
Optimal quantum query bounds for almost all
Boolean functions∗

Andris Ambainis1, Arturs Bačkurs2, Juris Smotrovs1, and Ronald
de Wolf3

1 University of Latvia
Riga, Latvia
{ambainis,Juris.Smotrovs}@lu.lv

2 MIT, Cambridge, MA
(work done while at University of Latvia)
abackurs@gmail.com

3 CWI and University of Amsterdam
Amsterdam, The Netherlands
rdewolf@cwi.nl

Abstract
We show that almost all n-bit Boolean functions have bounded-error quantum query complexity at
least n/2, up to lower-order terms. This improves over an earlier n/4 lower bound of Ambainis [1],
and shows that van Dam’s oracle interrogation [9] is essentially optimal for almost all functions.
Our proof uses the fact that the acceptance probability of a T -query algorithm can be written
as the sum of squares of degree-T polynomials.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases quantum computing, query complexity, lower bounds,
polynomial method

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.446

1 Introduction

Most known quantum algorithms have been developed in the setting of quantum query
complexity, which is the quantum generalization of the model of decision tree complexity. Here
an algorithm is charged for each “query” to the input bits, while intermediate computation is
free (see [8] for more details about this model). For certain specific functions one can obtain
large quantum-speedups in this model. For example, Grover’s algorithm [14] computes the
n-bit OR function with O(

√
n) queries, while any classical algorithm needs Ω(n) queries.

Many more such polynomial speed-ups are known, see for example [3, 18, 11, 6]. If one
considers partial functions there are even exponential speed-ups, for example [10, 20, 19, 5].
Substantial quantum speed-ups are quite rare, and exploit very specific structure in problems
that makes those problems amenable to quantum speed-ups.

On the other hand, one can also obtain a smaller speed-up that holds for almost all
Boolean functions. Classically, almost all Boolean functions f : {0, 1}n → {0, 1} have

∗ AA, AB, RdW are partially supported by the European Commission under the project QCS (Grant
No. 255961). AA and JS are partially supported by ESF project 1DP/1.1.1.2.0/09/APIA/VIAA/044.
RdW is partially supported by a Vidi grant from the Netherlands Organization for Scientific Research
(NWO).

© A. Ambainis, A. Bačkurs, J. Smotrovs, and R. de Wolf;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 446–453

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.446
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Ambainis, A. Bačkurs, J. Smotrovs, and R. de Wolf 447

bounded-error query complexity n, minus lower-order terms. This is quite intuitive: if we
have only seen 99% of the n input bits, then the restriction of a random function to the
1% remaining variables will still be roughly balanced between 0 and 1-inputs. In contrast,
van Dam [9] exhibited a beautiful quantum algorithm that recovers the complete n-bit input
x with high probability using roughly n/2 quantum queries. Briefly, his algorithm is as
follows:
1. With T = n/2 + O(

√
n log(1/ε)) and B =

∑T
i=0
(
n
i

)
being the number of y ∈ {0, 1}n

with Hamming weight |y| ≤ T , set up the n-qubit superposition 1√
B

∑
y∈{0,1}n:|y|≤T |y〉.

2. Apply the unitary |y〉 7→ (−1)x·y|y〉. We can implement this using T queries to the
input x, for all basis states |y〉 with |y| ≤ T .

3. Apply a Hadamard transform to all qubits and measure.

To see correctness of this algorithm, note that the fraction of n-bit strings y of Hamming
weight larger than T is � ε. Hence the state obtained in step 2 is very close to the state

1√
2n

∑
y∈{0,1}n(−1)x·y|y〉, whose Hadamard transform is exactly |x〉.

Since obtaining x suffices to compute f(x) for any f of our choice, van Dam’s algorithm
implies that the ε-error quantum query complexity of f is

Qε(f) ≤ n/2 +O(
√
n log(1/ε)) for all Boolean functions.

It is known that this upper bound is essentially tight for some Boolean functions. For
example, Qε(f) = dn/2e for the n-bit Parity function [4, 12]. Our goal in this paper is to
show that it is tight for almost all Boolean functions, i.e., that Qε(f) is essentially lower
bounded by n/2 for almost all f (and fixed ε). How can we prove such a lower bound?
Two general methods are known for proving quantum query lower bounds: the polynomial
method [4] and the adversary method [2, 15]. As we explain below, in their standard form
neither method is strong enough to prove our desired n/2 lower bound.

First, the adversary method in its strongest incarnation [15, Theorem 2] has the form

Qε(f) ≥ 1
2(1−

√
ε(1− ε))ADV±(f),

where the “negative-weights adversary bound” ADV±(f) is a quantity that is at most n.
Accordingly, for constant error probability ε the adversary method can only prove lower
bounds of the form cn for some c < 1/2.

Second, the polynomial method uses the fact (first proved in [13, 4]) that the acceptance
probability of a T -query algorithm can be written as a degree-2T n-variate multilinear real
polynomial p(x) of the input. If the algorithm computes f with error probability ≤ ε, then
p(x) will approximate f(x): p(x) ∈ [0, ε] for every x ∈ f−1(0) and p(x) ∈ [1− ε, 1] for every
x ∈ f−1(1). Accordingly, a lower bound of d on the ε-approximate polynomial degree degε(f)
implies a lower bound of d/2 on the ε-error quantum query complexity of f . This is how
Ambainis [1] proved the current best lower bound of roughly n/4 that holds for almost all n-
bit Boolean functions: he showed that almost all f satisfy degε(f) ≥ (1/2− o(1))n. However,
O’Donnell and Servedio [17] proved a nearly matching upper bound: degε(f) ≤ (1/2 + o(1))n
for almost all f . Hence Ambainis’s lower bound approach via approximate degree cannot be
improved to obtain our desired lower bound of n/2 on Qε(f).1 This suggests that also the
polynomial method is unable to obtain the conjectured factor 1/2 in the lower bound.

1 In fact, the unbounded-error quantum query complexity of almost all Boolean functions is only n/4 up
to lower-order terms. This follows from the degree upper bound of [17] combined with [7, Theorem 1]
and the fact that d-bit Parity can be computed with dd/2e quantum queries.

STACS’13

448 Optimal quantum query bounds for almost all Boolean functions

However, looking under the hood of the polynomial method, it actually gives a bit more
information about the acceptance probability: p(x) is not an arbitrary degree-2T polynomial,
but the sum of squares of degree-T polynomials. Using this extra information, we prove in
this paper that indeed Qε(f) ≥ n/2 up to lower-order terms for almost all f .2

Our main technical result will be a claim about certain random matrices (Claim 1 below),
which may have further applications. It says the following. Let B = {x ∈ {0, 1}n : |x| ≤ T}
be the set of strings of weight at most T , and B = |B| its size. Suppose F is a 2n × 2n
diagonal matrix with randomly chosen signs on its diagonal, and F̂ = HFH is F conjugated
with the unitary Hadamard transform. Then the principal minor of F̂ restricted to entries
in B × B has (with probability 1− o(1)) operator norm O(

√
nB1+o(1)/2n). In particular, if

T ≤ (1/2− ε)n for any fixed positive ε then with high probability this operator norm is o(1).

2 Proof

Suppose we have a quantum algorithm that uses T queries to its n-bit input x. Then by [4,
Lemma 4.1], its final state can be written as a function of the input as∑

z

αz(x)|z〉,

where z ranges over the computational basis states of the algorithm’s space, and the amplitudes
αz(x) are complex-valued multilinear n-variate polynomials of degree ≤ T . We assume
w.l.o.g. that the algorithm determines its Boolean output by measuring the first qubit of
the final state. Then the acceptance probability (as a function of input x) is the following
polynomial of degree ≤ 2T :

p(x) =
∑
z:z1=1

|αz(x)|2.

Let αz ∈ C2n denote the vector with entries αz(x). Define the following 2n × 2n matrix P :

P =
∑
z:z1=1

αzα
∗
z.

The diagonal entry Pxx of this matrix is p(x). Since P is positive semidefinite, we have3

‖P‖1 = Tr(P) =
∑

x∈{0,1}n

p(x).

With H denoting the n-qubit Hadamard transform, Hαz is proportional to the Fourier
transform α̂z, which has support only on the B =

∑T
i=0
(
n
i

)
monomials of degree ≤ T . Hence

the matrix HPH has support only on a B ×B submatrix.
It will be convenient to use +1 and −1 as the range of a Boolean function, rather than 0

and 1. Consider Boolean function f : {0, 1}n → {±1}. For s ∈ {0, 1}n, the corresponding

2 Magnin and Roland [16] independently found similar ways to strengthen the standard polynomial
method; however they do not apply their tools to the analysis of random Boolean functions.

3 We use the following matrix-analytic notation. For m ×m matrices A and A′, define inner product
〈A, A′〉 = Tr(A∗A′) =

∑
i,j

A∗ijA′ij . Note that this inner product is basis-independent: for every unitary
U we have 〈UAU∗, UA′U∗〉 = 〈A, A′〉. Let ‖A‖p denote the (unitarily invariant) Schatten p-norm of A,
which is the p-norm of the m-dimensional vector of singular values of A. In particular, ‖A‖1 is the sum
of the singular values of A, and ‖A‖∞ is its largest singular value, which is the operator norm of A. It
is easy to see that ‖A‖2

2 = Tr(A∗A) =
∑

i,j
|Aij |2, and 〈A, B〉 ≤ ‖A‖1‖B‖∞.

A. Ambainis, A. Bačkurs, J. Smotrovs, and R. de Wolf 449

Fourier coefficient of f is defined as f̂(s) = 1
2n

∑
x(−1)s·xf(x). Let F be the 2n×2n diagonal

matrix with diagonal entries f(x). Define F̂ = HFH. Then for s, t ∈ {0, 1}n, we have

F̂s,t = 〈s|HFH|t〉 = 1
2n
∑
x,y

(−1)s·x(−1)t·yFxy = 1
2n
∑
x

(−1)(s⊕t)·xf(x) = f̂(s⊕ t).

Let F̂T denote F̂ after zeroing out all s, t-entries where |s| > T and/or |t| > T . Note
that HPH doesn’t have support on the entries that are zeroed out, hence 〈HPH, F̂ 〉 =
〈HPH, F̂T 〉.

Suppose our T -query quantum algorithm computes f with worst-case error probability at
most some fixed constant ≤ ε. Output 1 means the algorithm thinks f(x) = 1, and output 0
means it thinks f(x) = −1. Then for every x ∈ {0, 1}n, 2p(x) − 1 differs from f(x) by at
most 2ε. Hence:

(1− 2ε)2n ≤ 〈2P − I, F 〉
= 2〈P, F 〉 −

∑
x

f(x)

= 2〈HPH, F̂ 〉 −
∑
x

f(x)

= 2〈HPH, F̂T 〉 −
∑
x

f(x)

≤ 2‖P‖1

∥∥∥F̂T∥∥∥
∞
−
∑
x

f(x)

= 2
∥∥∥F̂T∥∥∥

∞

∑
x

p(x)−
∑
x

f(x).

We can assume w.l.o.g. that
∑
x f(x) ≥ 0 (if this doesn’t hold for f then just take its negation,

which has the same query complexity as f). Since
∑
x p(x) ≤ 2n, we get∥∥∥F̂T∥∥∥

∞
≥ 1/2− ε. (1)

The technically hard part is to upper bound
∥∥∥F̂T∥∥∥

∞
for most f . So consider the case where

f : {0, 1}n → {±1} is a uniformly random function, meaning that the 2n values f(x) are
independent uniformly random signs. In the next subsection we show

I Claim 1. With probability 1−o(1) (over the choice of f) we have
∥∥∥F̂T∥∥∥

∞
= O

(√
nB1+o(1)

2n

)
.

Combining this with the lower bound (1), we get that B ≥ 2n−o(n). On the other hand,
a well-known upper bound on the sum of binomial coefficients is B =

∑T
i=0
(
n
i

)
≤ 2nH(T/n),

where H(q) = −q log q − (1 − q) log(1 − q) denotes the binary entropy function. Hence,
2n−o(n) ≤ 2nH(T/n) which implies T ≥ n/2− o(n). This shows that Qε(f) ≥ n/2− o(n) for
almost all f (and fixed constant ε).

2.1 Proof of Claim 1
Below, unless mentioned otherwise, probabilities and expectations will be taken over the
random choice of f . We choose T = n/2− o(n) sufficiently small that B =

∑T
i=0
(
n
i

)
= o(2n),

i.e., the o(n) term in T is taken to be ω(
√
n).

Let λi be the i-th eigenvalue of F̂T . Since F̂T is symmetric we have∥∥∥F̂T∥∥∥
∞

= max
i
|λi| = 2k

√
max
i
λ2k
i ≤ 2k

√∑
i

λ2k
i = 2k

√
Tr(F̂ 2k

T).

STACS’13

450 Optimal quantum query bounds for almost all Boolean functions

We are going to show that

E
[
Tr(F̂ 2k

T)
]

= O
(
B (B/2n)k

)
(2)

for every constant k (with a big-O constant depending on k). This means that, using
Markov’s inequality,

Pr
[∥∥∥F̂T∥∥∥

∞
> C

√
nB1+1/k/2n

]
≤ Pr

[
2k

√
Tr(F̂ 2k

T) > C
√
nB1+1/k/2n

]
= Pr

[
Tr(F̂ 2k

T) > C2knkBk+1/2nk
]

≤
E
[
Tr(F̂ 2k

T)
]

C2knkBk+1/2nk = o(1).

Since this is true for any constant k, Claim 1 follows.
So now our goal is to prove (2). Below we let each of s1, . . . , s2k range over the B n-bit

strings of weight ≤ T , and each of x1, . . . , x2k range over {0, 1}n. For simplicity we abbreviate
~s = s1, s2, . . . , s2k and ~x = x1, x2, . . . , x2k. Writing out the 2k-fold matrix product, we have

E
[
Tr(F̂ 2k

T)
]

= E

[∑
~s

f̂(s1 ⊕ s2)f̂(s2 ⊕ s3) · · · f̂(s2k ⊕ s1)
]

(3)

= 1
22nk

∑
~s

∑
~x

E
[
(−1)(s1⊕s2)·x1f(x1) · · · (−1)(s2k⊕s1)·x2kf(x2k)

]
(4)

= 1
22nk

∑
~s

∑
~x

(−1)(s1⊕s2)·x1+···+(s2k⊕s1)·x2k E [f(x1) · · · f(x2k)] . (5)

For a particular y ∈ {0, 1}n, there are as many Boolean functions having f(y) = 1 as having
f(y) = −1, independently of what is known about values of f on other inputs. Thus, if any
y occurs an odd number of times in ~x = (x1, . . . , x2k), then E[f(x1) · · · f(x2k)] = 0. So only
those summands are left where all multiplicities of distinct values among x1, . . . , x2k are even.
We call such ~x even. We have

E
[
Tr(F̂ 2k

T)
]

= 1
22nk

∑
~s

∑
~x even

(−1)
∑2k

i=1
(si⊕si+1)·xi

= 1
22nk

∑
r

∑
partition of

{1,...,2k} into even
non-empty I1,...,Ir

∑
~s

∑
x(1),...,x(r)

different

(−1)
∑r

j=1

(⊕
i∈Ij

(si⊕si+1)
)
·x(j)

(6)

where s2k+1 = s1 and the second summation is over all partitions of {1, . . . , 2k} into even-
sized non-empty parts I1, . . . , Ir with the implied condition that xi = xj iff i and j belong to
the same part. Since the number of such partitions (I1, I2, . . . , Ir) depends only on k (which
is a constant), it suffices to prove that each term in the sum is of the order O(B(B/2n)k).
We will do this by proving
I Claim 2. For any fixed m and any partition I1, . . . , Ir of {1, . . . ,m}:∑

~s

∑
x(1),...,x(r)

different

(−1)
∑r

j=1
tj(~s)·x(j)

= O(Bm−r+1 · 2nr) (7)

where tj(~s) =
⊕

i∈Ij
(si ⊕ si+1), sm+1 = s1, and the big-O constant depends on m and the

partition.

A. Ambainis, A. Bačkurs, J. Smotrovs, and R. de Wolf 451

We first show that Claim 2 implies Claim 1. In our case, m = 2k. Since B = o(2n), the
upper bound B2k−r+1 · 2nr increases when r increases. Since each partition of {1, . . . , 2k}
into even-sized non-empty parts I1, . . . , Ir must contain at least 2 elements in each Ij , we
must have r ≤ (2k)/2 = k and every term of the sum (6) is upper bounded by

1
22nkO

(
B2k−k+1 · 2nk

)
= O

(
B (B/2n)k

)
.

It remains to prove Claim 2, which we do by induction on r. If r = 1 then t1(~s) =
⊕mi=1(si ⊕ si+1) includes each si exactly twice and hence sums to the all-0 string, hence∑

~s

∑
x∈{0,1}n

(−1)t1(~s)·x =
∑
~s

∑
x∈{0,1}n

(−1)0·x = Bm · 2n.

For the inductive step, suppose Claim 2 is true for r− 1. Rewrite the left-hand side of (7) as∑
~s

∑
x(1),...,x(r)

different

(−1)
∑r

j=1
tj(~s)·x(j)

=
∑
~s

∑
x(1)

∑
x(2),...,x(r)

different

(−1)
∑r

j=1
tj(~s)·x(j)

−
∑
~s

r∑
a=2

∑
x(2),...,x(r)

different, x(1)=x(a)

(−1)
∑r

j=1
tj(~s)·x(j)

.

(8)

Let us estimate both sums of (8). Since
∑
x(1)(−1)t1(~s)x(1) equals 2n if t1(~s) = 0n, and that

sum equals 0 otherwise, the first sum of (8) equals

2n
∑

~s:t1(~s)=0

∑
x(2),...,x(r)

different

(−1)
∑r

j=2
tj(~s)·x(j)

. (9)

We now transform this sum into the form of the left-hand side of (7), with both m and r
smaller by 1 compared to their current values. After that, we will apply the induction
hypothesis.

Let ` be such that ` ∈ I1, `− 1 /∈ I1. Then t1(~s) contains s` with coefficient 1 (because
t1(~s) includes s` ⊕ s`+1 but not s`−1 ⊕ s`). We can use the condition t1(~s) = 0 to express s`
in terms of s1, . . . , s`−1 and s`+1, . . . , sm as follows:

s` = s`+1 ⊕
⊕

i∈I1:i 6=`
(si ⊕ si+1). (10)

Let b be such that `− 1 ∈ Ib. Then tb(~s) contains s`−1 ⊕ s` and we can substitute (10) into
tb(~s), obtaining

tb(~s) = s`−1 ⊕ s`+1 ⊕
⊕

i∈I1:i 6=`
(si ⊕ si+1)⊕

⊕
i∈Ib:i6=`−1

(si ⊕ si+1).

We can now remove the variable s` (because it was only contained in s`−1⊕ s` and s`⊕ s`+1)
and redefine Ib to be I1 ∪ Ib \ {`}. Then we get that (9) is equal to

2n
∑

s1,...,s`−1
s`+1,...,sm

∑
x(2),...,x(r)

different

(−1)
∑r

j=2
tj(~s)·x(j)

= 2n ·O
(
Bm−r+1 · 2n(r−1)

)
= O

(
Bm−r+1 · 2nr

)

with the estimate following from the induction hypothesis (with both m and r being smaller
by 1).

STACS’13

452 Optimal quantum query bounds for almost all Boolean functions

As for the second sum of (8), it is equal to

r∑
a=2

∑
~s

∑
x(2),...,x(r)

different

(−1)
∑r

j=2
t

(a)
j

(~s)·x(j)

= O
(
Bm−r+2 · 2n(r−1)

)

where t(a)
j (~s) = tj(~s) except for t(a)

a (~s) = ta(~s)⊕ t1(~s) (thus merging the partition parts I1

and Ia). We have eliminated x(1) and apply the induction hypothesis (with r being smaller
by 1 and m remaining the same). The outer sum over a introduces only a factor depending
on r ≤ m.

Since B = o(2n) we have Bm−r+2 · 2n(r−1) = o(Bm−r+1 · 2nr). Hence the bound on the
first sum in (8) is of a larger order and we have completed the proof of Claim 2.

Acknowledgement
We thank Loïck Magnin and Jérémie Roland for sending us a copy of [16].

References
1 A. Ambainis. A note on quantum black-box complexity of almost all Boolean functions.

Information Processing Letters, 71(1):5–7, 1999. quant-ph/9811080.
2 A. Ambainis. Quantum lower bounds by quantum arguments. Journal of Computer and

System Sciences, 64(4):750–767, 2002. Earlier version in STOC’00. quant-ph/0002066.
3 A. Ambainis. Quantum walk algorithm for element distinctness. SIAM Journal on Com-

puting, 37(1):210–239, 2007. Earlier version in FOCS’04. quant-ph/0311001.
4 R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds

by polynomials. Journal of the ACM, 48(4):778–797, 2001. Earlier version in FOCS’98.
quant-ph/9802049.

5 N. de Beaudrap, R. Cleve, and J. Watrous. Sharp quantum vs. classical query complexity
separations. Algorithmica, 34(4):449–461, 2002. quant-ph/0011065.

6 A. Belovs. Span programs for functions with constant-sized 1-certificates. In Proceedings
of 43rd ACM STOC, pages 77–84, 2012. arXiv:1105.4024.

7 H. Buhrman, N. Vereshchagin, and R. de Wolf. On computation and communication with
small bias. In Proceedings of 22nd IEEE Conference on Computational Complexity, pages
24–32, 2007.

8 H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: A survey.
Theoretical Computer Science, 288(1):21–43, 2002.

9 W. van Dam. Quantum oracle interrogation: Getting all information for almost half the
price. In Proceedings of 39th IEEE FOCS, pages 362–367, 1998. quant-ph/9805006.

10 D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation. In Pro-
ceedings of the Royal Society of London, volume A439, pages 553–558, 1992.

11 C. Dürr, M. Heiligman, P. Høyer, and M. Mhalla. Quantum query complexity of some
graph problems. SIAM Journal on Computing, 35(6):1310–1328, 2006. Earlier version in
ICALP’04.

12 E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. A limit on the speed of quantum
computation in determining parity. Physical Review Letters, 81:5442–5444, 1998. quant-
ph/9802045.

13 L. Fortnow and J. Rogers. Complexity limitations on quantum computation. Journal of
Computer and System Sciences, 59(2):240–252, 1999. Earlier version in Complexity’98. Also
cs.CC/9811023.

A. Ambainis, A. Bačkurs, J. Smotrovs, and R. de Wolf 453

14 L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of
28th ACM STOC, pages 212–219, 1996. quant-ph/9605043.

15 P. Høyer, T. Lee, and R. Špalek. Negative weights make adversaries stronger. In Proceedings
of 39th ACM STOC, pages 526–535, 2007. quant-ph/0611054.

16 L. Magnin and J. Roland. Explicit relation between all lower bound techniques for quantum
query complexity. In Proceedings of 30th International Symposium on Theoretical Aspects
of Computer Science (STACS 2013), 2013. arXiv:1209.2713.

17 R. O’Donnell and R. Servedio. Extremal properties of polynomial threshold functions.
Journal of Computer and System Sciences, 74(3):298–312, 2008. Earlier version in Com-
plexity’03.

18 M. Santha. Quantum walk based search algorithms. In Proceedings of 5th TAMC, pages
31–46, 2008. arXiv/0808.0059.

19 P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on
a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, 1997. Earlier version
in FOCS’94. quant-ph/9508027.

20 D. Simon. On the power of quantum computation. SIAM Journal on Computing,
26(5):1474–1483, 1997. Earlier version in FOCS’94.

STACS’13

	Introduction
	Proof
	Proof of Claim 1

