriction of the guarded fragment GF [1] where quantifiers are guarded by atoms.
GF+TG is the restriction of GF2 with transitive relations where the transitive relation
symbols are allowed to appear only in guards. As shown in [26] undecidability of FO2 with
transitivity transfers to GF2 with transitivity; however, GF+TG is decidable irrespective
of the number of transitive symbols. Moreover, as noted in [11], the decision procedure
developed for GF2+TG can be applied to GF2 with one transitive relation that is allowed
to appear also outside guards, giving 2-ExpTime-completeness of the latter fragment.

Also of note in this context is the interpretation of FO2 over data words and data trees
that appear e.g. in verification and XML processing. Decidability of FO2 over data words
with one additional equivalence relation was shown in [3]. For more results related to FO2

over data words or data trees see e.g. [18, 24, 4, 21, 2].
It makes sense to also consider more expressive systems in which we may refer to the

transitive closure of some relation. In fact, relatively few decidable fragments of first-order
logic with transitive closure are known. One exception is the logic GF2 with a transitive
closure operator applied to binary symbols appearing only in guards [19]. This fragment
captures the two-variable guarded fragment with transitive guards, GF2+TG, preserving its
complexity [27, 10]. Also decidable is the satisfiability problem for the logic ∃∀(DTC+[E]),
i.e. the prefix class ∃∀ extended by the positive deterministic transitive closure operator of
one binary relation, which is shown to enjoy the exponential model property [8]. Recently,
it has been shown that the satisfiability problem for the two-variable universal fragment of
first-order logic with constants remains decidable when extended by the transitive closure
of a single binary relation [13]. Whether the same holds for full FO2 is open.

Expressive power of FO2
T . As has already been mentioned, FO2 has the finite model

property. Adding one transitive relation to GF2 (even restricted only to guards) we can
write infinity axioms, however models for this logic still enjoy the so called tree-like property,
i.e. new elements required by ∀∃-conjuncts can be added independently. Below we give an
example of an infinity axiom in FO2

T that enforces models where in some triples all elements
depend on each other.

We use the transitive relation symbol T and two unary symbols P andQ. It is not difficult
to formalize the following statements by an FO2

T formula: (a) T is strictly antisymmetric.
(b) Elements of P form one infinite chain. (c) Elements of Q are incomparable. (d) Every
element of P has an incomparable element in Q. (e) Every element of Q is smaller than
some element in P .
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P . . . ◦ // ◦ // ◦ // ◦ // ◦ // ◦ . . .

Q . . . •

??

•

??

•

??

•

??

•

??

• . . .

Figure 1 A model satisfying (a)-(e). Arrows depict elements related by T . Lines connect elements
required by (d), not connected by T .

In any model satisfying (a)-(e) there is an infinite chain of elements in P that induces an
infinite antichain of elements in Q (see Figure 1). Note also, that it suffices that the unique
transitive relation is supposed to be a partial ordering.
Outline of the proof. Models for our logic, taking into account the interpretation of
the transitive relation, can obviously be seen as partitioned into cliques. As usually for
two-variable logics, we first establish a “Scott-type” normal form for FO2

T : ∀∀ ∧
∧
∀∃,

allowing us to restrict the nesting of quantifiers to depth two, as well as to concentrate
on the ∀∃-conjuncts demanding “witnesses” for all elements in a model. The form of the
∀∃-conjuncts enables to distinguish witnesses required inside cliques (i.e. realizing a 2-type
containing both T (x, y) and T (y, x), see Section 2 for a precise definition) from witnesses
outside cliques. We also establish a small clique property for FO2

T (practically the same as in
[15]), allowing us to restrict attention to models with cliques exponentially bounded in the
size of the signature. Further constructions proceed on levels of cliques rather than individual
elements. (An alternative approach would be to consider first the satisfiability problem over
an antisymmetric relation T and then reduce the general problem to the aforementioned one
taking into account the bound on the clique sizes.)

Crucial to our argument is this property: any infinitely satisfiable sentence has an infinite
narrow model, i.e. a model whose universe can be partitioned into segments (i.e. sets of
cliques) S0, S1, . . ., each of doubly exponential size, such that every element in

⋃j−1
i=0 Si

requiring a witness outside its clique has the witness either in S0 or in Sj (so, in every
Sk, k ≥ j, Def. 16). This immediately implies that, when needed, every single segment Sj

(j > 0) can be removed from the structure, to yield a model with new properties.
To prove existence of narrow models, we first make some useful observations. In partic-

ular, we show that a single clique can be duplicated, provided its type called splice appears
at least twice in a model (Claim 7). The property is used to show the main technical result
(Claim 10 and Corollary 11). Next, the idea is generalized in Lemma 13 to show that for
any finite subset F of elements, the model can be extended by a fixed number of cliques
(depending only on the signature, and not depending on the cardinality of F ) providing all
required witnesses for elements from F .

As the main result of the paper, we show that from any narrow model we can build
a canonical model where every two segments of the infinite partition (except the first) are
isomorphic and they are connected using at most two distinct similarity types (Def. 19). In
fact, these constructions can be seen as an application of the infinite Ramsey theorem [23],
where segments of the models are considered to be nodes in a colored graph, and similarity
types of pairs of segments are colors of edges.

The above properties suffice to obtain the 2-NExpTime decision procedure for the sat-
isfiability problem for FO2

T given in Theorem 21 and Corollary 22. We note however that
the best lower bound coming from GF2+TG is 2-ExpTime, thus our result leaves a gap in
complexity. We also note that our decision procedure cannot be straightforwardly general-
ized to solve the finite satisfiability problem for FO2

T and to the best of our knowledge, the
latter problem remains open (see Outlook for some discussion).

STACS’13
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2 Preliminaries

We denote by FO2 the two-variable fragment of first-order logic (with equality) over re-
lational signatures. By FO2

T we understand the set of FO2
T -formulas over any signature

σ = σ0 ∪ {T}, where T is a distinguished binary predicate. The semantics for FO2
T is as for

FO2, subject to the restriction that T is always interpreted as a transitive relation.
In this paper, σ-structures are denoted by Gothic capital letters and their universes

by corresponding Latin capitals. Where a structure is clear from context, we frequently
equivocate between predicates and their realizations, thus writing, for example, R in place
of the technically correct RA. If A is a σ-structure and B ⊆ A, then A � B denotes the
substructure of A with the universe B.

An (atomic and proper) k-type (over a given signature) is a maximal consistent set of
atoms or negated atoms over k distinct variables not containing equality atoms xi = xj

with i 6= j. If β(x, y) is a 2-type over variables x and y, then β � x (respectively, β � y)
denotes the unique 1-type that is obtained from β by removing atoms with the variable y
(respectively, the variable x). We denote by α the set of all 1-types and by β the set of all
2-types (over a given signature). Note that |α| and |β| are bounded exponentially in the
size of the signature. We often identify a type with the conjunction of all its elements.

For a given σ-structure A and a ∈ A we say that a realizes a 1-type α if α is the unique
1-type such that A |= α[a]. We denote by tpA(a) the 1-type realized by a. Similarly, for
distinct a, b ∈ A, we denote by tpA(a, b) the unique 2-type realized by the pair a, b, i.e. the
2-type β such that A |= β[a, b]. In general, for finite B,C ⊆ A, B ∩ C = ∅, by tpA(B,C)
we denote the similarity type of the substructure A � (B ∪ C) (or, in other words, its
card(B ∪ C)-type).

Assume A is a σ-structure and B,C ⊆ A. We denote by αA (respectively, αA[B]) the
set of all 1-types realized in A (respectively, realized in A � B), and by βA (respectively,
βA[B]) the set of all 2-types realized in A (respectively, realized in A � B). We denote by
βA[a,B] the set of all 2-types tpA(a, b) with b ∈ B, and by βA[B,C] the set of all 2-types
tpA(b, c) with b ∈ B, c ∈ C.

Let γ be a σ-sentence of the form ∀x ∃y ψ(x, y) and a ∈ A. We say that an element
b ∈ A is a γ-witness for a in the structure A if A |= ψ(a, b); b is a proper γ-witness, if b is a
γ-witness and a 6= b.

Scott normal form. As with FO2, so too with FO2
T , analysis is facilitated by the availab-

ility of normal forms.

I Definition 1. An FO2-sentence Ψ is in Scott normal form if it is of the following form:
∀x∀y ψ0(x, y)∧

∧M
i=1 ∀x∃y ψi(x, y), where every ψi is quantifier-free and includes unary and

binary predicate letters only.

Without loss of generality we suppose that for i ≥ 1, ψi(x, y) entails x 6= y (replacing
ψi(x, y) with (ψi(x, y) ∨ ψi(x, x)) ∧ x 6= y, which is sound over all structures with at least
two elements).

Two formulas are said to be strongly equisatisfiable if they are satisfiable over the same
universe. The following Lemma is typical for two-variable logics.

I Lemma 2 ([25, 5]). For every formula ϕ ∈ FO2 one can compute in polynomial time a
strongly equisatisfiable normal form formula ψ ∈ FO2 over a new signature whose length is
linear in the length of ϕ.

Suppose the signature σ consists of predicates of arity at most 2. To define a σ-structure
A, it suffices to specify the 1-types and 2-types realized by elements and pairs of elements
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from the universe A. In the presence of a transitive relation, we classify 2-types according
to the transitive connection between x and y. And so, we distinguish β→, β←, β↔ and β−

such that β = β→ ∪̇ β← ∪̇ β↔ ∪̇ β− and for instance: β ∈ β→ iff (T (x, y)∧¬T (y, x)) ∈ β,
β ∈ β↔ iff (T (x, y) ∧ T (y, x)) ∈ β, etc.

For a quantifier-free formula ϕ(x, y) we use superscripts →, ←, ↔ and − to define new
formulas that explicitly specify the transitive connection between x and y. For instance, for
a quantifier-free formula ϕ(x, y) ∈ FO2

T we let ϕ→(x, y) := ϕ(x, y) ∧ T (x, y) ∧ ¬T (y, x).
This conversion of FO2

T -formulae leads to the the following variant of the Scott normal
form:

∀x∀y ψ0∧
m∧

i=1
γi ∧

m∧
i=1

δi (1)

where γi = ∀x∃y ψdi
i (x, y) with di ∈ {→,← ,− }, and δi = ∀x∃y ψ↔

i (x, y).
For a fixed sentence Ψ in normal form (1) we often write γi ∈ Ψ to indicate that γi is a

conjunct of Ψ of the form ∀x∃y ψdi
i (x, y).

I Lemma 3. Let ϕ be an FO2
T -formula over a signature τ . We can compute, in polynomial

time, a strongly equisatisfiable FO2
T -formula in normal form, over a signature σ consisting

of τ together with a number of additional unary and binary predicates.

Sketch. We employ the standard technique of renaming subformulas familiar from [25] and
[5], noting that any formula ∃yψ is logically equivalent to ∃yψ→∨∃yψ←∨∃yψ↔∨∃yψ−. J

The following trivial observation will be very useful in the paper.

I Proposition 4. Assume A is a σ-structure and Ψ is a FO2
T -sentence over σ in normal

form (1). Then A |= Ψ if and only if
(a) for every a ∈ A, for every γi (1 ≤ i ≤ m) there is a γi-witness for a in A,
(b) for every a ∈ A, for every δi (1 ≤ i ≤ m) there is a δi-witness for a in A,
(c) for every a, b ∈ A, tpA(a, b) |= ψ0,
(d) TA is transitive in A.

A small clique property for FO2
T . Let A be a σ-structure. A subset B of A is called

T -connected if β[B] ⊆ β↔[A]. Maximal T -connected subsets of A are called cliques. Note
that if β[a,A] ∩ β↔[A] = ∅, for some a ∈ A, then {a} is a clique. We prove the following
small clique property.

I Lemma 5. Let Ψ be a satisfiable FO2
T -sentence in normal form, over a signature σ. Then

there exists a model of Ψ in which the size of each clique is bounded exponentially in |σ|.

We first show how to replace a single clique in models of normal-form FO2
T -sentences by

an equivalent small one. The idea is not new, it was used in [27] to show that T -cliques in
models of GF2+TG can be replaced by appropriate small structures called T -petals (Lemma
17). Later, in [16] it was proved that for any structure A and its substructure B, one may
replace B by an alternative structure B′ of a bounded size in such a way that the obtained
structure A′ and the original structure A satisfy exactly the same normal form FO2 formulas.
Due to space limitations, a precise statement of the latter lemma and the proof of the small
clique model property will appear in the full version of the paper.

STACS’13
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3 Splices and duplicability

In the remainder of the paper we fix a relational signature σ and assume Ψ is an FO2
T -

sentence in normal form (1). By Lemma 5, we may already assume (and we do so) that
models of Ψ have the small clique property. In the next two sections we assume that Ψ is
satisfiable and, if not stated otherwise, A |= Ψ.

In this section we analyze properties of models of Ψ on the level of cliques rather than
individual elements. We give here the key technical argument of the paper (Corollary 11).
It says, roughly speaking, that if A |= Ψ and elements of a finite subset F of the universe
A have their γi-witnesses in several “similar” cliques then A can be extended by one new
clique, where all the elements of F have their γi-witnesses.

First, we need to introduce some new notions and notation. For a ∈ A denote by ClA(a)
the unique clique C ⊆ A with a ∈ C. When F ⊆ A, denote ClA(F ) = {ClA(a) : a ∈ F}
and finally, ClA = ClA(A). Note that whenever B ∈ ClA, and a ∈ A is an element outside
the clique B, then the 2-types between a and any element b ∈ B belong to the same subset
of β, i.e. either to β→, β← or β−. So, we might speak about elements of A connected with
the clique B using “directed” edges. Similarly, we can identify cliques connected with B

using “incoming” and “outgoing” edges.

I Definition 6. Let A be a σ-structure and let B ∈ ClA. Define:
InA(B) def= {tpA(C) : C ∈ ClA and β[C,B] ⊆ β→},
OutA(B) def= {tpA(C) : C ∈ ClA and β[C,B] ⊆ β←},
spA(B) = 〈tpA(B), InA(B), OutA(B)〉,
SpA = {spA(B) : B ∈ ClA}. Elements of SpA are called A-splices.

Splices define cliques reachable from a given clique via T .
We say that two cliques B,B′ ∈ ClA realize the same splice, written B ≡A B′, if

spA(B) = spA(B′). When A is understood we often omit the superscript in ≡A and write
≡. Note that ≡A is an equivalence relation on ClA. Moreover, if we have an a priori upper
bound on the size of cliques in ClA, then ClA/≡ is finite (and of bounded cardinality).

Additionally, we distinguish the set K(A) of unique cliques in A: K(A) = {B ∈ ClA :
card([B]≡) = 1} and the corresponding subset K(A) of the universe of A, that consists of
the elements of the unique cliques: K(A) =

⋃
B∈K(A) B.

Our task is now to show that any model of Ψ containing a non-unique clique B can be
extended into a new model of Ψ by adding a copy of B. The copy of B is added in such
a way that it also provides, for all conjuncts of the form γi, all the witnesses for elements
outside the two cliques that have been provided by B. This property will be explored later,
when new models will be constructed by removing segments (i.e. sets of cliques) from given
ones.

For every γi ∈ Ψ (recall γi = ∀x∃y ψdi
i (x, y) with di ∈ {→,← ,− }) and for every a ∈ A

we define WA
i (a) as the set of all proper γi-witnesses for a in A:

WA
i (a) def= {b ∈ A : A |= ψi(a, b), b 6= a}.

Similarly, for every γi ∈ Ψ and for every F ⊆ A we define WA
i (F ) def=

⋃
a∈F W

A
i (a).

The following claim states that every non-unique clique in a given model can be properly
duplicated, as informally described above.

I Claim 7 (Duplicability). Assume A |= Ψ, B1 ∈ ClA and B1 6∈ K(A). There is an extension
A′ of A by one new clique D such that
1. A′ |= Ψ,
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2. for every conjunct γi of Ψ, for every a ∈ A we have:
B1 ∩WA

i (a) 6= ∅ iff D ∩WA′

i (a) 6= ∅, and
3. spA′(D) = spA

′(B1) = spA(B1).

Proof. Let A |= Ψ, B1 ∈ ClA. Since B1 6∈ K(A), there exists B2 ∈ ClA, B2 6= B1 such that
spA(B2) = spA(B1). Assume D is a duplicate of A � B1, D ∩ A = ∅, f1 : D 7→ B1 and
f2 : D 7→ B2 are appropriate isomorphism functions. Let A′ be an extension of A with the
universe A∪̇D such that:

tpA
′(d, b) def= tpA(b, f2(d)), for every b ∈ B1, d ∈ D (note that β[d,B1] = β[B1, f2(d)]

and so β[D,B1] = β[B1, B2]),
tpA

′(d, a) def= tpA(f1(d), a), for every a ∈ A \ (B1 ∪D), d ∈ D (note that β[d,A \ B1] =
β[f1(d), A \B1] and so β[D,A \B1] = β[B1, A \B1]).

To see that A′ |= Ψ one can show that conditions (a)–(d) of Proposition 4 hold for A′. J

Using the above claim we may build saturated models in the following sense.

I Definition 8. Assume A |= Ψ. We say that A is witness-saturated, if A has the small
clique property and for every a ∈ A, for every γi ∈ Ψ (1 ≤ i ≤ m)

Wi(a) ⊆ K(A) or Wi(a) is infinite.

Note that if a witness-saturated model A is finite then A = K(A). By Lemma 5 and by
iterative application of Claim 7 we get the following.

I Lemma 9 (Saturated model). Every satisfiable normal form sentence Ψ has a countable
witness-saturated model. Additionally, if A is witness-saturated, then the extension A′ given
by Claim 7 is also witness-saturated.

The above Lemma is essential for the proof of the key technical tool for the paper,
Corollary 11, given below. It says that when several elements a1, a2, . . . , an of a model
A have γi-witnesses in several distinguished cliques that realize the same splice, one can
extend the model A by a single clique D (realizing the same splice) in which a1, a2, . . . , an

have their γi-witnesses. The proof is based on a more subtle (than in Claim 7) analysis of
models of a normal form sentence Ψ given in Claim 10. In the Claim note that whenever
β(C1, C2) ∈ β← then β(C2, C1) 6∈ β←.

I Claim 10. Assume A is countable witness-saturated and γi ∈ Ψ. Let C1, C2, B1, B2 ∈ ClA,
β(C1, C2) 6∈ β←, B1 6= B2, B1 ∩Wi(C1) 6= ∅, B2 ∩Wi(C2) 6= ∅, C1 6∈ K(A), C1 ≡ C2 and
B1 ≡ B2. Then, there exists an extension A1 of A by at least one clique D such that
(i) A1 |= Ψ and A1 is witness-saturated,
(ii) for every a ∈ A: if B1 ∩WA

i (a) 6= ∅ then D ∩WA1
i (a) 6= ∅,

(iii) for every a ∈ C2: if B2 ∩WA
i (a) 6= ∅ then D ∩WA1

i (a) 6= ∅,
(iv) spA1(D) = spA1(B1) = spA(B1).

Proof. We have several cases. In each case we add a duplicate D of the clique B1 where
both C1 and C2 will get their γi-witnesses. We sketch only one of the interesting cases.
Case 1. β[C1, B1] ⊆ β− and β[C1, C2] ⊆ β→ ∪ β−. In this case C1 6= C2 and γi =
∀x∃y ψ−i (x, y). So, β[C1, B1] ⊆ β− and β[C2, B2] ⊆ β−.
Subcase 1.a. β[C1, C2] ∈ β→, β[B1, B2] ⊆ β−, β[C1, B2] ⊆ β→ and β[B1, C2] ∈ β→.

The construction proceeds in four steps.
Step 1 (copying of B1). Let A′ be the witness saturated extension of A by one new clique D
– a duplicate of the clique B1 given by Claim 7 and Lemma 9. Observe that all conditions
(i)–(iv) hold in A′ except (iii) since by construction of A′ βA′

[C2, D] = βA[C2, B1] ⊆ β←.

STACS’13
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Step 2 (modification of tpA′(C2, D)). To ensure that (iii) holds, a new structure A2 is built
by defining tpA2(C2, D) def= tpA

′(C2, B2).
Step 3 (transitivity correction). To ensure that T is transitive we construct a structure A3:
for every X ∈ ClA2 , if β[D,X] ⊆ β→ and β[X,C2] ⊆ β→ then replace tpA2(D,X) by
tpA2(B2, X). One can observe that β[X,B2] ⊆ β−, so T is transitive in A3.
Step 4 (γj-witness in X correction). Let X ∈ ClA2 be such that the type tpA2(D,X) is
changed in Step 3. We show that then there is a clique X2 ∈ ClA3 such that tpA3(X2) =
tpA3(X) and βA3 [D,X2] ⊆ β→. For, observe that tpA3(X) ∈ OutA3(B1) and so tpA3(X) ∈
OutA3(B2) since B1 ≡ B2. Let X1 ∈ ClA3 , tpA3(X1) = tpA3(X) and β[B2, X1] ⊆ β→.
Since β[C1, B2] ⊆ β→ we have β[C1, X1] ⊆ β→ and so tpA3(X1) ∈ OutA3(C1). Hence, since
C1 ≡ C2 there exist X2 ∈ ClA3 such that tpA3(X2) = tpA3(X1) and β[C2, X2] ⊆ β→. Since
β[B1, C2] ⊆ β→, so β[B1, X2] ⊆ β→, and hence, by construction of A′, β[D,X2] ⊆ β→.
To obtain the required model A1 replace tpA3(D,X2) by tpA2(D,X) (= tpA(B1, X)).

Correctness proof of the above construction, as well as other cases, will appear in the
full version of the paper. J

I Corollary 11. Assume A is countable witness-saturated, γi ∈ Ψ and X ∈ SpA. Let
F ⊆ A \ K(A) be a finite set such that for every a ∈ F there is b ∈ WA

i (a) such that
b 6∈ K(A) and sp(ClA(b)) = X. Then, there exists an extension A′ of A by at least one
clique D such that
(i) A′ |= Ψ and A′ is witness-saturated,
(ii) D ∩WA′

i (a) 6= ∅, for every a ∈ F ,
(iii) spA′(D) = X.

Proof. Let F = {a1, a2, . . . , ap}, where a1 denotes an element of F such that for every
a ∈ F \ {a1}, tpA(a1, a) 6∈ β←. (Note that a1 can always be found since F is finite and T
is transitive in A.) We iteratively apply Claim 10. Denote A1 = A and for k = 2, 3, . . . , p
let Ak and Dk be the extension of Ak−1

1 by at least one clique Dk given by Claim 10 for
a1 and ak. Obviously, for every k (2 ≤ k ≤ p) we have Dk ∩WA′

i (a) 6= ∅, for every a ∈
{a1, a2, . . . , ak}. J

4 Canonical models

In this section we analyze properties of models of Ψ on the level of segments which consist
of several cliques, and constitute a partition S0, S1, . . . of the universe of a model. Every
segment Sj has a fixed (doubly exponential) size and is meant to contain all γi-witnesses
for elements from earlier segments S0, S1, . . . , Sj−1. On this level of abstraction cliques and
splices of a model become less important.

I Definition 12. A finite subset S ⊂ A is a segment in A if ClA(a) ⊆ S for every a ∈ S.

In the following we reserve the letter S (possibly decorated) to denote segments. Define
s = |Sp(σ)| and denote by h the bound of the size of each clique in a small-clique σ-structure,
given by Lemma 5. Note that s is doubly exponential and h is exponential in |σ|.

We first prove a generalization of Corollary 11. It says, roughly speaking, that if A |= Ψ
and F is a finite subset of A, then it is possible to extend A by a segment of fixed cardinality
in which all elements of F have their γi-witnesses, for every i (1 ≤ i ≤ m).

I Lemma 13 (Witnesses compression). Assume A is a countable witness-saturated model of
Ψ and F ⊆ A \K(A) is finite. There is a witness-saturated extension A′ of A by a segment
S such that
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1. A′ |= Ψ,
2. |S| ≤ m · s · h,
3. for every γi ∈ Ψ, for every a ∈ F , if WA

i (a) \K(A) 6= ∅, then WA′

i (a) ∩ S 6= ∅.

Proof. First, for given i (1 ≤ i ≤ m) and X ∈ SpA let FX
i ⊆ S be a maximal subset of F

such that for every a ∈ FX
i there is b ∈ WA

i (a) such that b 6∈ K(A) and sp(ClA(b)) = X.
Now, for every i (1 ≤ i ≤ m) and for every X ∈ SpA iteratively apply Corollary 11 for FX

i

and denote each new clique added in the process by DX
i . Let S be the segment consisting

of elements of the new cliques: S def=
⋃

1≤i≤m

⋃
X∈SpA DX

i .

Condition (i) of Lemma 11 implies that A′ |= Ψ. Obviously, |S| ≤ m · s ·h. To show that
condition 3 of our lemma holds, assume γi ∈ Ψ, a ∈ F and there exists b ∈WA

i (a) such that
b 6∈ K(A). So a ∈ FX

i , where X = sp(ClA(b)). By condition (ii) of Lemma 11 we obtain
DX

i ∩WA′

i (a) 6= ∅, and so, WA′

i (a) ∩ S 6= ∅. J

I Definition 14. A segment S  A is redundant in A, if for every a ∈ A \ S and for every
γi ∈ Ψ we have: WA

i (a) ∩ S 6= ∅ implies there exists c ∈ A \ S such that c ∈WA
i (a).

I Claim 15. If A |= Ψ and S  A is redundant in A, then A � (A \ S) |= Ψ.

Proof. Every subgraph of a transitive graph is also transitive. Conditions (a)–(c) of Pro-
position 4 obviously hold for A � (A \ S). J

I Definition 16. A model A of Ψ is narrow if there is an infinite partition PA = {S0, S1, . . .}
of the universe A such that:
1. K(A) ⊂ S0, |S0| ≤ (m+ 1) · s · h,
2. |Sj | ≤ m · s · h, for every j ≥ 1,
3. for every j ≥ 0, for every e ∈

⋃j
k=0 Sk and for every γi ∈ Ψ,

if WA
i (e) ∩ S0 = ∅, then WA

i (e) ∩ Sj+1 6= ∅.

I Lemma 17. Every infinitely satisfiable sentence Ψ has a narrow model.

Proof. Assume A is an infinite witness-saturated model of Ψ that exists by Lemma 13. For
γi ∈ Ψ and a ∈ A denote by γ̄i(a) an arbitrarily chosen element b ∈WA

i (a). Define A0 = A

and S0 = K(A) ∪
⋃

a∈K(A) Cl
A(γ̄i(a)).

Now, for j = 0, 1, 2, . . . define:
Aj+1 = A′j , where A′j is the extension of Aj given by Lemma 13 for F =

⋃j
k=0 Sk,

Sj+1 = B, where B is the finite set given by Lemma 13; B extends Aj to Aj+1 in such
a way, that:

Aj+1 |= Ψ,
|B| ≤ m · s · h,
for every γi ∈ Ψ, for every a ∈ F , if WA

i (a) \K(Aj) 6= ∅, then WAj+1
i (a) ∩B 6= ∅.

Now, define A′ = (
⋃∞

k=0 Ak) �
⋃∞

k=0 Sk. By Claim 15 and Lemma 13, it is easy to see, that
A′ is a narrow model of Ψ with partition PA′ = {S0, S1, . . .}. J

I Definition 18. Assume A is a σ-structure, x, y ∈ N+ and B,B′, C, C ′ are finite subsets
of A with fixed orderings: B = {b1 < . . . < bx}, B′ = {b′1 < . . . < b′y}, C = {c1 < . . . < cx},
C ′ = {c′1 < . . . , c′y} such that B ∩B′ = ∅, C ∩ C ′ = ∅.
A connection type of B and B′ in A is the structure 〈B,B′〉 def= A � (B∪B′). Two connection
types 〈B,B′〉 and 〈C,C ′〉 are the same connection types in A, denoted 〈B,B′〉 ∼=A 〈C,C ′〉,
if the function f : B ∪B′ 7→ C ∪C ′ defined by f(bj) = cj and f(b′j) = c′j is an isomorphism
of 〈B,B′〉 and 〈C,C ′〉.
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I Definition 19. Assume A is a narrow model of Ψ and PA = {S0, S1, . . .} is any partition
satisfying conditions 1-3 of Definition 16. We say that A is canonical if for every j, k ∈ N+,

0 < j < k, we have 〈Sj , S0〉 ∼=A 〈S1, S0〉, and 〈Sk, Sj〉 ∼=A 〈S2, S1〉.

I Lemma 20. Every infinitely satisfiable sentence Ψ has a canonical model.

Proof. Let A be a narrow model of Ψ with partition PA = {S0, S1, . . .} given by Definition
16. Additionally, assume that in every segment Sj , j ≥ 0, there is a fixed linear ordering.

Observe first that for every p > 0, Sp is redundant in A. For, assume (cf. Definition 14)
b ∈ Sp, a ∈ A\Sp and b ∈WA

i (a). Assume a ∈ Sq and take j ∈ N+ such that j > max{p, q}.
By Definition 16, we have that if WA

i (a) ∩ S0 = ∅, then WA
i (a) ∩ Sj+1 6= ∅. So, there is

c ∈ S0 ∪ Sj+1 such that c ∈ WA
i (a). Similarly, for every infinite V ⊂ N+, the segment⋃

j∈N+\V Sj is redundant in A and, by Claim 15, A �
⋃

j∈V ∪{0} Sj |= Ψ.
To construct the canonical model we first find an infinite set V ⊂ N+ such that for every

j, l ∈ V , j 6= l, 〈Sl, S0〉 ∼=A 〈Sj , S0〉. Observe that the set V does exist (by the infinite
Ramsey theorem, there are infinitely many segments in PA and only a finite number of
similarity types).

Secondly, we find an infinite set W ⊆ V such that for every i, j, k, l ∈W with i < j and
k < l we have 〈Sj , Si〉 ∼=A 〈Sl, Sk〉. (Again, W exists by the infinite Ramsey theorem).

Finally, we define A′ = A �
⋃

j∈W∪{0} Sj . By Claim 15, A′ |= Ψ. Obviously, A′ is
canonical with partition PA′ = {Sj : j ∈ N+, j = #p}, where #p is the position number of
p ∈W ∪ {0}. J

5 Decidability and complexity

From Lemma 20 we get immediately the following theorem.

I Theorem 21. An FO2
T -sentence Ψ is satisfiable if and only if there exist a σ-structure A

and S0, S1, S2, S3 ⊆ A, such that:
1. |A| ≤ (4m+ 1) · s · h,
2. either S1 = S2 = S3 = ∅, or {S0, S1, S2, S3} is a partition of A and then

a. 〈S1, S0〉 ∼=A 〈S2, S0〉 ∼=A 〈S3, S0〉,
b. 〈S2, S1〉 ∼=A 〈S3, S2〉 ∼=A 〈S3, S1〉,

3. for every a, b ∈ A, tpA(a, b) |= ψ0,
4. TA is transitive in A,
5. for every j = 0, 1, 2, for every e ∈ Sj and for every γi ∈ Ψ,

if WA
i (e) ∩ S0 = ∅, then WA

i (e) ∩ Sj+1 6= ∅.

Proof. (⇒) There are two cases. Either Ψ has only finite models and then, by Lemma 9,
Ψ has a witness-saturated model A with A = K(A). In this case, we put S0 = A and S1 =
S2 = S3 = ∅. Or, Ψ has infinite models, and then, by Lemma 20, Ψ has a canonical model
A′ with partition PA′ = {S0, S1, . . .}. In this case, we define A

def= A′ � (S0∪̇S1∪̇S2∪̇S3).
Note that in either case |S0| ≤ s · h+m · s · h = (m+ 1) · s · h.
(⇐) Define a structure A′ such that A′ def= S0 ∪̇ S1 ∪̇ S2 ∪̇ S3 ∪̇

⋃̇∞
j=4 Sj and, for every

j, k ∈ N+ (0 < j < k) : 〈Sj , S0〉 ∼=A′
〈S1, S0〉 and 〈Sk, Sj〉 ∼=A′

〈S2, S1〉. It is obvious that
A′ satisfies conditions (a)–(c) of Proposition 4. To show that T is transitive in A′ it suffices to
prove that for every j, k, l (0 ≤ j ≤ k ≤ l), TA′�(Sj∪Sk∪Sl) is transitive in A′ � (Sj ∪Sk ∪Sl).
The latter condition can be easily verified; hence, A′ |= Ψ. J

I Corollary 22. SAT(FO2
T ) ∈ 2 -NExpTime.
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Proof. To check whether a given FO2
T sentence Ψ is satisfiable we follow Theorem 21 and

we obtain a nondeterministic double exponential time procedure, as described below.
1. Guess a σ-structure A of cardinality |A| ≤ (4m+ 1) · s · h and partition

PA = {S0,S1, S2, S3};
2. Guess enumerations of every segment S0,S1, S2, S3;
3. If not:

a. 〈S1, S0〉 ∼=A 〈S2, S0〉 ∼=A 〈S3, S0〉 and
b. 〈S2, S1〉 ∼=A 〈S3, S2〉 ∼=A 〈S3, S1〉

then reject;
4. For every a, b ∈ A, if tpA(a, b) 6|= ψ0 then reject;
5. For every a, b, c ∈ A, if not (TA(a, b) ∧ TA(b, c)⇒ TA(a, c)) then reject;
6. For every j = 0, 1, 2, for every e ∈ Sj , for every γi ∈ Ψ such that WA

i (e) ∩ S0 = ∅
if WA

i (e) ∩ Sj+1 = ∅ then reject;
7. Accept; J

6 Outlook

Since the finite model property fails for FO2
T , an interesting question is whether the finite

satisfiability problem is also decidable. Immediately from Lemma 17 we have the following
observation.

I Corollary 23. An FO2
T -sentence Ψ is satisfiable if and only if

Ψ has a model of cardinality ≤ s · h, or Ψ has an infinite model.
The s · h bound on the size of the finite model of Ψ depends on the number of different
σ-splices and the size of cliques in a structure with the small clique property. Unfortunately,
this observation does not suffice to answer the finite satisfiability problem, as in general, one
can imagine that a finite model contains several realizations of the same splice. So, to the
best of our knowledge, the finite satisfiability problem for FO2

T remains open. We believe
that the latter problem is decidable; however, we suppose that an essential extension of the
above approach is required to get the proof.

We also note that the 2-NExpTime bound for the satisfiability problem leaves a gap
in complexity, as the best lower bound coming from the two-variable guarded logic with
transitive guards is 2-ExpTime [10]. We believe that the upper bound proved in our paper
can be improved; however, as FO2

T does not enjoy the tree-like property, standard techniques
using alternating machines cannot be applied directly.
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