Popular Matchings: Structure and Cheating
Strategies*

Meghana Nasre!

1  University of Texas at Austin, USA.

——— Abstract

We consider the cheating strategies for the popular matchings problem. Let G = (AUP, E) be a
bipartite graph where A denotes a set of agents, P denotes a set of posts and the edges in F are
ranked. Each agent ranks a subset of posts in an order of preference, possibly involving ties. A
matching M is popular if there exists no matching M’ such that the number of agents that prefer
M’ to M exceeds the number of agents that prefer M to M’. Consider a centralized market where
agents submit their preferences and a central authority matches agents to posts according to the
notion of popularity. Since a popular matching need not be unique, we assume that the central
authority chooses an arbitrary popular matching. Let a; be the sole manipulative agent who is
aware of the true preference lists of all other agents. The goal of ay is to falsify her preference
list to get better always, that is, to improve the set of posts she gets matched to in the falsified
instance. We show that the optimal cheating strategy for a single agent to get better always can
be computed in O(m + n) time when preference lists are all strict and in O(y/nm) time when
preference lists are allowed to contain ties. Here n = |A| + |P| and m = |E|.

To compute the cheating strategies, we develop a switching graph characterization of the
popular matchings problem involving ties. The switching graph characterization was studied for
the case of strict lists by McDermid and Irving (J. Comb. Optim. 2011) and was open for the
case of ties. We show an O(y/nm) time algorithm to compute the set of popular pairs using
the switching graph. These results are of independent interest and answer a part of the open
questions posed by McDermid and Irving.
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1 Introduction

We consider the cheating strategies for the popular matchings problem. Let G = (AUP, E)
be a bipartite graph where A denotes a set of agents, P denotes a set of posts, and the
edges in E are ranked. Each agent ranks a subset of posts in an order of preference, possibly
involving ties. This ranking of posts by an agent is called the preference list of the agent.
An agent a prefers post p; to post p; if the rank of post p; is smaller than the rank of post p;
in a’s preference list. An agent a is indifferent between posts p; and p; if they have the same
rank on a’s preference list. When agents can be indifferent between posts, the preference
lists are said to contain ties, otherwise the preference lists are strict. A matching M of
G is a subset of edges, no two of which share an end point. For a matched vertex u, let
M (u) denote its partner in the matching M. An agent a prefers a matching M to another
matching M’ if (i) a is matched in M but unmatched in M, or (ii) a prefers M(a) to M'(a).

* This work was supported in part by NSF grant CCF-0830737.
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» Definition 1. A matching M is more popular than M’ if the number of agents that prefer
M is greater than the number of agents that prefer M’. A matching M is popular if there
is no matching M’ that is more popular than M.

There exist simple instances that do not admit any popular matching — however, when

an instance admits a popular matching, there may be more than one popular matching.
Abraham et al. [1] characterized the instances that admit popular matchings and gave
efficient algorithms to compute a popular matching if one exists.
Our problem. Consider a centralized matching market where each agent a € A submits
a preference over a subset of posts and a central authority matches agents to posts using
the criteria of popularity. Let a; be the sole manipulative agent who is aware of the true
preference lists of all other agents and the preference lists of @ € A\ {a;} remain fixed
throughout. The goal of a; is clear: she wishes to falsify her preference list so as to improve
the post that she gets matched to as compared to the post she got when she was truthful.
Since there may be more than one popular matching in an instance, we assume that the
central authority chooses an arbitrary popular matching. Let G = (AU P, E) denote the
instance where ranks on the edges represent true preferences of all the agents. Let H denote
the instance obtained by falsifying the preference list of a; alone. We assume that G admits
a popular matching and a; falsifies in order to create an instance H which also admits a
popular matching. Note that it may be possible for a; to falsify her preference list such that
H does not admit any popular matching. But we do not consider such a falsification.

Agent a; wishes to falsify her preference list to ensure that (i) every popular matching
in H matches her to a post that is at least as good as the most-preferred post that she gets
matched to in G, and (ii) some popular matching in H matches a; to a post better than the
most-preferred post p that she gets matched to in G, assuming that p is not a’s true first
choice post. We term this strategy of ay as ‘better always’ strategy.

1.1 OQur contributions

Let a; be the sole manipulative agent who wishes to get better always. The optimal
strategy for a; can be computed in O(m + n) time when preference lists are all strict
and in O(y/nm) time when preference lists are allowed to contain ties.

To compute the cheating strategies, we develop a switching graph characterization of the
popular matchings problem involving ties. Such a characterization was studied for the
case of strict lists by McDermid and Irving [10] and it was open for the case of ties. Using
the switching graph, we show an O(y/nm) time algorithm to compute the set of popular
pairs. An edge (a,p) € E is a popular pair if there exists a popular matching M in G such
that (a,p) € M. We also show that counting the total number of popular matchings
in an instance with ties is #P-Complete. The switching graph characterization is of
independent interest and answers a part of the open questions in [10].

1.2 Related work

The work in this paper is motivated by the work of Teo et al. [13] where they study the
strategic issues of the stable marriage problem [2]. The stable marriage problem is a gener-
alization of our problem where both the sides of the bipartition (usually referred to as men
and women) rank members of the opposite side in order of their preference. Teo et al. [13]
study the strategic issues of the stable marriage problem where women are required to give
complete preference lists and there is a sole manipulative woman. Further, she is aware of
the true preference lists of all the other women. Teo et al. [13] compute an optimal cheating
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strategy for a single woman under this model. Huang [4] studies the strategic issues of the
stable room-mates problem [2] under a similar model. In the same spirit, we study the
strategic issues of the popular matchings problem.

The notion of popular matchings was introduced by Géardenfors [3] in the context of the
stable marriage [2]. Abraham et al. [1] studied the problem for one-sided preference lists
and gave a characterization of instances which admit a popular matching. Subsequent to
this result, the popular matchings problem has received a lot of attention [8] [9] [7] [5] [6].
However, to the best of our knowledge none of them is motivated by the strategic issues of
the popular matchings problem.

2 Background

We first review the following well known properties of maximum matchings in bipartite
graphs. Let G = (AU P, E) be a bipartite graph and let M be a maximum matching in G.
The matching M defines a partition of the vertex set AUP into three disjoint sets: a vertex
v € AUP is even (resp. odd) if there is an even (resp. odd) length alternating path in G
w.r.t. M from an unmatched vertex to v. A vertex v is unreachable if there is no alternating
path from an unmatched vertex to v. Denote by £, O, and U the sets of even, odd, and
unreachable vertices, respectively, in G. The following lemma is well known in matching
theory; refer [12] for a detailed exposition and proof.

» Lemma 2 ([12] Dulmage Mendelsohn). Let £, O, and U be the sets of vertices defined by
a mazimum matching M in G. Then,
(a) &, O, and U are pairwise disjoint, and independent of the maximum matching M in G.
(b) In any mazimum matching of G, every vertex in O is matched with a vertex in £, and
every vertex in U is matched with another vertex in U. The size of a mazimum matching
is |O| + |U|/2.
(¢) No mazimum matching of G contains an edge between a vertex in O and a vertexr in
OUU. Also, G contains no edge between a vertex in € and a vertex in EUU.

We now review the characterization of the popular matchings problem from [1]. As was
done in [1], we create a unique last-resort post £(a) for each agent a. In this way, we can
assume that every agent is matched, since any unmatched agent a can be paired with ¢(a).
For an agent a, let f(a) be the set of rank-1 posts for a. To define s(a), let us consider the
graph G1 = (AUP, E7) on rank-1 edges in G and let M7 be any maximum matching in Gy.
Let Oq, &, U; define the partition of vertices AUP with respect to M; in G;. For any agent
a, let s(a) denote the set of most preferred posts which belong to & by the above partition.
Abraham et al. [1] proved the following theorem.

» Theorem 3 ([1]). A matching M is popular in G iff
(1) M N Ey is a mazimum matching of G1 = (AU P, E1), and
(2) for each agent a, M(a) € {f(a) U s(a)}.

The algorithm for solving the popular matching problem is as follows: each a € A determines
the sets f(a) and s(a). An A-complete matching (a matching that matches all agents) which
is maximum in G; and matches each a to a post in {f(a) U s(a)} needs to be determined.
If no such matching exists, then G does not admit a popular matching. Abraham et al. [1]
gave an O(y/nm) time algorithm to compute a popular matching in G which is presented as
Algorithm 2.1. Steps 7-11 are added by us and will be used to define the switching graph
in Section 3. Abraham et al. [1] also showed a simpler characterization in case of strict lists
which results in an O(m + n) time algorithm to return a popular matching if one exists.
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Let G’ = (AU P, E’) denote the graph in which every agent a has edges incident to
{f(a) Us(a)}. Step 4 of Algorithm 2.1 deletes edges from G’ which cannot be present in
any maximum matching of G;. We extend this further and in Step 9 delete edges from G’
which cannot be present in any popular matching in G. For this, let us partition the vertex
set AUP as 0o, E and Us with respect to a popular matching M in G’. Since any popular
matching M is a maximum matching in G’, by Lemma 2(c), the matching M cannot contain
edges of the form 020> and OsUs. However, since M matches every agent, it implies that
AN& =0 and PN Oy = 0. Thus, there are no 0205 edges in G’. Hence, any edge (a, p)
deleted in Step 9 is of the form a € Oy and p € Us. We can now claim the following.

» Claim 4. Let a be an agent such that a € Us. Then, in Step 9 of Algorithm 2.1, no
edge incident on a gets deleted. Let a be an agent such that a € & . Then, in Step 4 of
Algorithm 2.1, no edge incident on a gets deleted.

Algorithm 2.1 O(y/nm)-time algorithm for the popular matching problem [1] (Steps 1-6).
Input: G=(AUP,E).

1: Construct the graph G’ = (AUP, E’), where E' = {(a,p) :a € Aand p € f(a)Us(a)}.
Construct the graph G; = (AU P, E;) and let M; be any maximum matching in Gy.
Partition AU P as Oq,&;,U; with respect to My in G;.

Remove any edge in G’ between a node in O; and a node in O UU;.
Determine a maximum matching M in G’ by augmenting M.
Return M if it is A-complete, otherwise return “no popular matching”.
if G admits a popular matching then
Partition AU P as Oy, Ea,Us with respect to M in G.
Remove any edge in G’ between a node in O3 and a node in Us.
Denote the resulting graph as G” = (AU P, E").
: end if

— =
=]

» Definition 5. For a € A, let choices(a) = {p € P: (a,p) is an edge in G"'}.

3 The switching graph characterization

In this section we develop the switching graph for the popular matchings problem with ties.
In case of strict lists, McDermid and Irving [10] defined a switching graph G = (P, En)
as a directed graph on the posts of G and the edge set Ej; was determined by a popular
matching M in G. In fact, a similar graph was defined even before that by Mahdian [8]
(again for strict lists) to study existence of popular matchings in random instances.

Let G be an instance of the popular matchings problem with ties and let M be a popular
matching in G. The switching graph Gy, = (P, Eur) is a directed weighted graph on the
posts P of G and is defined with respect to a popular matching M in G. The edge set E)y is
defined using the pruned graph G’ = (AU P, E”) constructed in Step 10 of Algorithm 2.1.
There exists an edge from p; to p; (with p; # p;) iff for some a € A, p; = M(a) and
(a,p;) € E”. The weight of an edge w(M (a),p;) is defined as:

w(M(a),p;) = 0 if ais indifferent between M (a) and p;
= —1 if a prefers M(a) to p;
= 41 if a prefers p; to M(a).

The graph Gy = (P, Eyr) can be easily constructed in O(y/nm) time using Algorithm 2.1.
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Consider a vertex p in Gp;. A post p is a sink vertex in Gy if and only if p is unmatched
by M in G. This follows from observing that M (p), that is, the agent matched to p by M,
has degree at least 2 in the graph G’. Further, any agent continues to have degree at least
2 in the graph G”. We refer the reader to the full version [11] for a detailed proof. Let X
be a maximal weakly connected component of Gy;. Call X' a sink component if X contains
one or more sink vertices, otherwise call X a non-sink component.

For a path T (resp. cycle C) in Gjy, the weight of the path w(T) (resp. w(C)) is the
sum of the weights on the edges in T (resp. C'). (Whenever we refer to paths and cycles in
G we imply directed paths and directed cycles respectively.) A path T = (p1,...,px) in
Gy is called a switching path if T ends in a sink vertex and w(T) = 0. Similarly, a cycle
C ={(p1,...,pr,p1) in Gy is called a switching cycle if w(C) = 0. Let Ar = {a; : M(p;) =
a;, fori=1...k } and denote by M’ = M - T the matching obtained by applying the
switching path to M, that is, for a; € Ar, M'(a;) = p;+1 whereas for a ¢ Ap, M'(a) = M(a).
Similarly, for a switching cycle C, define Ac = {a; : M (p;) = a;,for i = 1...k } and denote
by M’ = M - C the matching obtained by applying the switching cycle to M, that is, for
a; € Ac, M'(a;) = piy1 mod k whereas for a ¢ Ac, M'(a) = M(a).

» Example 6.

Consider an instance G where A = {a1,...,a7} and P = {p1,...,p9}. The preference lists
of the agents are shown in Figure 1(a). The preference lists can be read as follows: agent a;
ranks posts p1, p2, ps as her rank-1, rank-2 and rank-3 posts respectively and the two posts
ps and pr7 are tied as her rank-4 posts. For every agent a, the posts which are bold denote
the set f(a), whereas the posts which are underlined denote the set s(a). The instance G
admits a popular matching; M and M’ shown below are both popular in G.

M = {(a1,ps), (a2, p1), (a3, ps), (aa, p2), (a5, p3), (as, po), (a7, pa)} (1)
M = {((lhp@), (a2’p1)7 (a3’p8)a (a4,p2), (a57p4), (aﬁap3)7 (a7,P5)} (2)

Figure 1(b) shows the switching graph Gp; with respect to the popular matching M. We
note that the edges (a4, ps) and (a1, p1) get deleted in Step 4 and Step 9 of Algorithm 2.1,
respectively. Hence the switching graph G,; does not have the edges (M (a4) = po,ps3) and
(M (a1) = pes,p1) respectively. Consider the switching path T' = (pg, ps, ps,ps) in Gpr. By
applying T to M we get M’ = M - T (see Equation (2)) which is also popular in G.

ar : P1 P2 Pp3 (@vlﬂ) »

az : P1 b2 P8 ;

as:  p1 Ps +1 -1 EN
ay - (p27p3) P1 Pps A +1 0
as : b3 (P2, pa) K B s
ag : Ps Py P %

ar : (@, &) a1 0

(a) (b)

Figure 1 (a) Preference lists of agents {a1,...,ar}. The posts which are bold denote f(a) and
the posts which are underlined denote s(a). (b) Switching graph G with respect to the popular
matching M in G.
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3.1 Some useful properties

In this section we state some useful properties of the switching graph Gps (refer [11] for
proof of correctness of these properties). Recall that the vertices AU P are partitioned as
04,&1,U; w.r.t. a maximum matching My in Gy (see Step 3 of Algorithm 2.1). Further, the
vertices A U P are partitioned as Os, Eo,Us w.r.t. a popular matching M in G’ (see Step 8
of Algorithm 2.1).

» Property 7. All sink vertices of G s belong to the set &;.

» Property 8. Every post p belonging to a sink component has a path to a sink and hence
belongs to the set £&. Every post belonging to a non-sink component belongs to the set Us.

» Property 9. For an edge (p;,p;) in G, the weight w(p;, p;) is determined by the partition
p; and p; belong to when vertices are partitioned as O1, &1,U;. The weight w(p;,p;) can be
determined using Table 1.

Table 1 Table shows w(p;,p;) for an edge (ps;,p;) in Gu. The weight is determined by the
partition of vertices as O1,&1,U1. The x denotes that such an edge is not present in Gas.

Pillo, | & | w

Di
O 0 -1
&1 +1 0
U X -1 0

» Property 10. Every path T in G has w(T) € {—1,0,+1}. Every cycle C in G has
w(C) = 0. There exists no path T in Gjs ending in a sink vertex with w(T) = +1.

» Property 11. For any switching path T (or switching cycle C) in Gy, the matching
M =M-T (M =M - C resp.) is a popular matching in G. Every popular matching M’
in G can be obtained from M by applying to M one or more vertex disjoint switching paths
and switching cycles in each of a subset of sink components of G together with one or
more vertex disjoint switching cycles in each of a subset of the non-sink components of G ;.

Recall the definition of choices(a) for an agent as given by Definition 5. It is easy to see
that for any a € A, choices(a) C {f(a) U s(a)}. Further, if M is a popular matching in G,
then M (a) € choices(a). We now define the notion of a tight-pair, that is, a set of agents A;
and a set of posts Py with |A;| = [P;|. Further, for every a € A; we have choices(a) C P;.
We show that a tight-pair exists whenever there is a non-sink component in the switching
graph G ;.

» Lemma 12. Let Y be a non-sink component in Gy and ¢ € Y. Let,
Py ={q}U{p: q has a path to p in Gy }.

Then there exists a set of agents Ay such that (i) |Ag| = |Pyl, and (ii) for every a € A,
choices(a) C P,.

Proof. Let A, = {a:a = M(p) and p € P,}. Since every p € P, is matched, we note that
|Ag| = |Py|. For any a € Ay, we have M (a) € P, and note that M (a) € choices(a). Further,
note that, for every p’ € choices(a) \ {M(a)}, we have an edge (M(a),p’) in Gp;. Thus,
every such p’ also belongs to P,. This proves that for every a € Ay, choices(a) C P,,. |
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3.2 Generating popular pairs and counting popular matchings
Let G = (AU P, E) be an instance of the popular matchings problem. Define
PopPairs = {(a,p) € E: M is a popular matching in G and M (a) = p}. (3)

Using the switching graph defined in the previous section, it is easy to compute the set
PopPairs in G. Let Gjs be the switching graph with respect to a popular matching M in
G. From Property 11 we can conclude that an edge e = (a,p) is a popular pair if and only
if (i) e € M or, (ii) the edge (M (a),p) belongs to some switching path in Gy or, (iii) the
edge (M(a),p) belongs to some switching cycle in G ;.

We note that edges satisfying condition (i) can be marked in O(y/nm) time using Al-
gorithm 2.1 and edges satisfying conditions (ii) or (iii) can be marked in linear time in the
size of the switching graph. Thus, we conclude the following theorem (see [11] for proof).

» Theorem 13. The set of popular pairs for an instance G = (AU P, E) of the popular
matchings problem with ties can be computed in O(y/nm) time.

We now show that given an instance of the popular matchings problem with ties, the
problem of counting the number of popular matchings is #P-Complete. The result readily
follows by (i) reducing the problem of computing the number of perfect matchings in 3-
regular bipartite graphs to the popular matchings problem, and (ii) the fact that k-regular
bipartite graphs admit a perfect matching.

» Theorem 14. Given an instance G = (AU P, E) of the popular matchings problem with
ties, counting the total number of popular matchings in G is # P-Complete.

4 Cheating strategies — preliminaries

In this section we set up the notation useful in formulating our cheating strategies. We
begin by partitioning the set of agents A depending on the posts that a particular agent
gets matched to when each agent is truthful, that is, in the instance G.

Ay ={a: every popular matching in G matches a to one of her rank-1 posts}
As = {a : every popular matching in G matches a to one of her non-rank-1 posts}

Af/s =A\(AyU A ).

The set Ay/, denotes the set of agents a such that a gets matched to one of her rank-1
posts in some popular matching in G, whereas to one of her non-rank-1 posts in some other
popular matching in G. It is easy to see that the above partition can be readily obtained
once we have the set of popular pairs PopPairs (defined by Equation (3)).

Let a1 be the sole manipulative agent who is aware of the true preference lists of all other
agents. Let L= P, Ps,..., P, ..., P, denote the true preference list of a; where P; denotes
the set of i-th rank posts of a;. Since we will be working with another instance H obtained
by falsifying the preference list of a1, we now qualify the sets f(a) and s(a) for every agent
with the instance under consideration. For an agent a, let fo(a) and sg(a) denote sets
f(a) and s(a) respectively for an agent a in G. We note that fg(a;) = P;. Assume that
sg(ay1) C P is the set of t-th ranked posts of a1, where t > 1.

Recall the strategy — better always defined for a single manipulative agent. If agent
a1 € Ay, then she does not have any incentive to manipulate her preference list. Thus, in
this case we are done and L is her optimal strategy. We therefore focus on a; € As U Ay /.
Let H denote the instance obtained by falsifying the preference list of a; alone.
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If a; € Ag, then in order to get better always her goal is to force at least some popular
matching in H to match her to a post which she strictly prefers to her ¢-th ranked post.
Ifa; € Ay, then in order to get better always her goal is to force every popular matching
in H to match her to one of her true rank-1 posts.

Denote by H = G with respect to ap if agent a1 is better always in H. It is instructive
to consider examples in order to get intuition regarding the cheating strategies.

» Example 15.

Consider the instance G as shown in Figure 1(a) and let a5 be the manipulative agent. It
can be seen that a5 € A/, in G. Now consider the instance H where a5 alone falsifies her
preference list. The preference list of a5 in H is a strict list of length two and contains p3 as
her rank-1 post and ps as her rank-2 post. It is easy to verify that every popular matching in
H matches a5 to p3 which is her true rank-1 post. The idea for an Ay, agent a is to choose
a post in sy (a) (here pg) to which a can never be matched in a popular matching in H. We
will show that such a post can be chosen whenever there exists a non-sink component in the
switching graph and therefore a tight-pair (in this case P; = {ps,p1} and A; = {az,a3}).

» Example 16.

Consider the instance G shown in Figure 1(a) and let a; be the manipulative agent. Every
popular matching in G matches a; to either pg or p; and therefore a; € A,. Let H denote
the instance where a; falsifies her preference list. The preference list of a5 in H is a strict
list of length two and contains p3 as her rank-1 post and pg as her rank-2 post. It can be
verified that every popular matching in H matches a; to ps. The intuition here is that, a
post to which a; wishes to get matched (here p3), should have a path to an unmatched post
or roughly speaking, belong to a sink component of Gj;. We also choose a post in sy (ay)
(in this case pg) to which a1 can never get matched in any popular matching in H.

However, in this example, this is not the best that a; can get by falsifying. Let a; falsify
her preference list to rank ps as her rank-1 post and pg as her rank-2 post. Consider the
matching M = {(a1,p2), (a2, p1), (a3, ps), (as,p3), (a5, p4), (as,p9), (a7, ps)} in H. It can be
verified that M" is popular in H and in fact every popular matching in H matches a; to
p2. However, our intuition that ps should belong to a sink component does not hold. This
is because the edge (a4, p3) which got deleted in Step 4 of Algorithm 2.1 is being used after
a; falsifies her preference list. In order to deal with such cases we will work with a modified
instance as defined in Section 4.3.

We now formalize these intuitions in the rest of the section. In the interest of space we
omit proof details and refer the reader to the full version [11].

4.1 s(a) for other agents remains unchanged

Let H denote the instance obtained by falsifying the preference list of a; alone. Since the rest
of the agents are truthful, for every agent a € A\ {a1}, we have fy(a) = fg(a). However,
since sy (a) depends on the rank-1 posts of the rest of the agents, it may be the case that
when a; falsifies her preference list, sg(a) # sg(a) for an agent a € A\ {a;}. We claim that
if a1 falsifies her preference list only to improve the rank of the post that she gets matched
to, the rest of the agents do not change their s(a). Recall that by definition, sy (a) is the set
of most preferred posts of a which are even in the graph H; (the graph H on rank-1 edges).
The following theorem summarizes the discussion.

» Theorem 17. Let H be an instance such that H = G w.r.t. ay. Then, (i) (&1)c NP =
(E1)u NP and hence sy (a) = sg(a) for every a € A\{a1} and, (i) (O1)¢NA = (O1)gNA.
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4.2 An A, agent cannot get one of her true rank-1 posts

In this section we show that if a; € Ay, then by falsifying her preference list alone, she
cannot get matched to one of her true rank-1 posts in any popular matching in H. We state
the result as Theorem 18 which requires the following claims. Let M be a popular matching
in G and G); denote the corresponding switching graph.

(I) If a1 € A, then every post ¢ € fg(a1) belongs to a non-sink component of Gp;. We
further claim that the edge (M (a1),q) does not belong to any cycle in Gy.

(IT) Since every q € fa(aq) belongs to a non-sink component of G, using Lemma 12, we
can define a tight-pair P, and A, w.r.t. g. Here, P, denotes the set of posts reachable
from ¢ in Gy whereas A, denotes the set of agents matched to the posts in P,. We
claim that the post M (a1) does not belong to P, and hence a; does not belong to A,.

(III) From the definition of tight-pair, we know that |A,| = |P,| and for each a € A,
choicesg(a) C P,. However, we claim that the same pair of sets is tight in H, that is,
for every a € Ay, choicesg(a) C Py.

Using the above facts we prove the following theorem.

» Theorem 18. Let a; € As. Then by falsifying her preference list alone, she cannot get
matched to a post q € fa(a1) in any popular matching in the falsified instance.

Proof. For contradiction assume that there exists a falsified instance H such that in a
popular matching M’ of H, agent a1 gets matched to ¢ € fa(aq). By (I), the post ¢ belongs
to a non-sink component of Gj;. Further by (III), there exists a set of agents A, and a set
of posts P, such that |A,| = | Py, a1 ¢ A, and for every a € A, we have choicesy(a) C Py.
Thus, if a1 gets matched to ¢ in M’, then there is at least one agent o’ € A, which does
not have a post to be matched to in choicesy(a’). This contradicts the fact that M’ is a
popular matching in H. |

4.3 The modified instance G

As mentioned earlier, we need to define a modified instance, call it G to develop our cheating
strategies. Recall from Example 16 that an edge which gets deleted from the graph G’ in
Step 4 of Algorithm 2.1 can be used in a popular matching in a falsified instance. Thus, we
define G from the instance G which has the following properties: (i) every popular matching
in G is a popular matching in G and, (i) any edge (a,p) that gets deleted in Step 4 of
Algorithm 2.1 when run on G also gets deleted in Step 4 when Algorithm 2.1 is run on H
such that H = G w.r.t. a;. However, the definition of G is independent of the agent a.

The graph G is defined as follows: Let Gy be the graph on rank-1 edges of G and let
{q1,...,qx} be the set of unreachable posts in G;. Let us add to the instance G a dummy
agent b whose preference list is of length one and has all the unreachable posts in G; tied
as her rank-1 posts. That is, the preference list of b can be written as (¢1,...,qx). The
set of posts as well as the preference lists of all the agents a € A remain the same as in G.
Formally, G = (AU P, E) where A = AU {b} and E = EU{(b,q1),...,(b,qx)} and each
(b, g;) is a rank-1 edge. By the choice of preference list of b, we note that f=(b) = {q1,...,qx}
and sz (b) = €(b), the unique last-resort post that we add for convenience.

We note that even after the addition of agent b, a maximum matching M; in G; continues
to be a maximum matching in G;. However, with respect to the partition of vertices on
rank-1 edges in G, every vertex is either odd or even in G1. Further, we claim that the
set of even posts in Gy is the same as the set of even posts in G;. Thus, we can state the
following lemma.
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» Lemma 19. For every a € A, we have sa(a) = sg(a).

Now let M be a popular matching in G, then let M denote the corresponding matching
in G such that for every a € A we have M(a) = M(a) and M(b) = £(b), the unique last-
resort post of b. Note that M is a maximum matching on rank-1 edges in G and for every
a € A, we have M(a) € {fz(a) Usg(a)}. Finally, M(b) € sg(b) since sg(b) = {£(b)}. Tt is
clear that M satisfies both the properties of Theorem 3 and therefore is a popular matching
in G. We can now construct the switching graph G a W.r.t. M in G. With the definition of
G in place, we can now state the following lemmas.

» Lemma 20. Let (a,p) be an edge which gets deleted in Step 4 of Algorithm 2.1 run on G.
Then (a,p) gets deleted in Step 4 when Algorithm 2.1 is run on H where H = G w.r.t. a;.

» Lemma 21. Let a € A\ {a;} such that M(a) belongs to a non-sink component of G .
Let H be an instance such that H = G w.r.t. ai. Then choicesg(a) C choicesz(a).

5 Cheating strategies

In this section we develop an efficient characterization of the conditions under which a; can
falsify her preference list. We formulate the strategy of a; depending on whether a; € Aq
or a; € Ay/s. Throughout, we assume that the true preference list of a; is denoted by £ =
Py,..., P, ..., P, where P; denotes the set of i-th ranked posts of a;. Further, fg(a;) = P
and sg(a1) € P,. We will use the modified instance G to formulate our strategies.

5.1 A, agent

Let a; € A, and let M be any popular matching in G and M denote the corresponding
popular matching in G which matches b to £(b). It follows from the definition of A, that,
M(a1) = M(ay) € sg(ar) and therefore, M(a;) € P;. We first characterize whether a; can
get better always using the graph G and the switching graph G i

Our cheating strategy for a; (as shown in Figure 2) is simple: it checks if any of a1’s
i-th ranked posts p € P; where i = 2...t — 1, either belongs to a sink component in G’M or
has a path to M (a1) in G ar- If there exists such a post p, our strategy ensures that every
popular matching in the falsified instance H matches a; to p. We denote by Ly the falsified
preference list of a;. We now state the main theorem in this section.

1. For i = 2...t — 1 check if there exists a post p € P; in ay’s preference list such that

(a) p belongs to a sinNk component in GM or,
(b) p has a path to M(a1) in G 3.

2. If no post satisfies (a) or (b) above, then true preference list £ is optimal for a;.

3. Else let p denote the most preferred post of a; satisfying one of the above two
properties. Set post p as ap’s rank-1 post in the falsified preference list.

4. To obtain the rank-2 post for aj, let as be some agent such that M(ag) € fo(ay).
Let p’ € sg(az). Set p’ as the rank-2 post of a; in the falsified instance. Ly = p,p’.

Figure 2 Cheating strategy for a; € As.

» Theorem 22. Let a € A;. Then there exists a cheating strategy for ai to get better always
if and only if there exists a post p ranked 2...t — 1 on a1 ’s preference list satisfying either
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(a) p belongs to a sm}k component in GM or,
(b) p has a path to M(ay) in G ;.

Proof. (Sketch) Assume that a post p satisfying one of the above two properties exists. Let
Ly = p,p’ be the falsified preference list for a; as returned by Step 4 of Figure 2. Let H
denote the instance where a; submits L and the rest of the agents are truthful. We show
that every popular matching in H matches a; to p. The idea is to use the path starting at
p which ends in an unmatched vertex and construct another matching which matches a; to
p. Further, to show that every popular matching matches a; to p, we use the tight-sets A,/
and P, . Finally, to show that our strategy is optimal, from Theorem 18, we know that a;
cannot get matched to any of her true rank-1 posts. Now let ¢ be a post which does not
satisfy any of the conditions in Theorem 22 and is more preferred by a; than the post that
it got matched to after running the strategy in Figure 2. We show the existence of tight-sets
Aq and P, for such a post ¢ which implies that no popular matching in the falsified instance
can match a; to ¢. Refer [11] for a full proof. <

5.2 Ay, agent

Let a1 € Aj/s when she submits her true preference list. In order to get better always, the
goal of ay is to falsify her preference list such that every popular matching in the falsified
instance H matches a1 to posts in P;.

Let M be a popular matching in G such that M(a;) = p and p € fg(a;). Let M denote
the corresponding popular matching in G which matches b to £(b). Consider the switching
graph G i Our strategy for aq to get better always (as described in Figure 3) is to search
for an even post p’ in Gy which belongs to a non-sink component of G i7 and further the
post p’ does not have a path T to M(a;) in GM where w(T) = +1.

1. For every p’ € (€1)g NP check if

(a) p’ belongs to a non-sink component, say Vi, of G 7 and,
(b) p' does not have a path T to M(ai1) in Gy; such that w(T) = +1.

2. If no post satisfies both properties, declare true preference list £ is optimal for a.
3. Else set M(a;) = p and p’ as the rank-1 and rank-2 posts respectively in the falsified
preference list of a;. Ly =p,p’.

Figure 3 Cheating strategy for a1 € Ay, to get better always.

» Theorem 23. Let ay € Ay/,. There erists a cheating strategy for ay to get better always
if and only if there exists a post p’ in (1) satisfying the following two properties

(a) p’ belongs to a non-sink component, say V1, of C;’M, and

(b) there exists no path T from p' to M(ay) in Gy such that w(T) = +1.

Proof. (Sketch) Assume that a post p’ satisfying the above two properties exists. Then by
falsifying her preference list as £y = p,p’, agent a; can force every popular matching in H
to match a; to p. The proof uses the existence of the tight-pair A,/ ,P,. On the other hand,
assume that no such post exists and for the sake of contradiction, there exists an instance
H such that every popular matching in H matches a; to a post in fg(a1). In this case we
show that there exists a popular matching M’ in H such that M’(a1) € sg(ay1). Further,
sp(a1) cannot contain any of a1’s true rank-1 posts, therefore this contradicts the fact that
every popular matching in H matches a; to one of her true rank-1 posts. <
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Using Theorem 22 and Theorem 23 we conclude the following.

» Theorem 24. The optimal falsified preference list for a single manipulative agent to get
better always can be computed in O(y/nm) time if preference lists contain ties and in time
O(m + n) time if preference lists are all strict.

Proof. The main steps of our strategy are (i) to compute the set of popular pairs, (ii) to
construct the switching graph, (iii) run the algorithm given by Figure 2 or Figure 3 as
appropriate for the single manipulative agent. We note that we use the modified graph G
for computing our strategies and let 7 and 7 denote the vertices and edges in G respectively.
Clearly, n = n+ 1 and m < m +n = O(m). Once the switching graph is constructed, we
observe that the algorithms in Figure 2 and Figure 3 have checks which can be done in time
which is linear in the size of the switching graph. Thus the steps (i) and (ii) defined above
decide the complexity of our cheating strategy. In case of ties, we have shown that both the
steps can be computed in O(y/nm) time. In case of strict lists, using the switching graph
given by McDermid and Irving [10], both the steps can be computed in O(m + n) time.
Thus we have the desired result. <
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