
Explicit relation between all lower bound
techniques for quantum query complexity∗

Loïck Magnin1,3 and Jérémie Roland2,3

1 Centre for Quantum Technologies, National University of Singapore
Block S15, 3 Science Drive 2, Singapore 117543
loick@locc.la

2 QuIC, Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles
50 av. F.D. Roosevelt - CP165/59, B-1050 Bruxelles, Belgium
jroland@ulb.ac.be

3 NEC Laboratories America
4 Independence Way, Suite 200, Princeton NJ 08540, USA

Abstract
The polynomial method and the adversary method are the two main techniques to prove lower
bounds on quantum query complexity, and they have so far been considered as unrelated ap-
proaches. Here, we show an explicit reduction from the polynomial method to the multiplicative
adversary method. The proof goes by extending the polynomial method from Boolean functions
to quantum state generation problems. In the process, the bound is even strengthened. We
then show that this extended polynomial method is a special case of the multiplicative adversary
method with an adversary matrix that is independent of the function. This new result therefore
provides insight on the reason why in some cases the adversary method is stronger than the
polynomial method. It also reveals a clear picture of the relation between the different lower
bound techniques, as it implies that all known techniques reduce to the multiplicative adversary
method.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Quantum computation, lower bound, adversary method, polynomial
method

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.434

1 Introduction

Polynomial and adversary methods. There are two main techniques to prove lower
bounds on quantum query complexity: the polynomial method [12, 20, 27], based on bounding
the degree of the function seen as a polynomial, and adversary methods [15, 2, 11, 21, 19],
based on bounding the change in a progress function from one query to the next. In its
original form [2], the adversary method bounds the additive change in the progress function,
hence we will call it additive, and the progress function is based on a matrix assigning positive
weights to pairs of inputs. The polynomial method and this original adversary method are not
comparable. Indeed, the original adversary method is limited by the “certificate complexity
barrier” [30, 29], that is, for total functions, ADV(f) ≤

√
C0(f)C1(f) where Cb(f) denotes

∗ This work was supported by ARO/NSA under grant W911NF-09-1-0569. L.M. also acknowledges the
support of the Ministry of Education and the National Research Foundation, Singapore. J.R. also
acknowledges support from the action Mandats de Retour of the Politique Scientifique Fédérale Belge
and the Belgian ARC project COPHYMA.

© Loïck Magnin and Jérémie Roland;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 434–445

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.434
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


L. Magnin and J. Roland 435

the certificate complexity of f for f(x) = b. It means that the original adversary method
cannot prove lower bounds better than Ω(N1/2) for Element Distinctness. However,
Aaronson and Shi [1] were able to prove a Ω(N2/3) lower bound using the polynomial method.
On the other hand it is known that the adversary method can sometimes give better lower
bounds than the polynomial method, in [4] Ambainis exhibits a function with polynomial
degree d and adversary bound Ω(d1.3).

Høyer, Lee and Špalek have extended the additive adversary method by allowing negative
weights in the matrix [18], and have shown that the corresponding bound, ADV±(f), breaks
the certificate complexity barrier. For simplicity, we will from now on refer to ADV±(f) as
the additive adversary bound, implicitly allowing negative weights.

Recently, a series of works [17, 7, 26, 25, 22] culminated in showing that this bound is
tight in the bounded-error case for any function. However, this fundamental result does not
answer all the questions about quantum query complexity as it suffers from two limitations.
First, in some cases it is necessary to prove bounds for very small success probabilities, a
regime where ADV±(f) might not be tight. For this reason, while the optimality of the
additive adversary bound implies that quantum query complexity satisfies a direct sum
theorem, it cannot be used to prove a strong direct product theorem, which requires to
prove nontrivial bounds for exponentially small success probabilities. Secondly, while the
proof of optimality of ADV±(f) implies that if a lower bound on the bounded-error quantum
query complexity of a function can be proved with any method, it can also be proved with
ADV±(f), this reduction is not constructive. Concretely, there are still examples of lower
bounds that can be proved using the polynomial method for which the optimal adversary
matrix is unknown, a typical example being the Collision problem [1]1.

Multiplicative adversary method. The first limitation has been overcome thanks to
the introduction of another adversary-type method. By formalizing an ad-hoc technique
proposed by Ambainis, de Wolf and Špalek [5, 10], Špalek designed a new lower bound
method which he called the multiplicative adversary method [28], as the idea is to bound the
multiplicative change in the progress function for each query. Ambainis et al. [9] later showed
that the multiplicative bound is always at least as strong as the additive one, and therefore
also characterizes bounded-error quantum query complexity. Moreover, the multiplicative
adversary method can prove better lower bounds for small success probability than the
additive adversary method, and this was used to prove a strong direct product theorem for
quantum query complexity [23].

Quantum state generation. Even when we are only interested in the quantum query
complexity of functions, it is useful to also consider state generation problems: in that case,
instead of producing the output f(x) on input x, the algorithm is required to prepare a
quantum state |mx〉. Since unitary transformations independent of x may be applied without
any query to x, a quantum state generation problem is completely defined by the Gram
matrix M =

∑
x,x′〈mx′ |mx〉|x〉〈x′|. In the special case of computing a function, M is a

Boolean matrix. Thus every algorithm can be seen as generating a Gram matrix M . If the
algorithm is allowed some error ε, then the set of Gram matrices that are acceptable outputs
for the algorithm can be bounded by a so-called output condition. Different output conditions
have been used before, for example, the original adversary method [2] was implicitly using a
condition based on the L∞ norm, while the adversary method with negative weights in [18]

1 Until very recently it was also the case for the Element Distinctness problem, whose lower bound
was proved by reduction to Collision, but a direct adversary lower bound has now been shown by
Belovs [13], and later extended to the k−Sum problem by Belovs and Špalek [14].

STACS’13



436 Explicit relation between all lower bound techniques for quantum query complexity

MADVε(f)

ADV±ε (f) xpolyε(f)

ADVε(f) d̃egε(f)≷
°

¯

¯

¬

­
®

®

Figure 1 Relations between the different methods to prove lower bounds for quantum query
complexity. An arrow from method A to method B implies that any lower bound that can be proved
with A can also be proved with B (i.e., B is stronger than A). A solid yellow arrow means that
the reduction is constructive, i.e., we can obtain a witness for B from a witness for A. ¬ [18] ­ [9]
® [25, 22] ¯ [This article] ° The original additive and the polynomial methods are incomparable
[30, 29, 1, 4]

was implicitly using the factorization norm γ2. Realizing that different output conditions
could be combined with different (zero-error) lower bound methods was key to comparing the
additive and multiplicative adversary methods in [9]. More recently, Lee and Roland [23] were
able to characterize exactly the set of acceptable Gram matrices, hence providing an optimal
output condition (see Claim 4), which allowed them to prove a strong direct product theorem
for quantum query complexity. This also simplifies the study of lower bounds techniques as
it implies that the bounded-error quantum query complexity of a problem can be studied by
bounding the zero-error quantum query complexity of all Gram matrices that define valid
output states for the problem. As a consequence it is sufficient to compare the zero-error
bounds for two methods in order to compare them.

Our results. In this article, we tackle the second limitation by giving an explicit
reduction from the polynomial method to the multiplicative adversary method. In order
to do so, we introduce yet another lower bound technique for quantum query complexity,
which we call the extended polynomial method (Definition 10 and Theorem 11) as it can
be seen as an extension of the polynomial method to Gram matrices. As the degree of a
Boolean function can be stated as the maximum index of its Fourier coefficients, that is,
deg(f) = max{|S| : 〈χS , f〉 6= 0}, we define the degree of a Gram matrix by the maximum
index k such that the Gram matrix has support on a Fourier vector |χS〉 with |S| = k, that
is, deg(M) = max{|S| : 〈χS |M |χS〉 6= 0}.

For Boolean functions, the polynomial and the extended polynomial bounds are equal in
the zero-error case. However, for the approximate case, the extended polynomial method uses
the tight output condition, and is therefore possibly stronger than the polynomial method
(Theorem 13).

We also compare the extended polynomial method to the multiplicative adversary method.
More particularly, we show that in the limit c→∞, where c is the maximum multiplicative
change in the progress function for one query, the multiplicative bound tends to the extended
polynomial method (Theorem 14). This proof is constructive, i.e., we give an explicit
multiplicative adversary matrix for which we have the equality. It might come as a surprise



L. Magnin and J. Roland 437

that this matrix does not depend on the problem: it is the same adversary matrix for every
function. Let us note that it was proved in [9] that the multiplicative bound is stronger than
the additive bound in the limit c→ 1, that is, at the other end of the possible range for c.
This new result therefore completes the picture of the relations between the different lower
bound techniques in quantum query complexity (see Figure 1), and shows in particular that
all these methods reduce to the multiplicative adversary method.

Many proofs are omitted from this extended abstract and can be found in the full version
of the paper.

2 Preliminaries

2.1 Gram matrices and fidelity
I Definition 1. A density matrix ρ is a positive semidefinite matrix ρ � 0 such that
tr(ρ) = 1. A normalized Gram matrix A is a positive semidefinite matrix A � 0 such
that A ◦ I = I, where ◦ denotes the Hadamard (entry-wise) product.

Note that any positive semidefinite matrix A can be written as a Gram matrix in the broader
sense, i.e., there always exists a set of vectors {|ax〉} such that Axy = 〈ax|ay〉. Here, the
additional constraint A ◦ I = I means that we require those vectors to have norm 1. Since all
Gram matrices will be normalized in what follows, we will from now on refer to normalized
Gram matrices as simply Gram matrices.

I Definition 2. The fidelity F(ρ, σ) between two density matrices ρ and σ is defined by
F(ρ, σ) = tr

√√
ρ σ
√
ρ.

The Hadamard product fidelity FH(A,B) between two Gram matrices A and B is
defined by FH(A,B) = min|u〉:‖|u〉‖=1 F(A ◦ |u〉〈u|, B ◦ |u〉〈u|).

The notation FH and the name Hadamard product fidelity2 are new to this article,
but this quantity has been proved to be the tight output condition for the quantum query
complexity in [23] (see Claim 4 below).

2.2 Quantum query complexity
Consider a Boolean function f : {0, 1}n → {0, 1}. In the black-box model, we are interested in
computing f(x) when x is given by an oracle Ox : |i, b〉 7→ (−1)b·xi |i, b〉. We denote by Qε(f)
the quantum query complexity of f , i.e., the minimum number of queries to Ox necessary for
any algorithm to output f(x) with error at most ε (see, e.g., [16]). Note that our choice of
oracle computes the bits of x in the phase. Another variant of this model considers an oracle
that computes the bits in a register, but it can be shown that these models are equivalent.

Even when we are only interested in the quantum query complexity of functions, it is useful
to also consider state generation problems [9, 22]. In that case, instead of producing the output
f(x) on input x, the algorithm is required to prepare a quantum state |mx〉 ∈ H. Since unitary
transformations independent of x may be applied without any query to x, a quantum state
generation problem is completely defined by the Gram matrix M =

∑
x,x′〈mx′ |mx〉|x〉〈x′|.

For a quantum state generation problem specified by a Gram matrix M , we define two

2 The name is chosen by analogy to the Hadamard product trace norm γ2 (equivalent to the Hadamard
product operator norm and also called factorization norm), which for Hermitian matrices can be written
in the very similar form γ2(A) = max|u〉:‖|u〉‖≤1 ‖A ◦ |u〉〈u|‖tr.

STACS’13



438 Explicit relation between all lower bound techniques for quantum query complexity

different notions of query complexity. The coherent query complexity Qε(M) is the minimum
number of queries to the register oracle Ox necessary to generate a state |nx〉 ∈ H⊗H′ such
that <(〈nx|(|mx〉 ⊗ |0̄〉)) ≥

√
1− ε, where H′ is the workspace of the algorithm, |0̄〉 ∈ H′ is

a default state for this workspace and <(z) denotes the real part of a complex number z.
The non-coherent query complexity Qnc

ε (M) is defined similarly, except that it is enough to
prepare a state |nx〉 ∈ H ⊗ H′ such that <(〈nx|(|mx〉 ⊗ |m′x〉)) ≥

√
1− ε, for an arbitrary

set of states |m′x〉 ∈ H′ (that is, the workspace does not have to be reset to its default state).
For a Boolean function f , let us define the {1,−1}-valued function ϕ : {0, 1}n → {1,−1} :

x 7→ (−1)f(x). There are two natural quantum state generation problems associated to f , cor-
responding to the Gram matrices F =

∑
x,x′ δf(x),f(x′)|x〉〈x′| and Φ =

∑
x,x′ ϕ(x)ϕ(x′)|x′〉〈x|,

where δ is the Kronecker delta. Indeed, generating the Gram matrix F non-coherently is
exactly the same problem as computing f , and we therefore have Qε(f) = Qnc

ε (F ), while
generating the Gram matrix Φ coherently corresponds to computing the function in the phase,
i.e., we need to generate the state ϕ(x)|0̄〉. The bounded-error complexities of these problems
are closely related:

I Claim 3 ([23]). Q(1−
√

1−ε)/2+ε/4(f) ≤ Qε(Φ) ≤ 2Q(1−
√

1−ε)/2(f).

This implies that to prove bounds on the bounded-error query complexity of f , it is sufficient
to prove bounds on the query complexity of the related quantum state generation problem
Φ, and this is precisely the approach that we will use in this article.

Another advantage of considering quantum state generation problems is that we can
study the bounded-error query complexity of a problem by bounding the zero-error query
complexity of all Gram matrices that define valid output states for the problem. It follows
from the following claim that this set of valid Gram matrices is characterized by the Hadamard
product fidelity:

I Claim 4 ([23]). For any Gram matrix M and any ε ≥ 0, we have

Qε(M) = min
N
{Q0(N) : FH(N,M) ≥

√
1− ε, N � 0, N ◦ I = I}.

2.3 The polynomial method
I Definition 5. For any ε ≥ 0, the approximate degree d̃egε(f) of a function f : {0, 1}n →
R is defined as d̃egε(f) = minp {deg(p) : ∀x ∈ {0, 1}n, |p(x)− f(x)| ≤ ε} , where the min-
imum is over n-variate polynomials p : Rn → R.

I Theorem 6 (Polynomial method [12]). If f is a Boolean function, then Qε(f) ≥ Ω
(

d̃egε(f)
)

.

In this article, we will use some basic Fourier analysis to relate degree of a function with
Gram matrices. For the sake of readability, we will identify a set S ⊆ {1, . . . , n} with its
characteristic vector S ∈ {0, 1}n: Si = 1 if and only if i ∈ S, and thus |S| can be either the
cardinal of the set S or the Hamming weight of the vector S.

I Definition 7. For any S ∈ {0, 1}n, let us define |χS〉 = 1√
2n

∑
x(−1)S·x|x〉. For a function

ϕ : {0, 1}n → R, define the (non-normalized) state |ϕ〉 = 1√
2n

∑
x ϕ(x)|x〉. We define the

S-th Fourier coefficient of ϕ as ϕ̂(S) = 〈χS |ϕ〉.

Let us note that the set {|χS〉}S is an orthonormal basis and that by definition, we then
have ϕ̂(S) = 1

2n

∑
x(−1)S.xϕ(x) and ϕ(x) =

∑
S(−1)S.xϕ̂(S), which are the usual Fourier

transform over the hypercube and its inverse. With these notations, we can also write the
degree of a function ϕ as deg(ϕ) = maxS{|S| : ϕ̂(S) 6= 0}.



L. Magnin and J. Roland 439

2.4 The multiplicative adversary method
Let us consider a quantum algorithm generating the Gram matrix M with error at most
ε using T queries. Let |ψtx〉 be the state of the algorithm right after the t-th query when
the input is x, and M t =

∑
x,x′〈ψtx′ |ψtx〉|x〉〈x′| be the corresponding Gram matrix. Note

that M0 = J and MT ≈ M (more precisely FH(MT ,M) ≥
√

1− ε). The basic idea of
all adversary methods is to design a Hermitian matrix W defining a progress function
W [M ] = tr[WM ] such that the initial value W [J] is low and the final value W [MT ] is high
(or vice versa), and then to bound the maximal change in the progress function for any
oracle call. Whereas the additive method bounds the difference |W [M t+1] −W [M t]|, the
multiplicative method bounds the ratio W [M t+1]/W [M t]. In this paper we use the definition
of the multiplicative adversary method given by [23] which is a slight extension of the original
multiplicative adversary method in [28].

I Definition 8. Let M be a Gram matrix specifying a quantum state generation problem
and for all i ∈ {1, · · · , n}, Di =

∑
x,x′(−1)xi+x′

i |x〉〈x′| the action of the phase oracle on input
i. Fix c > 1. The multiplicative adversary bounds are:

MADVc
0(M) = 1

log c max
W�0

{log tr[WM ] : tr[WJ] = 1, W ◦Di � cW ∀i} ,

MADVc
ε(M) = min

N

{
MADVc

0(N) : FH(N,M) ≥
√

1− ε, N � 0, N ◦ I = I
}
,

MADVε(M) = sup
c>1

MADVc
ε(M).

We call adversary matrix for MADVc
0(M) any matrix W � 0 such that tr[WJ] = 1 and

W ◦Di � cW for all i.

I Remark. Let us note that the parameter c represents the maximum multiplicative change
in the progress function that can result from one query. Since, for any matrix W � 0,
the constraint W ◦ Di � cW is always satisfied for c ≥

∥∥(W ◦Di)1/2W−1/2
∥∥2, one could

directly obtain the multiplicative bound MADV0 by optimizing over W and taking c =∥∥(W ◦Di)1/2W−1/2
∥∥2. However, it is useful to define the bound MADVc

0 for fixed c as this
can be expressed as a semidefinite program (see [23]), where the objective value is optimized
over W . The best bound on the quantum query complexity is then obtained by maximizing
the objective value over both W and c.

I Theorem 9 (Multiplicative adversary [28, 23]). For any ε ≥ 0 and any Gram matrix M ,
we have Qε(M) ≥ MADVε(M).

3 The extended polynomial method

We now extend the polynomial method from Boolean functions to Gram matrices.

I Definition 10. Let M be a Gram matrix specifying a quantum state generation problem.
The extended polynomial bounds are

xpoly0(M) = max
S
{|S| : tr [|χS〉〈χS |M ] 6= 0},

xpolyε(M) = min
N

{
xpoly0(N) : FH(N,M) ≥

√
1− ε, N � 0, N ◦ I = I

}
.

I Theorem 11. For any ε ≥ 0 and any Gram matrix M , we have Qε(M) ≥ xpolyε(M).

STACS’13



440 Explicit relation between all lower bound techniques for quantum query complexity

Proof. We prove the statement for ε = 0 and the general case immediately follows from
Claim 4 and the definition of xpolyε(M). This proof actually considers the extended
polynomial method as an adversary method. Let us define the progress function

W [M t] = max
S

{
|S| : tr[|χS〉〈χS |M t] 6= 0

}
.

Since M0 = J = 2n|χ∅〉〈χ∅|, its initial value is W [M0] = 0. The final value is W [MT ] =
xpoly0(M). It suffices to show that one query increases the progress function by at most one.

Let M t =
∑
iM

t
i be the Gram matrix just before the (t+ 1)-th query, where M t

i is the
reduced Gram matrix corresponding to the part of the state where bit xi is queried (see,
e.g., [9] for details). Let k = W [M t] and note that by positivity, we have tr[|χS〉〈χS |M t] = 0
if and only if tr[|χS〉〈χS |M t

i ] = 0 for all i. Therefore, we also have W [M t
i ] ≤ k for any i.

After the query, the Gram matrix of the algorithm will be M t+1 =
∑
iM

t
i ◦Di. Let us

observe that for any matrix A, we have A ◦Di = UiAU
†
i where Ui = U†i is the unitary matrix

Ui =
∑
x(−1)xi |x〉〈x|. In particular, |χS〉〈χS | ◦Di = |χS′〉〈χS′ | where S′ = S ∪ {i} if i 6∈ S

and S′ = S \ {i} if i ∈ S.
For all S ∈ {0, 1}n, we get:

tr
[
|χS〉〈χS |(M t

i ◦Di)
]

= tr
[
(|χS〉〈χS | ◦Di)M t

i

]
=

∑
T :|T |≤k

tr
[
(|χS〉〈χS | ◦Di)|χT 〉〈χT |M t

i

]
.

This quantity is null for all S such that |S| > k + 1, therefore the progress function can
increase by at most one per query. J

We have defined the extended polynomial method with the Fourier basis, but one might
wonder if choosing another basis could provide better bounds. It turns out that this is not
the case.

I Claim 12. Let {Πk : 0 ≤ k ≤ K} be a set of orthogonal projectors such that
1.

∑
k Πk = IC2n ,

2. tr(Π0J) = 2n,
3. ∀i ∈ {1, . . . , n}, ∀l, k such that |l − k| > 1, tr[(Πl ◦Di)Πk] = 0.
Then, for any Gram matrix M , we have Q0(M) ≥ xpoly0(M) ≥ maxk {k : tr(ΠkM) 6= 0}.

Therefore, while any set of projectors provides a lower bound on quantum query complexity,
the best bound is achieved by the extended polynomial method, which corresponds to the
special case K = n and Πk =

∑
S:|S|=k |χS〉〈χS |.

4 Relation between the polynomial and the extended polynomial
methods

In this section, we compare the strength of the polynomial and the extended polynomial
methods. Let f be a Boolean function and Φ the Gram matrix corresponding to computing
f in the phase. By definition of the extended polynomial method, we have that xpoly0(Φ) =
deg(f). However the equality is lost in the approximate case:

I Theorem 13. Let f be a Boolean function and Φ be the Gram matrix corresponding to
computing f in the phase. For any ε ≥ 0, we have xpolyε(Φ) ≥ d̃egε/2(f).



L. Magnin and J. Roland 441

Proof (sketch). Let N be a Gram matrix achieving the minimum in the definition of
xpolyε(Φ), that is, an optimal final Gram matrix of an algorithm for Φ. We first express
this Gram matrix as N =

∑
x,y〈ψx|ψy〉|y〉〈x|, where |ψx〉 =

∑
i pi(x)|i〉 is the final state

of the algorithm on input x expressed in the computational basis. By definition of the
extended polynomial bound, we then have xpolyε(Φ) = maxi(deg(pi)), where the maximum
is over polynomials satisfying the normalization constraint

∑
i pi(x)2 = 1 and the correctness

constraint (−1)f(x)<(p0(x)) ≥
√

1− ε, for all inputs x. The polynomial p0 then witnesses
that d̃egε/2(f) ≤ deg(p0) ≤ xpoly0(N). J

5 Relation with the multiplicative adversary method

In [9], it was shown that in the limit c→ 1, the multiplicative adversary bound MADVc
0(M)

is at least as strong as the additive adversary bound ADV±(M). Here, we show that the
extended polynomial bound can be obtained by taking the limit c→∞.

I Theorem 14. Let M be a Gram matrix, ε ≥ 0, T = xpolyε(M) and Π≥T =
∑

S:|S|≥T
|χS〉〈χS |.

Moreover, let δ > 0 be such that tr[Π≥TN ] ≥ δ for any Gram matrix N such that FH(N,M) ≥√
1− ε. Then, for any c > 1, we have

xpolyε(M)− n− log δ
log c ≤ MADVc

ε(M) ≤ xpolyε(M) + n

log c .

In particular, in the limit c→∞, we have limc→∞MADVc
ε(M) = xpolyε(M).

I Remark. Note that such a value of δ always exists. Assume by contradiction that
tr[Π≥TN ] = 0, then xpoly0(N) ≤ T − 1, however N is an ε-approximation of M that
has a polynomial bound of T .

The general idea of the proof is to consider the multiplicative adversary matrix

W = 1
2n
∑
S

c|S||χS〉〈χS |

as a multiplicative adversary matrix. The lower bound then follows from the fact that in
the limit c→∞, the value of the progress function W [M ] = tr[WM ] will be dominated by
the term in c|S| for the set S with the largest size |S| = k such that 〈χS |M |χS〉 6= 0, which
therefore corresponds to the degree of the matrix M . As for the upper bound, we show that
the matrix W becomes an optimal multiplicative adversary matrix in the limit c→∞. This
can be shown by observing that one oracle call can only map a Fourier basis state |χS〉 to
another Fourier basis state |χS′〉 with |S′| = |S| ± 1 which implies bounds on the elements of
any possible multiplicative adversary matrix written in the Fourier basis.

Proof. We prove it for the zero-error case, the general case follows immediately.
Consider the matrix W = 1

2n

∑
S c
|S||χS〉〈χS |. It is a valid adversary matrix for

MADVc
0(M) since tr[WJ] = 1 and W ◦Di � cW, ∀i ∈ {1, . . . , n}. This inequality follows

fromW ◦Di = 1
2n

(∑
S:i∈S c

|S|−1|χS〉〈χS |+
∑
S:i 6∈S c

|S|+1|χS〉〈χS |
)
, see proof of Theorem 11.

Let W ′ be an optimal multiplicative adversary matrix for MADVc
0(M). Let us show that

tr[WM ] ≤ tr[W ′M ] ≤ 2n tr[WM ].
The first inequality is a direct consequence of the fact that W is an adversary matrix for

MADVc
0(M) and the definition of the multiplicative adversary bound.

To prove the second inequality, let us first show by induction on k = |S| that 〈χS |W ′|χS〉 ≤
1

2n c
|S| for any set S. For k = 0, the condition tr[W ′J] = 1 is equivalent to 〈χ∅|W ′|χ∅〉 = 1

2n .

STACS’13



442 Explicit relation between all lower bound techniques for quantum query complexity

Let us fix 0 ≤ k ≤ n, and assume that ∀S such that |S| = k, we have 〈χS |W ′|χS〉 ≤ 1
2n c

k.
Let S′ be a set of size k + 1 and decompose it into S′ = S ∪ {i}. Observe first that
〈χS |W ′ ◦Di|χS〉 = 〈χS |UiW ′Ui|χS〉 = 〈χS′ |W ′|χS′〉 where Ui =

∑
x(−1)xi |x〉〈x| as defined

in the proof of Theorem 11. Hence by sandwiching W ′ ◦ Di � cW ′ with |χS〉, we get
〈χS′ |W ′|χS′〉 ≤ c〈χS |W ′|χS〉 ≤ 1

2n c
|S|+1.

We can now proceed with the rest of the proof:

tr[W ′M ] =
∑
S

〈χS |W ′M |χS〉 =
∑
S,S′

〈χS |W ′|χS′〉〈χS′ |M |χS〉

≤
∑
S,S′

|〈χS |W ′|χS′〉| |〈χS′ |M |χS〉| .

We now use the property that for any positive semidefinite matrix A, |Aij | ≤
√
AiiAjj ,

tr[W ′M ] ≤
(∑

S

√
〈χS |W ′|χS〉〈χS |M |χS〉

)2

.

Using the Cauchy-Schwarz inequality, we get:

tr[W ′M ] ≤ 2n
∑
S

〈χS |W ′|χS〉〈χS |M |χS〉 ≤
∑
S

c|S|〈χS |M |χS〉 = 2n tr[WM ].

We are now ready to conclude the proof. From tr[WM ] ≤ tr[W ′M ] ≤ 2n tr[WM ], we
have by definition of MADVc

0(M)

log tr[WM ]
log c ≤ MADVc

0(M) ≤ n+ log tr[WM ]
log c .

For T = xpolyε(M), we find from the first inequality

MADVc
0(M) ≥

log 1
2n c

T tr[Π≥TM ]
log c = T + log(tr[Π≥TM ])− n

log c .

Similarly, from the second inequality, we have

MADVc
0(M) ≤

log
∑
S c
|S|〈χS |M |χS〉
log c ≤ T +

log
∑
S〈χS |M |χS〉
log c = T + n

log c ,

where we used the facts that 〈χS |M |χS〉 = 0 whenever |S| > T , and
∑
S〈χS |M |χS〉 =

tr[M ] = 2n. J

We note that MADVc
ε(M) approaches its limiting value xpolyε(M) if c is large enough

compared to 2n/δ. In general, we cannot give a lower bound on δ in order to determine how
large c should be. However, for the special case of Boolean functions, and comparing to the
standard polynomial method, i.e., the approximate degree d̃egε(f), instead of xpolyε(M),
we can show that MADVc

ε(Φ) becomes at least as strong as d̃egε(f) as soon as c is large
compared to 2n/ε.

I Lemma 15. Let f be a Boolean function with associated phase matrix Φ. Then, for any
c > 1, we have MADVc

ε(Φ) ≥ d̃egε(f)− 2 · n−log ε
log c .

Proof. Just as in the proof of Theorem 13, we express the Gram matrix achieving the
minimum in the definition of MADVc

ε(Φ) asN =
∑
x,y〈ψx|ψy〉|y〉〈x|, where |ψx〉 =

∑
i pi(x)|i〉

is the final state of the algorithm on input x expressed in the computational basis. After



L. Magnin and J. Roland 443

relaxing the normalization condition on the states |ψx〉, we obtain that MADVc
ε(Φ) ≥

1
log c log 1

2n

∑
S c
|S| |p̂(S)|2, where p is the minimum taken over all polynomials q : {0, 1}n 7→ R

satisfying
√

1− ε ≤ (−1)f(x)q(x) ≤ 1 for any x ∈ {0, 1}n.
By definition of MADVc

ε(Φ), we can then show that similarly to the lower bound in
Theorem 14, we have MADVc

ε(Φ) ≥ T − n−log δ
log c , where in this case T = d̃egε(f) and

δ =
∑
S:|S|≥T |p̂(S)|2. It can then be shown that δ must be at least ε2

2n , otherwise truncating
the high Fourier coefficients from p would yield a polynomial witnessing that d̃egε(f) < T , a
contradiction. J

Note that a similar argument cannot be used for the extended polynomial method because
truncating the large Fourier coefficients from a Gram matrix N might yield a matrix that is
not normalized (i.e., violating the constraint N ◦ I = I).

6 Discussion and open questions

Strong connections have been known for quite some time between the approximate degree of
a function and its query complexity: they are polynomially related for all (total) functions
for classical complexity [24] as well as for quantum complexity [12]. The latter is actually
often equal to the approximate degree (at least up to a constant factor) for many functions,
including all symmetric functions and random functions. With a large number of tight
bounds proved using the polynomial method [12, 1, 3, 8] to cite only a few, this method might
even seem ubiquitous. However, it is not always tight as in some rare cases the adversary
method is known to yield better bounds. By clarifying the relation between the polynomial
and adversary bounds, this work provides some new insight on why this can be the case.

First, we showed that the polynomial method is a relaxation of a more general method
which we called the extended polynomial method. This has a particularly nice interpretation
when one wants to compute the value of a function in a register, i.e., the goal is to prepare
the state |f(x)〉.3 When error ε is allowed, measuring this register should yield outcome f(x)
with probability at least 1− ε, that is, the probability p(x) of obtaining outcome 1 should be
close to 1 when f(x) = 1 and close to 0 when f(x) = 0. While the polynomial method only
considers the degree of the probability p(x), the extended polynomial method considers the
degree of all the amplitudes in the final state of the algorithm, including the erroneous part.
In terms of Gram matrices this corresponds to relaxing the condition N ◦ I = I to N ◦ I � I.4

In general it is not known how large the gap between the polynomial and the extended
polynomial method can be. It appears to be larger by at least a factor two for some functions.
Indeed, Ambainis et al. improved the lower bound for random Boolean functions from
n/4 − o(n) using the polynomial method, to n/2 − o(n) (which is tight) by bounding the
degree of all amplitudes in the final state of the algorithm [6] (their argument can be seen as
a special case of the extended polynomial method).

3 This is the standard problem studied in most articles on quantum query complexity, even though some
recent works including this one have considered the problem of computing the function in the phase.
Recall that Claim 4 implies that both problems are equivalent.

4 Note that with the relaxed condition N ◦ I � I, the matrix N does not have to be a normalized Gram
matrix anymore, in which case the Hadamard product fidelity is not defined. However, one can use
another output condition, for example γ2(N −M) ≤

√
2ε, where γ2 denotes the Hadamard product

trace norm. These output conditions are related up to a constant [22, 23], so that it only affects the
lower bound by at most a constant factor for bounded-error query complexity.

STACS’13



444 Explicit relation between all lower bound techniques for quantum query complexity

Secondly this provides a partial answer on how the multiplicative adversary method
MADVc varies with c. Indeed, while it was already known that MADVc→1

ε (f) ≥ ADV±ε (f),
we have proved that MADVc→∞

ε (f) ≥ d̃egε(f), and in particular, MADVc→∞
0 (f) = deg(f)

in the zero-error case. This implies that the gap between MADV and MADVc→∞ can be at
least polynomially large by considering the Ambainis function [4], for which the polynomial
method fails to give a tight bound, contrary to the adversary method. This gap might be
explained by the fact that in the limit c→∞, the eigenbasis of the best adversary matrix is
restricted to be the Fourier basis, while for smaller values, other bases can provide better
bounds.

To summarize our current knowledge, the situation is the following. On the one hand,
when c tends to one, the multiplicative adversary method is tight for bounded-error ([9]) but
not for zero-error (e.g., for the OR function, there is a quadratic gap). On the other hand,
when c tends to infinity, the multiplicative method seems better for zero-error as it proves the
Ω(n) lower bound for OR, but it is not always tight (Ambainis function). As for low success
probability, it seems that taking c bounded away from one provides an advantage, as shown
in particular by the strong direct product theorems proved using the multiplicative [28, 23]
and polynomial methods [20, 27].

This leaves open a few interesting questions about the behavior of the multiplicative
adversary method. Can we say more about the dependence of MADVc on c? Can we improve
the relation MADVc→1

ε (M) ≥ ADV±ε (M) to an equality in general? Can we characterize the
set of functions for which the (extended or not) polynomial method does not provide a tight
bound? Finally, does the multiplicative adversary method characterize the quantum query
complexity, i.e., is it tight for any error?

Acknowledgements Most of this work was done at NEC Laboratories America. The authors
thank M. Rötteler, D. Gavinsky, and T. Lee for stimulating discussions; and R. de Wolf and
R. Špalek for interesting comments. They also thank R. Špalek for proposing the alternative
proof of Lemma 15 using dual polynomials.

References
1 S. Aaronson and Y. Shi. Quantum lower bounds for the collision and the element distinct-

ness problems. J. ACM, 51(4):595–605, 2004.
2 A. Ambainis. Quantum lower bounds by quantum arguments. J. Comput. Sys. Sci.,

64(4):750–767, 2002.
3 A. Ambainis. Polynomial degree and lower bounds in quantum complexity: Collision and

element distinctness with small range. Theor. Comput., 1:37–46, 2005.
4 A. Ambainis. Polynomial degree vs. quantum query complexity. J. Comput. Sys. Sci.,

72(2):220–238, 2006.
5 A. Ambainis. A new quantum lower bound method, with an application to strong direct

product theorem for quantum search. Theor. Comput., 6:1–25, 2010.
6 A. Ambainis, A. Bačkurs, J. Smotrovs, and R. de Wolf. Optimal quantum query bounds

for almost all Boolean functions. In Proc. STACS’13, 2013.
7 A. Ambainis, A. M. Childs, B. W. Reichardt, R. Špalek, and S. Zhang. Any AND-OR

formula of size N can be evaluated in time N1/2+o(1) on a quantum computer. SIAM J.
Comput., 39(6):2513–2530, 2010.

8 A. Ambainis and R. de Wolf. How low can approximate degree and quantum query com-
plexity be for total boolean functions? arXiv:1206.0717, 2012.

9 A. Ambainis, L. Magnin, M. Roetteler, and J. Roland. Symmetry-assisted adversaries for
quantum state generation. In Proc. CCC’11, pages 167–177, 2011.



L. Magnin and J. Roland 445

10 A. Ambainis, R. Špalek, and R. de Wolf. A new quantum lower bound method, with
applications to direct product theorems and time-space tradeoffs. In Proc. STOC’06, pages
618–633, 2006.

11 H. Barnum and M. Saks. A lower bound on the quantum query complexity of read-once
functions. J. Comput. Sys. Sci., 69(2):244–258, 2004.

12 R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds by
polynomials. J. ACM, 48:778–797, 2001.

13 A. Belovs. Adversary lower bound for element distinctness. arXiv:1204.5074, 2012.
14 A. Belovs and R. Špalek. Adversary lower bound for the k-sum problem. In Proc. ITCS’13,

2013.
15 C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses of

quantum computing. SIAM J. Comput., 26(5):1510–1523, 1997.
16 H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: A survey.

Theor. Comput. Sci., 288(1):21–43, 2002.
17 E. Farhi, J. Goldstone, and S. Gutmann. A quantum algorithm for the Hamiltonian NAND

tree. Theor. Comput., 4:169–190, 2008.
18 P. Høyer, T. Lee, and R. Špalek. Negative weights make adversaries stronger. In Proc.

STOC’07, pages 526–535, 2007.
19 P. Høyer, J. Neerbek, and Y. Shi. Quantum complexities of ordered searching, sorting, and

element distinctness. Algorithmica, 34(4):429–448, 2008.
20 H. Klauck, R. Špalek, and R. de Wolf. Quantum and classical strong direct product theor-

ems and optimal time-space tradeoffs. SIAM J. Comput., 36(5):1472–1493, 2007.
21 S. Laplante and F. Magniez. Lower bounds for randomized and quantum query complexity

using Kolmogorov arguments. SIAM J. Comput., 38(1):46–62, 2008.
22 T. Lee, R. Mittal, B. W. Reichardt, R. Špalek, and M. Szegedy. Quantum query complexity

of state conversion. In Proc. FOCS’11, pages 344–353, 2011.
23 T. Lee and J. Roland. A strong direct product theorem for quantum query complexity. In

Proc. CCC’12, pages 236 – 246, 2012.
24 N. Nisan and M. Szegedy. On the degree of Boolean functions as real polynomials. Comput.

Complex., 4:301–313, 1994.
25 B. W. Reichardt. Reflections for quantum query algorithms. In Proc. SODA’11, pages

560–569, 2011.
26 B. W. Reichardt and R. Špalek. Span-program-based quantum algorithm for evaluating

formulas. In Proc. STOC’08, pages 103–112, 2008.
27 A. A. Sherstov. Strong direct product theorems for quantum communication and query

complexity. In Proc. STOC’11, pages 41–50, 2011.
28 R. Špalek. The multiplicative quantum adversary. In Proc. CCC’08, pages 237–248, 2008.
29 R. Špalek and M. Szegedy. All quantum adversary methods are equivalent. Theor. Comput.,

2:1–18, 2006.
30 S. Zhang. On the power of Ambainis lower bounds. Theor. Comput. Sci., 339(2):241–256,

2005.

STACS’13


	Introduction
	Preliminaries
	Gram matrices and fidelity
	Quantum query complexity
	The polynomial method
	The multiplicative adversary method

	The extended polynomial method
	Relation between the polynomial and the extended polynomial methods
	Relation with the multiplicative adversary method
	Discussion and open questions

