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Abstract
We use the venerable “fooling set” method to prove new lower bounds on the quantum commu-
nication complexity of various functions. Let f : X × Y → {0, 1} be a Boolean function, fool1(f)
its maximal fooling set size among 1-inputs, Q∗1(f) its one-sided-error quantum communication
complexity with prior entanglement, and NQ(f) its nondeterministic quantum communication
complexity (without prior entanglement; this model is trivial with shared randomness or entan-
glement). Our main results are the following, where logs are to base 2:

If the maximal fooling set is “upper triangular” (which is for instance the case for the equality,
disjointness, and greater-than functions), then we have Q∗1(f) ≥ 1

2 log fool1(f)− 1
2 , which (by

superdense coding) is essentially optimal for functions like equality, disjointness, and greater-
than. No super-constant lower bound for equality seems to follow from earlier techniques.
For all f we have Q∗1(f) ≥ 1

4 log fool1(f)− 1
2 .

NQ(f) ≥ 1
2 log fool1(f) + 1. We do not know if the factor 1/2 is needed in this result, but it

cannot be replaced by 1: we give an example where NQ(f) ≈ 0.613 log fool1(f).
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1 Introduction

1.1 Background: fooling classical communication protocols
Communication complexity [20, 11] is one of the most versatile and successful computational
models we have, and lower bounds on communication complexity are one of the main sources
of lower bounds in many other areas, from circuits to data structures to data streams. One of
the simplest and most intuitive ways to prove lower bounds on communication protocols is by
exhibiting a large fooling set, which was first done in [20, 15]. Suppose Alice and Bob want
to compute some function f : X × Y → {0, 1}, given inputs x ∈ X and y ∈ Y , respectively.
A 1-fooling set for f is a set F = {(x, y)} of input pairs with the following properties:
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(1) If (x, y) ∈ F then f(x, y) = 1
(2) If (x, y), (x′, y′) are distinct pairs in F then f(x, y′) = 0 or f(x′, y) = 0

Note that these two conditions imply that if pairs (x, y), (x′, y′) ∈ F are distinct (i.e., differ
in at least one coordinate), then they differ in both coordinates. Hence a fooling set F forms
a bijection between |F | inputs on Alice’s side and |F | inputs on Bob’s side. Accordingly, by
renaming some of Bob’s inputs we can always assume without loss of generality that F is of
the form {(x, x)}.

To illustrate the concept of a fooling set, consider the n-bit equality function EQ, defined
on x, y ∈ {0, 1}n as EQ(x, y) = 1 iff x = y. This has a 1-fooling set F = {(x, x)} of size 2n,
since EQ(x, x) = 1 for all x and EQ(x, y) = 0 for all distinct x, y. The same fooling set also
works for the n-bit greater-than function, which is defined as GT(x, y) = 1 iff y ≥ x. The
n-bit disjointness function Disj, defined as Disj(x, y) = 1 iff |x ∧ y| = 0, also has a 1-fooling

set of size 2n, which can be seen as follows: write its communication matrix as
(

1 1
1 0

)⊗n

,

and take the anti-diagonal as the 1-fooling set. All entries on the anti-diagonal are 1 (giving
the first property) and all entries below the anti-diagonal are 0 (giving the second property).

Now consider for simplicity a deterministic protocol computing f . Suppose the last bit
of the conversation is the output bit, so both parties end up knowing the output. Consider
input pairs (x, y), (x′, y′) ∈ F . For both inputs, the first property of the fooling set says
that the correct output value is 1. Suppose, by way of contradiction, that the conversation
between Alice and Bob is the same on both input pairs. If we switch input pair (x, y) to
(x, y′) then nothing changes from Alice’s perspective (neither her input nor the conversation
changes), so the output will still be 1. Similarly, if we switch (x, y) to (x′, y) then the output
won’t change from Bob’s perspective. But by the second property of fooling sets, for at least
one of (x, y′) and (x′, y), the correct output is 0! Hence the conversations on inputs (x, y)
and (x′, y′) must have been different. Accordingly, the bigger our fooling set F is, the more
distinct conversations we must allow and hence the more bits of communication are needed.

More precisely, the communication complexity is lower bounded by log |F |+ 1. A formal
proof of this fact can be based on the notion of monochromatic rectangles. A rectangle
is a set R = A × B, where A ⊆ X and B ⊆ Y . Such a rectangle is 1-monochromatic if
f(x, y) = 1 for all (x, y) ∈ R. Note that a rectangle containing 1-inputs (x, y), (x′, y′) ∈ F
cannot be 1-monochromatic, because by the rectangle property it also contains (x, y′) and
(x′, y), at least one of which is a 0-input by fooling set property 2. Accordingly, if we
want to include F in a set of 1-rectangles, we need a separate 1-rectangle for each element
of F , so we need at least |F | different rectangles. It is well-known that a deterministic
c-bit communication protocol induces a partition of the set of all 1-inputs into 2c−1 1-
monochromatic rectangles, so the previous argument implies 2c−1 ≥ |F |; equivalently
c ≥ log |F |+ 1. In fact even nondeterministic communication complexity is lower bounded
by log |F |+ 1: a c-bit nondeterministic protocol gives rise to a cover (rather than partition)
of the set of all 1-inputs by 2c−1 1-monochromatic rectangles, and we still need a separate
rectangle for each element of F .

In contrast, a quantum communication protocol does not naturally induce a partition
or cover of the 1-inputs into rectangles1, so the above way of reasoning fails. In fact, in
contrast to the classical case, the number of monochromatic rectangles needed to partition
the 1-inputs does not provide a lower bound on exact quantum protocols, as witnessed by

1 It can be viewed as approximately producing rectangles with signs [10, Section 3].
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the exponential separation in [4]. Nevertheless, in this paper we show how fooling sets can
still be used to lower bound quantum communication complexity. We do this in two settings:
one-sided-error quantum protocols with unlimited prior entanglement and nondeterministic
quantum protocols without entanglement. These results also imply lower bound for quantum
“Las Vegas” or “zero-error” protocols (i.e., quantum protocols that never err, but have
probability ≤ 1/2 of giving up without a result).

1.2 Our results: fooling one-sided-error quantum protocols

First, we study one-sided-error protocols: protocols that always output 0 on inputs x, y where
f(x, y) = 0, and that output 1 with probability at least 1/2 on inputs where f(x, y) = 1.
We start by getting an essentially optimal bound for the case of “upper-triangular” fooling
sets. We call a 1-fooling set F = {(x, x)} upper-triangular if there is some total ordering ‘≥’
on the x’s such that x > y implies f(x, y) = 0. In other words, the matrix M with entries
Mxy = f(x, y) is 0 below the diagonal. In Section 2 we show that if f has an upper-triangular
1-fooling set of size N , then

Q∗1(f) ≥ 1
2 logN − 1

2 .

For example, the n-bit equality, disjointness, and greater-than functions all have upper-
triangular 1-fooling sets of size 2n, and hence an n/2−1/2 lower bound on their one-sided-error
complexity Q∗1(f). We have Q∗1(f) ≤ n/2 + 1 for any Boolean function where X ⊆ {0, 1}n,
because superdense coding [2] allows Alice to send 2 classical bits using one EPR-pair and
one qubit of communication. Hence the above result is essentially tight for the functions
mentioned.2

We can extend this to a slightly weaker result for all functions stated in terms of their
(not necessarily upper-triangular) 1-fooling-set size:

Q∗1(f) ≥ 1
4 log fool1(f)− 1

2 .

Surprisingly for such basic functions as equality and disjointness, these bounds were not
known before. While it is possible to use Razborov’s technique [16] combined with results
about polynomial approximation with very small error [5] to show Q∗1(Disj) = Ω(n), no
super-constant lower bound was known for Q∗1(EQ). This gap in our knowledge was due
to the fact that other existing lower bound methods cannot give good lower bounds for
equality, as we explain now. General lower bound methods for quantum communication
complexity can be grouped into rank-based methods and methods based on approximation
norms (in particular based on the γ2-norm [14]).3 The linearity of norms makes it possible to
prove lower bounds for quantum protocols in which Alice and Bob share prior entanglement.
Rank-based methods, however, do not seem to directly apply to protocols with entanglement:
in the case of exact quantum protocols a direct sum-based construction in [6] shows that the

2 While the fooling set method gives very good bounds for these functions, it does not give good bounds
for all functions. For example, a random function will with high probability have linear quantum
communication complexity (which can be shown for instance using the discrepancy method), but only
small fooling sets. Inner product mod 2 is an example of an explicit function with this property [11,
Example 4.16].

3 Information-theoretic methods [8] have also been used to lower bound quantum communication complex-
ity. However, the notion is defined there for internal information cost, and in this case the information
cost for equality is O(1), even for classical protocols without error [3, Proposition 3.21].
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logarithm of the rank is a lower bound even in the presence of entanglement.4 In the case of
two-sided error and entanglement, Lee and Shraibman [12] show that the approximation rank
yields lower bounds by relating it to the γ2-norm. Since the communication matrix of EQ is
the identity matrix I, and γ2(I) = O(1) for I of any size, there is no hope to use a connection
between a one-sided-error version of approximation rank and the γ2-norm to establish a
large lower bound on Q∗1(EQ). Whether a one-sided-error version of approximation rank
gives lower bounds for Q∗1 remains open, but we note that the construction in [12] cannot be
adapted to the one-sided-error scenario.

So neither of the two main approaches to quantum communication complexity lower
bounds provides us with a good lower bound for Q∗1(EQ). Hence in this paper we take a
different approach. We first simulate a quantum protocol with entanglement by a game
without communication, in which Alice and Bob share entanglement, and they need to
compute a function f conditioned on postselection on their local measurements. This
approach itself is not new, and can for instance be used to show that the γ2-norm is a lower
bound, see [13]. We then analyze the impact of Alice and Bob’s measurements on the single
entangled state used in the game. The one-sided-error requirement places strong constraints
on those measurements, which we exploit to derive our lower bound in terms of fooling sets.

In a quantum Las Vegas protocol Alice and Bob compute a function f without error,
but they are allowed to give up without a result with probability 1/2. The quantum Las
Vegas communication complexity with entanglement Q∗0(f) is the minimum worst-case
communication of any protocol that computes f under these requirements.5 Quantum Las
Vegas protocols were investigated in [5, 9, 19] in the case where no prior entanglement is
available. Since Q∗0(f) ≥ max{Q∗1(f), Q∗1(¬f)} we immediately get large lower bounds on
the quantum Las Vegas complexity of Disj and EQ, and also the following general lower
bound:

Q∗0(f) ≥ 1
4 log fool(f)− 1

2 ,

where fool(f) is the standard maximum fooling set size, i.e., the maximum over the largest
1-fooling set and 0-fooling set.

1.3 Our results: fooling nondeterministic quantum protocols

As a second main result, just like in the classical world fooling sets lower bound nondetermin-
istic protocols, we show here that they also lower bound nondeterministic quantum protocols.
For our purposes, we can define a nondeterministic protocol (quantum as well as classical)
for a Boolean function f as one that has positive acceptance probability on input x, y iff
f(x, y) = 1. In other words, this is the unbounded-error version of the one-sided-error model:
the requirement of acceptance probability 0 on 0-inputs remains, but the requirement of
large acceptance probability on 1-inputs is relaxed to positive acceptance probability on
1-inputs.6 The quantum version of this model was introduced in [19], which also exhibits a

4 Footnote 2 of [6] claims such a bound for zero-error quantum protocols for equality and disjointness
without proof, but in retrospect they didn’t seem to have a proof of this.

5 It is possible to define Las Vegas protocols as protocols that never err and place bounds on expected
communication. The corresponding complexity measure is always larger or equal to the one considered
here, and is smaller than 2 times our measure.

6 Nondeterministic communication complexity (classical as well as quantum) can be exponentially less than
one-sided-error communication complexity, even if the latter is assisted by unlimited prior entanglement.
The negation of the disjointness function is an example of this.
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total function with an exponential separation between quantum and classical nondeterministic
communication complexities.

Note that allowing unlimited prior entanglement trivializes the nondeterministic model,
for the same reason that unlimited shared randomness trivializes it in the classical case: Alice
and Bob can share a random variable r uniformly distributed over the set X of Alice’s inputs;
Alice sends a bit indicating whether x = r; if ‘yes’ then Bob outputs f(r, y) = f(x, y), and if
‘no’ then he outputs 0. Hence if we were to allow unlimited prior randomness or entanglement,
any function has nondeterministic communication complexity at most 1. Accordingly, we
will study nondeterministic protocols which don’t share anything at the start. In Section 3
we show the following lower bound on nondeterministic quantum communication complexity
in terms of fooling sets:

NQ(f) ≥ 1
2 log fool1(f) + 1.

We do not know if the factor 1/2 is needed in this result, but it cannot be replaced by 1:
in Section 3 we give an example of a function where NQ(f) ≤ log 3

log 6 log fool1(f) + 1, where
log 3/ log 6 ≈ 0.613.

2 Lower bound for one-sided bounded-error quantum protocols

We assume familiarity with communication complexity. See [11] for more details about
classical communication complexity and [18] for quantum communication complexity. Our
key lemma is based on a reasonably well-known trick to replace quantum communication by
the guessing of twice as many classical bits:

I Lemma 1. Suppose there is a quantum protocol P with inputs from X × Y and output in
{0, 1}, that uses some fixed starting state (possibly entangled) and q qubits of communication,
and where a measurement of the last qubit on the channel gives the output. Then there exists
another quantum protocol Q with a fixed starting state and no communication at all, where
Alice outputs a ∈ {0, 1} and Bob outputs b ∈ {0, 1}, such that

for all inputs x, y : Pr[Q outputs a = b = 1] = 2−2q Pr[P outputs 1].

Proof. We assume without loss of generality that P communicates exactly q qubits on all
possible inputs. By the well-known teleportation primitive [1], we can replace each qubit
of communication in P by the use of one additional EPR-pair and two classical bits of
communication. These 2 bits are the outcome of a measurement by the sending party, and
indicate which of the 4 Pauli matrices the receiving party has to apply on their end of the
EPR-pair in order to obtain the qubit that the sender wanted to send. If the bits happen to
be 00 (which happens with probability 1/4), then the right Pauli is the identity matrix, so
then they don’t need to do anything. Call the resulting 2q-bit protocol Pclas.

Protocol Q is now as follows. Alice and Bob run protocol Pclas assuming all messages
are 0-bits (so they don’t communicate anything). Alice checks if all her teleportation
measurements gave outcome 00. If not then she outputs a = 0; if yes then she outputs Pclas’s
output if she was the one supposed to output that, and otherwise she outputs a = 1. Bob
does the same from his end, outputting b ∈ {0, 1}. Note that a = b = 1 iff all q teleportation
measurements gave outcome 00 and the output of P would have been 1. The first event
happens with probability 4−q and the second event with Pr[P outputs 1]. Since these two
events are independent we can multiply their probabilities to obtain the lemma. J
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Note that the starting state of the new protocol Q is the starting state of the original
protocol P , augmented with an additional q EPR-pairs. Using the above lemma, we can
prove an essentially optimal lower bound in terms of upper-triangular 1-fooling sets:

I Theorem 2. If f : X × Y → {0, 1} has an upper-triangular 1-fooling set of size N , then
Q∗1(f) ≥ 1

2 logN − 1
2 .

Proof. We can assume without loss of generality that the fooling set is of the form {(x, x) :
x ∈ [N ]}, and f(x, y) = 0 whenever x > y. Let q = Q∗1(f) and let P be a q-qubit
entanglement-assisted protocol for f . Apply Lemma 1 to this protocol to obtain a new
protocol Q without communication, where Alice outputs a ∈ {0, 1}, Bob outputs b ∈ {0, 1},
satisfying

Pr[a = b = 1] ≥ 2−2q−1 on inputs x, x
Pr[a = b = 1] = 0 on inputs x > y

Let |ψ〉 be the entangled starting state of protocol Q, which we assume to be pure without
loss of generality. On input x, Alice applies a POVM measurement with operators Ax, I−Ax

corresponding to outputs 1 and 0, respectively. Similarly Bob uses POVM elements By, I−By.
The following technical claim is the core of the proof:
I Claim 1. Let |w〉 be a bipartite state such that for all x, y ∈ [N ] satisfying x > y, we have
〈w|Ax ⊗By|w〉 = 0. Then

∑
x∈[N ]〈w|Ax ⊗Bx|w〉 ≤ ‖w‖2.

Proof. The proof is by induction on N . The base case N = 1 follows from the Cauchy-
Schwarz inequality and the fact that Ax ⊗Bx has operator norm ≤ 1.

For the inductive step: assume the claim holds for N , and now let x range over [N + 1].
Fix some bipartite state |w〉 such that

(*) for all x, y ∈ [N + 1] satisfying x > y, we have 〈w|Ax ⊗By|w〉 = 0.

Let supp(AN+1) denote the projection on the support of POVM element AN+1. Define
|w1〉 = (supp(AN+1) ⊗ I)|w〉, and |w2〉 = |w〉 − |w1〉. By (*), for all y ∈ [N ] we have
〈w|AN+1 ⊗ By|w〉 = 0. This means that |w〉 is orthogonal to all eigenvectors |a〉 ⊗ |b〉 of
AN+1 ⊗By, which in turn implies

(**) for all y ∈ [N ], (supp(AN+1)⊗By)|w〉 is the 0-vector.

Write∑
x∈[N+1]

〈w|Ax ⊗Bx|w〉 = 〈w|AN+1 ⊗BN+1|w〉+
∑

x∈[N ]

〈w|Ax ⊗Bx|w〉. (1)

Since (AN+1⊗I)|w2〉 = 0, the first term on the right-hand side equals 〈w1|AN+1⊗BN+1|w1〉,
which is ≤ ‖w1‖2 by the base case.

For the second term, note that for all (not necessarily distinct) x, y ∈ [N ], we have

Ax ⊗By|w1〉 = (Ax ⊗By)(supp(AN+1)⊗ I)|w〉 = (Ax ⊗ I)(supp(AN+1)⊗By)|w〉,

which is 0 because (supp(AN+1) ⊗ By)|w〉 = 0 by (**). Thus we have Ax ⊗ By|w〉 =
Ax ⊗By|w2〉, which by (*) also implies that for all x, y ∈ [N ] with x > y we have 〈w2|Ax ⊗
By|w2〉 = 0. Now the second term on the right-hand side of (1) equals∑

x∈[N ]

〈w2|Ax ⊗Bx|w2〉,

STACS’13
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which is ≤ ‖w2‖2 by the induction hypothesis. Since |w1〉 and |w2〉 are orthogonal, the
two terms on the right-hand side of (1) together are at most ‖w1‖2 + ‖w2‖2 = ‖w‖2. This
concludes the inductive step, and hence the proof of the claim. J

Applying Claim 1 with the actual entangled state |ψ〉 used by protocol Q, we obtain

N2−2q−1 ≤
∑

x∈[N ]

Pr[outcome Ax ⊗Bx when measuring |ψ〉]

=
∑

x∈[N ]

〈ψ|Ax ⊗Bx|ψ〉 ≤ ‖ψ‖2 = 1.

Rearranging gives the theorem. J

I Corollary 3. The n-bit equality, disjointness and greater-than functions have Q∗1(f) ≥
n/2− 1/2.

Proof. These three functions all have upper-triangular 1-fooling sets of size 2n. J

Now we use a trick of combining two copies of the function to extend the result from
upper-triangular fooling sets to all fooling sets, at the expense of a factor of 2 in the lower
bound (we do not know if this loss is necessary). This is similar to the proof that fooling set
size is at most quadratically bigger than rank [11, Lemma 4.15]:

I Corollary 4. For all f : X × Y → {0, 1} we have Q∗1(f) ≥ 1
4 log fool1(f)− 1

2 .

Proof. Define a new function g : X2 × Y 2 → {0, 1} by g(xx′, yy′) = f(x, y)f(y′, x′). Note
the reversed role of the two inputs in the second f . Alice and Bob can compute g with
one-sided error p = 1/4 by separately computing f(x, y) and fT (x′, y′) = f(y′, x′) with
one-sided error 1/2 each, and outputting the product of the two output bits. This takes
Q∗1(f) qubits of communication for each computation, so at most 2Q∗1(f) in total.

Let {(x, x)} be a 1-fooling set for f of size N = fool1(f). Then it is easy to see
that {(xx, xx)} is a 1-fooling set for g, with the additional property that g(xx, yy) =
f(x, y)f(y, x) = 0 whenever x 6= y. Hence the communication matrix for g contains the
N ×N identity as a submatrix (i.e., the equality function). The same proof as above gives a
lower bound of 1

2 logN − 1 for one-sided-error protocols for equality that accept 1-inputs
with probability at least 1/4 (instead of at least 1/2 as above). Hence we have

1
2 logN − 1 ≤ 2Q∗1(f),

which implies the statement. J

3 Lower bound for nondeterministic quantum protocols

In this section we study nondeterministic quantum protocols. The following algebraic
characterization of nondeterministic quantum communication complexity of f is known. The
communication matrix Mf for f is the |X| × |Y | Boolean matrix Mf (x, y) = f(x, y). A
nondeterministic matrix for f is any real or complex matrix M with the same support as
Mf , i.e., such that Mx,y = 0 iff f(x, y) = 0. The nondeterministic rank of f (abbreviated to
nrank(f)) of f is the minimal rank (over the reals) among all such matrices. [19, Theorem 3.3]
shows that NQ(f) = dlog nrank(f)e+ 1.

The key to using fooling sets for nondeterministic quantum lower bounds is the following
simple lemma:
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I Lemma 5. For every function f : X × Y → {0, 1} we have nrank(f)2 ≥ fool1(f).

Proof. LetN = fool1(f). Like in the proof of Corollary 4, define g(xx′, yy′) = f(x, y)·f(y′, x′)
and observe that the communication matrix of g contains the N ×N identity matrix IN as
a submatrix. If M is a nondeterministic matrix for f , then M ⊗MT is a nondeterministic
matrix for g. Hence, choosing M of minimal rank, we have

nrank(f)2 = rank(M)2 = rank(M ⊗MT ) ≥ nrank(g) ≥ nrank(IN ) = N.

J

Taking logarithms and using that NQ(f) = dlog nrank(f)e+ 1, we get

I Corollary 6. NQ(f) ≥ 1
2 log fool1(f) + 1.

For example for the equality function, this shows NQ(f) ≥ n/2 + 1. However, for the
equality function we already knew NQ(f) = n+ 1 since obviously nrank(f) = 2n [19]. Hence
it is natural to ask whether the constant 1/2 in the above corollary is needed. We don’t
know, but at least we can show that it needs to be less than 1. Specifically, we give an
example where NQ(f) ≤ log 3

log 6 log fool1(f) + 1, where log 3
log 6 ≈ 0.613. Consider the following

6× 6 matrix: 

1 1 0 0 0 1
0 1 0 −1 −1 0
−1 1 1 0 −1 0
−1 0 1 1 0 0

1 0 0 1 1 1
0 1 1 1 0 1


.

It is easy to see that this has rank 3. The Boolean matrix obtained by dropping the minus
signs corresponds to a communication complexity function g : [6] × [6] → {0, 1} with a
1-fooling set of size 6 (just take the diagonal). Now let f : X × Y → {0, 1} be the AND of k
independent instances of g (so |X| = |Y | = 6k). Because 1-fooling set size is multiplicative
under taking ANDs, we have fool1(f) = 6k. On the other hand, taking the k-fold tensor
product of the above rank-3 matrix gives a nondeterministic matrix for f of rank 3k. Hence
NQ(f) = dlog nrank(f)e+ 1 ≤ log 3

log 6 log fool1(f) + 1 ≈ 0.613 log fool1(f).
A simpler but slightly weaker separation can be obtained from the 3-input non-equality

function, where X = Y = [3] and the function take value 0 when the inputs x and y are
equal. This has nrank = 2 vs fool1 = 3, hence taking a k-fold AND of this gives a function
f : X × Y → {0, 1} with |X| = |Y | = 3k and nrank(f) = 2k vs fool1(f) = 3k. Taking
logarithms, we have NQ(f) ≈ 0.63 log fool1(f).

4 Conclusion and open problems

Equality and disjointness are two of the most important functions considered in communic-
ation complexity. Prior to this paper no large lower bound on the one-sided error or Las
Vegas quantum communication complexity of these functions was known for the case of
protocols with prior entanglement. In particular, for EQ previous lower bound methods were
not applicable. We have shown that the fooling set method is applicable to one-sided-error
protocols with entanglement, obtaining linear lower bounds for both functions.

It is interesting to note that for classical protocols there is essentially no need to consider
fooling sets at all: the method is completely subsumed by the rectangle bound (i.e., bounding
the size of the largest monochromatic rectangle under some distribution). However, the
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rectangle bound does not apply to quantum protocols with one-sided error and entanglement,
nor to quantum nondeterministic communication complexity.

We conclude with some open problems:
Can we improve the factor 1/4 in Corollary 4? We believe it should be 1/2, which is
what we already showed here for upper-triangular 1-fooling sets.
Another problem is to show that the factor 1/2 in Corollary 6 is necessary. It seems hard
to come up with a matrix for which the nondeterministic rank is the square root of the
rank, as would be required by a construction along the lines of our separation at the end
of Section 3.
One further goal would be to show that classical deterministic complexity D(f) and
quantum Las Vegas complexity Q0(f) are polynomially close for all total functions. This is
a (possibly easier) variant of a general conjecture that for total functions quantum commu-
nication yields only polynomial improvements in communication complexity. Proving a lin-
ear lower bound in terms of classical nondeterministic complexity (i.e., Q0(f) = Ω(N(f)))
would settle that, since it is known that D(f) = O(N(f)2). However, an example from [19]
refutes that hope. Let f(x, y) = 0 if |x ∧ y| = 1 and f(x, y) = 1 otherwise. This function
as well as its complement have linear N(f), but NQ(f), NQ(¬f) = O(

√
n). This does

not, however, preclude a bound like Q0(f) = Ω(
√
N(f)), which would still achieve the

above goal.
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