
Search using queries on indistinguishable items
Mark Braverman1 and Gal Oshri2

1 Princeton University, research partially supported by an Alfred P. Sloan
Fellowship, an NSF CAREER award, and a Turing Centenary Fellowship.

2 Princeton University

Abstract
We investigate the problem of determining a set S of k indistinguishable integers in the range
[1, n]. The algorithm is allowed to query an integer q ∈ [1, n], and receive a response comparing
this integer to an integer randomly chosen from S. The algorithm has no control over which
element of S the query q is compared to. We show tight bounds for this problem. In particular,
we show that in the natural regime where k ≤ n, the optimal number of queries to attain n−Ω(1)

error probability is Θ(k3 logn). In the regime where k > n, the optimal number of queries is
Θ(n2k logn).

Our main technical tools include the use of information theory to derive the lower bounds,
and the application of noisy binary search in the spirit of Feige, Raghavan, Peleg, and Upfal
(1994). In particular, our lower bound technique is likely to be applicable in other situations that
involve search under uncertainty.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Search, Noisy Search, Information Theory, Query Complexity

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.610

1 Introduction

This paper investigates the problem of identifying a set S of indistinguishable items by
repeated queries where we know the range of values the items can take. At every query, we
gain information based on our query and some random item from the set S we are trying to
find (we do not know which item was chosen). The overall simple statement of the problem
makes it widely generalizable. The query can be thought of as an experiment in which we
apply a measurement on an element of S without knowing which element has been measured.
The set of items can refer to a set of DNA strands in a “soup” of DNAs, passwords or any
item that we might be interested in finding when we know what possible values the item may
take. The queries can be viewed as tests on DNA strands, attempts at guessing a password or
any trial we may run that will provide some information about one of the items in question.
The specific problem we investigate is where the items are integers. Our queries are guesses
of integers which return the result of a comparison with a chosen integer from the set we are
trying to find.

As far as we know, this problem has not been investigated in the literature. However, it
falls into the rich class of noisy search problems. Since we do not know which number was
chosen when we query a number, we have to deal with a lack of information in trying to
determine the set of numbers. Due to this missing information, it is not immediately obvious
that there exists a solution to the problem.

In this paper we give asymptotically tight upper and lower bounds for the number of
queries needed to find a set S of size k of numbers from {1, . . . , n}, where the queries are
comparison queries.

© Mark Braverman and Gal Oshri;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 610–621

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.610
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Braverman and G. Oshri 611

We briefly discuss similar problems that have been previously studied. Feige et al.
explored the depth of noisy decision trees, where each node can be wrong with some constant
probability, in [2]. One of the problems they investigated is binary search where the result of
each query is wrong with a constant probability. They presented an algorithm to solve this
with running time Θ(log n

Q) where n is the input set size and Q is the probability of error of
the algorithm. The algorithm we present uses a similar technique to the one used for noisy
binary search in [2].

The Renyi-Ulam game is also a related problem. In one variation of this game, we need
to discover a chosen integer. To do this, we query a number and are told whether the number
we are trying to find is greater than the number we guessed or not. However, some constant
number of lies are allowed. In [8], one lie is allowed, which means that one of the responses
to our queries can be false. Similarly, Pelc discussed in [5] an algorithm for performing
the search when one lie is allowed and concluded that the original question posed by Ulam
(finding an integer between one and a million with one lie allowed) requires 25 queries. In [8],
[5] and other papers that explore the Renyi-Ulam game, some restriction is placed on the
pattern of queries with false results. Ravikumar and Lakshmanan discussed such patterns
(and why they are necessary to make the problem solvable) in [7].

The problem we are investigating is motivated by applications that involve a search
for several items by repeated queries where we do not know which item was chosen to be
compared with our query (i.e. the items are indistinguishable). One interpretation is where
the items represent DNA strands in a mixture that we are trying to identify. We can perform
tests that give us some information about one of the DNA strands in the mixture, but we
do not know which one. Similarly, instead of trying to identify DNA strands, we might be
trying to identify passwords where our queries give us some partial information about one
password out of several that a particular user often uses (and switches between).

We note that the applications mentioned do not take the exact form as the problem we
explore. The items in our problem are integers and the queries are guesses of an integer that
result in the response ‘less than or equal to’ or ‘greater than’. In generalizing the problem
to other applications, the form of items or queries may change. For example, the queries
in the DNA mixture example may describe a property of a particular nucleotide instead of
returning one of two possible answers. Therefore, the algorithm will have to be changed.
However, a similar framework can be used which allows information to be gained despite
the uncertainty regarding query responses due to the indistinguishability of the items. A
solution to the problem we have posed can lead to the development of new methods for
identifying a set of items where we know these items can only take on a certain range of
values. On the lower-bound side, our results show that information-theoretic quantities are
very effective at measuring and upper-bounding information learned from queries, even when
such information is only a fraction of one bit. We believe that the information-theoretic
lower bound technique will generalize to tight lower bounds in other settings.

We now discuss the results and structure of the paper. In Section 2, we formally introduce
the problem we are solving with the restriction that the number of chosen integers is
significantly smaller than the range of integers available. We prove a lower bound for the
problem in Section 3.1 using information theoretic techniques. This involves constructing the
hard instances where we split the possible values the chosen integers can take into consecutive
clusters of equal size and place one chosen integer in each such cluster. Intuitively, this forces
the search algorithm to find the elements one at a time, which turns out to be costly due to
the fact that we don’t control the sample. To formalize this intuition, we calculate the entropy
of the random variable representing a particular chosen integer (it may take values of the

STACS’13

612 Search using queries on indistinguishable items

integers in one of the clusters described above). We then use the mutual information of this
random variable and the random variable representing the responses to the queries we make
to find the minimum number of queries required to find that chosen integer. After showing
that the same minimum number of queries applies to at least half of the chosen integers, we
reach a lower bound of Ω(k3 logn), where k is the size of the set S and the elements of S
take integer values between 1 and n (inclusive). Further, this bound extends to all k < n,
using a slightly different set of hard instances. When k > n we obtain a lower bound of
Ω(k2n logn). In Section 4, we present an optimal algorithm for solving the problem, proving
both its correctness and worst case running time of O(k3 log n

δ) where δ is the probability of
error. This shows that the lower bound is tight. Moreover, while the lower bound applies
to finding S even with a constant error probability, we see that the upper bound remains
asymptotically the same even if we set the error δ = n−O(1) to be polynomially small.

Our results show that the problem we describe can be solved in practice when the items
we are searching for can take a large number of values. This is because the dependence of
the running time on n grows as logn. However, the number of items in S needs to remain
small because the dependence of the running time on k grows as k3.

2 Problem definition

We consider a (multi-)set S of k distinct integers where each is Xi ∈ {1, 2, . . . , n} for 1 ≤ i ≤ k.
Our goal is to discover the set S. The process is to repeat the following three steps:
1. Query an integer Y ∈ {1, 2, . . . , n}.
2. An integer Xi is selected from S uniformly at random.
3. We are told whether Xi ≤ Y or Xi > Y .
These three steps are repeated until we know what the k integers in S are. Our goal is to find
the most efficient algorithm for determining S. Our model of computation is that queries are
the costly operations. Therefore, by finding the most efficient algorithm we mean finding the
algorithm that minimizes the number of queries made. We refer to this as ‘the problem’ we
are solving. Furthermore, for brevity, we refer to the two possible responses to queries as ‘≤’
(Xi ≤ Y) and ‘>’ (Xi > Y) and the k integers in S as ‘the chosen integers’.

In this paper we give a complete characterization of the query complexity of this problem.
Note that since the Xi is selected at random from S, we cannot hope for a deterministic
algorithm, and have to settle for a probabilistic performance guarantee. We focus on
the regime where we are required to output the correct set S except with some (possibly
constant) probability δ. The answer can be broken down into three main regimes, which will
be discussed in the analysis: (1) k � n, e.g. k <

√
n; (2)

√
n < k < n; and (3) k ≥ n. The

answer is given by the following main theorem:

I Theorem 1. The number of queries needed to determine a multi-set S ⊂ [n] of size k with
a given error n−O(1) < δ < 1/4 is Θ(k3 logn) when k ≤ n, and Θ(k2n logn) when k ≥ n.

Note that the distinction between k <
√
n and

√
n < k < n only comes up in the analysis,

but (asymptotically) makes no difference in the result.

I Remark. Because of the way the algorithms work, Theorem 1 remains true even if the
comparisons in the query answers are themselves noisy, and output the correct value of
Xi

?
> Y correctly only with probability 1/2 + γ for some constant γ > 0.

I Remark. Somewhat surprisingly, same bounds hold for a fairly broad range of error
parameters. In particular, the lower bound holds even when the error is constant, while the

M. Braverman and G. Oshri 613

upper bound holds even for polynomially small errors (the constant in the Θ(·) may depend
on the constant β in δ = n−β).

3 The lower bounds

We begin with showing the lower bound. In fact, we break the lower bound into two regimes:
k ≤
√
n and k >

√
n. In the former regime, we use information-theoretic techniques to show

the lower bound. In the latter, we give a more straightforward proof of the Ω(k3 log k) lower
bound when k < n, and Ω(k2n logn) when k > n. The Ω(k3 log k) lower bound is weaker in
general than Ω(k3 logn) when k < n, but is equivalent in the regime where k >

√
n.

3.1 The case k ≤
√

n: an information-theoretic lower bound
The main technical ingredient in the lower bound proof is the Kullback-Leibler divergence
and mutual information. We first introduce these terms and the lemmas we will use. For a
more thorough introduction to these, see [1].

The Kullback-Leibler divergence (KL-divergence) measures the difference between two
probability distributions:
I Definition 3.1. For discrete random variables P and Q over sample space Ω, the KL-
Divergence is defined as:

DKL(P ||Q) =
∑
i∈Ω

P (i) log P (i)
Q(i)

with the convention that the term in the sum is interpreted as 0 when P (i) = 0 and +∞
when P (i) > 0 and Q(i) = 0

We also use mutual information, which we define and arrange into a form we will use:
I Definition 3.2. Mutual information is a measure of the correlation between two random
variables. The more independent the variables are, the lower the mutual information is.

I(X;Y) = DKL(p(x, y)||p(x)p(y))

Before we rearrange this definition into a form we will use, we first note (from [1]) that it
can also be written in terms of the more familiar Shannon entropy as:

I(X;Y) = H(X)−H(X|Y).

Since H(X) ≥ H(X|Y), I(X;Y) ≥ 0. If entropy is interpreted as the uncertainty regarding
a probability distribution, we see that the mutual information between X and Y represents
the reduction in uncertainty of X by knowing Y .

We now return to the original definition given for mutual information. Using the definition
of the KL-divergence and conditional probability (p(x|y) = p(x,y)

p(y)), we have:

I(X;Y) =
∑
y

p(y)
∑
x

p(x|y) log p(x|y)
p(x) =

∑
y

p(y)DKL(p(x|y)||p(x))

= EY [DKL(p(x|y)||p(x))]

Thus we see that the mutual information is the expectation of the KL-divergence between
the probability distribution of X and the probability distribution of X conditioned on Y .
If these two distributions have a high KL-divergence, then knowing Y provides us a high
amount of information regarding the probability distribution of X. This is equivalent to
saying that the mutual information of X and Y is high.

We will use the chain rule for mutual information:

STACS’13

614 Search using queries on indistinguishable items

I Lemma 2. I(X;Y1, Y2, . . . , Yk) = I(X;Y1) + I(X;Y2|Y1) + . . .+ I(X;Yk|Yk−1, . . . , Y2, Y1)

For a proof of the above lemma, see [1]. We are now done defining the information
theory terms we will need. Lastly, we will need the following lemma which describes the
KL-divergence between two Bernoulli random variables with a similar probability of success:

I Lemma 3. DKL(Bp±ε||Bp) = O(ε2) where Bp is a Bernoulli random variable with
probability of success p, 1

4 ≤ p ≤
3
4 and ε ≤ 1

8 .

The proof for this lemma is straightforward and is thus not included here. We are now
ready to begin our proof of the lower bound. The approach taken is to show that the
information gain from each query is small compared with the total information required to
find a certain chosen integer. This will allow us to show that a certain minimum number of
queries is required to find each of the k integers.

I Lemma 4. The lower bound for the number of queries required to find the k integers
between 1 and n in the set S with probability > 0.99, when 8 ≤ k ≤

√
n, is Ω(k3 logn)

Proof. We choose our input as follows. Split the integers in the range [1, n] into k equally
sized clusters. Call these clusters G1, G2, . . . , Gk. Let there be one of the k chosen integers in
each such cluster. This integer is chosen uniformly at random from the integers in the cluster.
Note that the number of integers in each cluster is n

k , which, without loss of generality, we
will assume is an integer.

We consider individually a cluster Gi where k+4
4 ≤ i ≤ 3k

4 . Let L be the random variable
that represents the chosen integer in Gi. Since this number is chosen uniformly at random
from n

k elements, the probability of each integer being the chosen integer is P (x) = 1
n
k

= k
n .

Therefore, the entropy of L is H(L) =
∑
x P (x) log 1

P (x) =
∑n

k
i=1

k
n log n

k = log n
k . We now

define Qj to be a Bernoulli random variable representing the response to the jth query (i.e.
either ‘≤’ or ‘>’). We need to make enough queries so that the information gain relevant to L
is close to the entropy of L in order to determine the chosen number in Gi with a high degree of
accuracy. This is equivalent to saying that the mutual information between L and the queries
made Q1, Q2, . . . , Ql is at least a constant times the entropy of L. Indeed, in the end, we
must have determined the point with probability greater than 0.99. Therefore, conditioned on
the queries, most of the mass is concentrated on one point and H(L|Q1, . . . , Ql) < 0.2 log n

k .
Therefore, I(L;Q1, . . . , Ql) = H(L)−H(L|Q1, . . . , Ql) = Ω(log n

k). Thus, we need:

I(L;Q1, Q2, . . . , Ql) ≥ Ω(log n
k

), (1)

where l is the number of queries made. We want to find the minimum l for which this is
true. First, we use Lemma 2 (chain rule) to write:

I(L;Q1, Q2, . . . , Ql) = I(L;Q1) + I(L;Q2|Q1) + . . .+ I(L;Ql|Ql−1, . . . , Q2, Q1). (2)

Take one of these terms and recall that we can express mutual information in terms of
KL-divergence:

I(L;Qj |Qj−1, . . . , Q1) = EQ[DKL(p(Qj |L,Qj−1, . . . , Q1)||p(Qj |Qj−1, . . . , Q1))]

where 1 ≤ j ≤ l. Thus, we need to find the KL-divergence of Qj |L,Qj−1, . . . , Q1 and of
Qj |Qj−1, . . . , Q1. We note that since we chose cluster Gi, there are i − 1 of the k chosen
integers that are smaller and k − i of the k numbers that are bigger than any element of

M. Braverman and G. Oshri 615

Gi. Therefore, for both probability distributions, the probability that the response is ‘≤’ is
at least i−1

k and the probability that the response is ‘>’ is at least k−i
k . Therefore, both

probability distributions are Bernoulli with probability of success (taking success to be the
response ‘≤’) between i−1

k and 1− k−i
k = i

k . Thus, the difference in probabilities of success
of the two distributions is at most i

k −
i−1
k = 1

k . Then if we let Qj |L,Qj−1, . . . , Q1 be
Bp and let Qj |Qj−1, . . . , Q1 be Bp±ε, we know 1

4 ≤ p ≤ 3
4 (because k+4

4 ≤ i ≤ 3k
4) and

0 ≤ ε ≤ 1
k (because this is the maximum difference in probability of success between the two

distributions). By lemma 3, DKL(p(Qj |L,Qj−1, . . . , Q1)||p(Qj |Qj−1, . . . , Q1)) = O(ε2) =
O(1

k2). So: EQ[DKL(p(Qj |L,Qj−1, . . . , Q1)||p(Qj |Qj−1, . . . , Q1))] = O(1
k2) and we have:

I(L;Qj |Qj−1, . . . , Q1) = O

(
1
k2

)
.

Returning to equation 2:

I(L;Q1, Q2, . . . , Ql) =
l∑

j=1
I(L;Qj |Qj−1, . . . , Q1) = O

(
l

1
k2

)

From (1), we have O(l 1
k2) ≥ Ω(log n

k) so

l = Ω
(
k2 log n

k

)
= Ω(k2 logn)

since k ≤
√
n. This is the minimum number of queries to find the chosen integer in Gi. This

holds in total for 3k
4 −

k+4
4 + 1 = k

2 of the k chosen numbers (this is the number of clusters Gi
with i in the range we considered). Note that to find the chosen number in Gi, queries made
in determining the number within Gj with j 6= i provide no information for determining
the number in Gi (as all queries are either bigger or smaller than all the numbers in Gi).
Then finding k

2 of the k chosen numbers requires at least Ω
(
k
2k

2 logn
)

= Ω(k3 logn) time.
Therefore, finding all k of the chosen numbers requires at least Ω(k3 logn) queries. J

3.2 The lower bound when k >
√

n

Next we turn our attention to the lower bound in the regime where k >
√
n. We start with

the case
√
n < k ≤ n− 2, as the case k > n− 2 is treated very similarly. The multi-set S

is constructed as follows: we place k/4 1’s and k/4 n’s in S. Partition the rest of the set
{1, . . . , n} into bins B1 = {2, 3}, B2 = {4, 5}, etc. For each bin Bi for i = 1, 2, . . . , k/2, we
place exactly one of the elements of Bi in S independently and uniformly at random. We
now look at the process of determining which element of Bi has been selected using the
queries. Note that only the query with Y = 2i carries any information on which element of
Bi has been selected. Thus a set of observations can be specified by a set of pairs of numbers
{(li, hi)}k/2i=1 where li represents the number of times we queried Y = 2i and received the ‘≤’
answer, and hi represents the number of times we received the ‘>’ answer. The probability
of each answer is between 1/4 and 3/4, and varies by 1/k depending on whether we selected
2i or 2i+ 1 in Bi.

When we output the set S, we need to make k/2 decisions of whether to output 2i or
2i + 1 for each Bi. Each of these decisions should depend only on the values of (li, hi),
and should maximize the probability that the output is correct. This can only be done by
outputting the maximum likelihood value for each Bi. More precisely, we should output 2i if
li

li+hi >
k/4+i−1/2

k , and 2i+1 otherwise. We are not particularly concerned with these details,
but only with the probability that our output is wrong. Denote by εi > 0 the probability

STACS’13

616 Search using queries on indistinguishable items

that the maximum-likelihood output given (li, hi) is incorrect. We first claim that to have a
probability of > 0.9 to be correct in outputting S, we must have a bound on the sum of the
εi’s.

I Claim 3.1. If given the values {(li, hi)}k/2i=1 the output S is correct with probability > 0.5,
then

∑k/2
i=1 εi < 1.

Proof. Since the events of being correct on each Bi are independent, the probability of being
correct on all Bi’s is given by

0.5 <
k/2∏
i=1

(1− εi) < e−
∑k/2

i=1
εi ,

which implies the statement of the claim. J

Next, let us denote by µi the a-priori expected number of ‘≤’ responses on li +hi queries,
and let di := |li − µi| be the observed deviation from this expected value. Intuitively, the
greater this deviation, the greater is our confidence in the answer. In fact, it is not hard to
formalize this intuition:

I Claim 3.2. For each i, and k > 25, εi > e−10di/k/3.

Proof. Suppose wlog that li > µi, and thus we are outputting 2i. Denote p = k/4+i−1
k and

q = 3k/4−i
k . We have by Bayes’ rule

εi = Pr[2i+ 1|(li, hi)] = Pr[(li, hi)|2i+ 1]
2Pr[(li, hi)]

≥ Pr[(li, hi)|2i+ 1]
2Pr[(li, hi)|2i]

=

pli(q + 1/k)hi
2(p+ 1/k)liqhi = pµi−1(q + 1/k)li+hi−µi+1

2(p+ 1/k)µi−1qli+hi−µi+1 ·
pli−µi+1(q + 1/k)µi−li−1

(p+ 1/k)li−µi+1qµi−li−1 =

Pr[(µi − 1, li + hi − µi + 1)|2i+ 1]
2Pr[(µi − 1, li + hi − µi + 1)|2i] ·

(
1− 1/k

p+ 1/k

)di+1
·
(

1 + 1/k
q

)−di−1
≥

(1/2) · (1− 5/k)2di+2 ≥ e−(5/k)(2di+2)/2 > e−10di/k/3.

The second-to last inequality follows from the fact that the breakdown (µi−1, li+hi−µi+1)
is more likely under the selection of 2i+ 1 than under the selection of 2i. J

Putting Claims 3.1 and 3.2 together we see that assuming the probability that the output
S is correct is > 0.5, we must have

k/2∑
i=1

e−10di/k < 3. (3)

I Claim 3.3. Equation (3) implies
∑k/2
i=1 di >

k2

40 ln k, for k > 40.

Proof. Denote τi := e−10di/k, and let f(x) := − ln x. The function f(x) is convex, and thus
we have

k/2∑
i=1

10di
k

=
k/2∑
i=1

f(τi) ≥
k

2 · f

2
k

k/2∑
i=1

τi

 >
k

2 ln k6 >
k

4 ln k,

since k > 40. This implies the claim. J

M. Braverman and G. Oshri 617

To finish the proof let Dt denote the random variable representing the value of
∑k/2
i=1 di

after t queries. Let Zt = Dt − t
k . At each time step, a query to Y = 2i will on average not

change di if the element from Bi is not selected for comparison with Y . If it is selected, it
will change di by at most 1. Thus, on average, Dt only grows by at most 1

k after each time
step. Thus Zt is a supermartingale. Let T be the random variable representing the time at
which we stop and output S. By the optional stopping time theorem, we have E[ZT] ≤ 0,
which implies E[T] ≥ k · E[DT].

If our overall success probability is > 0.75, it must be the case that with probability
> 1/2 the probability of the output S being correct conditioned on the observed {(li, hi)}k/2i=1
is > 1/2. Thus by Claims 3.1, 3.2 and 3.3, we have DT > k2

40 ln k with probability > 1/2.
Thus,

E[T] ≥ k · E[DT] > k · 1
2 ·

k2

40 ln k = Ω(k3 log k),

completing the proof of the lower bound.
I Remark. The proof in the regime k > n − 2 is very similar. The only difference is that
there are n/2 bins now, and we’d get E[DT] = Ω(kn logn) instead of Ω(k2 logn), and thus
E[T] = Ω(k2n logn).

We will now study the case where k ≤ n.

4 Optimal upper bounds

As discussed in the previous sections, it is not immediately clear how to make use of
the information gained from queries because we do not know which of the k integers the
information corresponds to. In this section, we present an algorithm for solving this problem.
The algorithm is optimal when the probability of error required is constant (which means
its worst case running time matches the lower bound). Our algorithm finds each of the k
numbers individually, without attempting to use information gained when finding one integer
to find another integer. We first introduce a concept we will use in all our algorithms:
I Definition 4.1. The k-position of an integer y is the number of integers in S that have a
value less than or equal to y
The general technique of the algorithms is to do a binary search for a chosen integer, but
repeat each query of the binary search enough times to know the k-position of the queried
integer. A straightforward application of binary search with repeated queries would take
Ω(k2 log2 n) queries to find the k-position of a number, even with a constant error probability.
We essentially use the noisy binary search technique of Feige et. al. [2] to attain the optimal
query complexity. We start with the following simple lemma:

I Lemma 5. We can find the k-position of integer y by making 2k2 log 2
δ queries with the

probability of being correct being at least 1− δ.

Proof. Let Ky be the k-position of y. We do m queries of y to find Ky. For each query Qi,
the probability of a response being ‘≤’ or ‘>’ is given simply in terms of Ky:

Pr[Qi =′≤′] = Ky

k

Pr[Qi =′>′] = 1−Ky

k

because Ky is the number of integers in S less than or equal to y and each such integer is
chosen as the Xi for a query with equal probability. We use the analogy that the random

STACS’13

618 Search using queries on indistinguishable items

variable Qi is a coin with probability of heads (which represents ‘≤’) being p = Ky
k . Given

m tosses of the coin, of which x are heads, we can approximate p as: p̂ = x
m . We need

to find the relation between the number of tosses m and the probability of error in this
approximation. Using standard concentration bounds [6], we see that m ≥ 1

2ε2 log 2
δ coin

tosses are needed to guarantee that |p̂− p| ≤ ε with error at most δ (where ε > 0).
We need to decide on a value for ε. Note that Ky is an integer in the range [1, k] and

therefore, p can only take on the values 0, 1
k ,

2
k , . . . ,

k
k . Thus, we need ε ≤ 1

2k so then we can
always round p̂ to the closest i

k , where i ∈ Z and 0 ≤ i ≤ k. Using this in the results from
[6], we see that m = 2k2 log 2

δ coin tosses are enough to guarantee that we know the correct
value of p with probability of error being at most δ. Given p, we have Ky = kp so we have
the k-position of y. J

We note that this immediately lets us solve the problem for k ≥ n:

I Corollary 6. When k ≥ n, there is an O(k2n logn) algorithm to find all k integers in S
with probability 1− n−c for all constant c > 0.

Proof. We find the k-position of all n integers in the range [1, n]. Given the k-position of all
n integers, we know how many of the k numbers have each integer value. If the k-position of
Y − 1 is i and the k-position of Y is i+ j, we know there are j of the chosen numbers with
the value Y (for 1 < Y ≤ n. For Y = 1, we know the number of the chosen integers with
this value is equal to the k-position of Y).

To find the k-position of an integer with probability of error at most δ, we need to
perform O(k2 log 2

δ) queries. If we want the probability of error of the algorithm to be a
constant, we need the probability of error of finding the k-position of each integer to be at
most δ = n−(c+1) so that applying a union bound gives a total probability of error < n−c

(since we find the k-position of n integers). Thus, to find the k-position of each integer we
need to perform O

(
k2 log 2

1
nc+1

)
= O

(
k2 logn

)
queries. Since we do this for n integers, the

total number of queries we make is: O(k2n logn). J

When k ≤ n, we could have used an approach involving a binary search where our decision
at each stage in the search is based on the k-position of the current number in the search.
However, this approach is problematic because of the constant error each time we find the
k-position of a number. This flaw is mentioned for a similar algorithm in [3]. The number
of queries we make is O(mk logn) = O

(
k3 logn log 2

δ

)
. Each group of queries of the same y

(m of them) give the wrong result with probability δ. Applying a union bound, our overall
probability of error (∆) is ∆ = k log (n)δ. If we want ∆ to be a constant, we need δ = 1

k logn
and thus, the number of queries we make is actually O

(
k3 log (n) log (2k logn)

)
.

To alleviate this problem, we model our algorithm as a random walk on a tree. In using
this technique, we follow [2]. In [2], the random walk approach is taken to do a noisy binary
search. We use this technique to find each of the chosen k integers, although each step of
the random walk is modified to accommodate our lack of information about which of the
k integers was chosen in a particular query. We use a binary tree where the leaves are (in
order) the integers 1, 2, . . . , n. The internal nodes represent intervals that are the union of
the leaves in their subtrees. For example, the root node has the interval [1, n] and the left
child of the root has the interval [1, bn2 c]. The tree height is logn. Finally, we extend this
tree by adding chains of length m′ = O(logn) to each of the leaf nodes, where the nodes
in these chains have the same value as the leaf they are attached to. An example tree with
n = 4 is shown in Figure 1 below.

M. Braverman and G. Oshri 619

Figure 1 Tree for the random walk with n = 4

4.1 Algorithm
We discuss an algorithm for finding the tth of the k chosen integers. This algorithm is
repeated k times (once for each of the k numbers). Starting at the root, for each node v we
take the following two steps:
1. We first check whether the tth chosen integer is in the range of the node (call it [a, b]).

To do this, we find the k-position of a− 1 and b by doing 8k2 queries of each of them. If
we find that the k-position of a− 1 is at most t− 1 and the k-position of b is at least t,
then the tth number lies in the range [a, b]. Otherwise, we backtrack up the tree to the
parent node of v .

2. If, according to the first step, the tth number lies in the range [a, b], we do 10k2 queries
of the middle value of the range of the node (call this u where u = ba+b

2 c). If v is not a
leaf (or on a leaf chain) and the k-position of u is at most t− 1, we choose the right child
of v. If the k-position of u is at least t, we choose the left child of v. If v is a leaf (or on
a leaf chain), we go down the chain further regardless of the result of the queries.

Note that there is a constant probability of error each time we determine the k-position
of an integer. This leads to a constant probability of choosing the wrong node to go to next.
We will analyze this probability shortly.

The algorithm walks for m = O(logn) steps and then stops, where m < m′. If it stops on
an internal node, the algorithm failed. If it stops on one of the leaf chains (or a leaf node),
it outputs the value of the leaf (i.e. declares this value to be the value of the tth of the k
numbers).

The following theorem summarizes our results:

I Theorem 7. Our algorithm finds all k integers in S in O
(
k3 log

(
n
δ

))
time with probability

of error at most δ for k ≤ n

To reach this theorem, we use the following lemma:

I Lemma 8. The algorithm finds the correct tth integer in S with the probability of error
being at most e−m35 , where m is the number of steps in the random walk.

STACS’13

620 Search using queries on indistinguishable items

Proof. We need to prove that the algorithm’s position on the walk after m steps is the
correct leaf chain with high probability. Orient all edges of the tree so they are directed
towards the correct leaf chain (and within this leaf chain they are directed down). We can
do this because the graph is a tree (there is only one path between every two vertices) and
there is only one correct leaf. We can now consider the algorithm’s position in the tree as a
one dimensional random walk. We let the starting point of the walk be 0 (the root of the
tree), the correct leaf be R steps to the right and any of the wrong leaves be R steps to the
left. Note that R = logn (height of the tree).

We need to find the probabilities of moving left and right in the random walk. We will
show that the probability of moving in the correct direction (to the right) is at least 0.7
at every node. Furthermore, note that the decision made at any node is independent of
the previous steps in the random walk. Let q be the probability of going left at any move.
This is equivalent to the probability of going along the wrong direction of an edge, which is
equivalent to making a mistake somewhere in choosing the next vertex. The probability of
incorrectly calculating whether the tth number is in the range [a, b] is at most the probability
that we incorrectly calculate the k-position of either a− 1 or b. Since we do 8k2 queries of
each, by Lemma 5 we know that the probability of error in calculating the k-position of each
is δ where 2 log 2

δ = 8⇒ δ = 1
8 . So the probability of incorrectly calculating the k-position

of either a − 1 or b is at most 1 −
(7

8
)2 = 15

64 . Similarly, we do 10k2 queries of u, so the
probability of error is δ where 2 log 2

δ = 10⇒ δ = 1
16 . Thus, the total probability of error at

each node is 15
64 + 1

16 < 0.3. Therefore, q < 0.3 and p ≥ 0.7, where p is the probability of
going to the right (i.e. the correct direction). Figure 2 illustrates the random walk space.

Figure 2 The random walk space

For the algorithm to be correct, it must be on or to the right of R after m steps (so it
returns the correct integer), otherwise it is wrong. Let X be the random variable denoting
the number of moves to the right made after m moves. Then m−X is the number of moves
to the left. Therefore, the algorithm is correct if X − (m − X) = 2X −m ≥ R. This is
equivalent to the condition that X ≥ R+m

2 . Then the probability that the algorithm is correct
is Pr[X ≥ R+m

2] = 1− Pr[X < R+m
2] and Pr[X < R+m

2] is the probability of error we want
to bound. To find E[X], let Xi be an indicator random variable that is 1 if the algorithm
moves to the right on the ith move and 0 otherwise. Note that Pr[Xi = 1] = p⇒ E[Xi] = p.
Therefore, E[X] = E[X1] +E[X2] + . . .+E[Xm] = pm by linearity of expectation. We want
to use a Chernoff bound to bound the probability of error, so we need to find a δ such that:

m+R

2 = (1− δ)pm⇒ 1− δ = m+R

2pm ⇒ δ = 2pm−m−R
2pm

Note that 0 ≤ δ ≤ 1 because 0 ≤ 2pm−m−R ≤ 2pm. Since each step of the random walk
is independent of the other steps (i.e. Xi is independent of Xj for i 6= j), we can use the

M. Braverman and G. Oshri 621

Chernoff bound ([4]):

Pr[X <
m+R

2] ≤ e−
δE[X]

2 = e−(2pm−m−R
2pm)2 pm

2 = e−
(2pm−m−R)2

8pm

Recall that p ≥ 0.7 and set m = x logn, where x is a constant. Then (2pm−m−R)2

8pm ≥
(1.4x−x−1)2

5.6x logn. We want to write this as m
d where d is a constant. Then d = x

(0.4x−1)2
5.6x

.
Note that as x increases, d decreases to some asymptotic value:

lim
x→∞

x
(0.4x−1)2

5.6x

= lim
x→∞

5.6x2

(0.4x− 1)2 = lim
x→∞

5.6(
0.4− 1

x

)2 = 5.6
0.42 = 35

Then we have that (2pm−m−R)2

8pm ≥ m
35 . Therefore,

Pr[X <
m+R

2] ≤ e−m35 .

Thus, we have bounded the probability of error as required. J

We apply Lemma 8 to prove the bound on the full algorithm. Even though our lower
bounds works when the error probability is constant, the algorithm applies even when the
error is very small (n−O(1)). We are now ready to present the proof for Theorem 7.

Proof. We prove separately the cases when δ ≥ 1
n and when δ < 1

n . In the first case, we set
m = 70 logn. By Lemma 8, the probability of not finding the correct tth number is at most
e−

70 logn
35 = elnn−2/ ln 2

< 1
n2 . Applying a union bound of this over the k numbers we need to

find, the probability of error is at most k
n2 ≤

√
n
n2 = 1

n1.5 because k ≤
√
n. Since 1

n1.5 <
1
n ≤ δ,

the probability of error is bounded as required. So we need in total 70k logn steps of the
random walk algorithm. Recall that each such step takes O(k2) queries. Therefore, in total,
we have a running time of O(70k3 logn) = O(k3 logn) = O(k3 log n

δ) since δ < 1.
We now consider the case when δ < 1

n . Set m = 70 log 1
δ . The probability of not

finding the correct tth number is at most e−
70 log 1

δ
35 = e−

2
ln 2 ln 1

δ < δ2 by Lemma 8 (and
that δ < 1). Applying a union bound over the k numbers we need to find, the overall
probability of error is kδ2 < nδ2 < δ as required. Thus, we need O

(
k log 1

δ

)
steps in the

random walk, where each consists of O(k2) queries. Therefore, the total running time is
O
(
k3 log 1

δ

)
= O

(
k3 log n

δ

)
. J

References
1 T. Cover, J. Thomas. Elements of Information Theory, New York: John Wiley & Sons,

Inc., 1991
2 U. Feige, P. Raghavan, D. Peleg, and E. Upfal. Computing with noisy information, SIAM

Journal on Computing, Vol 23, No. 5, pp. 1001–1018, 1994
3 R. Karp, R. Kleinberg. Noisy binary search and its applications, Proceedings of the eight-

eenth annual ACM-SIAM symposium on Discrete algorithms, pp. 881–890, 2007
4 E. Lehman, T. Leighton. Mathematics for Computer Science, Online PDF file, 2004
5 A. Pelc. Solution of Ulam’s problem on searching with a lie, Journal of Combinatorial

Theory, Series A, Vol 44, No. 1, pp. 129–140, 1987
6 M. Raginsky. Introduction: What is Statistical Learning Theory?, Online PDF file, 2011
7 B. Ravikumar, K.B. Lakshmanan. Coping with known patterns of lies in a search game,

Theoretical Computer Science, Volume 33, Issue 1, pp. 85–94, 1984.
8 J. Spencer. Guess a Number-with Lying, Mathematics Magazine, Vol. 57, No. 2, pp. 105–

108, 1984

STACS’13

	Introduction
	Problem definition
	The lower bounds
	The case kn: an information-theoretic lower bound
	The lower bound when k>n

	Optimal upper bounds
	Algorithm

