
Parameterized Matching in the Streaming Model
Markus Jalsenius1, Benny Porat2, and Benjamin Sach3

1 Department of Computer Science, University of Bristol, U.K.
2 Department of Computer Science, Bar-Ilan University, Israel.
3 Department of Computer Science, University of Warwick, U.K.

Abstract
We study the problem of parameterized matching in a stream where we want to output

matches between a pattern of length m and the last m symbols of the stream before the next
symbol arrives. Parameterized matching is a natural generalisation of exact matching where an
arbitrary one-to-one relabelling of pattern symbols is allowed. We show how this problem can
be solved in constant time per arriving stream symbol and sublinear, near optimal space with
high probability. Our results are surprising and important: it has been shown that almost no
streaming pattern matching problems can be solved (not even randomised) in less than Θ(m)
space, with exact matching as the only known problem to have a sublinear, near optimal space
solution. Here we demonstrate that a similar sublinear, near optimal space solution is achievable
for an even more challenging problem.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Pattern matching, streaming algorithms, randomized algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.400

1 Introduction

We consider the problem of pattern matching in a stream where we want to output matches
between a pattern of length m and the last m symbols of the stream. Each answer must be
reported before the next symbol arrives. The problem we consider in this paper is known as
parameterized matching and is a natural generalisation of exact matching where an arbitrary
one-to-one relabelling of the pattern symbols is allowed (one per alignment). For example, if
the pattern is abbca then there there is a parameterized match with bddcb as we can apply
the relabelling a→b, b→d, c→c. There is however no parameterized match with bddbb.
We show how this streaming pattern matching problem can be solved in near constant time
per arriving stream symbol and sublinear, near optimal, space with high probability. The
space used is reduced even further when only a small subset of the symbols are allowed to be
relabelled. As discussed in the next section, our results demonstrate a serious push forward
in understanding what pattern matching algorithms can be solved in sublinear space.

1.1 Background
Streaming algorithms is a well studied area and specifically finding patterns in a stream is a
fundamental problem that has received increasing attention over the past few years. It was
shown in [8] that many offline algorithms can be made online (streaming) and deamortised
with a logm factor overhead in the time complexity per arriving symbol in the stream,
where m is the length of the pattern. There have also been improvements for specific
pattern matching problems but they all have one property in common: space usage is Θ(m)
words. It is not difficult to show that we in fact need as much as Θ(m) space to do pattern

© Markus Jalsenius, Benny Porat, and Benjamin Sach;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 400–411

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.400
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Jalsenius, B. Porat, and B. Sach 401

matching, unless errors are allowed. The field of pattern matching in a stream took a
significant step forwards in 2009 when it was shown to be possible to solve exact matching
using only O(logm) words of space and O(logm) time per new stream symbol [15]. This
method, which is based on fingerprints, correctly finds all matches with high probability.
The initial approach was subsequently somewhat simplified [10] and then finally improved
to run in constant time [7] within the same space requirements.

Being able to do exact matching in sublinear space raised the question of what other
streaming pattern matching problems can be solved in small space. In 2011 this question
was answered for a large set of such problems [9]. The result was rather gloomy: almost
no streaming pattern matching problems can be solved in sublinear space, not even using
randomised algorithms. An Ω(m) space lower bound was given for L1, L2, L∞, Hamming,
edit distance and pattern matching with wildcards as well as for any algorithm that com-
putes the cross-correlation/convolution. So what other pattern matching problems could
possibly be solved in small space? It seems that the only hope to find any is by impos-
ing various restrictions on the problem definition. This was indeed done in [15] where a
solution to k-mismatch (exact matching where up to k mismatches are allowed) was given
which uses O(k2poly(logm)) time per arriving stream symbol and O(k3poly(logm)) words
of space. The solution involves multiple instances of the exact matching algorithm run in
parallel. Note that the space bound approaches Θ(m) as k increases, so the algorithm is
only interesting for sufficiently small k. Further, the space bound is very far from the known
Ω(k) lower bound. We also note that it is straightforward to show that exact matching with
k wildcards in the pattern can be solved with the k-mismatch algorithm. To our knowledge,
no other streaming pattern matching have been solved in sublinear space so far.

In this paper we present the first push forward since exact matching by giving a sublinear,
near optimal space and near constant time algorithm for parameterized matching in a stream.
This natural problem turns out to be significantly more complicated to solve than exact
matching and our results provide the first demonstration that small space and time bounds
are achievable for a more challenging problem. Note that our space bound, as opposed to
k-mismatch, is essentially optimal like for exact matching. One could easily argue that our
results are surprising, and yet again the question of what other problems are solvable in
sublinear space calls for an answer. In particular, given that restrictions to the problem
have to be made, what restrictions should one make to break the Ω(m) space barrier.

1.2 Problem definition and related work
A pattern P of length m is said to parameterized match, or p-match for short, an m length
string S if there is an injective (one-to-one) function f such that S[j] = f(P [j]) for all
j ∈ {0, . . . ,m − 1}. In our streaming setting, the pattern is known in advance and the
symbols of the stream T arrive one at a time. We use the letter i to denote the index of the
latest symbol in the stream. Our task is to output whether there is a p-match between P
and T [(i−m+ 1), i] before T [i+ 1] arrives. The mapping f may be distinct for each i.

One may view this matching problem as that of finding matches in a stream encrypted
using a substitution cipher. In offline settings, p-matching has its origin in finding duplica-
tion and plagiarism in software code although has since found numerous other applications.
Since the first introduction of the problem, a great deal of work has gone into its study in
both theoretical and practical settings (see e.g. [3, 1, 4, 5, 6, 12]). Notably, in an offline
setting, the exact p-matching problem can be solved in near linear time using a variant [1]
of the classic linear time exact matching algorithm KMP [14].

When the sublinear space algorithm for exact matching was given in [15], properties of

STACS’13

402 Parameterized Matching in the Streaming Model

the periods of strings formed a crucial part of their analysis. However, when considering
p-matching the period of a string is a much less straightforward concept than it is for ex-
act matching. For example, it is no longer true that consecutive matches must either be
separated by the period of the pattern or be at least m/2 symbols apart. This property,
which holds for exact but not p-matching, allows for an efficient encoding of the positions
of the matches. This was crucial to reducing the space requirements of the previous stream-
ing algorithms. Unfortunately, p-matches can occur at arbitrary positions in the stream,
requiring new insights. This is not the only challenge that we face.

A natural way to match two strings under parameterization is to consider their prede-
cessor strings. For a string S, the predecessor string, denoted pred(S), is a string of length
|S| such that pred(S)[j] is the distance, counted in numbers of symbols, to the previous
occurrence of the symbol S[j] in S. In other words, pred(S)[j] = d, where d is the smallest
positive value for which S[j] = S[j − d]. Whenever no such d exists, we set pred(S)[j] = 0.
As an example, if S = aababcca then pred(S) = 01022014. We can perform p-matching
offline by only considering predecessor strings using the fundamental fact [3] that two equal
length strings S and S′ p-match iff pred(S) = pred(S′). A plausible approach for our
streaming problem would now be to translate the problem of p-matching in a stream to
that of exact matching. This could be achieved by converting both pattern and stream into
their corresponding predecessor strings and maintaining fingerprints of a sliding window of
the translated input. However, consider the effect on the predecessor string, and hence its
fingerprint, of sliding a window in the stream along by one. The leftmost symbol x, say, will
move out of the window and so the predecessor value of the new leftmost occurrence of x
in the new window will need to be set to 0 and the corresponding fingerprint updated. We
cannot afford to store the positions of all characters in a Θ(m) length window.

We will show a matching algorithm that solves these problems and others we encounter
en route using minimal space and in near constant time per arriving symbol. A number of
technical innovations are required, including new uses of fingerprinting, a new compressed
encoding of the positions of potential matches, a separate deterministic algorithm designed
for prefixes of the pattern with small parameterized period as well as the deamortisation of
the entire matching process. Section 2 gives a more detailed overview of these main hurdles.

1.3 Our new results
Our main result is a fast and space efficient algorithm for the streaming p-matching problem.
It applies to dense alphabets where both the pattern and streaming text alphabets are
Σ = {0, . . . , |Σ| − 1}. Theorem 1 below is proved over the subsequent sections of this paper.
Some supporting proofs are left for the full paper due to space constraints, including the
proof of Theorem 2, which is based on communication complexity arguments.

I Theorem 1. Let the pattern have length m, the text have length n and both have alphabets
Σ = {0, . . . , |Σ| − 1}. There is a randomised algorithm for streaming p-matching that takes
O(1) worst-case time per character and uses O(|Σ| logm) words of space. The probability
that the output is correct at all text alignments is at least 1− 1/nc for any constant c.

I Theorem 2. There is a randomised space lower bound of Ω(|Σ|) bits for the streaming
p-matching problem, where Σ is the pattern alphabet.

Parameterized matching is often specified under the assumption that only some symbols
are variable (allowed to be relabelled). The mapping f we used in Section 1.2 has to reflect
this constraint. More precisely, let the pattern alphabet be partitioned into fixed symbols

M. Jalsenius, B. Porat, and B. Sach 403

Σfixed and variable symbols Π. For σ ∈ Σfixed, we require that f(σ) = σ. The result from
Theorem 1 can be extended to handle general alphabets with arbitrary fixed symbols. The
idea is to apply a suitable reduction that was given in [1] (Lemma 2.2) together with the
streaming exact matching algorithm of Breslauer and Galil [7], as well as applying a “filter”
on the text stream using a dynamic dictionary (for instance that of [2]). The dictionary is
used to map text symbols to the variable pattern symbols in Π. The proof is omitted.

I Theorem 3. Suppose Π is the set of pattern symbols that can be relabelled under p-match-
ing. All other pattern symbols are fixed. Without any constraints on the text alphabet,
there is a randomised algorithm for streaming p-matching that takes O(

√
log |Π|/ log log |Π|)

worst-case time per character and uses O(|Π| logm) words of space, where m is the length
of the pattern. The probability that the algorithm outputs correctly at all alignments of an n
length text is at least 1− 1/nc, where c is any constant.

As part of the proof of Theorem 1 we had to develop an algorithm that efficiently solves
streaming p-matching for patterns with small parameterized period. The parameterized
period (p-period) of the pattern P , denoted ρ, is the smallest positive integer such that
P [0, (m− 1− ρ)] p-matches P [ρ, m− 1]. That is, ρ is the shortest distance that P must be
slid by to p-match itself. Our algorithm is deterministic and is interesting in its own right
(see Section 4). We also provide an almost matching space lower bound (proof omitted).

I Theorem 4. Suppose the pattern and text alphabets are both Σ = {0, . . . , |Σ| − 1} and the
pattern has p-period ρ. There is a deterministic algorithm for streaming p-matching that
takes O(1) worst-case time per character and uses O(|Σ|+ ρ) words of space. Further, there
is a deterministic space lower bound of Ω(|Σ|+ ρ) bits.

1.4 Fingerprints
We will make extensive use of Rabin-Karp style fingerprints of strings which are defined as
follows. Let S be a string over the alphabet Σ. Let p > |Σ| be a prime and choose r ∈ Zp

uniformly at random. The fingerprint φ(S) is given by φ(S) def=
∑|S|−1

k=0 S[k]rk mod p. A
critical property of the fingerprint function φ is that the probability of achieving a false
positive, Pr(φ(S) = φ(S′) ∧ S 6= S′), is at most |S|/(p− 1) (see [13, 15] for proofs). Let n
denote the total length of the stream. Our randomised algorithm will make o(n2) (in fact
near linear) fingerprint comparisons in total. Therefore, by the applying the union bound,
for any constant c, we can choose p to be of size Θ(nc+3) so that with probability at least
1− 1/nc there will be no false positive matches.

As we assume the RAM model with word size Θ(logn), a fingerprint fits in a constant
number of words. We assume that all fingerprint arithmetic is performed within Zp. In
particular we will take advantage of two fingerprint operations.

	 Splitting: Given φ
(
S[0, a]

)
, φ
(
S[0, b]

)
(where b > a) and the value of r−a mod p, we

can compute φ
(
S[a+ 1, b]

)
= φ

(
S[0, b]

)
	 φ

(
S[0, a]

)
in O(1) time.

} Zeroing: Let S, S′ be two equal length strings such that S′ is identical to S except for
in positions z ∈ Z ⊆ [0, s − 1] at which S′[z] = 0. We write φ

(
S
)
} Z to denote φ

(
S′
)
.

Given φ
(
S
)
and (S[z], rz mod p) for all z ∈ Z, computing φ

(
S
)
} Z takes O(|Z|) time.

2 Overview, key properties and notation

The overall idea of our algorithm in Theorem 1 follows that of previous work on streaming
exact matching in small space, however for p-matching the situation is much more complex

STACS’13

404 Parameterized Matching in the Streaming Model

a a b ca b b c a a b bbb faeecdfadb

0 0 0 0 0 03 3 1 7 9 7 2 4 1 3 2 11 3 1 3 5 2 5 317

d

18

ed

17

f

3

aT

i′+m −̀1−1i′ i′+m`−1

1 2 3 1 3 5 2 5 30 0 030 0 0

pred(T)

pred(T [i′, i′+m`−1])

Φ`−1(i′)
Φ`(i

′)
Φ`(i

′) 	 Φ`−1(i′)

Φ0
`(i′)

Figure 1 The key fingerprints used by the randomised algorithm. Characters contributing
differently to Φ0

`(i′) and Φ`(i′) 	 Φ`−1(i′) are highlighted.

and calls for not only more involved details and methods but also a deep fundamental
understanding of the nature of p-matching. We will now describe the overall idea, introduce
some important notation and at the end of this section we will highlight key facts about
p-matching that are crucial for our solution.

The main algorithm will try to match the streaming text with various prefixes of the
pattern P . Let ΣP denote the pattern alphabet. We define δ = |ΣP| logm and let P0 denote
the shortest prefix of P that has p-period greater than 3δ (recall the definition of p-period
given above Theorem 4). We define s prefixes P` of increasing length so that |P`| = 2`|P0|
for ` ∈ {1, . . . , s − 1}, where s 6 dlogme is the largest value such that |Ps−1| 6 m/2. The
final prefix Ps has length m− 4δ. For all `, we define m` = |P`|, hence m` = 2m`−1.

In order to determine if there is a p-match between the text and a pattern prefix, we
will compare the fingerprints of their predecessor strings (recall that two strings p-match iff
their predecessor strings are the same). We will need two related (but typically distinct)
fingerprint definitions to achieve this. Figure 1 will be helpful when reading the following
definitions which are discussed in an example below. For any index i′ and ` ∈ {0, . . . , s},

Φ`(i′)
def= φ

(
pred(T [0, (i′ +m` − 1)])

)
,

Φ0
`(i′) def= φ

(
pred(T [i′, (i′ +m` − 1)])[m`−1, m` − 1]

)
.

For each ` ∈ {1, . . . , s} the main algorithm runs a process whose responsibility for finding
p-matches between the text and P` (P0 is handled separately as will be discussed later).
The process responsible for P` will ask the process responsible for P`−1 if it has found any
p-matches, and if so it will try to extend the matches to P`. As an example, suppose that
the process for P`−1 finds a match at position i′ of the text (refer to Figure 1). The process
will then store this match along with the fingerprint Φ`−1(i′) which has been built up as
new symbols arrive. The process for P` will be handed this information when the symbol
at position i′ +m` − 1 arrives. The task is now to work out if i′ is also a matching position
with P`. With the fingerprint Φ`(i′) available (built up as new symbols arrive), the process
for P` can use fingerprint arithmetics to determine if i′ is a matching position. This is one
instance where the situation becomes more tricky than one might first think.

As position i′ is a p-match with P`−1 it suffices to compare the second half of the
predecessor string of P` with the second half of the predecessor string of T [i′, i′ +m` − 1].
Fingerprints are used for this comparison. It is crucial to understand that Φ`(i′)	Φ`−1(i′)
cannot be used directly here; some predecessor values of the text might point very far back,
namely to some position before index i′. In Figure 1 we have shaded the three symbols for
which this is true and have drawn arrows indicating their predecessors. Thus, in order to

M. Jalsenius, B. Porat, and B. Sach 405

ρρ ρ ρ ρ

T

3m/2

Y︷ ︸︸ ︷ A︷ ︸︸ ︷

Figure 2 Partitioning of positions (×) at which P p-matches in a 3m/2 length substring of T .

correctly do the fingerprint comparison we need to set those positions to zero (we want the
fingerprint of the predecessor string of the text substring starting at position i′, not the
beginning of T). The fingerprint we defined as Φ0

`(i′) above is the fingerprint we want to
compare to the fingerprint of the second half of the predecessor string of P`. Using fingerprint
operations, we have from the definitions that Φ0

`(i′) =
(
Φ`(i′) 	 Φ`−1(i′)

)
} ∆`(i′), where

∆`(i′) is the set of positions that have to be set to zero. For a substring of T of length
Θ(m`−1) consider the subset of positions which occur in ∆`(i′) for at least one value of i′.
Any such position has a predecessor value greater than m`−1. By summing over all distinct
symbols we have that the size of this subset is only O(|ΣP|). Thus, we can maintain in small
space every position in a suitable length window that will ever have to be set to zero.

Let us go back to the example where the process for P`−1 had found a p-match at
position i′. The process stores i′ along with the fingerprint Φ`−1(i′). This information is
not needed by the process for P` until m`−1 text symbols later. During the arrival of these
symbols, the process for P`−1 might detect more p-matches, in fact many more matches.
Their positions and corresponding fingerprints have to be stored until needed by the process
for P`. We now have a space issue: how do we store this information in small space?
To appreciate this question, first consider exact matching. Here matches are known to be
either an exact period length apart or very far apart. The matching positions can therefore
be represented by an arithmetic progression. Further, the fingerprints associated with the
matches in an arithmetic progression can easily be stored succinctly as one can work out
each one of the fingerprints from the first one. For p-matching the situation is much more
complex: matches can occur more chaotically and, as we have seen above, fingerprints must
be updated dynamically to reflect that symbols could be mapped differently in two distinct
alignments. Handling these difficulties in small space (and small time complexity) is a main
hurdle and is one point at which our work differ significantly from all previous work on
streaming matching in small space. We cope with this space issue in the next section.

2.1 The structure of parameterized matches
First recall that an arithmetic progression is a sequence of numbers such that the (common)
difference between any two successive numbers is constant. We can specify an arithmetic
progression by its start number, the common difference and the length of the sequence. In
the next lemma we will see that the positions at which a string P of length m p-matches
a longer string of length 3m/2 can be stored in small memory: either a matching position
belongs to an arithmetic progression or it is one of relatively few positions that can be listed
explicitly in O(|ΣP|) space. The proof (consult Figure 2) is deferred to Section 5.

I Lemma 5. Let X be the set of positions at which P p-matches within an 3m/2 length
substring of T . The set X can be partitioned into two sets Y and A such that |Y | 6 6|ΣP|,
max(Y) < min(A) and A is an arithmetic progression with common difference ρ, where ρ
is the p-period of P .

The lemma is incredibly important for the algorithm as it allows us to store all partial
matches (that need to be kept in memory before being discarded) in a total of O(|ΣP| logm)

STACS’13

406 Parameterized Matching in the Streaming Model

space across all processes. The question of how to store their associated fingerprints remains,
but is nicely resolved with the corollary below that follows immediately from the proof of
Lemma 5. We can afford to store fingerprints explicitly for the positions that are identified
to belong to the set Y from Lemma 5, and for the matching positions in the arithmetic
progression A we can, as for exact matching, work out every fingerprint given the first one.

I Corollary 6. For pattern P , text T and arithmetic progression A as specified in Lemma 5,
pred(T)[(i+m− ρ), (i+m− 1)] is the same for all i ∈ A.

2.2 Deamortisation
So far we have described the overall approach but it is of course a major concern how to
carry out computations in constant time per arriving symbol. In order to deamortise the
algorithm, we run a separate process responsible for the pattern prefix P0 that uses the
deterministic algorithm of Section 4 (i.e. Theorem 4). As P0 has p-period greater than
3δ, the p-matches it outputs are at least this far apart. This enables the other processes
to operate with a small delay: process P` expects process P`−1 to hand over matches and
fingerprints with a small delay, and it will itself hand over matches and fingerprints to P`+1
with a small delay. One of the reasons for the delays is that processes operate in a round-
robin scheme – one process per arriving symbol. The process that is responsible for Ps

(which has length m−4δ) returns matches with a delay of up to 3δ arriving symbols. Hence
there is a gap of length δ in which we can work out if the whole of P matches. To do this
we have another process that runs in parallel with all other processes and explicitly checks
if any match with Ps can be extended with the remaining 4δ symbols by directly comparing
their predecessor values with the last 4δ predecessor values of the pattern. This job is spread
out over δ arriving symbols, hence matches with P are outputted in constant time.

3 The main algorithm

We are now in a position to describe the full algorithm of Theorem 1. Recall that the
algorithm will find p-matches with each of the pattern prefixes P0, . . . , Ps defined in the
previous section. If a shorter prefix fails to match at a given position then there is no need
to check matches for longer prefixes. Our algorithm runs three main processes concurrently
which we label A, B and C. The term process had a slightly different meaning in the previous
section, but hopefully this will cause no confusion. Each process takes O(1) time per arriving
symbol. Recall that both the pattern and text alphabets are ΣP = {0, . . . , |ΣP| − 1}.
Process A finds p-matches with prefix P0 which are inserted as they occur into a match
queue M0. Process B finds p-matches for prefixes P1, . . . , Ps which are inserted into the
match queues M1, . . . ,Ms, respectively. The p-matches are inserted with a delay of up to
3δ symbol arrivals after they occur. Process C finds p-matches with the whole pattern P
which are outputted in constant time as they occur as described in Section 2.2.

It is crucial for the space usage that the match queuesM0,M1, . . . ,Ms will be stored in a
compressed fashion. The delay in detecting p-matches with P` in Process B is a consequence
of deamortising the work required to find a prefix match, which we spread out over Θ(δ)
arriving symbols. We can afford to spread out the work in this way because the p-period of
P`−1 is at least δ so any p-matches are at least this far apart.

Throughout this section we assume that m > 14δ so that m` − m`−1 > 3δ for ` ∈
{1, . . . , s}. If m 6 14δ, or the p-period of P is 3δ or less, we use the deterministic algorithm
presented in Section 4 to solve the problem within the required bounds.

M. Jalsenius, B. Porat, and B. Sach 407

3.1 Process A (finding matches with P0)
From the definition of P0 we have that if we remove the final character (giving the string
P [0, m0 − 2]) then its p-period is at most 3δ. The p-period of P0 itself could be much
larger. As part of process A we run the deterministic pattern matching algorithm from
Section 4 (see Theorem 4) on P [0, m0 − 2]. It returns p-matches in constant time and uses
O(|ΣP|+ 3δ) = O(|ΣP| logm) space.

In order to establish matches with the whole of P0 we handle the final character separ-
ately. If the deterministic subroutine reports a match that ends in T [i−1], when T [i] arrives
we have a p-match with P0 if and only if pred(T)[i] = pred(P0)[m0−1] (or pred(T)[i] > m0
if pred(P0)[m0 − 1] = 0). As the alphabet is of the form ΣP = {0, . . . |ΣP| − 1}, we can
compute the value of pred(T)[i] in O(1) time by maintaining an array A of length |ΣP| such
that for all σ ∈ ΣP, A[σ] gives the index of the most recent occurrence of symbol σ.

Whenever Process A finds a match with P0 at position i′ of the text, the pair (i′,Φ0(i′))
is added to a (FIFO) queue M0, which is queried by Process B when handling prefix P1.

3.2 Process B (finding matches with P1, . . . , Ps)
We split the discussion of the execution of Process B into s levels, 1, . . . , s. For each level `
the fingerprint Φ0

`(i′) is computed for each position i′ at which P`−1 p-matches. Then, as
discussed in Section 2, if Φ0

`(i′) = φ(pred(P`)[m`−1, (m` − 1)]), there is also a match with
P` at i′. The algorithm will in this case add the pair (i′,Φ`(i′)) to the queue M` which is
subject to queries by level `+1. To this end we compute Φ`(i′)	Φ`−1(i′) and ∆`(i′), where
∆`(i′) contains all the positions which should be zeroed in order to obtain Φ0

`(i′). In the
example of Figure 1, ∆`(i′) = {1, 5, 7} (the d, e and f, respectively).

In order for process B to spend only constant time per arriving symbol, all its work must
be scheduled carefully. The preparation of the ∆`(i′) values takes place as a subprocess
we name B1. Computing Φ`(i′)	 Φ`−1(i′) and establishing matches takes place in another
subprocess named B2. The two subprocesses are run in sequence for each arriving symbol.

Subprocess B1 (prepare zeroing) We use a queue D` associated with each level l which
contains the most recent O(|ΣP|) positions with predecessor the values greater than m`−1.
We will see below that ∆`(i′) is a subset of the positions in D` (adjusted to the offset i′).

Unfortunately, in the worst case, for an arriving symbol T [i], i could belong to all of the
D` queues. Since we can only afford constant time per arriving symbol, we cannot insert
i into more than a constant number of queues. The solution is to buffer arriving symbols.
When some T [i] arrives we first check whether pred(T)[i] > m0. If so, the pair (i,pred(T)[i])
is added to a buffer B to be dealt with later. Together with the pair we also store the value
ri mod p which will be needed to perform the required zeroing operations.

In addition to adding a new element to the buffer B, the Subprocess B1 will also process
elements from B. If is is currently not in the state of processing an element, it will now
start doing so by removing an element from B (unless B is empty). Call this element
(j,pred(T)[j]). Over the next s arriving symbols the Subprocess B1 will do the following.
For each of the s levels `, if pred(T)[j] > m`−1, add (j,pred(T)[j]) to the queue D`. If D`

contains more than 12|ΣP| elements, discard the oldest.

Subprocess B2 (establish matches) This subprocess schedules the work across the levels
in a round-robin fashion by only considering level ` = 1 + (i mod s) when the symbol T [i]
arrives. Potential matches may not be reported by this subprocess until up to 3δ arriving

STACS’13

408 Parameterized Matching in the Streaming Model

symbols after they occur. As P`−1 has p-period at least 3δ, the processing of potential
matches does not overlap.

The Subprocess B2 for level ` is always in one of two states: either it is checking whether
a matching position i′ for P`−1 is also a match with P`, or it is idle. If idle, level ` looks
into queue M`−1 which holds matches with P`−1. If M`−1 is non-empty, level ` removes an
element fromM`−1, call this element (i′,Φ`−1(i′)), and enters the checking state. Whenever
i > i′ + m` + δ, level ` will start checking if i′ is also a matching position with P`. It
does so by first computing the fingerprint Φ`(i′) 	 Φ`−1(i′), which by definition equals(
Φ`(i′)−Φ`−1(i′)

)
r−i′−m`−1 mod p. We can ensure the fingerprint Φ`(i′) is always available

when needed by maintaining a circular buffer of the most recent Θ(δ) fingerprints of the
text. Similarly we can obtain r−i′−m`−1 mod p in O(1) time by keeping a buffer of the most
recent Θ(δ) values of r−i mod p along with r−m` mod p for all `.

Over the next at most |ΣP| arriving symbols for which Subprocess B2 is considering
level ` (i.e. those with ` = 1 + (i mod s)), Φ0

`(i′) will be computed from Φ`(i′)	Φ`−1(i′) by
stepping through the elements of the queue D`. For any element (j,pred(T)[j]) ∈ D`, we
have that (j−i′−m`−1) ∈ ∆`(i′) if and only if pred(T)[j] > j−i′. Further, as Subprocess B1
stored rj mod p with the element in D` and ri′ mod p is obtained through the circular buffer
as above, we can perform the zeroing in O(1) time.

Having computed Φ0
`(i′), we then compare it to φ(pred(P`)[m`−1, (m` − 1)]). If they

are equal, we have a p-match with P` at position i′ of the text, and the pair (i′,Φ`(i′)) is
added to the queue M`. This occurs before T [i′ +m` + 3δ] arrives.

3.3 Correctness, time and space analysis
The time and space complexity almost follow immediately from the description of our al-
gorithm, but correctness requires further attention. In particular one has to show that buffers
do not overflow, elements in queues are dealt with before being discarded and every possible
match will be found (disregarding the probabilistic error in the fingerprint comparisons).

I Lemma 7. The algorithm described above proves Theorem 1.

Proof. Coupled with the discussion in Section 2, the time and space complexity almost follow
immediately from the description. It only remains to show that, at any time, |B| 6 |ΣP|.
First observe that any symbol σ ∈ ΣT is only inserted into B when pred(T)[i] > m0 > δ

which can only happen at most once in every δ = |ΣP| logm arriving symbols. Further we
remove one element every s 6 dlogme arrivals and in particular remove the σ occurrence
after at most |B|dlogme arrivals. As B is initially empty, by induction it follows that no
symbol occurs more than once in B.

For correctness, it remains to show that we correctly obtain the positions of Φ0
`(i′) from

D`. It follows from the description that all positions of Φ0
`(i′) correspond to elements

inserted into D` at some point. However we need to prove that these elements are present
in D` while Φ0

`(i′) is calculated. Any element inserted into B during T [i′, (i′ + m` − 1)]
has cleared the buffer by the end of interval B (which has length δ) by the argument above.
Therefore any relevant element has been inserted into D` by the start of interval C, during
which we calculate Φ0

`(i′). Any element inserted into D` is at least m`−1 characters from
its predecessor. Therefore, summing over all symbols in the alphabet, there are at most
4|ΣP | positions in T [i′, (i′ + 2m` − 1)] which are inserted into D`. As D` is a FIFO queue
of size 12|Σ|, the relevant elements are still present after interval C. As commented above,
potential matches in M` are separated by more than 3δ arrivals because P`−1 has p-period
more than 3δ. They are processed within 3δ arrivals so M` does not overflow. J

M. Jalsenius, B. Porat, and B. Sach 409

4 The deterministic matching algorithm

We now describe the deterministic algorithm that solves Theorem 4. Its running time is O(1)
time per character and it uses O(|ΣP| + ρ) words of space, where ρ is the parameterized
period of P . We require that both the pattern and text alphabets are ΣP = {0, . . . , |ΣP|−1}.

We first briefly summarise the overall approach of [1] which our algorithm follows. It
resembles the classic KMP algorithm. When T [i] arrives, the overall goal is to calculate the
largest r such that P [0, r−1] p-matches T [(i−r+1), i]. A p-match occurs iff r = m. When
a new text character T [i + 1] arrives the algorithm compares pred(P)[r] to pred(T)[i + 1]
in O(1) time to determine whether P [0, r] p-matches T [(i− r + 1), i+ 1]. More precisely,
the algorithm checks whether either pred(P)[r] = pred(T)[i + 1], or pred(P)[r] = 0 ∧
pred(T)[i + 1] > r. The second case covers the possibility that the previous occurrence in
the text was outside the window. If there is a match, we set r ← r + 1 and i ← i + 1 and
continue with the next text character. If not, we shift the pattern prefix P [0, r − 1] along
by its p-period, denoted ρr−1, so that it is aligned with T [(i − r + ρr−1 + 1), i]. This is
the next candidate for a p-match. In the original algorithm, the p-periods of all prefixes are
stored in an array of length m called a prefix table.

Our main hurdle here is to store both a prefix table suitable for p-matching as well as
an encoding of the pattern in only O(|ΣP|+ ρ) space, while still allowing efficient access to
both. It is well-known that any string P can be stored in space proportional to its exact
period. In Lemma 9, which follows from Lemma 8, we show an analogous result for pred(P).

I Lemma 8. For any j ∈ [ρ] there is a constant kj such that pred(P)[j+kρ] is 0 for k < kj,
and cj for k > kj, where cj > 0 is a constant that depends on j.

I Lemma 9. The predecessor string pred(P) can be stored in O(ρ) space, where ρ is the
p-period of P . Further, for any j ∈ [m] we can recover pred(P)[j] in O(1) time.

We now explain how to store the parameterized prefix table in only O(ρ) space, in
contrast to Θ(m) space which a standard prefix table would require. The p-period ρr of
P [0, r] is, as a function of r, non-decreasing in r. This property enables us to run-length
encode the prefix table and store it as a doubly linked list with at most ρ elements, hence
using only O(ρ) space. Each element corresponds to an interval of prefix lengths with the
same p-period, and the elements are linked together in increasing order (of the common
p-period). This does not allow O(1) time random access to the p-period of any prefix, but
for our purposes it will suffice to perform sequential access. To accelerate computation we
also store a second linked list of the indices of the first occurrences of each symbol in P in
ascending order, i.e. every j such that pred(P)[j] = 0. This uses O(|ΣP|) space.

There is a crucial second advantage to compressing the prefix table which is that it allows
us to upper bound the number of prefixes of P we need to inspect when a mismatch occurs.
When a mismatch occurs in our algorithm, we repeatedly shift the pattern until a p-match
between a text suffix and pattern prefix occurs. Naively it seems that we might have to check
many prefixes within the same run. However, as a consequence of Lemma 8 we are assured
that if some prefix does not p-match, every prefix in the same run with pred(P)[j] 6= 0
will also mismatch (except possibly the longest). Therefore we can skip inspecting these
prefixes. This can be seen by observing (using Lemma 8) that for j such that ρj = ρj+1,
we have pred(P)[j − ρj] ∈ {0, pred(P)[j]}. By keeping pointers into both linked lists, it
is straightforward to find the next prefix to check in O(1) time. Whenever we perform a
pattern shift we move at least one of the pointers to the left. Therefore the total number of
pattern shifts inspected while processing T [i] is at most O(|ΣP|+ ρ). As each pointer only

STACS’13

410 Parameterized Matching in the Streaming Model

moves to the right by at most one when each T [i] arrives, an amortised time complexity of
O(1) per character follows. The space usage is O(|ΣP|+ ρ), dominated by the linked lists.

We now briefly discuss how to deamortise our solution by applying Galil’s KMP deamort-
isation argument [11]. The main idea is to restrict the algorithm to shift the pattern at most
twice when each text character arrives, giving a constant time algorithm. If we have not
finished processing T [i] by this point we accept T [i+ 1] but place it on the end of a buffer,
output ‘no match’ and continue processing T [i]. The key property is that the number of
text arrivals until the next p-match occurs is at least the length of the buffer. As we shift
the pattern up to twice during each arrival we always clear the buffer before (or as) the next
p-match occurs. Further, the size of the buffer is always O(|ΣP| + ρ). This follows from
the observation above that the number of pattern shifts required to process a single text
character is O(|ΣP|+ ρ). This concludes the algorithm of Theorem 4.

5 The proof of Lemma 5

In this section we prove the important Lemma 5. Let ileft denote an arbitrary position
in T where P p-matches. Let X be the set of positions at which P p-matches within
T [ileft, (ileft + 3m/2 − 1)]. We now prove that there exist disjoint sets Y and A with the
properties set out in the statement of the lemma.

Let α be the smallest integer such that all distinct symbols in P occur in the prefix
P [0, α]. We first show that ρ, the p-period of P is at least α/|Σ|. From the minimality of
α, we have that P [α] is the leftmost occurrence of some symbol. By the definition of the
p-period, we have that P [0, (m− 1− ρ)] p-matches P [ρ, m− 1]. Under this shift, P [α] (in
P [ρ, m− 1]) is aligned with P [α− ρ] (in P [0, (m− 1− ρ)]) . Assume that P [α− ρ] is not a
leftmost occurrence and let j be the position of the previous occurrence of P [j] = P [α− ρ].
As a p-match occurs, we have that P [j] = P [j+α] 6= P [α], contradiction. By repeating this
argument we find distinct symbols at positions α−kρ for all k > 0, implying that ρ > α/|Σ|.

We first deal with two simple cases: ρ > m/8 or α > m/4 (which implies that ρ >
m/(4|Σ|)). In these two cases the number of p-matches is easily upper bounded by 6|Σ|, so
all positions can be stored in the set Y . We therefore continue under the assumption that
α < m/4 and ρ < m/8. As ρ > α/|Σ|, there are at most (α + 1)/(α/|Σ|) 6 2|Σ| positions
from the range [ileft, ileft+α] at which P can p-match T . We can store these positions in the
set Y . Next we will show that the positions from the range [(ileft +α+1), (ileft +3m/2−1)]
at which P p-matches T can be represented by the arithmetic progression A.

First we show that ρ is an exact period (not p-period) of pred(P)[α+ 1, m− 1] (but not
necessarily the shortest period). Consider arbitrary positions P [j] and P [j−ρ] where α < j <

m−ρ. By the definition of the p-period, we have that P [ρ, m−1] p-matches P [0, (m−1−ρ)]
and hence that pred(P [ρ, m− 1]) = pred(P [0, (m− 1− ρ)]). In particular, pred(P [ρ, m−
1])[j] = pred(P [0, (m− 1− ρ)])[j] = pred(P)[j], where the second equality follows because
we take the predecessor string of a prefix of P . Also observe that pred(P [ρ, m−1])[j] either
equals 0 or pred(P)[j−ρ] by definition. Further, pred(P [0, (m−1−ρ)])[j] = pred(P)[j] 6= 0
as j > α and all leftmost occurrences are before α. This implies that pred(P [ρ, m−1])[j] 6=
0, hence, pred(P)[j − ρ] = pred(P [ρ, m− 1])[j] = pred(P [0, (m− 1− ρ)])[j] = pred(P)[j].

Recall that P p-matches T [ileft, ileft + m − 1] so pred(P) = pred(T [ileft, ileft + m −
1])] and hence ρ is an exact period of pred(T [ileft, ileft + m − 1])[α + 1, m − 1]. Let
j ∈ {α + 1, . . . ,m − 2} and observe that by definition, pred(T [ileft, ileft + m − 1])[j] ∈
{0, pred(T)[ileft + j]}. However, pred(T [ileft, (ileft +m− 1)])[j] = pred(P)[j] > 0 because
j > α and all leftmost occurrences are in P [0, α]. This implies that pred(T [ileft, (ileft+m−

M. Jalsenius, B. Porat, and B. Sach 411

1)])[j] = pred(T)[ileft + j]. As j was arbitrary, we have that pred(T)[(ileft + α+ 1), (ileft +
m − 1)] = pred(T [ileft, (ileft + m − 1)])[α + 1, m − 1] and hence ρ is an exact period of
pred(T)[(ileft + α+ 1), (ileft +m− 1)].

Let iright be the rightmost position in T [ileft, ileft + 3m/2 − 1] where P p-matches. By
the same argument as for ileft, we have that ρ is an exact period of pred(T)[(iright + α +
1), (iright +m−1)]. Thus, both pred(T)[(ileft +α+ 1), (ileft +m−1)] and pred(T)[(iright +
α+ 1), (iright +m− 1)] has an exact period of ρ. As these two strings overlap by at least ρ
characters, we have that ρ is also an exact period of pred(T)[ileft + α+ 1, iright +m− 1].

Let i ∈ {(ileft + α + 1), . . . , iright − 1} be arbitrary such that P p-matches T [i, (i +
m − 1)]. We now prove that if i + ρ < iright then P p-matches T [i + ρ, (i + ρ + m − 1)].
As p-matches must be at least ρ characters apart this is sufficient to conclude that all
remaining matches form an arithmetic progression with common difference ρ. As ρ is an
exact period of pred(T)[(ileft+α+1), (iright+m−1)], we have that pred(T)[i, (i+m−1)] =
pred(T)[i + ρ, (i + ρ + m − 1)]. By definition, this implies that pred(T [i, (i + m − 1)]) =
pred(T [i+ ρ, (i+ ρ+m− 1)]) and hence a p-match also occurs at i+ ρ.

References
1 Amihood Amir, Martin Farach, and S. Muthukrishnan. Alphabet dependence in paramet-

erized matching. IPL, 49(3):111 – 115, 1994.
2 Arne A. Andersson and Mikkel Thorup. Tight(er) worst-case bounds on dynamic searching

and priority queues. In STOC ’00, pages 335–342, 2000.
3 B. S. Baker. A theory of parameterized pattern matching: algorithms and applications. In

STOC ’93, pages 71–80, 1993.
4 Brenda S. Baker. Parameterized pattern matching by boyer-moore-type algorithms. In

SODA ’95, pages 541–550, 1995.
5 Brenda S. Baker. Parameterized pattern matching: Algorithms and applications. Journal

of Computer and System Sciences, 52(1):28 – 42, 1996.
6 Brenda S. Baker. Parameterized duplication in strings: Algorithms and an application to

software maintenance. SIAM J. on Comp., 26(5):1343–1362, 1997.
7 Dany Breslauer and Zvi Galil. Real-time streaming string-matching. In CPM ’11, pages

162–172, 2011.
8 Raphaël Clifford, Klim Efremenko, Benny Porat, and Ely Porat. A black box for online

approximate pattern matching. In CPM ’08, pages 143–151, 2008.
9 Raphaël Clifford, Markus Jalsenius, Ely Porat, and Benjamin Sach. Space lower bounds

for online pattern matching. In CPM ’11, pages 184–196, 2011.
10 F. Ergun, H. Jowhari, and M. Sağlam. Periodicity in streams. In RANDOM ’10, pages

545–559, 2010.
11 Zvi Galil. String matching in real time. Journal of the ACM, 28(1):134–149, 1981.
12 Carmit Hazay, Moshe Lewenstein, and Dina Sokol. Approximate parameterized matching.

ACM Trans. Algorithms, 3(3), 2007.
13 Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms.

IBM J. Res Dev, 31(2):249 –260, 1987.
14 D. E. Knuth, J. H. Morris, and V. B. Pratt. Fast pattern matching in strings. SIAM J. on

Comp., 6:323–350, 1977.
15 Benny Porat and Ely Porat. Exact and approximate pattern matching in the streaming

model. In FOCS ’09, pages 315–323, 2009.

STACS’13

	Introduction
	Background
	Problem definition and related work
	Our new results
	Fingerprints

	Overview, key properties and notation
	The structure of parameterized matches
	Deamortisation

	The main algorithm
	Process A (finding matches with P0)
	Process B (finding matches with P1,…,Ps)
	Correctness, time and space analysis

	The deterministic matching algorithm
	The proof of Lemma 5

