
Constrained Binary Identification Problem
Amin Karbasi1 and Morteza Zadimoghaddam2

1 I&C, EPFL, Switzerland, amin.karbasi@epfl.ch
2 CSAIL, MIT, Cambridge-MA-USA, morteza@mit.edu

Abstract
We consider the problem of building a binary decision tree, to locate an object within a set by
way of the least number of membership queries. This problem is equivalent to the “20 questions
game” of information theory and is closely related to lossless source compression. If any query
is admissible, Huffman coding is optimal with close to H[P] questions on average, the entropy of
the prior distribution P over objects. However, in many realistic scenarios, there are constraints
on which queries can be asked, and solving the problem optimally is NP-hard.

We provide novel polynomial time approximation algorithms where constraints are defined
in terms of “graph", general “cost", and “submodular" functions. In particular, we show that
under graph constraints, there exists a constant approximation algorithm for locating the target
in the set. We then extend our approach for scenarios where the constraints are defined in terms
of general cost functions that depend only on the size of the query and provide an approxima-
tion algorithm that can find the target within O(log(logn)) gap from the cost of the optimum
algorithm. Submodular functions come as a natural generalization of cost functions with decreas-
ing marginals. Under submodular set constraints, we devise an approximation algorithm that
can find the target within O(logn) gap from the cost of the optimum algorithm. The proposed
algorithms are greedy in a sense that at each step they select a query that most evenly splits
the set without violating the underlying constraints. These results can be applied to network
tomography, active learning and interactive content search.

1998 ACM Subject Classification G.2.2 Graph Algorithms and Network Problems, I.1.2 Ana-
lysis of Approximation Algorithms, H.3.3. Information Search and Retrieval.

Keywords and phrases Network Tomography, Binary Identification Problem, Approximation
Algorithms, Graph Algorithms, Tree Search Strategies, Entropy.

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.550

1 Introduction

Constructing a binary search tree is one of the fundamental problems in discrete mathematics.
Formally, we are given a set N = {1, . . . , n} of objects, identified with integers from 1 to
n, as well as a probability distribution P = (p1, . . . , pn) over N , pi ≥ 0, i = 1, . . . , n, and∑n
i=1 pi = 1. The goal is to locate an object within a set N by way of the least number

of membership queries. Each binary split is a partition of N into a subset Q ⊂ N and its
complement N \Q. Given that a membership oracle provides answers without noise, what
is the best we can do in a computationally feasible manner? This problem is equivalent to
the “twenty questions game” of information theory [7], where a player has to determine the
identity of an object from a set (say, a famous person) by asking a minimum number of
yes/no questions. If any split is an admissible query, Huffman coding is optimal with close
to H[P] questions on average [7], the entropy of the distribution P from which the target
object is drawn at random.

© Amin Karbasi and Morteza Zadimoghaddam;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 550–561

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.550
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Karbasi and M. Zadimoghaddam 551

However, in realistic scenarios, there are constraints on which queries can be asked, and
solving the problem optimally is NP-hard [15]. Instances of these constraints arise frequently
in practice such as network tomography and interactive content search.

Network Tomography

A frequent situation that arises in sensor network tomography can be briefly explained
as follows [4]. Suppose we are to remotely maintain a sensor network, whose nodes are
severely restricted. First, being connected in a graph G, they can communicate with their
neighbours only. Second, although they can receive broadcast messages from a base station,
communication from any node back to the base must be kept to an absolute minimum due
to power constraints. As nodes fail regularly, it is necessary to periodically search for faults.
For simplicity, we assume that at most one node is faulty. To minimize the communication
back to base, we should use the least number of broadcasts of the form “To nodes in Q: Is
one of you faulty?”. If Q is a connected subgraph of G, the question can be answered by a
simple local message passing protocol, where a designated root in Q reports positively to
the base only if it receives messages from all neighbours in Q, etc. Given that this does not
happen, the root can poll the branch in question, whereby the faulty node can be identified
recursively and passed back to the root, which reports it back to base. Finally, if the base
does not get any reply after a reasonable time, it concludes that the chosen root must be
faulty.

We address the constraints of this type under the general and realistic notion of graph
constraints where we assume that the set N is furnished with an undirected graph structure G,
and Q ⊂ N is an admissible query if and only if the subgraph G|Q induced by Q (containing
all edges of G between vertices in Q) is connected. We then provide an efficient constant
factor approximation to the “graph-constrained” twenty questions problem, which finds the
target in ≤ 4H[P] + 2 queries on average.

Interactive Content Search

In content search applications with humans involved, it is of obvious value to keep the number
of queries as small as possible, as human interventions are disproportionally costly. Examples
include visual recognition [2] and pattern classification [11], where questions are restricted
to simple visual attributes. Whenever people are in the loop, queries are limited by their
ability to meaningfully disambiguate in the presence of many attributes. As these examples
show, it is usually not practical to allow for any query Q ⊂ N . In these scenarios, it is more
natural to define the constraints in terms of a cost rather than through a graph.

More formally, we are given a non-decreasing cost function C : {1, 2, · · · , n} → R where
the cost of making an oracle query on set S is C(|S|). Notice that the cost only depends
on the size of the set and not the elements it contains. When a human plays the role of
the membership oracle, it is more difficult to answer a query with a bigger set than one
with a smaller set [2]. This is why in many interactive search strategies such a cost function
arises naturally. In this case, we provide an approximation algorithm that can find the target
within O(log(logn)) gap from the cost of the optimum algorithm.

To generalize our analysis beyond non-decreasing cost functions, we consider the case
where constraints are defined in terms of a submodular function Cost : 2N → R. In this
setting, for all subsets S1 ⊆ S2 ⊆ N and an item i ∈ N we have Cost(S1∪{i})−Cost(S1) ≥
Cost(S2 ∪ {i}) − Cost(S2). In words, adding a new item i to a larger set should produce
an incremental cost no more than adding i to a smaller set. Under submudular constraints,

STACS’13

552 Constrained Binary Identification Problem

we provide an approximation algorithm that can find the target within O(log(n)) gap from
the cost of the optimum algorithm. Further applications of submodular functions in active
learning can be found in [12].

2 Related Work

The problem studied here can be seen as a special case of the binary identification problem
(BIP) [10]. Suppose that we are given a set of objects N and a set of tests {t1,tk} where
one of the objects is marked. Each test determines whether the marked object is in the test set
or not. The goal is to define a strategy that minimizes the number of tests to find the marked
object. It is known that both the average case minimization and worse case minimization
are NP-complete [15]. Moreover, it is even NP-Hard to have an o(logn)-approximation
algorithm for the average case [5]. In both cases, there exist heuristic algorithms that admit
O(logn)-approximation [20, 6]. The closest work to ours is [14] where the authors study the
same problem in a setting that a cost is associated with each test and the goal is to minimize
the average total cost. They propose an O(logn)-approximation algorithm. Unfortunately,
there is no straight way to follow their approach and obtain similar performance guarantees
for the submodular cost functions (for the other two problems that we consider in this paper,
our approximation factors are better). Note that in this case, there are 2n number of tests
and a naive reduction admits an exponential running time. To overcome this barrier we
propose a novel algorithm with a similar approximation guarantee.

Adding some structure to the set of tests leads to interesting special cases. For instance,
if we let the set of tests be the power set of objects, then the optimal average case strategy
is attained by Huffman coding [7]. Another basic variant of BIP is finding a marked element
in a totally ordered set, a problem that is very well studied in the literature [19]. This can
be generalized to searching in structures where the input has a partial order between its
elements instead of a total order [1, 3]. It is known that searching in posets for the worst case
minimization is NP-hard [3]. However, in [20], the authors showed a greedy algorithm with
O(logn) approximation which was further improved to a constant factor approximation by
[21]. It has been recently shown in [17] that the average case minimization is also NP-hard
for the class of trees with diameter at most 4.

Constrained BIP is strongly related to active learning [8, 22, 13, 9, 18] in which a
hypothesis space H is defined as a set of binary valued functions defined over a finite set Q,
called the query space. Each hypothesis h ∈ H generates a label from {−1,+1} for every
query q ∈ Q. A target hypothesis h∗ is sampled from H according to some prior P ; asking a
query q amounts to revealing the value of h∗(q), thereby restricting the possible candidate
hypotheses. The goal is to determine h∗ by asking as few queries as possible. In our setting,
the hypothesis space H is the set N , and the query space Q is the set of all admissible
subsets. The target hypothesis sampled from P is the target t∗. A well-known algorithm
for determining the true hypothesis in the active-learning setting is the generalized binary
search (GBS) or splitting algorithm [8, 22, 9]. Define the version space V ⊆ H to be the set
of possible hypotheses that are consistent with the query answers observed so far. At each
step, GBS selects the query q ∈ Q that minimizes |

∑
h∈V P (h)h(q)|. Recently, Golovin and

Krause [12] showed that GBS makes at most OPT ·
(
Hmax(µ) + 1

)
queries in expectation to

identify hypothesis h∗ ∈ N , where OPT is the minimum expected number of queries made
by any adaptive policy and Hmax(P) = maxx∈supp(P) log 1

P (x) . In our setting, the version
space V comprises all possible objects in z ∈ N that are consistent with answers given so far.
Under graph, cost, and submodular constraints, we replace Hmax (which in practice can be

A. Karbasi and M. Zadimoghaddam 553

Algorithm 1 The role of size
Input: Connected constraint graph G = (N , E), root node vR ∈ N .

Grow a connected subtree T ⊂ G, starting from vR, by a breadth-first search (BFS), until
T spans dn/2e vertices.
Query the vertex set of T (size dn/2e).
if I{t∗∈T} = 1 then
Recurse on T , root vR.

else
Collape all nodes in T into a single node vT , which is connected to all v ∈ N adjacent
to nodes in T in the original G. Create G′ by Connecting all neighbours of vT to one
another and removing vT . Recurse on G′.

end if

quite large) by a constant, O(log(log(n))), and O(log(n)), respectively.
The use of interactive methods for searching in a dataset has a long history in literature.

Relevance feedback [24] is a method for interactive image retrieval, in which users mark the
relevance of image search results, which then used to create a refined search query. We use
the membership oracle to model the role of a user for identifying a target in a database.
In practice, the cost of a query depends on the characteristics of the query, e.g., its size
[11, 2]. However, due to the lack of analytical results, in many such applications only heuristic
methods were proposed. To close this gap, we introduce general constraints, in terms of graph,
cost and submodular functions, on the set of queries and establish analytical guarantees
associated with them.

3 Graph Constraints

Let us assume that the set N is endowed with undirected graph structure, G = (N , E), where
E contains the edges. For any subset A ⊂ N , G−A denotes the graph obtained from G by
removing all vertices A and all edges adjacent to A, while G|A is the graph induced by A
(vertex set A, edge set those e ∈ E between vertices in A).

Given G, a query Q ⊂ N is admissible if and only if the graph G|Q is connected. Our
detection algorithm can submit any admissible query Q to a membership oracle, which
initially sampled the target t∗ at random from P : it will answer by one bit of information,
I{t∗∈Q} = 1 if t∗ ∈ Q, 0 otherwise. Our goal is to detect t∗ with as few queries to the
oracle as possible. Here, we restrict ourselves to deterministic policies which terminate
only once the version space for t∗ consistent with all previous queries Q1, . . . , Qk (formally,
(∩k|t∗∈QkQk) ∩ (∩k|t∗ 6∈Qk(N \Qk))) reaches size one. Throughout this section, we assume
that the algorithm knows the distribution P the target is drawn from.

We begin with Algorithm 1, a simple divide-and-conquer scheme which detects the target
with no more than dlogne queries, if seeded with an arbitrary vR ∈ N as root node. Here
and elsewhere, we use binary logarithms (base 2). Essentially, this algorithm mirrors the
principle of binary search by way of intermediate sets produced during a breadth-first-search
(BFS). Given adequate backpointer structures, its running cost is that of a single BFS.

I Lemma 1. Presented with a connected constraint graph G = (N , E), where |N | = n,
Algorithm 1 detects the target t∗ with no more than dlogne queries to the membership oracle.

While Algorithm 1 is simple and efficient, it has the obvious drawback of not exploiting
knowledge about the distribution P at all. However, it is useful as subroutine for our main
algorithm developed next.

STACS’13

554 Constrained Binary Identification Problem

Suppose w.l.o.g. that P = (p1, . . . , pn) is such that p1 ≥ p2 ≥ · · · ≥ pn. Define the nested
subsets A1 ⊂ A2 ⊂ · · · ⊂ N by

Ai = {1, . . . , ji}, ji = min
{
j
∣∣∣ ∑

k>j
pk ≤ 2−i

}
.

Put differently, Ai is the smallest subset of N so that
∑
k∈Ai pk ≥ 1 − 2−i. Also, define

ai = log(1/pji), so that pk ≥ 2−ai for all k ∈ Ai, moreover a0 = 0. The intuition behind this
choice is that A1 contains about half of the probability mass, A2 \A1 half of the remaining
mass, and so on.

Our algorithm processes the Ai in order, i = 1, 2, For Ai, it calls Algorithm 1,
which will detect t∗ if it is in Ai, otherwise we move to the next set. However, we cannot
simply pass the induced subgraph G|Ai to Algorithm 1, as it may well not be connected.
In this case, we generate Gi = (Ai, Vi) passed to the algorithm as follows. We initialize
Gi ← G|Ai and cluster the nodes into connected components. We then join each pair of
disjoint components by a shortest path π, a central part of which necessarily features nodes
V (π) with V (π) ∩Ai = ∅. We collapse this part of π into a new virtual edge between nodes
in Ai, which is labelled by the vertices V (π) and added to Vi. This process stops when Gi
is connected. Finally, when running Algorithm 1 on Gi, we need to translate queries back
to connected subgraphs of the original G. For a query Q ⊂ Ai in question, this is done by
adding nodes with which virtual edges of Gi|Q are labelled. Our construction of Gi from Ai
and labeling of virtual edges ensures that any query processed in this way corresponds to a
connected subgraph of G, therefore is admissible.

Note that due to the presence of virtual edges, Algorithm 1 may receive positive answers
from the oracle, even though t∗ 6∈ Ai. After all, t∗ might be among the vertices on virtual
edges. However, in this case, Algorithm 1 simply descends to a single vertex vi ∈ Ai, so that
one more query {vi} settles the question “t∗ ∈ Ai”. Our main result is as follows.

I Theorem 2. Given a connected constraint graph G with n vertices and any distribution
P over {1, . . . , n}, our algorithm finds a target t∗ sampled at random from P with no more
than 2 + 4H[P] admissible queries, on average over draws of t∗.

Proof. We prepare our proof with a lemma whose proof can be found in the full version.

I Lemma 3. For the numbers ak defined above, we have that
∑∞
k=1 ak/2k+1 ≤ H[P].

To establish Theorem 2, recall that we visit sets Ai in order, i = 1, 2, . . . , calling
Algorithm 1 on Gi = (Ai, Vi) constructed as detailed above. Since pj ≥ 2−ai for all j ∈ Ai,
the size of Ai is bounded by 2ai , and Algorithm 1 returns after ≤ ai queries. As noted
above, due to “virtual edge” complications, we may have to query one more single node,
yet after ≤ ai + 1 questions we know whether t∗ ∈ Ai or not, and in the former case will
have detected t∗. Now, the probability of not finding t∗ in Ai or earlier is bounded by∑
j|pj<2−ai pj ≤ 2−i. This means that the expected number of queries in in our algorithm is

at most
∑
i≥1(ai + 1)/2i−1 ≤ 2 + 4H[P], where this inequality is due to Lemma 3. J

4 Cost Function Constraints

In this section we analyze another variant of the binary identification problem where the
constraints are defined in terms of a cost function rather than a graph. More formally, we
are given a non-decreasing cost function C : {1, 2, · · · , n} → R where the cost of making an

A. Karbasi and M. Zadimoghaddam 555

Algorithm 2 Binary Identification Algorithm with Cost Function Constraints
Input: n objects with a probability distribution on them, and a cost function C :
{1, 2, · · · , n} → R, fixed constant ε > 0.
Create clusters S1, S2, . . . Sl for l = log(n2/ε).
(Phase one) Use Procedure 3 to determine which cluster contains the target t∗.
(Phase two) If cluster Si contains the target, find it by using the dynamic program 2.
(Phase three) If the target is not found in any of the above clusters, query each of the
non-clustered objects.

oracle query on set S is C(|S|)1. Notice that the cost only depends on the size of the set not
the elements it contains. When a human plays the role of the membership oracle, it is more
difficult to answer a query with a bigger set than one with a smaller set. This is why in
many interactive search strategies such a cost function arises naturally. To avoid confusion
in using term "cost" for queries and algorithms, we formally define the notion of cost for sets
and algorithms as follows.

I Definition 4. We refer to the cost of making a query on a set S by the “cost of set S".
On the other hand, we use the term “expected search cost" of an algorithm to represent the
expected value of total cost of queries the algorithm makes. Formally, An algorithm A consists
of a family of possible queries FA. Algorithm A asks each query S ∈ FA with probability
Pr(A,S) which is a function of both the algorithm A, and the probability distribution of
objects, P . We define the expected search cost of algorithm A to be

∑
S∈FA Pr(A,S)C(|S|).

By the above definition, it makes sense to talk about the expected search cost of Algorithm 2
or any other algorithm such as the optimum algorithm. We can also refer to the expected
cost associated with a part of Algorithm 2 (it has three phases) and we can similarly define
its expected cost in each phase. Note that the expected search cost of an algorithm is exactly
the expected value of its total cost according to distribution P .

I Definition 5. Let ε > 0 to be a small and fixed constant. We place objects in l = log(n2/ε)
clusters based on their probabilities as follows. Let Si be the cluster of objects with probability
in range (1/2i, 1/2i−1] for 1 ≤ i ≤ l. For any 1 ≤ i ≤ l, we define Pr(Si) to be the sum of
probabilities of objects in cluster Si, and we define Pr[i, j] .=

∑j
x=i Pr(Sx) for 1 ≤ i ≤ j ≤ l.

We let Pr[i, j] = 0 for i > j.

The choice of ε in the above definition is for ensuring that non-clustered objects have negligible
probabilities, namely, at most ε/n2.

Our algorithm for finding the target is shown in Algorithm 2. In phase one, we run
a recursive algorithm that uses procedure ClusterF inder (shown in Algorithm 3) as a
subroutine. The procedure ClusterF inder gets two numbers i and j, and finds the cluster
containing the target only if the target is in one of the clusters {Si, Si+1, · · · , Sj}. More
specifically, Algorithm 3 finds a number k and a collection of clusters Q to query as follows:

Q =
⋃

i≤m≤k

Sm, k = max
{
k′
∣∣∣ Pr[i, k′] < Pr[i, j]

2

}
(1)

1 Note that there are two ways to determine whether or not the target lies in some set S. We can query
set S or we can query the complement set N \ S. Here, we assume that the cost is always a function of
the size of the queried set and it is the job of the algorithm to determine which set needs to be queried.

STACS’13

556 Constrained Binary Identification Problem

Algorithm 3 ClusterFinder(i,j)
Input: Clusters Si, Si+1, · · · , Sj

1: Find the number k and the set Q according to Equation 1. Query set Q.
2: If t∗ ∈ Q call ClusterF inder(i, k). Otherwise, query Sk+1.
3: If t∗ ∈ Sk+1 return Sk+1. Otherwise, call ClusterF inder(k + 2, j).

If the target is in Q, the algorithm calls procedure ClusterF inder(i, k). Otherwise, it queries
set Sk+1, and if the target is not there either, it calls ClusterF inder(k + 2, l). Note that in
Eq. 1, we might have Pr(Si) = Pr[i, i] ≥ Pr[i, j]/2 which causes k to be i− 1. In this case,
the set Q will be ∅.

I Definition 6. The procedure calls of Algorithm 3 can be represented by a binary tree T
as follows. The root node is the procedure ClusterF inder(1, l). The left child of the root is
ClusterF inder(1, k), and its right child is ClusterF inder(k + 2, l). In the same fashion, we
can define the rest of the tree nodes based on the recursive calls.

In phase two of Algorithm 2, we are given a cluster Si that contains the target, and we
want to find the target object. Let x be the number of objects in Si. Our algorithm assumes
that the probabilities of all objects in Si are identical. Since they are in the same cluster,
their probabilities are close to each other (we prove later that this assumption does not
incur much cost for us). By this assumption we have symmetry among objects in cluster Si.
Therefore, the only relevant characterization of a subset of Si is its size. We define a dynamic
programming array A[j], for 1 ≤ j ≤ x, which is the expected search cost of optimal strategy
to find the target given that the target is in a subset of Si with size j under the assumption
that these objects have the same probability, and therefore are identical. We can fill up the
entries of array A as follows. It is clear that A[1] is zero. We can update each A[j] using the
lower entries A[1], A[2], · · · , A[j − 1] as follows:

A[j] = min
1≤j′<j

{C(j′) +A[j′](j′/j) +A[j − j′]((j − j′)/j)}. (2)

The optimal strategy chooses some 1 ≤ j′ < j, and a subset of size j′ among the remaining
objects (it does not matter which subset it chooses, the only important factor is the size of
the subset because of the identical probabilities assumption). Making a query on the selected
subset of size j′ has cost C(j′). With probability j′/j, the target is in the selected set, and
we have to pay A[j′] in this case. With probability (j− j′)/j, the target is not in the selected
set, and we have to pay A[j − j′] in this case. Since we assume that Si contains x elements,
the optimal cost for finding the target in cluster Si is therefore A[x].

Finally, phase three of Algorithm 2 makes sure that if we have not found the target in
the previous phases, we query each nonclustered object until we find the target.

I Theorem 7. Let CGreedy and COPT denote the expected search costs of Algorithm 2 and
the optimum algorithm, respectively. Then, we have CGreedy = O(log(log(n))COPT).

Before we proceed to the proof of this theorem, let us consider the following definitions for
general cost functions. Note that in general, the cost of a query is a function of the query
set and not necessarily its size.

I Definition 8. Let I(X) denote an instance of the search problem on a subset X ⊂ N
where the probabilities of objects in X are normalized to make sure their sum is one, and
we know that the target is in X. We denote by Cost(X ′) the cost of making a query on

A. Karbasi and M. Zadimoghaddam 557

X ′ ⊂ X. Let also Opt(I(X)) represent the expected search cost of the optimum algorithm
for instance I(X). We define

CostiX = min
{
Cost(X ′)|X ′ ⊆ X,Pr(X ′) ≥ 1− 1/2i

}
.

Let S(X, i) denote the subset for which Cost(S(X, i)) = CostiX and Pr(S(X, i)) ≥ 1− 1/2i.

Note that the particular cost function we consider in this section is Cost(X ′) = C(|X ′|).
The following lemma will provide us with a general lower bound on the expected search cost
of the optimum solution.

I Lemma 9. Opt(I(X)) ≥
∑∞
i=1 Cost

i
X/2i+1.

Lemma 9 help us bound the expected search cost of the optimum algorithm from below.

Proof of Theorem 7. We first show that the expected search cost caused by nonclustered
objects is negligible.

I Lemma 10. The expected search cost incurred by the nonclustered objects in phase three
of Algorithm 2 is at most ε · COPT .

Proof. The probability of each nonclustered objects is at most 1/2l = ε/n2. There are at
most n non-clustered objects, so the probability of the target is one of these non-clustered
objects is at most ε/n. With probability at most ε/n, we make a query for each non-clustered
object. Hence, its expected search cost is at most εn× nC(1) = εC(1). On the other hand,
note that C(1) is a lower bound for the optimum solution because no matter where the target
is we always have to make at least a query of size at least one to find the target. J

Lemma 10 entails that the expected search cost incurred by nonclustered objects is much
less than the optimal expected search cost. Thus for simplicity we can assume that there
exists no nonclustered object. In order to bound the expected search cost of the first phase
of Algorithm 2 we need a few intermediate results. Let us start with the following definition.

I Definition 11. A set of nodes S of a tree T ′ is sparse, if and only if there do not exist
three nodes v1, v2 and v3 in S such that v1 is one of the ancestors of v2 and v3, and neither
of v2 and v3 is an ancestor of one another.

Hence, in a sparse set S there cannot be two nodes such that they don’t have an ancestor/-
descendant relationship and simultaneously have a common ancestor in S. The following
lemma bounds the number of possible sparse partitions of any tree

I Lemma 12. The nodes of any tree T ′ can be partitioned into dlog(|T ′|)e sparse sets where
|T ′| is the number of nodes in T ′.

To link the expected search cost of the first phase of Algorithm 2 to nodes of the tree T,
we need the following definition.

I Definition 13. Let a node v ∈ T represent procedure ClusterF inder(i, j) for some
1 ≤ i ≤ j ≤ l. With probability Pr[i, j], we go to this node, and we make a query on
the set Q as defined in Eq. 1. If the target is not in Q (i.e., it is in one of the clusters
Sk+1, Sk+2, · · · , Sj), we make a second query on the set Sk+1. Hence, the expected search
cost of our algorithm at node v is Pr[i, j]C(|Q|) + Pr[k + 1, j]C(|Sk+1|). We define this
quantity as the price of node v.

STACS’13

558 Constrained Binary Identification Problem

It is clear that the expected search cost of our algorithm in phase 1 is the sum of the prices
of all nodes in tree T . In Lemma 14, we bound the sum of prices of nodes of a sparse set
which provide us with the key result to bound the expected search cost of the first phase.
The proof of Lemma 14 heavily relies on the observation we made in Lemma 9.

I Lemma 14. The sum of prices of nodes of a sparse set is O(COPT).

Due to the above lemma, we know that the total prices of the nodes of every sparse set is
O(COPT). By recalling Lemma 12 we also know that we can partition the nodes of T into
O(log(log(n))) sparse sets. Hence, Lemma 14 together with Lemma 12 readily bounds the
expected search cost of the first phase which is the sum of prices of all nodes in tree T .

I Lemma 15. The expected search cost for identifying which cluster contains the target t∗
(first phase of Algorithm 2) is O(log(log(n)) · COPT).

We are ready to analyze the second phase of algorithm 2. In this part, we know the
cluster, say Si, that contains the target t∗ and we just need to find it. Let us define Ii to be
this instance: we are given the information that the target is in Si, and we have to find it.
Following Definition 8, we denote the optimum expected search cost to identify the target in
Ii by OPT (Ii). The following lemma bounds the expected search cost of Algorithm 2 (phase
two) in terms of OPT (Ii).

I Lemma 16. Assume that the target t∗ is in cluster Si. Then, the expected search cost of
phase two of Algorithm 2 to find the target is at most 2 Pr(Si)OPT (Ii).

Lemma 16 helps us relate the expected search cost of phase two to COPT .

I Lemma 17. The expected search cost of phase two of Algorithm 2 is at most 2COPT .

By combining Lemmas 10, 15, and 17 we can conclude that the expected search cost of
Algorithm 2 is O(log(log(n)) · COPT). J

5 Submodular Constraints

In this section we analyze another variant of the binary identification problem where the
constraints are defined in terms of a submodular function. More specifically, we are given a
set of objects N = {1, 2, · · · , n} and a non-decreasing submodular function Csub : Fn → R
where Fn = 2N is the family of all subsets of N . We denote the cost of making a query on
the set S ⊂ N by Csub(S) where we assume that the cost function is submodular:

∀S1 ⊆ S2 ⊆ U, i ∈ U : Csub(S1 ∪ {i})− Csub(S1) ≥ Csub(S2 ∪ {i})− Csub(S2).

Intuitively, this property insures that adding an object i to a set S1 increases its cost at least
as much as adding i to a superset S2. Another equivalent definition that we later use reads
as follows: ∀S1, S2 ⊆ N , Csub(S1) + Csub(S2) ≥ Csub(S1 ∪ S2) + Csub(S1 ∩ S2). In view of
Definition 8 the cost function of a subset S ∈ N is Cost(S) = Csub(S).

Before elaborating on our new algorithm, we should note that it is possible to mimic the
first phase of Algorithm 2 and obtain an approximation factor of O(log(log(n))). However,
it is no longer possible to run the second phase with the same approximation factor for
submodular functions. Recall that in the second phase, we relied on a dynamic program
that only depends on the size of the queried sets. Due to the fact that in our new setup,
the cost of a query depends on the set (an not only on its size), we need to reformulate the
dynamic program: it matters which subset is chosen. To do so, we ought to construct an

A. Karbasi and M. Zadimoghaddam 559

Algorithm 4 Bicriteria Approx. Alg.
Input: ε > 0.

1: Find all αk’s in (3) and their corres-
ponding sets Sαk .

2: Among all Sαk , keep only those that
have Pr(Sαk) ≥ 1/6.

3: Among the remaining sets, choose the
one with minimum Csub(Sαk). Call
this set S′.

4: Keep removing objects from S′ while
its probability remains at least 1/6.

Algorithm 5 BIP with Submod. Cnst.
Input: Set of objects N .

1: Find set S′ ⊂ N (and S̄′ = N \ S′) by
using Algorithm 4. Query S′.

2: if set S′ contains the target t∗ then
3: Query one of the objects i ∈ S′. Either

i is the target, or otherwise recurs on
S′ \ {i}.

4: else
5: Recurs on S̄′.
6: end if

exponential size array (one for each subset) and as a result, the algorithm will no longer run
in polynomial time. To avoid this drawback, we can devise a log(n)-approximation algorithm
for the second phase of Algorithm 2 which can incorporate submodular constraints. Instead,
in this section we present a much simpler algorithm with the same approximation guarantee.
To do so, we first need an intermediate step.

Submodular Functions Under Linear Constraints
The problem of “minimizing submodular functions under linear constraints" is to find a subset
S∗ ∈ N such that Pr(S∗) ≥ 1/2 and its cost, namely Csub(S∗), is minimum. Here, we present
a bicriteria approximation algorithm that finds a set S′ with Csub(S′) ≤ 3Csub(S∗) and
Pr(S′) ≥ 1/6. To do so, we first need to define another submodular function fα : 2N → R
for which fα(S) = Csub(S) + α · Pr(S̄), where S̄ = N \ S, and α > 0 is a real number. The
reason that fα is a submodular function simply follows from the fact that we only added
a liner term to the submodular function Csub (check the equivalent definition we provided
earlier). It is a folklore result that submodular function minimization problem has strongly
polynomial time exact algorithms due to [23] and [16]. Hence, one can find a subset Sα ⊆ N
in polynomial time that admits the minimum value of fα. Let cmin = mini∈N Csub({i}). For
a fixed ε > 0 we also define

αk = 3cmin(1 + ε)k, for all k = 0, 1, . . . , dlog1+ε(Csub(N))/cmine. (3)

Note that there exists a k = κ for which 3Csub(S∗) ≤ ακ ≤ 4Csub(S∗).

I Lemma 18. Let Sακ denote the set that admits the minimum of the function fα for
α = ακ. Then Csub(Sακ) ≤ 3Csub(S∗) and Pr(Sακ) ≥ 1/6.

Since the value of Csub(S∗) is not known a priori, we cannot apply Lemma 18 without
modification. To this end, we propose Algorithm 4. It first calculates all values of αk. For
each αk it finds the corresponding set Sαk that minimizes fαk . It then finds among those
Sαk with Pr(Sαk) ≥ 1/6, the one that has minimum cost Cmin(Sαk). Once such a set S′ is
found, it starts removing objects from S′ while keeping Pr(S′) ≥ 1/6.

I Lemma 19. Algorithm 4 outputs a set S′ ⊂ N with Csub(S′) ≤ 3Csub(S∗) and Pr(S′) ≥
1/6. Moreover, for any i ∈ S′, we have Pr(S′ \ {i}) < 1/6.

Approximation Algorithm with Submodular Constraints
Algorithm 5 starts by finding a set S′ ⊂ N . To this end, it calls on Algorithm 4. According
to Lemma 19, for the set S′ we have Pr(S′) ≥ 1/6 and Csub(S′) ≤ 3Csub(S∗). Remember S∗

STACS’13

560 Constrained Binary Identification Problem

is the set with minimum cost and the probability at least a half. Ideally, we would like to
query the set S∗. Unfortunately, it is not easy to find such a set. Instead, Algorithm 5 queries
the set S′ that approximate our ideal candidate. If the target t∗ is in S′, then Algorithm 5
chooses an arbitrary object i ∈ S′ and see whether i is the target or not. In case it is not the
target, the whole procedure repeats now from the set S′ \ {i}, namely, Algorithm 4 will be
called for the set S′ \ {i}. If the target is not in S′ from the beginning, the algorithm recurs
on set S̄′ = N \ S′. Note that by making a singleton query before recursion, Algorithm 5
makes sure that the probability of the remaining set will shrink by a factor of 1/6 (Lemma 19)
if the target is in set S′ \ {i}. Otherwise, the probability shrinks by a factor of 5/6 because
we have that Pr(S̄′) = 1− Pr(S′) ≤ 1− 1/6.

I Theorem 20. Let CGreedy and COPT denote the expected search costs of Algorithm 5 and
the optimum algorithm, respectively. Then, we have CGreedy = O(log(n) · COPT).

Proof. The proof of this theorem is similar, mutatis mutandis, to the proof of phase one of
Theorem 7. Let us first modify Definition 8 as follows.
Let CostiX = min

X′⊆X|Pr(X′)≥1−(5/6)i
Cost(X ′). Then, we can show

I Lemma 21. Opt(I(X)) ≤
∑∞
i=1

CostiX
(5/6)i+1/5 .

The search mechanism portrayed in Algorithm 5 defines a binary tree T , similar to the
one we saw in the previous section. In brief, the tree starts from the root N . In each internal
node S with probability at least 1/6 we go to the left child (representing set S′ \ {i}) and
with the remaining probability we go to the right child (representing S \S′). Note that there
are at most 2n nodes in this tree where the probability of each child is at most 5/6 of the
probability of its father (instead of 1/2 in the previous section). Because the tree T has at
most 2n nodes, instead of O(log log(n)) sparse sets, we need log(2n) sparse sets to cover the
expected cost of all nodes. As a result one can provide a similar proof showing that the
expected cost of Algorithm 5 with submodular constraints is at most O(log(n)) times the
cost of the optimum solution.

J

6 Conclusion

In this work we considered the problem of binary identification problem (BIP) under the
general notion of graph, cost and submodular constraints. We also provided novel polynomial
time approximation algorithms with provable analytical guarantees. Even though we believe
that the three variants of BIP we considered are all NP-hard, we did not provide any rigorous
proof. This is an interesting future direction we would like to pursue.

References
1 Yosi Ben-Asher, Eitan Farchi, and Ilan Newman. Optimal search in trees, 1999.
2 Steve Branson, Catherine Wah, Florian Schroff, Boris Babenko, Peter Welinder, Pietro

Perona, and Serge Belongie. Visual recognition with humans in the loop. In ECCV (4),
pages 438–451, 2010.

3 R. Carmo, J. Donadelli, Y. Kohayakawa, and E. Laber. Searching in random partially
ordered sets. Theor. Comput. Sci., 321:41–57, 2004.

4 R. Castro, M. Coates, G. Liang, R. Nowak, and B. Yu. Network tomography: Recent
developments. Statistical Science, 19(3):499–517, 2004.

A. Karbasi and M. Zadimoghaddam 561

5 Venkatesan T. Chakaravarthy, Vinayaka Pandit, Sambuddha Roy, Pranjal Awasthi, and
Mukesh K. Mohania. Decision trees for entity identification: Approximation algorithms
and hardness results. ACM Transactions on Algorithms, 7(2):15, 2011.

6 Venkatesan T. Chakaravarthy, Vinayaka Pandit, Sambuddha Roy, and Yogish Sabharwal.
Approximating decision trees with multiway branches. In ICALP (1), pages 210–221, 2009.

7 Thomas M. Cover and Joy Thomas. Elements of Information Theory. Wiley, 1991.
8 S. Dasgupta. Analysis of a greedy active learning strategy. NIPS, 2005.
9 M. R. Garey and R. L. Graham. Performance bounds on the splitting algorithm for binary

testing. Acta Informatica, 3:347–355, 1974.
10 M.R. Garey. Optimal binary identification procedures. In SIAM J. Appl. Math, 1972.
11 Donald Geman and Bruno Jedynak. Shape recognition and twenty questions. Technical

report, in Proc. Reconnaissance des Formes et Intelligence Artificielle (RFIA, 1993.
12 Daniel Golovin and Andreas Krause. Adaptive submodularity: A new approach to active

learning and stochastic optimization. Journal of Artificial Intelligence Research (JAIR),
42:427–486, 2011.

13 Andrew Guillory and Jeff A. Bilmes. Average-case active learning with costs. In ALT,
pages 141–155, 2009.

14 Anupam Gupta, Viswanath Nagarajan, and R. Ravi. Approximation algorithms for op-
timal decision trees and adaptive tsp problems. In Proceedings of the 37th international
colloquium conference on Automata, languages and programming, ICALP’10, pages 690–
701, Berlin, Heidelberg, 2010. Springer-Verlag.

15 L. Hyafil and R. Rivest. Constructing optimal binary decision trees is np-complete. In
Information Processing Letters, pages 15–17, 1976.

16 Satoru Iwata, Lisa Fleischer, and Satoru Fujishige. A combinatorial strongly polynomial
algorithm for minimizing submodular functions. J. ACM, 48(4):761–777, 2001.

17 Tobias Jacobs, Ferdinando Cicalese, Eduardo Laber, and Marco Molinaro. On the com-
plexity of searching in trees: average-case minimization. In Proceedings of the 37th interna-
tional colloquium conference on Automata, languages and programming, ICALP’10, pages
527–539, 2010.

18 Amin Karbasi, Stratis Ioannidis, and Laurent Massoulie. Comparison-based learning with
rank nets. In 29th International Conference on Machine Learning (ICML), 2012.

19 D. Knuth. The Art of Computer Programming, volume 3. Addison Wesley Longman
Publishing Co., Inc, 1998.

20 S. Rao Kosaraju, Teresa M. Przytycka, and Ryan S. Borgstrom. On an optimal split
tree problem. In Proceedings of the 6th International Workshop on Algorithms and Data
Structures, WADS ’99, pages 157–168. Springer-Verlag, 1999.

21 Eduardo Laber and Marco Molinaro. An approximation algorithm for binary searching in
trees. In Proceedings of the 35th international colloquium on Automata, Languages and
Programming, Part I, pages 459–471, Berlin, Heidelberg, 2008. Springer-Verlag.

22 R.D. Nowak. The geometry of generalized binary search. Transactions on Information
Theory, 5, 2012.

23 Alexander Schrijver. A combinatorial algorithm minimizing submodular functions in
strongly polynomial time. J. Comb. Theory, Ser. B, 80(2):346–355, 2000.

24 Xiang S. Zhou and Thomas S. Huang. Relevance feedback in image retrieval: A compre-
hensive review. Multimedia Systems, 8(6):536–544, 2003.

STACS’13

	Introduction
	Related Work
	Graph Constraints
	Cost Function Constraints
	Submodular Constraints
	Conclusion

