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Abstract
A tree-automatic structure is a structure whose domain can be encoded by a regular tree language
such that each relation is recognisable by a finite automaton processing tuples of trees synchron-
ously. The finite condensation rank (FC-rank) of a linear ordering measures how far it is away
from being dense. We prove that the FC-rank of every tree-automatic linear ordering is below ωω.
This generalises Delhommé’s result that each tree-automatic ordinal is less than ωωω . Further-
more, we show an analogue for tree-automatic linear orderings where the branching complexity
of the trees involved is bounded.
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1 Introduction

The fundamental idea of automatic structures can be traced back to the 1960s when Büchi,
Elgot, Rabin, and others used finite automata to provide decision procedures for the first-
order theory of Presburger arithmetic (N; +) and several other logical problems. Hodgson
generalised this idea to the concept of automaton decidable first-order theories. Independ-
ently of Hodgson and inspired by the successful employment of finite automata and their
methods in group theory, Khoussainov and Nerode [8] initiated the systematic investigation
of automatic structures. Recalling the efforts from the 1960s, Blumensath [2] extended this
notion beyond finite automata to finite automaton models recognising, e.g., finite trees.

Basically, a countable relational structure is tree-automatic or tree-automatically present-
able if its elements can be encoded by finite trees in such a way that its domain and its
relations are recognisable by finite automata processing either single trees or tuples of trees
synchronously. String-automatic structures can be regarded as a special case where only
specific simple trees—which effectively represent strings—are used. In contrast to the more
general concept of computable structures and based on the strong closure properties of re-
cognisability, automatic structures provide pleasant algorithmic features. In particular, they
possess decidable first-order theories.

Due to this latter circumstance, the concept of automatic structures gained a lot attention
which led to noticeable progress (cf. [1, 13]). Automatic presentations were found for many
structures and others like the random graph were shown not to be automatic at all. Some
structures are provably on an intermediate level, they are tree-automatic but not string-
automatic, for instance Skolem arithmetic (N;×). For the classes of ordinals and Boolean
algebras it was even possible to characterise their (string-)automatic members. Certain
extensions of first-order logic which preserve decidability of the corresponding theory were
detected. The question whether two automatic structures are isomorphic turned out to be
highly undecidable in general as well as for some restricted classes of structures. In contrast,
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the isomorphism problem for string-automatic ordinals was proven to be decidable. Recently,
some classes of structures for which string-automaticity of their tree-automatic members is
decidable were identified. Last but not least, different classes of automatic structures were
characterised by means of logical interpretations in universal structures.

The characterisation of automatic ordinals was provided by Delhommé [4]. An ordinal is
string-automatic if, and only if, it is less than ωω. The respective bound for tree-automatic
ordinals is ωωω . To obtain these results, Delhommé developed and employed a decomposition
technique for automatic structures. Later, Khoussainov, Rubin, and Stephan generalised
the only-if-implication of the string-automatic case by proving that the finite condensation
rank (FC-rank) of any string-automatic linear ordering is below ω [9]. Roughly speaking,
the FC-rank is an ordinal indicating how far a linear ordering is away from being dense.
Basically, they applied the decomposition technique for string-automatic structures to the
class of (scattered) linear orderings. Since that time, it is presumed that the FC-rank of
every tree-automatic linear ordering is below ωω. However, this conjecture has not been
verified yet.1 We close this gap by our first main result.

I Theorem 4.6. The FC-rank of every tree-automatic linear ordering is strictly below ωω.

Again, the proof is an application of the decomposition technique to the class of (scattered)
linear orderings. Unfortunately, Delhommé never provided a proof of his decomposition
theorem for tree-automatic structures. As his wording of the theorem is also too weak for our
purposes, we state and prove a refined version (Theorem 3.7).2 However, the main difficulty
in showing Theorem 4.6 is to substantiate that scattered linear orderings are accessible to the
decomposition technique for tree-automatic structures (Proposition 4.3 and Corollary 4.5).

In the last section, we demonstrate how to adapt the (refined) decomposition technique
to finite-rank tree-automatic structures (cf. [1, Section 1.3.7]). Roughly speaking, the rank
of a tree-automatic structure describes the branching complexity of the trees involved and
is measured in terms of the Cantor-Bendixson rank (cf. [9]). Our second main result is the
following analogue of Theorem 4.6 for finite-rank tree-automatic linear orderings.

I Theorem 5.2. Let k ∈ N+. The FC-rank of every rank-k tree-automatic linear ordering
is strictly below ωk.

In the very end, we briefly sketch how to apply these results to show upper bounds on the
Cantor-Bendixson rank of (finite-rank) tree-automatic finitely branching order trees, i.e.,
partial orderings which happen to be trees.

2 Background

2.1 Tree-Automatic Structures
This section recalls the basic notions of tree-automatic structures (cf. [1, 2]).

Let 2 = {0, 1} be the binary alphabet. The set of all strings over 2 is denoted by 2? and
the empty string by ε. A tree domain is a non-empty, finite, prefix-closed subset D ⊆ 2?.
The boundary of D is the set ∂D = {ud | u ∈ D, d ∈ 2, ud 6∈ D }. Let Σ be an alphabet.
A finite Σ-labelled tree (or just tree) is a map t : D → Σ where dom(t) = D is a tree

1 Due to personal communication, S. Jain, B. Khoussainov, P. Schlicht, and F. Stephan recently verified
the conjecture for scattered linear orderings. This implies that the FC-rank of arbitrary tree-automatic
linear orderings is at most ωω (including).

2 A similar refinement was used to bound the ordinal height of well-founded order trees [7].
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588 The Rank of Tree-Automatic Linear Orderings

domain. The set of all finite Σ-labelled trees is denoted by TΣ. Its subsets are called (tree)
languages. For t ∈ TΣ and a node u ∈ dom(t) the subtree t�u ∈ TΣ rooted at u is defined by
dom(t�u) = { v ∈ 2? | uv ∈ dom(t) } and (t�u)(v) = t(uv). For nodes u1, . . . , un ∈ dom(t)
which form an anti-chain in t, i.e., they are mutually not prefixes of each other, and trees
t1, . . . , tn ∈ TΣ, we consider the tree t[u1/t1, . . . , un/tn] ∈ TΣ which is obtained from t by
simultaneously replacing for each i ∈ [1, n] the subtree rooted at ui by ti.

A (deterministic bottom-up) tree automaton M = (Q, ι, δ, F ) over Σ consists of a finite
set Q of states, a start state ι ∈ Q, a transition function δ : Σ × Q × Q → Q, and a set
F ⊆ Q of accepting states. For all t ∈ TΣ, u ∈ dom(t)∪ ∂ dom(t), and maps ρ : U → Q with
U ⊆ ∂ dom(t) a stateM(t, u, ρ) ∈ Q is defined recursively by

M(t, u, ρ) =


δ
(
t(u),M(t, u0, ρ),M(t, u1, ρ)

)
if u ∈ dom(t),

ρ(u) if u ∈ U ,
ι if u ∈ ∂ dom(t) \ U .

We omit the parameter u (resp. U) if u = ε (resp. U = ∅). Notice thatM(t, u) =M(t�u).
The tree language recognised by M is the set L(M) = { t ∈ TΣ | M(t) ∈ F }. A language
L ⊆ TΣ is regular if it can be recognised by some tree automaton.

Let � 6∈ Σ be a new symbol and Σ� = Σ ∪ {�}. The convolution of an n-tuple
t̄ = (t1, . . . , tn) ∈ (TΣ)n of trees is the tree ⊗t̄ ∈ TΣn� defined by

dom(⊗t̄) = dom(t1) ∪ · · · ∪ dom(tn) and (⊗t̄)(u) =
(
t′1(u), . . . , t′n(u)

)
,

where t′i(u) = ti(u) if u ∈ dom(ti) and t′i(u) = � otherwise. If n = 2, we also write t1⊗ t2 for
⊗(t1, t2). A relation R ⊆ (TΣ)n is automatic if the tree language ⊗R = {⊗t̄ | t̄ ∈ R } ⊆ TΣn�
is regular. We say a tree automaton recognises R if it recognises ⊗R.

A relational structure A =
(
A;RA

1 , . . . , R
A
n

)
is called tree-automatic if its domain A is a

regular tree language and each relation RA
i is automatic.3 In this situation, a tree-automatic

presentation of A is a tuple of tree automata recognising A and the RA
i . Abusing notation,

we sometimes call any structure tree-automatic (in a wider sense) which is isomorphic to
some tree-automatic structure (in the narrow sense). The following theorem lays out the
main motivation for investigating tree-automatic structures.

I Theorem 2.1 (Blumensath [2]). Let A be a tree-automatic structure. For every first-order
formula φ(x̄) in the signature of A the relation φA defined by φ is automatic and one can
compute a tree automaton recognising φA from a tree-automatic presentation of A and the
formula φ. In particular, the first-order theory of A is decidable.

2.2 Linear Orderings
This section recalls the necessary background on linear orderings (cf. [12]).

A linear ordering is a structure A =
(
A;≤A

)
where ≤A is a non-strict linear order on A.

The corresponding strict linear order is denoted by <A. If A is clear from the context we
omit the superscript A. For n ∈ N the (isomorphism type of the) linear ordering with exactly
n elements is denoted by n =

(
{0, . . . , n − 1};≤

)
. Let I and Ai for each i ∈ I be linear

orderings. The I-sum of the Ai is the linear ordering A =
∑
i∈I Ai defined by A =

⊎
i∈I Ai

and x ≤A y iff either x, y ∈ Ai and x ≤Ai y for some i ∈ I or x ∈ Ai and y ∈ Aj for some
i, j ∈ I with i <I j. In case that I is finite, say I = n, we also write A0 + · · ·+ An−1.

3 By convention, structures are named in Fraktur and their domains by the same letter in Roman.
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A linear ordering A is dense if for all x, y ∈ A with x < y there exists a z ∈ A such that
x < z < y. Up to isomorphism, there are only five countable dense linear orderings, namely
1, η, 1 + η, η + 1, and 1 + η + 1, where η = (Q;≤) are the rational numbers ordered as
usual. At the opposite extreme, A is scattered if η cannot be embedded into A. Examples
of scattered linear orderings include the natural numbers ω = (N;≤), the reversed natural
numbers ω∗ = (N;≥), the integers ζ = (Z;≤), and the finite linear ordering n for each n ∈ N.
Moreover, all well-orderings and scattered sums of scattered linear orderings are scattered.

For two subsets X,Y ⊆ A of a linear ordering A we write X � Y if x < y for all x ∈ X
and y ∈ Y . A condensation (relation) on A is an equivalence relation ∼ on A such that each
∼-class is a (possibly non-closed) interval of A. In this situation, the set of all ∼-classes is
(strictly) linearly ordered by � and we denote this linear ordering by A/∼. An example of
a condensation is given by x ∼ y if x and y are at finite distance in A. Transfinitely iterating
this process leads to the inductive definition of a condensation ∼α on A for each ordinal α:
1. ∼0 is the identity relation on A,
2. for successor ordinals α = β + 1 let x ∼α y iff there are only finitely many elements

between the ∼β-classes of x and y in A/∼β , and
3. for limit ordinals α let x ∼α y iff x ∼β y for some β < α.
There exists an α such that ∼α and ∼β coincide for each β ≥ α. The least such α is
called finite condensation rank (FC-rank) of A and denoted by FC(A). In particular, if A
is countable then FC(A) is also countable [12, Theorem 5.9]. Moreover, each ∼α-class is a
scattered interval of A and A/∼α is dense, proving the following theorem.

I Theorem 2.2 (Hausdorff [12, Theorem 4.9]). Every linear ordering A is a dense sum
of scattered linear orderings, i.e., there are a dense linear ordering I and scattered linear
orderings Ai for each i ∈ I such that A =

∑
i∈I Ai.

Due to Hausdorff, there is a valuable inductive construction of the class of countable scattered
linear orderings. For each countable ordinal α a class VDα is defined as follows:
1. VD0 = {0,1} and
2. for α > 0 the class VDα contains all ζ-sums of elements from VD<α =

⋃
β<α VDα.

The class VD of very discrete linear orderings is the union of all classes VDα and the VD-rank
of some A ∈ VD, denoted by VD(A), is the least ordinal α with A ∈ VDα.

I Theorem 2.3 (Hausdorff [12, Theorem 5.24]). A countable linear ordering A is scattered
if, and only if, it is contained in VD. In case that A is scattered, FC(A) = VD(A).

3 Delhommé’s Decomposition Technique

3.1 Augmentations and the Decomposition Theorem
In this section, we present the decomposition technique Delhommé developed and employed
to show that every tree-automatic ordinal is less than ωω

ω [4]. As we want to apply this
technique to linear orderings, we restrict our attention to structures whose signature contains
only a single binary relation symbol ≤, i.e., (directed) graphs. First, we introduce the central
notions of sum- and box-augmentations. For a graph A and a subset B ⊆ A we denote by
A�B the subgraph induced by B.

I Definition 3.1. A graph A is a sum-augmentation of graphs B1, . . . ,Bn if there exists a
finite partition A =

⊎
i∈[1,n]Ai of A such that A�Ai ∼= Bi for each i ∈ [1, n].

I Example 3.2. Let B1, . . . ,Bn be graphs.

STACS’13



590 The Rank of Tree-Automatic Linear Orderings

1. Suppose that the Bi are linear orderings and let A be a linearisation of the partial
ordering B1 q · · · qBn =

(⊎
i∈[1,n]Bi;�) with x � y iff x, y ∈ Bi and x ≤Bi y for some

i ∈ [1, n]. Then A is a sum-augmentation of B1, . . . ,Bn.
2. Let A be a linear ordering which is a sum-augmentation of B1, . . . ,Bn. First, each Bi

can be embedded into A and is hence a linear ordering, which is scattered in case A is
scattered. Second, A is isomorphic to a linearisation of B1 q · · · qBn.

I Definition 3.3. A graph A is a box-augmentation of graphs B1, . . . ,Bn if there exists a
bijection f : B1 × · · · × Bn → A such that for all j ∈ [1, n] and x̄ ∈

∏
i∈[1,n],i6=j Bi the map

f jx̄ : Bj → A defined by f jx̄(b) = (x1, . . . , xj−1, b, xj+1, . . . , xn) is an embedding of Bj into A.

I Example 3.4. Let B1, . . . ,Bn be graphs.
1. Suppose that the Bi are linear orderings and let A be a linearisation of the partial

ordering B1×· · ·×Bn =
(
B1×· · ·×Bn;�) with x̄ � ȳ iff xi ≤Bi yi for all i ∈ [1, n]. The

identity map B1× · · · ×Bn → A witnesses that A is a box-augmentation of B1, . . . ,Bn.
2. Let A be a linear ordering which is a box-augmentation of B1, . . . ,Bn. First, each Bi

can be embedded into A and is hence a linear ordering, which is scattered in case A is
scattered. Second, the bijection f from Definition 3.3 above is an isomorphism between
a linearisation of B1 × · · · ×Bn and A.

In order to make the class of linear orderings accessible to the decomposition technique, we
have to study the connection between box-augmentations and the FC-rank. More precisely,
given some linear orderings B1, . . . ,Bn we want to establish a bound on the FC-rank of
any linear ordering which is a box-augmentation of B1, . . . ,Bn in terms of the FC-ranks of
the Bi. However, the following example indicates that this is impossible in general.

I Example 3.5. Consider the partial ordering ω × ω∗ = (N × N,�), where � is defined
as above. For each i ∈ Z the elements (m,n) ∈ N× N with m − n = i form an anti-chain,
i.e., they are mutually incomparable by �. Therefore, any ζ-sum of countably infinite linear
orderings is (isomorphic to) a linearisation of ω × ω∗. In particular, for any countable
ordinal α > 1 there exists a (scattered) linear ordering A with FC(A) = α which is a
box-augmentation of ω, ω∗. Compare this to the fact that FC(ω) = FC(ω∗) = 1.

Owing to this observation, we introduce a restricted notion of box-augmentations. Therein,
a finite colouring of a graph A is a map σ : A × A → Q into a finite set Q such that
σ(x, y) = σ(x′, y′) and x ≤ y imply x′ ≤ y′ for all x, y, x′, y′ ∈ A.

I Definition 3.6. The box-augmentation in Definition 3.3 is called tame if for each i ∈ [1, n]
there exists a finite colouring σi : Bi ×Bi → Qi of Bi such that the map

f(σ1, . . . , σn) : A×A→ Q1 × . . .×Qn,
(
f(x̄), f(ȳ)

)
7→
(
σ1(x1, y1), . . . , σn(xn, yn)

)
is a finite colouring of A.

I Remark. In the situation of Definition 3.6, assume that all Qi are the same set, say
{1, . . . ,m}. For each i ∈ [1, n] consider the structure Ci =

(
Bi;RCi

1 , . . . , RCi
m

)
with

RCi
q = σ−1

i (q). Due to the definition of a finite colouring, the RCi
q form a finite partition of

Bi×Bi which is compatible with ≤Bi . Therefore, the graph A is a generalised product—in
the sense of Feferman and Vaught—of the structures C1, . . . ,Cn using only atomic formulae.
We will see later, in Lemma 4.4 and its proof, that every linear ordering A which is a tame
box-augmentation of ω, ω∗ is scattered and satisfies FC(A) ≤ 3. We conclude this section
by providing our refined version of Delhommé’s decomposition theorem. For a structure
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A, a first-order formula φ(x, y1, . . . , yr) in the signature of A, and a tuple s̄ ∈ Ar we let
φA(·, s̄) = { t ∈ A | A |= φ(t, s̄) } and abbreviate A�φA(·, s̄) by A�φ, s̄.

I Theorem 3.7. Let A be a tree-automatic graph and φ(x, y1, . . . , yr) a first-order formula
in the signature of graphs. Then there exists a finite set SAφ of tree-automatic graphs such
that for all tuples s̄ ∈ Ar the graph A�φ, s̄ is a sum-augmentation of tame box-augmentations
of elements from SAφ .

I Remark. The only, but very important, difference to Delhommé’s decomposition theorem
is our addition of the word tame. Since by Example 3.5 there is no reasonable connection
between the FC-rank and arbitrary box-augmentations, the version without tame cannot be
used to investigate bounds on the FC-rank of tree-automatic (scattered) linear orderings.

Proof of Theorem 3.7. Suppose that A ⊆ TΣ for some alphabet Σ. Let M≤ and Mφ be
tree automata recognising ≤A and φA and Q≤ and Qφ be their state sets, respectively.
In order to simplify notation, for t ∈ TΣ we put t≤ = t ⊗ t and define tφ ∈ TΣ1+r

�
by

dom
(
tφ
)

= dom(t) and tφ(u) =
(
t(u), �, . . . , �

)
, where the number of �-symbols is r.

As a first step, we construct the set SAφ . Therefore, consider the set Γ = Q≤×Qφ×2Q≤ .
For each γ =

(
q≤, qφ, P≤

)
∈ Γ we define a graph Sγ by

Sγ =
{
t ∈ TΣ

∣∣M≤(t≤) = q≤ & Mφ

(
tφ
)

= qφ
}

and t1 ≤Sγ t2 iffM≤(t1⊗ t2) ∈ P≤ .

Clearly, Sγ is tree-automatic. Finally, we put SAφ = {Sγ | γ ∈ Γ }.
We have to show that for each s̄ = (s1, . . . , sr) ∈ Ar the subgraph A�φ, s̄ is a sum-

augmentation of box-augmentations of elements from SAφ . Therefore, we fix a tuple s̄, put
B = A�φ, s̄, and consider the tree domain D =

⋃
1≤i≤n dom(si). The s̄-type of a tree t ∈ TΣ

is defined as tps̄(t) =
(
t�D,U, ρ≤, ρφ

)
, where t�D ∈ TΣ is the restriction of t to the tree

domain dom(t)∩D, U = dom(t)∩ ∂D, and ρR : U → QR, u 7→ MR

(
(t�u)R

)
for R ∈ {<,φ}.

Observe that

Mφ

(
⊗(t, s̄)

)
=Mφ

(
⊗(t�D, s̄)

[(
u/(t�u)φ

)
u∈U

])
=Mφ

(
⊗(t�D, s̄), ρφ

)
. (1)

Hence, tps̄(t) completely determines whether t ∈ B. Since D is finite, there are only finitely
many different s̄-types. Thus, the equivalence relation ∼s̄ on TΣ defined by t1 ∼s̄ t2 iff
tps̄(t1) = tps̄(t2) has finite index. Due to the mentioned consequence of Eq. (1), B is a union
of ∼s̄-classes. Say B = C1 ] · · · ] Cm is the corresponding partition of B into ∼s̄-classes,
then B is a sum-augmentation of B�C1, . . . ,B�Cm.

As a final step, we fix a single ∼s̄-class C ⊆ B and provide a tuple of graphs from SAφ of
whom C = B�C is a box-augmentation. Let τ =

(
t0, U, ρ≤, ρφ

)
be the s̄-type corresponding

to C. For u ∈ U we put γ(u) =
(
ρ≤(u), ρφ(u), P≤(u)

)
∈ Γ, where P≤(u) is the set of all

q ∈ Q≤ for whichM≤
(
t≤0 , ρ≤[u 7→ q]

)
is an accepting state inM≤.

It is easy to show that the map f :
∏
u∈U Sγ(u) → C with f

(
(xu)u∈U

)
= t0[(u/xu)u∈U ]

is a bijection witnessing that C is a box-augmentation of the collection of the Sγ(u). To
see that this box-augmentation is tame, consider for each u ∈ U the finite colouring σu of
Sγ(u) which is given by σu(x, y) =M≤(x⊗ y) and let σ = f

(
(σu)u∈U

)
. ThenM≤(x⊗ y) is

completely determined by σ(x, y) for all x, y ∈ C and hence σ is a finite colouring of C. J

3.2 Indecomposability and Tree-Automatic Ordinals
According to Delhommé’s approach [4], we introduce the notion of indecomposable ordinals
and provide a refined version of his result on indecomposability as a corollary of Theorem 3.7.

STACS’13



592 The Rank of Tree-Automatic Linear Orderings

Therefore, suppose that C is a class of graphs and an ordinal rk(A) is assigned to each
A ∈ C in an isomorphism invariant way. We say that C is ranked by rk. An ordinal α is
rk-sum-indecomposable if for any graph A ∈ C with rk(A) = α and all graphs B1, . . . ,Bn

which A is a sum-augmentation of, there exists an i ∈ [1, n] with Bi ∈ C and rk(Bi) = α.
Analogously, rk-box-indecomposable and rk-tame-box-indecomposable ordinals are defined.
Although Example 3.5 shows that neither FC- nor VD-box-indecomposability are useful,
Corollary 4.5 indicates that VD-tame-box-indecomposability is indeed a reasonable notion.

I Corollary 3.8. Let C be a class of graphs ranked by rk, A a tree-automatic graph, and
φ(x, y1, . . . , yr) a first-order formula in the signature of graphs. Then there are only finitely
many ordinals α which are simultaneously rk-sum- and rk-tame-box-indecomposable and
admit a tuple s̄ ∈ Ar with A�φ, s̄ ∈ C and rk

(
A�φ, s̄

)
= α.

Proof. Let SAφ be the finite set of graphs which exists by Theorem 3.7. Consider an ordinal
α satisfying the condition above, witnessed by s̄ ∈ Ar. There exist box-augmentations
B1, . . . ,Bm of elements from SAφ such that A�φ, s̄ is a sum-augmentation of them. Then
there is an i ∈ [1,m] such that Bi ∈ C and rk(Bi) = α. Now, there exist C1, . . . ,Cn ∈ SAφ
of which Bi is a tame box-augmentation. Again, there is a j ∈ [1, n] with Cj ∈ C and
rk(Cj) = α. Altogether, α belongs to the finite set

{
rk(B)

∣∣ B ∈ SAφ }. J

To illustrate the general idea behind the proof of Theorem 4.6, we demonstrate how to show
Delhommé’s characterisation of the tree-automatic ordinals. For the purpose of later reuse,
the proof of the if-part is slightly more involved than actually necessary. For the converse
implication, let C be the class of ordinals and rk(α) = α. Results by Caruth [3] imply that
ωα is rk-sum-indecomposable and ωωα is rk-box-indecomposable for each ordinal α.

I Corollary 3.9 (Delhommé [4]). An ordinal α is tree-automatic if, and only if, α < ωω
ω .

Proof. We first show the if-part. There exists a k ∈ N such that α < ωω
k . For k = 0 the

claim is trivial. Suppose k ≥ 1. Then α < ωω
k−1n for some n ∈ N. We show that ωωk−1 is

tree-automatic by induction on k. The case k = 1 is obvious. For k > 1 we combine the fact
ωω

k−1 =
(
ωω

k−2)ω with the general idea behind showing that the class of tree-automatic
structures is closed under direct ω-sums. Encoding β̄ ∈

(
ωω

k−1)n by ⊗β̄ shows that ωωk−1n

is also tree-automatic. Finally,
(
ωω

k−1n
)
�φ, α = α with φ(x, y) = x < y proves the claim.

For the sake of a contradiction to the only-if-implication, assume that α ≥ ωω
ω is tree-

automatic. For each d ∈ N we have α�φ, ωωd = ωω
d , contradicting Corollary 3.8. J

4 Tree-Automatic Linear Orderings

The ultimate goal of this section is to prove Theorem 4.6, stating that the FC-rank of every
tree-automatic linear ordering is below ωω. Owing to the fact that every linear ordering is
a dense sum of scattered linear orderings, the strategy is to apply Corollary 3.8 to the class
VD of scattered linear orderings ranked by VD∗, a slight variation of the VD-rank. Since it
is already known that every ordinal is VD∗-sum-indecomposable [9], the main difficulty is
to identify the VD∗-tame-box-indecomposable ordinals.

I Definition 4.1. The VD∗-rank of a scattered linear ordering A, denoted by VD∗(A), is
the least ordinal α such that A is a finite sum of elements from VDα.

The VD∗-rank of a scattered linear ordering A is closely related to its VD-rank by the in-
equality VD∗(A) ≤ VD(A) ≤ VD∗(A) + 1. For each B ⊆ A we have VD(A�B) ≤ VD(A)
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[12, Lemma 5.14]. In particular, this implies VD∗(A�B) ≤ VD∗(A) for all B ⊆ A. Remem-
ber that whenever a scattered linear ordering A is a sum- or box-augmentation ofB1, . . . ,Bn

the Bi are also scattered linear orderings (cf. Examples 3.2 and 3.4). The following propos-
ition essentially states that every countable ordinal is VD∗-sum-indecomposable.

I Proposition 4.2 (Khoussainov, Rubin, Stephan [9, Proposition 4.4]). Let a scattered linear
ordering A be a sum-augmentation of B1, . . . ,Bn. Then

VD∗(A) = max
{

VD∗(B1), . . . ,VD∗(Bn)
}
.

Our main tool for identifying the VD∗-tame-box-indecomposable ordinals is Proposition 4.3
below. Let α and β be two ordinals. Due to Cantor normal form, there are ordinal exponents
γ1 > · · · > γn ≥ 0 and coefficients ki, `i ∈ N, which are possibly 0, such that α =

∑i=n
i=1 ω

γiki
and β =

∑i=n
i=1 ω

γi`i. The natural sum of α and β is α⊕ β =
∑i=n
i=1 ω

γi(ki + `i). Compared
to the usual addition of ordinals, this operation is commutative and strictly monotonic in
both arguments.

I Proposition 4.3. Let the scattered linear ordering A be a tame box-augmentation of
B1, . . . ,Bn. Then

VD∗(A) ≤ VD∗(B1)⊕ · · · ⊕VD∗(Bn) .

The proof below reveals the main benefit of tameness: box-augmentations are opened to
arguments using Ramsey’s theorem. It proceeds by induction on n, reducing to case n = 2.

I Lemma 4.4. Let the scattered linear ordering A be a tame box-augmentation of B,C.
Then

VD∗(A) ≤ VD∗(B)⊕VD∗(C) .

Proof. We proceed by induction on β = VD∗(B) and γ = VD∗(C). If β = 0, thenB is finite,
A a sum-augmentation of |B| many copies of C, and VD∗(A) = VD∗(C) by Proposition 4.2.
Similarly, VD∗(A) = VD∗(B) whenever γ = 0. Thus, suppose β > 0 and γ > 0.

Due to Example 3.4, we may assume that A is a linearisation of B × C. In particular,
A = B × C. By definition, B = B1 + · · ·+ Bm and C = C1 + · · ·+ Cn for some Bi ∈ VDβ
and Cj ∈ VDγ . Since every ζ-sum can be split into an ω∗-sum and an ω-sum, we can assume
that none of the Bi or Cj is constructed as a ζ-sum. By Proposition 4.2, it suffices to show
VD∗

(
A�(Bi × Cj)

)
≤ β ⊕ γ for all i ∈ [1,m] and j ∈ [1, n]. Therefore, fix i and j, and let

Z = A�(Bi × Cj), X = Bi, and Y = Cj . Notice that Z is a tame box-augmentation of X,Y.
If X is a finite sum of elements from VD<β , then VD∗(X) < β and the claim follows by

induction. The case of a finite sum Y is analogous. Thus, we assume that X and Y are ω- or
ω∗-sums. We only demonstrate the case X =

∑
k∈ω Xk with Xk ∈ VD<β and Y =

∑
`∈ω∗ Y`

with Y` ∈ VD<γ , for the remaining cases are very similar.
There are finite colourings σ of X and σ′ of Y inducing a finite colouring of Z. Using

Ramsey’s theorem, we find an unbounded infinite sequence x0 < x1 < x2 < · · · in X which is
monochromatic w.r.t. σ, i.e., σ(xk, xk′) is the same colour for all k < k′. Similarly, we find
an unbounded infinite sequence y0 > y1 > y2 > · · · in Y which is monochromatic w.r.t. σ′.
Depending on how (x0, y0) and (x1, y1) are ordered in Z, we distinguish two cases. As they
are very similar we only deal with the case (x0, y0) < (x1, y1), whose treatment is sketched
in Figure 1(a). The horizontal axis depicts X and increases from left to right, whereas the
vertical axis outlines Y and grows upwards. Within the grid, arrows point from lesser to
greater elements. Figure 1(b) sketches the case (x0, y0) > (x1, y1).
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X

Y

x0 x1 x2 xk−1 xk xk+1 xk+2

y0

y1

y`

(x0, y0)

(x1, y1)

(x, y)

(xk, y0)

(xk+1, y`)

(x′, y′)

T1

S0 S1 S2 · · · Sk Sk+2

(a) The case (x0, y0) < (x1, y1).

X

Y

x0 x1 x`

y0

y1

y2

yk−1

yk

yk+1

yk+2

(x0, y0)

(x1, y1)

(x, y)
(x0, yk)

(x`, yk+1)

(x′, y′)

T1

S0

S1

S2

...

Sk

Sk+2

(b) The case (x0, y0) > (x1, y1).

Figure 1 Proof sketch for the inductive step of Lemma 4.4.

We partition the set Z = X × Y into sets S0, S1, S2, . . . and T1 as indicated in Fig-
ure 1(a).4 For each k ∈ N there exists an k′ ∈ N such that Sk ⊆ (X0 ∪ · · · ∪ Xk′) × Y .
Since VD∗(X0 + · · ·+ Xk′) < β, the induction hypothesis yields VD∗(Z�Sk) < β ⊕ γ. Sim-
ilarly, we obtain VD∗(Z�T1) < β ⊕ γ. The right part of Figure 1(a) sketches how to show
Sk � Sk+2 for all k ∈ N. Therein (xk, y0) < (xk+1, y`) follows from (x0, y0) < (x1, y1) due
to monochromaticity and tameness. As a consequence, we obtain Z�T2 =

∑
k∈ω Z�S2k for

T2 =
⋃
k∈N S2k. Since every Z�S2k is a finite sum of elements from VD<β⊕γ , Z�T2 is an ω-sum

of elements from VD<β⊕γ . Thus, VD∗(Z�T2) ≤ β ⊕ γ. Analogously, VD∗(Z�T3) ≤ β ⊕ γ for
T3 =

⋃
k∈N S2k+1. Finally, Proposition 4.2 and Z = T1]T2]T3 imply VD∗(A) ≤ β⊕γ. J

Proof of Proposition 4.3. We proceed by induction on n. The case n = 1 is obvious. Thus,
consider n > 1. We assume that A is a linearisation of B1 × · · · × Bn. There are finite
colourings σi : Bi×Bi → Qi of each Bi which induce a finite colouring of A. For each q ∈ Q1
we put Xq = {x ∈ B1 | σ1(x, x) = q }, fix some xq ∈ Xq, and let Cq = A�({xq} × Y ), where
Y = B2 × · · · × Bn. Straightforward arguments show that Cq is a tame box-augmentation
of B2, . . . ,Bn and A�(Xq × Y ) is a tame box-augmentation of B1�Xq,Cq. Lemma 4.4 and
the induction hypothesis yield

VD∗
(
A�(Xq × Y )

)
≤ VD∗(B1�Xq)⊕VD∗(Cq) ≤ VD∗(B1)⊕

⊕
i∈[2,n]

VD∗(Bi) .

Finally, A =
⊎
q∈Q1

Xq × Y and Proposition 4.2 imply the claim. J

I Corollary 4.5. Every countable ordinal of the shape ωα is VD∗-tame-box-indecomposable.

Proof. Let a scattered linear ordering A with VD∗(A) = ωα be a tame box-augmentation of
B1, . . . ,Bn. Each Bi can be embedded into A and thus VD∗(Bi) ≤ ωα. If this inequality
were strict for each i ∈ [1, n], the definition of⊕ would imply VD∗(B1)⊕· · ·⊕VD∗(Bn) < ωα,
contradicting Proposition 4.3. J

4 It does not matter to which of the adjacent sets the dashed lines belong.
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Using the previous results, we prove our main result on tree-automatic linear orderings.

I Theorem 4.6. The FC-rank of every tree-automatic linear ordering is strictly below ωω.

Proof. For the sake of a contradiction, assume there exists a tree-automatic linear ordering
A with FC(A) ≥ ωω. Consider the formula φ(x, y1, y2) = y1 ≤ x ∧ x ≤ y2. Due to the
proof of [9, Proposition 4.5], for each d ∈ N there is a s̄ ∈ A2 such that the closed interval
I = A�φ, s̄ is scattered and VD(I) = ωd + 1. As I contains least and greatest element, it
is a finite sum of elements from VD<ωd+1 = VDωd and hence VD∗(I) = ωd. Since ωd is
VD∗-sum- and VD∗-tame-box-indecomposable, this contradicts Corollary 3.8. J

5 Finite-Rank Tree-Automatic Linear Orderings

In this section we reintroduce finite-rank tree-automatic structures [1] and investigate the
linear orderings among them. The highlight is Theorem 5.2 which states that the FC-rank
of every rank-k tree-automatic linear ordering is below ωk.

5.1 Finite-Rank Tree-Automatic Structures
A binary tree is a (possibly empty or infinite) prefix-closed subset T ⊆ 2? whose elements
are considered to be ordered by the prefix relation �. The (isomorphism type of the) subtree
rooted at u ∈ T is the binary tree T �u = { v ∈ 2? | uv ∈ T }. We call T regular if it is a
regular language, or due to the Myhill-Nerode theorem equivalently, if there are only finitely
many distinct subtrees T �u. To every tree language L ⊆ TΣ we assign the binary tree
T (L) =

⋃
t∈L dom(t), which is effectively regular when L is regular.

An infinite branch of T is a prefix-closed infinite subset P ⊆ T which is linearly ordered
by �. The derivative of T is the binary tree d(T ) consisting of all u ∈ T which are contained
in at least two distinct infinite branches. This operation effectively preserves regularity.
When T is regular, d(n)(T ) is finite for some n ∈ N, where d(n) denotes the n-fold application
of d, precisely if the full binary tree 2? cannot be embedded into T [9, Section 7]. If these
equivalent conditions are satisfied, the rank of T is the least such n ∈ N.5

I Definition 5.1. Let k ∈ N. A tree-automatic structure A is rank-k tree-automatic if the
rank of T (A) is at most k and finite-rank tree-automatic if the rank of T (A) exists.6

I Remark. For a tree-automatic structure A the rank of T (A) is not an isomorphism invariant
property, but depends on its specific representation as a tree-automatic structure. The rank
of T (A) is computable from a tree automaton recognising A. It can be shown that the rank-1
tree-automatic structures are precisely those which are isomorphic to a string-automatic
structure.

5.2 Linear Orderings
Theorem 5.2 is our main result on finite-rank tree-automatic linear orderings. Basically, it
is shown by adapting Theorem 4.6’s proof. The key idea behind this adaption is provided
by Lemma 5.3 below.

5 This rank is a slight variation of the Cantor-Bendixson rank for trees introduced in [9].
6 The definition of rank-k tree-automatic structures in [1, Section 1.3.7] is different, but equivalent.

STACS’13



596 The Rank of Tree-Automatic Linear Orderings

I Theorem 5.2. Let k ∈ N+. The FC-rank of every rank-k tree-automatic linear ordering
is strictly below ωk.

I Lemma 5.3. Let T be a regular binary tree of rank k ∈ N. Then there exists a constant
K ∈ N such that any anti-chain (w.r.t. �) A ⊆ T contains at most K elements u such that
T �u has rank k.

Proof. We proceed by induction on k. If k = 0, then T is finite and the claim is obvious.
Thus, suppose k > 0. Let n ∈ N be the index of T , i.e., the size of the set {T �u | u ∈ T }.

For the sake of a contradiction, assume there is an anti-chain A consisting of 2n + 1
elements u ∈ T such that T �u has rank k. The set B of all v ∈ T which are the longest
common prefix of two distinct elements from A contains exactly 2n elements. For every
u ∈ A the binary tree d(k−1)(T �u) = d(k−1)(T )�u is infinite and hence, by König’s lemma,
there is an infinite branch of d(k−1)(T ) containing u. Thus, B ⊆ d(k)(T ) and

∣∣d(k)(T )
∣∣ ≥ 2n.

Since d(k)(T )�v = d(k)(T �v) for all v ∈ d(k)(T ), the index of d(k)(T ) is at most n. Finally, a
pumping argument shows that d(k)(T ) is infinite, contradicting the choice of k. J

Proof of Theorem 5.2. We proceed by induction on k ≥ 1, using an artificial base case
k = 0. A rank-0 tree-automatic scattered linear ordering A is finite and hence satisfies
VD∗(A) < ω0. Thus, consider k ≥ 1.

For the sake of a contradiction, assume there exists a rank-k tree-automatic linear or-
dering A with FC(A) ≥ ωk. Let SAφ be the set constructed in Theorem 3.7’s proof from A

and the formula φ(x, y1, y2) = y1 ≤ x ∧ x ≤ y2. We show that SAφ contains for each n ∈ N a
scattered linear ordering B with ωk−1n < VD∗(B) < ωk, contradicting the finiteness of SAφ .

Consider n ∈ N and let K be the constant which exists by Lemma 5.3 applied to
T (A). Like in Theorem 4.6’s proof there is a s̄ ∈ A2 such that A�φ, s̄ is scattered and
VD∗(A�φ, s̄) = ωk−1(nK + 1). We delve into the details of Theorem 3.7’s proof, supposing
we have fixed s̄. Since ωk−1(nK + 1) is VD∗-sum-indecomposable, there exists a ∼s̄-class
C ⊆ B such that VD∗(C) = ωk−1(nK + 1). Let τ =

(
t0, U, q≤, qφ

)
be the corresponding

s̄-type. For each u ∈ U we have T
(
Sγ(u)

)
⊆ T (A)�u and hence the rank of T

(
Sγ(u)

)
is at

most k. Let V be the set of those u ∈ U for which the rank equals k. Due to Lemma 5.3,
|V | ≤ K. The induction hypothesis yields VD∗

(
Sγ(u)

)
< ωk−1 for u ∈ U \ V . If we had

VD∗
(
Sγ(u)

)
≤ ωk−1n for each u ∈ V , this would imply⊕

u∈V
VD∗

(
Sγ(u)

)
︸ ︷︷ ︸
≤ωk−1n|V |

⊕
⊕

u∈U\V

VD∗
(
Sγ(u)

)
︸ ︷︷ ︸

<ωk−1

< ωk−1n|V | ⊕ ωk−1 ≤ ωk−1(nK + 1) ,

contradicting Proposition 4.3. Hence, there exists a u ∈ V with VD∗
(
Sγ(u)

)
> ωk−1n.

Since Sγ(u) can be embedded into C, we also have VD∗
(
Sγ(u)

)
≤ ωk−1(nK + 1) < ωk. J

For ordinals α and β we have FC(α) ≤ β precisely if α ≤ ωβ . Consequently, Theorem 5.2
implies that every rank-k tree-automatic ordinal is less than ωωk . In fact, the construction
in Corollary 3.9’s proof shows that the converse implication holds as well. Therefore, we
obtain the following analogue to Corollary 3.9.

I Corollary 5.4. Let k ∈ N. An ordinal α is rank-k tree-automatic if, and only if, α < ωω
k .

6 Discussion

As an application of the FC-rank of string-automatic linear orderings being finite, it was
shown that the Cantor-Bendixson rank of string-automatic order trees is also finite [9]. The
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proof uses that Σ? admits an automatic linear order isomorphic to ω, but results in [5] imply
this to fail for TΣ. However, the arguments in [9] carry over for finitely branching order trees
since TΣ admits at least some automatic linear order. Thus, the Cantor-Bendixson rank of
every (rank-k) tree-automatic finitely branching order tree is below ωω respectively ωk.

Another application of Theorem 4.6 was pointed out by Kuske [10]. Results in [11] can be
adapted to show that the isomorphism problem for tree-automatic scattered linear orderings,
that he proved to be Π0

1-hard, belongs to level ∆0
ωω of the hyperarithmetical hierarchy.

As a sideline, Corollary 5.4 reproves that the hierarchy of finite-rank tree-automatic
structures is strict, a fact whose proof yet depended on deep logical insights [1, Section 1.3.7].
Moreover, it implies that any tree-automatic well-ordering is already finite-rank tree-auto-
matic. However, the respective question for arbitrary linear orderings remains open.

All results present upper bounds on the FC-rank. Unfortunately, for each k ∈ N there
exists a tree-automatic well-ordering A isomorphic to ωk such that T (A) has rank k. This
renders it impossible to provide useful lower bounds in terms of the rank of T (A). Using
another approach, a first step in this direction provides a decidable characterisation of the
tree-automatic scattered linear orderings of FC-rank at least ω [6].

Finally, it is known that the ordinal height of string-automatic well-founded partial
orderings is below ωω [4] and of tree-automatic well-founded order trees below ωω

ω [7].
Regretfully, even the refined decomposition technique seems too weak to verify the resulting
conjecture that the height of tree-automatic well-founded partial orderings is below ωω

ω .

Acknowledgement I thank Alexander Kartzow for valuable discussions on Delhommé’s
decomposition technique.
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