
Streaming Complexity of Checking
Priority Queues∗†

Nathanaël François1 and Frédéric Magniez2

1 Univ Paris Diderot, Sorbonne Paris-Cité, LIAFA, CNRS, 75205 Paris, France
nathanael.francois@liafa.univ-paris-diderot.fr

2 CNRS, LIAFA, Univ Paris Diderot, Sorbonne Paris-Cité, 75205 Paris, France
frederic.magniez@univ-paris-diderot.fr

Abstract
This work is in the line of designing efficient checkers for testing the reliability of some massive
data structures. Given a sequential access to the insert/extract operations on such a structure,
one would like to decide, a posteriori only, if it corresponds to the evolution of a reliable structure.
In a context of massive data, one would like to minimize both the amount of reliable memory of
the checker and the number of passes on the sequence of operations.

Chu, Kannan and McGregor [9] initiated the study of checking priority queues in this setting.
They showed that the use of timestamps allows to check a priority queue with a single pass and
memory space Õ(

√
N). Later, Chakrabarti, Cormode, Kondapally and McGregor [7] removed

the use of timestamps, and proved that more passes do not help.
We show that, even in the presence of timestamps, more passes do not help, solving an open

problem of [9, 7]. On the other hand, we show that a second pass, but in reverse direction,
shrinks the memory space to Õ((logN)2), extending a phenomenon the first time observed by
Magniez, Mathieu and Nayak [15] for checking well-parenthesized expressions.

1998 ACM Subject Classification F.2.0 Analysis of Algorithms and Problem Complexity

Keywords and phrases Streaming Algorithms, Communication Complexity, Priority Queue

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.454

1 Introduction

The reliability of memory is central and becomes challenging when it is massive. In the
context of program checking [4] this problem has been addressed by Blum, Evans, Gemmell,
Kannan and Naor [3]. They designed on-line checkers that use a small amount of reliable
memory to test the behavior of some data structures. Checkers are allowed to be randomized
and to err with small error probability. In that case the error probability is not over the
inputs but over the random coins of the algorithm.

Chu, Kannan and McGregor [9] revisited this problem for priority queue data structures,
where the checker only has to detect an error after processing an entire sequence of data
accesses. This can be rephrased as a one-pass streaming recognition problem. Streaming
algorithms sequentially scan the whole input piece by piece in one sequential pass, or in a
small number of passes, while using sublinear memory space. In our context, the stream is
defined by the sequence of insertions and extractions on the priority queue. Using a streaming

∗ Full version available on http://arxiv.org/abs/1209.4971
† Supported by the French ANR Defis program under contract ANR-08-EMER-012 (QRAC project) and
by the French ANR Blanc program under contract ANR-12-BS02-005 (RDAM project)

© Nathanaël François and Frédéric Magniez;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 454–465

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.454
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

N. François and F. Magniez 455

algorithm, the objective is then to decide if the stream corresponds to a correct implementation
of a priority queue. We also consider collection data structures that implement multisets.

I Definition 1 (Collection,PQ). Let Σ0 be some alphabet. Let Σ = {ins(a), ext(a) :
a ∈ Σ0}. For w ∈ ΣN , define inductively multisets Mi by M0 = ∅, Mi = Mi−1 \ {a} if
w[i] = ext(a), and Mi = Mi−1 ∪ {a} if w[i] = ins(a).
Then w ∈ Collection(Σ0) if and only if Mn = ∅ and a ∈Mi−1 when w[i] = ext(a), for i =
1, . . . , N . Moreover, w ∈ PQ(U), for U ∈ N, if and only if w ∈ Collection({0, 1, . . . , U})
and a = max(Mi−1) when w[i] = ext(a), for i = 1, . . . , N .

Streaming algorithms were initially designed with a single pass: when a piece of the
stream has been read, it is gone for ever. This makes those algorithms of practical interest
for online context, such as network monitoring, for which first streaming algorithms were
developed [1]. Motivated by the explosion in the size of the data that algorithms are called
upon to process in everyday real-time applications, the area of streaming algorithms has
experienced tremendous growth over the last decade in many applications. In particular, a
streaming algorithm can model an external read-only memory. Examples of such applications
occur in bioinformatics for genome decoding, or in Web databases for the search of documents.
In that context, considering multi-pass streaming algorithm is relevant.

Using standard arguments one can establish that every p-pass randomized streaming algo-
rithm needs memory space Ω(N/p) for recognizing Collection. Nonetheless, Chakrabarti,
Cormode, Kondapally and McGregor [7] gave a one-pass randomized algorithm for PQ using
memory space Õ(

√
N). They also showed that several passes do not help, since any p-pass

randomized algorithm would require memory space Ω(
√
N/p). A similar lower bound was

showed independently, but using different tools, by Jain and Nayak [10]. The case of a
single pass was established previously by Magniez, Mathieu and Nayak [15] for checking the
well-formedness of parenthesis expressions, or equivalently the behavior of a stack.

A simpler variant of PQ with timestamps was in fact first studied by Chu, Kannan and
McGregor [9], where now each item is inserted to the queue with its index.

I Definition 2 (PQ-TS). Let Σ = {ins(a), ext(a) : a ∈ {0, 1, . . . , U}} × N. Let w ∈ ΣN .
Then w ∈ PQ-TS(U) if and only if w ∈ Collection(Σ), w[1, . . . , N][1] ∈ PQ(U), and
w[i][2] = i when w[i][1] = ins(a).

Nonetheless the two works [9, 7] left open problems. The lower bound of [7] was proved
only for PQ, and no significant lower bounds for PQ-TS established. Moreover, the streaming
complexity of PQ for algorithms processing the stream in both directions was not studied.

Even though recognizing PQ-TS is obviously easier than recognizing PQ, our first
contribution (Section 3) consists in showing that they both obey the same limitation, even
with multiple passes in the same direction.

I Theorem 3. Every p-pass randomized streaming algorithm recognizing PQ-TS(3N/2) with
bounded error 1/3 requires memory space Ω(

√
N/p) for inputs of length N .

As a consequence, since this lower bound uses very restricted hard instances, it models
most of possible variations. For instance, assuming that the input is in Collection and
has no duplicates is not sufficient to guarantee a faster algorithm. Theorem 3 is proved by
introducing a related communication problem with Θ(

√
N) players. Then we reduce the

number of players to 3, and prove a lower bound on the information carried by players,
leading to the desired lower bound. We are following the information cost approach taken
in [8, 17, 2, 12, 11], among other works. Recently, the information cost appeared as one of

STACS’13

456 Streaming Complexity of Checking Priority Queues

the most central notion in communication complexity [6, 5, 13]. The information cost of a
protocol is the amount of information that messages carry about players’ inputs. We adapt
this notion to suit both the nature of streaming algorithms and of our problem.

Even if our result suggests that allowing multiple passes does not help, one could also
consider the case of bidirectional passes. We believe that it is a natural relaxation of multi-
pass streaming algorithms where the stream models some external read-only memory. In
that case, we show that a second pass, but in reverse order, makes the problem of checking
PQ easy, even with no timestamps (Section 4). A similar phenomenon has been established
previously in [15] for checking the well-formedness of parenthesis expressions. Their problem
is simpler than ours, and therefore our algorithm is more general.

I Theorem 4. There is a bidirectional 2-pass randomized streaming algorithm recognizing
PQ(U) with memory space O((logN)(logU+logN)), time per processing item polylog(N,U),
and one-sided bounded error N−c, for inputs of length N and any constant c > 0.

Our algorithm uses a hierarchical data structure similar to the one introduced in [15] for
checking well-parenthesized expressions. At high level, it also behaves similarly. It performs
one pass in each direction and makes an on-line compression of past information in at most
logN hashcodes. While this compression can lose information, the compression technique
ensures that a mistake is always detected in one of the two directions. Nonetheless our
algorithm differs on two main points. First, unlike parenthesized expressions, PQ is not
symmetric. Therefore one has to design an algorithm for each pass. Second, the one-pass
algorithm for PQ [7] is technically more advanced than the one of [15]. Thus designing a
bidirectional 2-pass algorithm for PQ is more challenging.

Theorems 3 and 4 point out a strange situation but not isolated at all. Languages studied
in [9, 15, 7, 14] and in this paper have space complexity Θ(

√
Npolylog(N)) for a single pass,

Ω(
√
N/p) for p passes in the same direction, and polylog(N) for 2 passes but one in each

direction. We hope this paper makes progress in the study of that phenomenon.

2 Preliminaries

In streaming algorithms (see [16] for an introduction), a pass on an input w ∈ ΣN , for some
alphabet Σ, means that w is given as an input stream w[1], w[2], . . . , w[N], which arrives
sequentially, i.e., letter by letter in this order. For simplicity, we assume throughout this
article that the input length N is always given to the algorithm in advance. Nonetheless, all
our algorithms can be adapted to the case in which N is unknown until the end of a pass.

I Definition 5 (Streaming algorithm). A p-pass randomized streaming algorithm with space
s(N) and time t(N) is a randomized algorithm that, given w ∈ ΣN as an input stream,

performs p sequential passes on w;
maintains a memory space of size at most s(N) bits while reading w;
has running time at most t(N) per processed letter w[i];
has preprocessing and postprocessing time at most t(N).

The algorithm is bidirectional if it is allowed to access to the input in the reverse order, after
reaching the end of the input. Then p is the total number of passes in either direction.

The proof of our lower bound uses the language of communication complexity with
multi-players, and is based on information theory arguments. We consider number-in-hand
and message-passing communication protocols. Each player is given some input, and can
communicate with another player according to the rules of the protocol. Our players are

N. François and F. Magniez 457

embedded into a directed circle, so that each player can receive (resp. transmit) a message
from its unique predecessor (resp. successor). Each player send a message after receiving
one, until the end of the protocol is reached. Players have no space and time restriction.
Only the number of rounds and the size of messages are constrained.

Consider a randomized multi-player communication protocol P . We consider only two
types of random source, that we call coins. Each player has access to its own independent
source of private coins. In addition, all players share another common source of public coins.
The output of P is announced by the last player. This is therefore the last message of the
last player. We say that P is with bounded error ε when P errs with probability at most ε
over the private and public coins. The transcript Π of P is the concatenation of all messages
sent by all players, including all public coins. In particular, it contains the output of P , since
it is given by the last player. Given a subset S of players, we let ΠS be the concatenation of
all messages sent by players in S, including again all public coins.

We now remind the usual notions of entropy H and mutual information I. Let X,Y, Z be
random variables. Then H(X) = −Ex←X log Pr(X = x), H(X|Y = y) = −Ey←Y log Pr(X =
x|Y = y), H(X|Y) = Ey←Y H(X|Y = y), and I(X : Y |Z) = H(X|Z) − H(X|Y,Z). The
entropy and the mutual information are non negative and satisfy I(X : Y |Z) = I(Y : X|Z).

The mutual information between two random variables is connected to the Hellinger
distance h between their respective distribution probabilities. Given a random variable X
we also denote by X its underlying distribution.

I Proposition 6 (Average encoding). Let X,Y be random variables.
Then Ey←Y h2(X|Y =y, X) ≤ κI(X : Y), where κ = ln 2

2 .

The Hellinger distance also generalizes the cut-and-paste lemma to randomized protocols.

I Proposition 7 (Cut and paste). Let P be a 2-player randomized protocol. Let Π(x, y)
denote the random variable representing the transcript in P when Players A,B have resp.
inputs x, y. Then h(Π(x, y),Π(u, v)) = h(Π(x, v),Π(u, y)), for all pairs (x, y) and (u, v).

Last we use that the square of the Hellinger distance is convex, and the following
connection to the more convention `1-distance: h(X,Y)2 ≤ 1

2‖X − Y ‖1 ≤
√

2h(X,Y). For a
reference on these results, see [10].

3 Lower bound for PQ-TS

The proof of our lower bound consists in first translating it into a 3m-player communication
problem, for some largem; then reducing the number of players to 3 using the information cost
approach; and last studying the base case of 3 players using information theory arguments.

3.1 From streaming algorithms to communication protocols
In this section, we write a instead of ins(a) and ā instead of ext(a). Consider the following
set of hard instances of size N = (2n+ 2)m:

Raindrops(m,n) (see LHS of Figure 1)
For i = 1, 2, . . . ,m, repeat the following motif:

For j = 1, 2, . . . , n, insert either vi,j = 3(ni− j) or vi,j = 3(ni− j) + 2
Insert either ai = 3(ni−(ki−1))+1 or ai = 3(ni−ki)+1, for some ki ∈ {2, . . . , n}
Extract vi,1, vi,2, . . . , vi,ki−1, ai in decreasing order

Extract everything left in decreasing order

STACS’13

458 Streaming Complexity of Checking Priority Queues

2

5

8
9

7

9
8

7

14

17
18

23

16

23

18

16
17

14

5

2

i = 1

k = 3

i = 2

k = 3

i = 3

2

5

8
9

7

9
8

7

14

17
18

23

16

23

18

16
17

14

5

2

i = 1

i = 2

i = 3

A1 B1

A2 B2 C2

C1

Figure 1 Left: Instance of Raindrops(m, 4) with one error: 17 is extracted after 16. Insertions
ai are circled. Right: Cutting Raindrops(m, 4) into 3m pieces to make it a communication problem.
Players’ input are within each corresponding region.

Observe that such an instance is in Collection. One can compute the timestamps for
each value by maintaining only O(logN) additionnal bits. Last, there is only one potential
error in each motif that can make it outside of PQ-TS. Indeed, vi,1, vi,2, . . . , vi,ki−1, ai are
in decreasing order up to a switch between ai and vi,ki−1.

Given such an instance as a stream, an algorithm for PQ-TS must decide if an error
occurs between ai and vi,ki

, for some i. Intuitively, if the memory space is less than εn, for a
small enough constant ε > 0, then the algorithm cannot remember all the values (vi,j)j when
ai is extracted, and therefore cannot check a potential error with ai. The next opportunity is
during the last sequence of extractions. But then, the algorithm has to remember all values
(ai)i, which is again impossible if the memory space is less than εm.

In order to formalize this intuition, Lemma 8 first translates our problem into a commu-
nication one between 3m players in the same way as [15], as shown on the RHS of Figure 1.
Then we analyze its complexity using information theory arguments in Section 3.2.

Any insertion and extraction of an instance in Raindrops(m,n) can be described by its
index and a single bit. Let xi[j] ∈ {0, 1} such that vi,j = 3(ni− j) + 2xi[j]. Similarly, let
di ∈ {0, 1} such that ai = 3(ni−ki)+1+3di. For simplicity, we write x instead of (xi)1≤i≤m.
Similarly, we use the notations k and d. Then our related communication problem is:

WeakIndex(m,n)
Input for players (Ai, Bi, Ci)1≤i≤m:

Player Ai has a sequence xi ∈ {0, 1}n

Player Bi has xi[1, ki − 1], with ki ∈ {2, . . . , n} and di ∈ {0, 1}
Player Ci has xi[ki, n]

Output: fm(x,k,d) =
∨m

i=1 f(xi, ki, di), where f(x, k, d) = [(d = 0) ∧ (x[k] = 1)]
Communication settings:

One round: each player sends a message to the next player according to the
diagram A1 → B1 → A2 → · · · → Bm → Cm → Cm−1 → · · · → C1.
Multiple rounds: If there is at least one round left, C1 sends a message to A1,
and then players continue with the next round.

N. François and F. Magniez 459

I Lemma 8. Assume there is a p-pass randomized streaming algorithm for deciding if an
instance of Raindrops(n,m) is in PQ-TS(3mn) with memory space s(m,n) and bounded
error ε. Then there is a p-round randomized protocol for WeakIndex(n,m) with bounded
error ε such that each message has size at most s(m,n).

We are now ready to give the structure of the proof of Theorem 3, which has techniques
based on information theory. Define the following collapsing distribution µ0 of hard inputs
(x, k, d), encoding instances of Raindrops(1, n), where f always takes value 0. Distribution
µ0 is such that (x, k) is uniform on {0, 1}n × {2, . . . , n} and, given x, k, the bit d ∈ {0, 1} is
uniform if x[k] = 0, and d = 1 if x[k] = 1. From now on, (X,K,D) are random variables
distributed according to µ0, and (x, k, d) denote any of their values.

Then the proof of Theorem 3 consists in studying the information cost of any com-
munication protocol for WeakIndex(n,m), which is a lower bound on its communication
complexity. Using that µ0 is collapsing for f , Lemma 9 establishes a direct sum on the
information cost of WeakIndex(n,m). Then, even if f is constant on µ0, Lemma 12 lower
bounds the information cost of a single instance of WeakIndex(n, 1).

Proof of Theorem 3. Let n,N be positive integers such that N = (2n+ 2)n. Assume that
there exists a p-pass randomized algorithm that recognizes PQ-TS(3N/2), with memory
space αn and bounded error ε, for inputs of size N . Then, by Lemma 8, there a p-round
randomized protocol P for WeakIndex(n, n) such that each message has size at most αn.
By Lemma 9, one can derive from P another (p + 1)-round randomized protocol P ′ for
WeakIndex(n, 1) with bounded error ε, and transcript Π′ satisfying |Π′| ≤ 3(t + 1)αn
and max {I(D : Π′B |X,K), I(K,D : Π′C |X)} ≤ (p + 1)α. Then by Lemma 12, 3(p + 1)α ≥
(1− 2ε)/10, that is α = O(1/p), concluding the proof. J

3.2 Communication complexity lower bound
We first reduce the general problem WeakIndex(n,m) with 3m players to a single instance
of WeakIndex(n, 1) with 3 players. In order to do so we exploit the direct sum property of
the information cost. The use of a collapsing distribution where f is always 0 is crucial.

I Lemma 9. If there is a p-round randomized protocol P for WeakIndex(n,m) with bounded
error ε and messages of size at most s(m,n), then there is a (p + 1)-round randomized
protocol P ′ for WeakIndex(n, 1) with bounded error ε, and transcript P ′ satisfying |Π′| ≤
3(p+ 1)s(m,n) and max {I(D : Π′B |X,K), I(K,D : Π′C |X)} ≤ p+1

m s(m,n).

Sketch of proof. Given a protocol P , we show how to construct another protocol P ′ for any
instance (x, k, d) of WeakIndex(n, 1). In order to avoid any confusion, we denote by A, B
and C the three players of P ′, and by (Ai, Bi, Ci)i the ones of P .

Protocol P ′
Using public coins, all players generate uniformly at random j ∈ {1, . . . ,m}, and
xi ∈ {0, 1}n for i 6= j

Players A, B and C set respectively their inputs to the ones of Aj , Bj , Cj

For all i > j, Player B generates, using its private coins, uniformly at random ki ∈
{2, . . . , n}, and then it generates uniformly at random di such that f(xi, ki, di) = 0
For all i < j, Player C generates, using its private coins, uniformly at random ki ∈
{2, . . . , n}, and then it generates uniformly at random di such that f(xi, ki, di) = 0
Players A, B and C run P as follows. A simulates Aj only, B simulates Bj and
(Ai, Bi, Ci)i>j , and C simulates Cj and (Ai, Bi, Ci)i<j .

STACS’13

460 Streaming Complexity of Checking Priority Queues

Observe that A starts the protocol if j = 1, and C starts otherwise. Moreover C stops the
simulation after p rounds if j = 1, and after p+ 1 rounds otherwise. For all i 6= j, entries are
generated such that f(xi, ki, ai) = 0, therefore fm(X,k,d) = f(xj , kj , aj) = f(x, k, a), and
P ′ has the same bounded error than P .

By applying the chain rule, one can see that P ′ satisfies the required conditions of the
lemma. J

We now prove a trade-off between the bounded error of a protocol for a single instance of
WeakIndex(n, 1) and its information cost. The proof involves some of the tools of [10] but
with some additional obstacles to apply them. The inherent difficulty is due to that we have
3 players whereas the cute-and-paste property applies to 2-player protocols. Therefore we
have to group 2 players together.

Given some parameters (x, k, a) for an input of WeakIndex(n, 1), we denote by Π(x, k, a)
the random variable describing the transcript Π of our protocol. We start by two lemmas
exploiting the average encoding theorem (proofs omitted).

I Lemma 10. Let P be a randomized protocol for WeakIndex(n, 1) with transcript Π
satisfying |Π| ≤ αn and I(K,D : ΠC |X) ≤ α. Then

E
x[1,l−1],l

h2(Π(x[1, l − 1]0X[l + 1, n], l, 1),Π(x[1, l − 1]1X[l + 1, n], l, 1)) ≤ 28α,

where l ∈ [n
2 + 1, n] and x[1, l − 1] are uniformly distributed.

I Lemma 11. Let P be a randomized protocol for WeakIndex(n, 1) with transcript Π
satisfying I(D : ΠB |X,K) ≤ α. Then

E
x[1,l−1],l

h2(Π(x[1, l − 1]0X[l + 1, n], l, 0),Π(x[1, l − 1]0X[l + 1, n], l, 1)) ≤ 12α,

where l ∈ [n
2 + 1, n] and x[1, l − 1] are uniformly distributed.

We now end with the main lemma which combines both previous ones and applies the
cut-and-paste property, where Players A,C are grouped.

I Lemma 12. Let P be a randomized protocol for WeakIndex(n, 1) with bounded error
ε, and transcript Π satisfying |Π| ≤ αn and max {I(D : ΠB |X,K), I(K,D : ΠC |X)} ≤ α.
Then α ≥ (1− 2ε)/10.

Proof. Let L be a uniform integer random variable in [n
2 + 1, n]. Remind that we enforce

the output of P to be part of Π. Therefore, any player, and in particular B, can compute f
with bounded error ε given Π. Since f(x[1, l− 1]0X[l+ 1, n], l, 0) = 0 and f(x[1, l− 1]1X[l+
1, n], l, 1) = 1, the error parameter ε must satisfies

E
x[1,l−1],l

‖Π(x[1, l − 1]0X[l + 1, n], l, 0)−Π(x[1, l − 1]1X[l + 1, n], l, 0)‖1 ≥ 2(1− 2ε).

The rest of the proof consists in upper bounding the LHS by 19α.
Applying the triangle inequality and that (u + v)2 ≤ 2(u2 + v2) on the inequalities of

Lemmas 10 and 11 gives

E
x[1,l−1],l

h2(Π(x[1, l − 1]0X[l + 1, n], l, 0),Π(x[1, l − 1]1X[l + 1, n], l, 1)) ≤ 30α.

We then apply the cut-and-paste property by considering (A,C) as a single player with
transcript ΠA,C . Therefore

E
x[1,l−1],l

h2(Π(x[1, l − 1]0X[l + 1, n], l, 1),Π(x[1, l − 1]1X[l + 1, n], l, 0)) ≤ 30α.

N. François and F. Magniez 461

Combining again with the inequality from Lemma 11 gives

E
x[1,l−1],l

h2(Π(x[1, l − 1]0X[l + 1, n], l, 0),Π(x[1, l − 1]1X[l + 1, n], l, 0)) ≤ 42α.

Last, we get the requested upper bound by using the connexion between the Hellinger
distance and the `1-distance, and the convexity of the square function. J

4 Bidirectional streaming algorithm for PQ

Remember that in this section our stream is given without any timestamps. Therefore we
consider in this section only streams w of ins(a), ext(a), where a ∈ [0, U]. For the sake of
clarity, we assume for now that the stream has no duplicate. Our algorithms can be extended
to the general case, but the technical difficulties shadow the main ideas.

Up to padding we can assume that N is a power of 2: we append a sequence of
ins(a)ext(a)ins(a+ 1)ext(a+ 1) . . . of suitable length, where a is large enough so that there
is no duplicate (assuming that w is of even size, otherwise w 6∈ PQ(U)). We use O(logN)
bits of memory to store, after the first pass, the number of letters padded.

We use a hash function based on the one used by the Karp-Rabin algorithm for pattern
matching. For all this section, let p be a prime number in {max(2U+1, N c+1), . . . , 2 max(2U+
1, N c+1)}, for some fixed constant c ≥ 1. Since our hash function is linear we only define it
for single insertion/extraction as

hash(ins(a)) = αa mod p, and hash(ext(a)) = −αa mod p,

where α is a randomly chosen integer in [0, p− 1]. This is the unique source of randomness
of our algorithm. A hashcode h encodes a sequence w if h = hash(w) as a formal polynomial
in α. In that case we say that h includes w[i], for all i. Moreover w is balanced if the same
integers have been inserted and extracted. In that case it must be that h = 0. We also say
that h is balanced it it encodes a balanced sequence w. The converse is also true with high
probability by the Schwartz-Zippel lemma.

I Fact 13. Let w be some unbalanced sequence. Then Pr(hash(w) = 0) ≤ N
p ≤

1
Nc .

The forward-pass algorithm was introduced in [7], but the reverse-pass one is even simpler.
As a warming up, we start by introducing the later algorithm. In order to keep it simple to
understand, we do not optimize it fully. Last define the instruction Update(h, v) that returns
(h+ hash(v) mod p) and updates h to that value.

4.1 One-reverse-pass algorithm for PQ
Our reverse-pass algorithm decomposes the stream w into blocks. We call a valley an
extraction w[t] = ext(a) with w[t+ 1] = ins(b). A new block starts at each valley. To the
i-th block we associate a hashcode hi and an integer mi. Hashcode hi encodes all extractions
within the block and matching insertions. Integer mi is the minimum of extractions in the
block. With the values (mi)i, one can encode insertions in the correct hi if w ∈ PQ. Observe
that we use index notations for block indices and bracket notations for stream positions.

Algorithm 1 uses memory space O(r), where r is the number of valleys in w. We could
make it run with memory space O(

√
N logN) by reducing the number of valleys as in [7].

We do not need to as we use another compression in the two-pass algorithm.
We first state a crucial property of Algorithm 1, and then show that it satisfies Theorem 15,

when there is no duplicate. We remind that we process the stream from right to left.

STACS’13

462 Streaming Complexity of Checking Priority Queues

Algorithm 1 One-reverse-pass algorithm for PQ
1 m0 ← −∞; h0 ← 0; t← N ; i← 0 // i is called the block index
2 While t > 0
3 If w[t] = ins(a)
4 k ← max{j ≤ i : mj ≤ a}; // Compute the hashcode index of a

5 Update(hk, w[t])
6 Else w[t] = ext(a)
7 If w[t + 1] = ins(b) // This is a valley . We start a new block
8 i← i + 1; mi ← a; hi ← 0 // Create a new hashcode
9 Else w[t + 1] = ext(b)

10 Check(a ≥ b) // Check that extractions are well - ordered
11 Update(hi, w[t])
12 t← t− 1
13 For j = 0 to i: Check(hj = 0) // Check that hashcodes are balanced w.h.p.
14 Accept // w succeeded to all checks

I Lemma 14. Consider Algorithm 1 right after processing ins(a). Assume that ext(a) has
been already processed. Let hk, hk′ be the respective hashcodes including ext(a), ins(a). Then
k = k′ if and only if all ext(b) occurring between ext(a) and ins(a) satisfy b > a.

I Theorem 15. There is a 1-reverse-pass randomized streaming algorithm for PQ(U) with
memory space O(r(logN + logU)) and one-sided bounded error N−c, for inputs of length N
with r valleys, and any constant c > 0.

Proof. We show that Algorithm 1 suits the conditions, assuming there is no duplicate. Let
w ∈ PQ(U). Then w always passes the test at line 10. Moreover, by Lemma 14, each
insertion ins(a) is necessarily in the same hashcode than its matching extraction ext(a).
Therefore, all hashcodes equal 0 at line 13 since they are balanced. In conclusion, the
algorithm accepts w with probability 1.

Assume now that w 6∈ PQ. First we show that unbalanced w are rejected with high
probability, that is at least 1−N−c, at line 13, if they are not rejected before. Indeed, since
each w[t] is encoded in some hj , at least one hj must be unbalanced. Then by Fact 13, the
algorithm rejects w.h.p. We end the proof assuming w balanced. We remind that we process
the stream from right to left. The two remaining possible errors are: (1) ins(a) is processed
before ext(a), for some a; and (2) ext(a), ext(b), ins(a) are processed in this order with
b < a and possibly intermediate insertions/extractions. In both cases, we show that some
hashcodes are unbalanced at line 13, and therefore fail the test w.h.p by Fact 13, except if
the algorithm rejects before.

Consider case (1). Since ins(a) is processed before ext(a), there is at least one valley
between ins(a) and ext(a). Therefore ins(a) and ext(a) are encoded into different hashcodes,
that are unbalanced at line 13. Consider now case (2). Lemma 14 gives that ext(a) and
ins(a) are encoded in different hashcodes, that are again unbalanced at line 13. J

4.2 Bidirectional two-pass algorithm
Our algorithm performs one pass in each direction using Algorithms 2 and 2. We use the
hierarchical data structure of [15] in order to reduce the number of blocks. A block of size 2i

is of the form [(q − 1)2i + 1, q2i], for 1 ≤ q ≤ N/2i. Observe that, given two such blocks,
either they are disjoint or one is included in the other. We decompose dynamically the letters
of w, that have been already processed, into nested blocks of 2i letters as follows. Each new

N. François and F. Magniez 463

ext(b) ext(a)
ext(mB) ext(mC)

τ ρtB tC

ins(a): case 1 ins(a): case 2 ins(a): case 3 ins(a): case 1

ρ′ ρ′ ρ′ ρ′

B C

Figure 2 Relative positions of insertions and extractions used in the proof of Theorem 4

Algorithm 2 Pass from left to right
1 S ← [(0,−∞, 0)] // Initialization of S

2 While stream is not empty
3 Read(next letter v on stream) // See below
4 While the 2 topmost elements of S have same block size `

5 (h1, m1, `)←Pop(S); (h2, m2, `)←Pop(S)
6 Push(S,(h1 + h2 mod p, min(m1, m2), 2`)) // Merge of 2 blocks
7 Check(S = [(0,−∞, 0), (0, 0, N)])
8 Return
9

10 Function Read(v):
11 Case v = ins(a) // When reading an insertion
12 Let (h, m, `) be the first item of S from top such that a ≥ m

13 Replace (h, m, `) by (Update(h, v), m, `)
14 Push (S, (0, +∞, 1))
15 Case v = ext(a) // When reading an extraction
16 For all items (h, m, `) on S such that m > a: Check(h = 0)
17 Let (h, m, `) be the first item of S from top such that a > m

18 Replace (h, m, `) by (Update(h, v), m, `)
19 Push(S,(0, a, 1))

processed letter of w defines a new block. When two blocks have same size, they merge. All
processed blocks are pushed on a stack. Therefore, only the two topmost blocks of the stack
may potentially merge. Because the size of each block is a power of 2 and at most two blocks
have the same size (before merging), there are at most logN + 1 blocks at any time.

Moreover, since our stream size is a power of 2, all blocks eventually appear in the
hierarchical decomposition, whether we read the stream from left to right or from right to
left. In fact, if two same-sized blocks appear simultaneously in one decomposition before
merging, the same is true in the other decomposition. This point is crucial for our analysis.

Our algorithm uses the following description of a block B: its hashcode hB , the minimum
mB of its extractions, and its size `B . For the analysis, let tB be such that w[tB] = ext(mB).
Only hB can change without B being merged with another block. On the pass from right
to left, all extractions from the block and matching insertions are included in hB. On the
pass from left to right, insertions are included in the hashcode of the earliest possible block
where they could have been, and extractions are included with their matching insertions.
The minimums (mB)B are used to decide where to include values. Observe the importance
of checking hB = 0 during the execution and not at the end, when only one block is left.

When there is some ambiguity, we denote by h→B and h←B the hashcodes for the left-to-right
and right-to-left passes. Observe that mB , tB , `B are identical in both directions.

Proof of Theorem 4. We show that execution of both Algorithms 2 and 3 suits the condi-
tions, assuming no duplicates. The space constraints are satisfied because elements of S have
size O(logN + logU) and S has size O(logN). The processing time is from inspection.

STACS’13

464 Streaming Complexity of Checking Priority Queues

Algorithm 3 Pass from right to left
1 S ← []; // Initialization of S

2 While stream is not empty
3 Read(next letter v on stream) // See below
4 While the 2 topmost elements of S have same block size `

5 (h1, m1, `)←Pop(S); (h2, m2, `)←Pop(S)
6 Push(S,(h1 + h2 mod p, min(m1, m2), 2`)) // Merge of 2 blocks
7 Check(S = [(0, 0, N)])}
8 Return
9

10 Function Read(v):
11 Case v = ins(a) // When reading an insertion
12 Let (h, m, `) be the first item of S from top such that a ≥ m

13 Replace (h, m, `) by (Update(h, v), m, `)
14 Push (S, (0, +∞, 1))
15 Case v = ext(a) // When reading an extraction
16 For all items (h, m, `) on S such that m > a: Check(h = 0)
17 Push(S,(hash(v), a, 1))

As with Theorem 15, inputs in PQ(U) are accepted with probability 1, and unbalanced
inputs are rejected with high probability (at least 1−N−c). Let w 6∈ PQ be balanced. For
ease of notations, let w[−1] = ins(−∞) and w[0] = ext(−∞). Then, there are τ < ρ such
that w[τ] = ext(b), w[ρ] = ext(a), with a > b and w[t] 6= ins(a) for all τ < t < ρ.

Among the pairs (τ, ρ), consider the ones with the smallest ρ. From those, select the one
with the smallest b, with w[τ] = ext(b). Let B, C be the largest possible disjoint blocks
such that τ is in B and ρ in C. Then B and C have same size, are contiguous, and appear
simultaneously in each direction before they merge. Let ρ′ and τ ′ be such that w[ρ′] = ins(a)
and w[τ ′] = ins(b). Then w[t] is an insertion for all τ < t < ρ by minimality of ρ and b.
Indeed if w[t] = ext(c) either b > c, contradicting the minimality of b, or c > b and (τ, t),
contradicting the minimality of ρ. In particular, tC ≥ ρ and tB ≤ τ . Similarly, τ ′ < τ .

We distinguish three cases based on the position ρ′ of ins(a) (see Figure 2): ρ′ 6∈ [tB , tC],
tB < ρ′ < τ , and ρ < ρ′ < tC . These cases determine in which hashcode ins(a) is included.
We analyze Algorithms 2 and 3 when some letter is processed before blocks potentially merge.

Case 1: ρ′ 6∈ [tB , tC]. Then h→B and h←C are unbalanced respectively when w[tC] and w[tB]
are processed; therefore w.h.p. Algorithm 2 detects h→B 6= 0 or Algorithm 3 detects h←C 6= 0,
depending on whether mB > mC . The full proof is omitted because of space constraints.

Case 2: tB < ρ′ < τ . We show that when Algorithm 3 processes w[tB] = ext(mB), it
checks h←D = 0 at line 16 for some h←D including ins(a) but not ext(a). Thus it rejects w.h.p.

When w[ρ′] = ins(a) is processed on the right-to-left pass, τ ∈ B1 with B1 a block in
the stack. τ ∈ B, therefore B1 intersects B. Because B1 6⊆ B, we have B1 ⊆ B. Because
w[τ] = ext(b), we have a > b ≥ mB1 , and block B1 is eligible at line 12 of Algorithm 3,
meaning that w[ρ′] = ins(a) is included in either h←B1

or a more recent hashcode h←B2
. Since

ρ′ ∈ B, again B2 ⊆ B. Last, when Algorithm 3 processes w[tB] = ext(mB), since we are
still within B, some hashcode hB3 , with B3 ⊆ B, includes w[ρ′]. Moreover, h←B3

does not
include w[ρ] = ext(a) since ρ ∈ C and C comes before B. Last, mB3 > mB , by definition of
mB . Hence, Algorithm 3 checks h←B3

= 0 at line 16 when processing w[tB]. B3 satisfies the
conditions for D when w[tB] is processed, and Algorithm 3 rejects w.h.p.

Case 3: ρ < ρ′ < tC . The proof is the same as case 2, replacing τ , B, B1, etc.. with ρ, C,
C1, etc... and Algorithm 2 with Algorithm 3. Note that we only have a ≥ mC1 this time. J

N. François and F. Magniez 465

4.3 Generalization when duplicates occur
We maintain two additional parameters δB and CB for each block B. The difference between
the number of insertions and extractions included in hB is stored in δB . Whenever δB = 0,
we check hB = 0. The number of unmatched occurrences of ins(mB) for the left-to-right
pass (resp. ext(mB) for the right-to-left pass) is stored in CB. We can then appropriately
determine whether each ext(mB) (resp. ins(mB)) should be included in hB .

The inequality at line 12 of Algorithm 2 has to become strict instead of large, which the
proof of case 3 of the theorem longer and breaks the symmetry.

References
1 N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency

moments. Journal of Computer and System Sciences, 58(1):137–147, 1999.
2 Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar. An information statistics

approach to data stream and communication complexity. Journal of Computer and System
Sciences, 68(4):702–732, 2004.

3 M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correctness of
memories. Algorithmica, 12(2):225–244, 1994.

4 M. Blum and S. Kannan. Designing programs that check their work. Journal of the ACM,
42(1):269–291, 1995.

5 M. Braverman. Interactive information complexity. In Proc. of ACM Symp. on Theory of
Computing, pages 505–524, 2012.

6 M. Braverman and A. Rao. Information equals amortized communication. In 748-757,
editor, Proc. of IEEE Symp. on Foundations of Computer Science, 2011.

7 A. Chakrabarti, G. Cormode, R. Kondapally, and A. McGregor. Information cost tradeoffs
for augmented index and streaming language recognition. In Proc. of IEEE Symp. on
Foundations of Computer Science, pages 387–396, 2010.

8 A. Chakrabarti, Y. Shi, A. Wirth, and A. C.-C. Yao. Informational complexity and the
direct sum problem for simultaneous message complexity. In Proc. of IEEE Symp. on
Foundations of Computer Science, pages 270–278, 2001.

9 M. Chu, S. Kannan, and A. McGregor. Checking and spot-checking the correctness of
priority queues. In Proc. of Int. Colloquium on Automata, Languages and Programming,
pages 728–739, 2007.

10 R. Jain and A. Nayak. The space complexity of recognizing well-parenthesized expressions
in the streaming model: the index function revisited, 2010. ECCC Tech. Rep. TR10-071.

11 R. Jain, J. Radhakrishnan, and P. Sen. A lower bound for the bounded round quantum
communication complexity of Set Disjointness. In Proc. of IEEE Symp. on Foundations of
Computer Science, pages 220–229, 2003.

12 T. S. Jayram, Ravi Kumar, and D.Sivakumar. Two applications of information complexity.
In Proc. of ACM Symp. on Theory of Computing, pages 673–682, 2003.

13 I. Kerenidis, S. Laplante, V. Lerays, J. Roland, and D. Xiao. Lower bounds on information
complexity via zero-communication protocols and applications. In Proc. of IEEE Symp. on
Foundations of Computer Science, 2012. To appear.

14 C. Konrad and F. Magniez. Validating XML documents in the streaming model with
external memory. In Proc. of Int. Conf. on Database Theory, pages 34–45, 2012.

15 F. Magniez, C. Mathieu, and A. Nayak. Recognizing well-parenthesized expressions in the
streaming model. In Proc. of ACM Symp. on Theory of Computing, pages 261–270, 2010.

16 S. Muthukrishnan. Data Streams: Algorithms and Applications. Now Publishers Inc., 2005.
17 M. Saks and X. Sun. Space lower bounds for distance approximation in the data stream

model. In Proc. of ACM Symp. on Theory of Computing, pages 360–369, 2002.

STACS’13

	Introduction
	Preliminaries
	Lower bound for PQ-TS
	From streaming algorithms to communication protocols
	Communication complexity lower bound

	Bidirectional streaming algorithm for PQ
	One-reverse-pass algorithm for PQ
	Bidirectional two-pass algorithm
	Generalization when duplicates occur

