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——— Abstract

We prove a lower bound on the amount of nonuniform advice needed by black-box reductions
for the Dense Model Theorem of Green, Tao, and Ziegler, and of Reingold, Trevisan, Tulsiani,
and Vadhan. The latter theorem roughly says that for every distribution D that is é-dense in a
distribution that is €¢’-indistinguishable from uniform, there exists a “dense model” for D, that is,
a distribution that is d-dense in the uniform distribution and is e-indistinguishable from D. This
e-indistinguishability is with respect to an arbitrary small class of functions F'. For the natural
case where € > Q(ed) and € > §°M, our lower bound implies that Q( (1/€)log(1/6) - log |F|)
advice bits are necessary. There is only a polynomial gap between our lower bound and the best
upper bound for this case (due to Zhang), which is O((l/ez) log(1/4) - log \F\) Our lower bound
can be viewed as an analog of list size lower bounds for list-decoding of error-correcting codes,
but for “dense model decoding” instead. Our proof introduces some new techniques which may
be of independent interest, including an analysis of a majority of majorities of p-biased bits. The
latter analysis uses an extremely tight lower bound on the tail of the binomial distribution, which
we could not find in the literature.
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1 Introduction

The question of whether the prime numbers contain arbitrarily long arithmetic progressions
was a long-standing and famous open problem until Green and Tao [9] answered the question
in the affirmative in a breakthrough paper in 2004. A key ingredient in their proof is a
certain transference principle which, very roughly, states the following. Let U denote the
set of positive integers. Then for every D C U, if there exists an R C U such that D is
dense in R and R is “indistinguishable” from U, then there exists an M C U such that M
is dense in U and D is “indistinguishable” from M. Tao and Ziegler [13] proved a much
more general version of the transference principle, which has come to be known as the Dense
Model Theorem (since M is a dense “model” for D).

Reingold, Trevisan, Tulsiani, and Vadhan [12] demonstrated the relevance of the Dense
Model Theorem to computer science, and they gave a new proof which is much simpler
and achieves better parameters than the proof of Green, Tao, and Ziegler. Gowers [6]
independently came up with a similar proof. In addition to the original application of
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Figure 1 Relations among distributions in the Dense Model Theorem

showing that the primes contain arbitrarily long arithmetic progressions, the Dense Model
Theorem has found applications in differential privacy [11], pseudoentropy and leakage-
resilient cryptography [2, 12, 3], and graph decompositions [12], as well as further applications
in additive combinatorics [7, 8]. Subsequent variants of the Dense Model Theorem have
found applications in cryptography [5] and pseudorandomness [14].

To formally state the Dense Model Theorem, we first need some definitions. We identify
{0,1}%" with the set of functions from {0,1}" to {0,1}. We use D,, to denote the set of all
distributions on {0,1}". The domain {0,1}" could be replaced by any finite set of size 2";
we use the domain {0,1}" for concreteness.

» Definition 1. We say Dy € D,, is §-dense in Dy € D, if for all x € {0,1}", Prp,[z] <
3+ Prp,[z].

» Definition 2. We say f € {0,1}*" e-distinguishes D1, Dy € Dy, if [Ep, [f] — Ep,[f]| > e

» Definition 3. For F C {0,1}%", we say Dy, Dy € D,, are (¢, F)-indistinguishable if there
is no f € F that e-distinguishes D; and Ds.

The following is quantitatively the best known version of the theorem, due to Zhang [15]
(building on [12, 1]).

» Theorem 4 (Dense Model Theorem). For every F C {0,1}*" and every D € D,,, if there
exists an R € D,, such that D is §-dense in R and (R,U) are (¢, F')-indistinguishable where
U € D, is the uniform distribution, then there exists an M € D,, such that M is 0-dense
in U and (D, M) are (e, F)-indistinguishable, where € > Q(ed) and F' consists of all linear
threshold functions with £1 coefficients applied to O((1/€*)log(1/6)) functions from F.

The relations among the four distributions in Theorem 4 are illustrated in Figure 1.
We remark that the theorem also holds when we allow [0,1]-valued functions f rather
than just {0, 1}-valued functions f. The proof of [12] gives the same result but where
O((1/€*)log(1/€d)) functions from F are combined to get a function from F’. The original
proof of [13] achieves an F’ which is qualitatively simpler, namely all products of poly(1/e, 1/4)
functions from F, but it only achieves ¢ > exp(—poly(1/e,1/6)).} We note that the
dependence € > §2(ed) is tight in two senses.

The Dense Model Theorem is actually false when € > €4, even if F/ = {0,1}2". See [15]

for the simple argument.

The following converse to the Dense Model Theorem holds: If there exists an M € D,,

such that M is §-dense in U and (D, M) are (e, F')-indistinguishable, then there exists

! Another proof that also achieves this is given in [12].
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an R € D,, such that D is é-dense in R and (R,U) are (¢, F')-indistinguishable, where
¢ = ed and F' = F. To see this, note that U = dM + (1 — 5)]T/[\ for some M € D,,
so we can let R = 0D + (1 — 6)]\//.7; then D is §-dense in R, and for every f € {0,1}%"
we have Eg[f] — Eu[f] = 6(Ep[f] — En[f]) and thus if |[Eg[f] — Eu[f]| > € then
[Ep[f] - Emlf]] > e

The Dense Model Theorem has an undesirable feature: The class F’ is more complex
than the class F. Thus, if we wish to conclude that D and M are indistinguishable for a
class F', we need to assume that R and U are indistinguishable for a more complex class F”.
The less complex F’ is, the stronger the theorem is. The reason for this loss in complexity is
because the theorem is proved using a black-box reduction. In other words, the contrapositive
is proved: We assume that for every M d-dense in U there exists a function from F' that
e-distinguishes D and M, and we show that some of these functions can be plugged into the
reduction to get a function that ¢'-distinguishes R and U. Thus the resulting function is
necessarily more complex than the functions that get plugged into the reduction. There are
three notions of complexity that are interesting to address here.

1. Computational complexity. If F' consists of functions computed by small constant-depth
circuits (AC?), then can we let F’ consist of functions computed by (slightly larger)
constant-depth circuits? This is not known to be true when € > (ed), because the
reductions of [12, 15] involve a linear threshold function, which cannot be computed
by small constant-depth circuits. Is it necessary that the reduction computes a linear
threshold function? The original result of [13] shows that this is not necessary if €’ is
extremely small.

2. Query complexity. If F consists of functions computed by circuits of size s, then F’ will

need to consist of functions computed by circuits of a larger size s’ — but how much
larger? If the reduction makes g queries to functions from F', then plugging in size-s
circuits for these functions yields a circuit of size > ¢ - s, and thus we must have s’ > ¢ s.
Hence it is desirable to minimize g. Can we do better than ¢ < O((1/€?)log(1/6)) as in
Theorem 47

3. Advice complexity. Suppose F' consists of functions computed by uniform algorithms

running in time ¢ (that is, a single algorithm computes a sequence of functions, one for
each n = 1,2,3,...,). Then can we let F’ consist of functions computed by uniform
algorithms running in some (slightly larger) time ¢'? (Here, the distributions D, M, R, U
would need to be sequences of distributions, and a distinguisher would only be required
to succeed for infinitely many n.) The proofs of [12, 15] do not yield this, because the
reductions need a nonuniform advice string to provide some extra information about the
nth distribution D. How many bits of advice are needed?

Before proceeding we draw attention to the fact that, as we just alluded to, the advice
strings used by the reductions of [12, 15] depend on D but do not depend on R. Hence
something a little stronger than Theorem 4 actually holds: Although the statement of
Theorem 4 says we need to assume that for some R in which D is §-dense, there is no
function in F’ that ¢’-distinguishes R and U, we actually only need to assume that there is
no function in F” that simultaneously ¢-distinguishes U from every R in which D is d-dense
(the quantifiers are swapped). We are interested in proving lower bounds on the complexity
of this type of black-box reduction for the Dense Model Theorem, where the advice does not
depend on R.

The query complerity was considered by Zhang [15], who showed that for a certain
type of nonadaptive black-box reduction, Q((1/€?)log(1/8)) queries are necessary when
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¢ > Q(ed) and e > §91), matching the upper bound of O((1/€?)log(1/6)) for this case. In
this paper we consider the advice complexity. We show that for arbitrary black-box reductions,
Q(y/(1/€)1og(1/6) - log |F|) advice bits are necessary when ¢ > Q(ed) and e > §91), which
comes close to matching the upper bound of O((1/€?)log(1/6)-log |F|) for this case [15]. Our
result also holds for much more general settings of the parameters (with some degradation in
the lower bound). Proving lower bounds on the computational complezity remains open.
Let us formally state what we mean by a black-box reduction. Recall the standard
notation [k] = {1,...,k}.
» Definition 5. An (n,¢,d, ¢, k, a)-reduction (for the Dense Model Theorem) is a function
Dec : ({0,1}2")" x {0, 1} — {0,1}2"

such that for all fi,..., fr € {0,1}%" and all D € D,,, if for every M € D,, that is §-dense in
the uniform distribution U € D,, there exists an i € [k] such that f; e-distinguishes D and
M, then there exists an advice string a € {0,1}¢ such that for every R € D,, in which D is
d-dense, Dec(f1,. .., fr,a) €-distinguishes R and U.

The proofs of [12, 15] work by exhibiting such reductions. The functions {f1, ey fk}
correspond to the class F' (which, if we were considering uniform algorithms, would be the
restrictions of all the algorithms in the class to a particular input length n). We now state
our theorem.

» Theorem 6 (Main). If there exists an (n,e,0,€¢ k,a)-reduction for the Dense Model
Theorem, and if w > 1 is an integer such that 2@+2 . §w/160 < ¢ then

o 2 Lﬁ (1/€) 1og2(1/5)J -logy kb —logyw — 1

provided 2™ > :g;cz%?)l;, € < 1/641ogy(1/9), and k > 1/16€*.

For the case where ¢ > Q(ed) and ¢ > §°(1) (which is reasonable), the condition
Qut2 . §w/160 < ¢/ s met provided w is a sufficiently large constant and § is less than a
sufficiently small constant,” and thus we get a lower bound a > Q(1/(1/€) log(1/0) - log k).
Note that the three conditions at the end of the statement of Theorem 6 are very generous.

Our proof of Theorem 6 is somewhat reminiscent of the proof of a lower bound due to Lu,
Tsai, and Wu [10] on the advice complexity of black-box reductions for the Hardcore Lemma,
but our proof diverges significantly. We now give a quick preview of some of our ingredients.
We use the probabilistic method to find a class of functions fi,..., fx for which many advice
strings are needed to “cover” all the distributions D that do not have dense models. The key
technical ingredients in the analysis (which differ from the ingredients in [10] and which may
be of independent interest) include (1) a combinatorial argument identifying when several
distributions D cannot share the same advice string, and (2) an analysis of a majority of
majorities applied to overlapping sets of p-biased bits, where the sets form an almost-disjoint
family (see Figure 2). The latter analysis makes use of extremely tight lower bounds on the
tail probabilities of the binomial distribution, which we also prove (but could not find in the
literature).

In the full version we point out an analogy between our lower bound and list size lower
bounds for list-decoding of error-correcting codes, and we summarize analogous previous
work on lower bounds for hardness amplification and list-decoding. The rest of this paper is
devoted to proving Theorem 6. In Section 2 we give some intuition for the proof, and then
in Section 3 we give the formal proof.

2 The statement of Theorem 6 requires § < 2715° but this constant can be drastically improved.
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p —biased bits

Figure 2 The majority of majorities

2  Intuition

According to Definition 5, for Dec to succeed as a reduction, it must be the case that for all
fi,--s fr € {0,1}*" and all D € D,,, if D has no “dense model” then there is some advice
string a such that Dec(f1,..., fk,a) “covers” D in a certain sense. To show that Dec needs
many advice strings in order to succeed, we find functions fi, ..., fi € {0, 1}2n and a large
family of distributions in D,, such that

(i) each distribution in the family has no dense model (with respect to fi,..., fx), and

(ii) each function f € {0,1}?" covers few of the distributions in the family.

So (i) implies that each distribution in the family needs to get covered, while (ii) implies
that for each advice string a, Dec(f1, ..., fi,a) does not cover very many of them. Since the
family is large, many advice strings are needed.

First we describe a technique for achieving (i), then we describe a technique for achieving
(ii), and then we show how to consolidate the techniques to achieve both properties simul-
taneously. When we say D has no “dense model” we mean that for every M € D,, that is
d-dense in U there exists an i € [k] such that f; e-distinguishes D and M. When we say a
function “covers” D we mean that it ¢/-distinguishes R and U for every R € D,, in which
D is §-dense. The only distributions D we need to consider are uniform distributions over
subsets of {0,1}"™.

Given fi,..., fr € {0, l}zn, what is an example of a distribution with no dense model?
Suppose we pick any I C [k] of size 1/4e and we let X be the set of all z € {0,1}" such that
fi(x) = 1 for the majority of i € I. Suppose we take Dy to be the uniform distribution over X;.
Then we have Pry.p,, i~1[fi(x) = 1] > 1/242¢ where i ~ I means picking ¢ € I uniformly at
random. If X is roughly a §/2 fraction of {0,1}", then every distribution M that is é-dense
in U has at least half its mass outside of X, on strings = where Pr;;[fi(x) = 1] < 1/2 — 2e.
It is possible to show that Pryas, inr[fi(z) = 1] < Pryop,, icr[fi(z) = 1] — € and thus there
exists an ¢ € I (depending on M) such that f; e-distinguishes Dy and M. Soif | X;| =~ (6/2)2"
then D; has no dense model. This is the technique we use for finding distributions without
dense models.

Now, what is an example of a pair of distributions such that no function can cover both
simultaneously? If we can show that every pair of distributions in the family is like this,
then we will have achieved (ii). Because of an issue described below, we actually need to
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consider small collections of distributions rather than just pairs, but for now we consider
pairs. Suppose D is uniform over some X C {0,1}" of size roughly (§/2)2", and similarly
D’ is uniform over some X’ C {0,1}" of size roughly (§/2)2". If X N X' = (), then it can be
shown that no function covers both D and D’.? Furthermore, if | X N X'| is at most roughly
€’2™ then this property still holds.

To consolidate the two techniques, we find a large family of sets I C [k] each of size 1/4e,
where

(A) |X1| =~ (6/2)2™ for each I in the family, and
(B) the pairwise intersections of the X;’s (for I in the family) all have size at most roughly
€'2m.

This would imply that the corresponding distributions Dy (for I in the family) have no
dense models, and no function would cover more than one of them, so (i) and (ii) would be
achieved.

We choose the functions f,..., fi € {0, 1}2" randomly in some way, and we argue that
for an appropriate family of sets I, properties (A) and (B) both hold with high probability.
Property (A) suggests that we should choose p so that the probability a majority of 1/4¢
independent coins each with expectation p come up 1 is exactly §/2. Then we can set
fi(x) = 1 with probability p independently for each ¢ € [k] and each z € {0,1}", so for each I
of size 1/4e, Pr[z € X ] = 6/2. Then by concentration, |X;| ~ (6/2)2"™ with high probability
over fi,..., fk.

If we choose fi, ..., fr randomly in this way, how big will | X; N X /| be, for I and I’
in the family? By concentration, we would have that with high probability over fi,..., f&,
| X1 N X is roughly 2" times Pr[z € X; N X /] (which is the same for all € {0,1}™), so we
would like the latter probability to be < ¢’. So what is the probability that the conjunction
of two majorities of p-biased bits is 1? The best case is if I NI’ = (), in which case the
probability is exactly (6/2)2. There are two problems with this.

(1) We cannot get a very large family of sets I if we require them to be pairwise disjoint.
(2) This requires € > (6/2)2. In a typical setting where ¢ > Q(ed), this would require € > §,
which is an odd and somewhat severe restriction.

To solve problem (1), we use the natural idea to allow the sets I to be pairwise almost-disjoint,
rather than disjoint (which allows us to get a much larger family). So if [I N I’| is at most
some value b, how small does b have to be to ensure that the probability both majorities
are 1 is not much more than (§/2)2? We analyze this using the following trick: If both

majorities are 1, then the fraction of coins that are 1 among I U I’ is at least g, where

o _1/4e-b |I|/2+|1"|/2—b
q=1/2—2¢b = T2 = [TUT'|

tail probabilities of the binomial distribution (which we prove using known techniques but
which we could not find in the literature), we can show that p &~ 1/2 — /elog(1/6) and the
probability of getting > ¢ fraction of 1’s among the |[IUI’| coins is not much more than (§/2)?
provided g is at least a constant factor closer to 1/2 than p is, say ¢ ~ 1/2 — \/elog(1/4)/4.
Thus it suffices to have b~ \/elog(1/0)/8¢ > Q(1/(1/e)log(1/5)). Since the family of sets
I needs to be in the universe [k], there exists such a family of roughly k” many sets with
pairwise intersections bounded in size by b. Since each function can cover Dj for only one I

. Using an extremely tight characterization of the

3 Actually, there is an issue having to do with the absolute value signs in the definition of distinguishing;
this is dealt with in the formal proof.
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in the family, roughly k® advice strings are needed, which gives an advice lower bound of
roughly log(k?) > Q(+/(1/€)log(1/6) - log k).

Problem (2) is solved in the formal proof by considering small collections of sets from the
family, rather than pairs. The parameter w in Theorem 6 is used to determine how big these
collections should be. Then instead of considering the conjunction of two majorities, we need
to consider the majority of several majorities, which explains where Figure 2 comes from.

3 Formal Proof

In Section 3.1, Section 3.2, and Section 3.3 we give preliminary lemmas, definitions, and
notation. Then in Section 3.4 we give the proof of Theorem 6.

3.1 Binomial Distribution Tail

We let Tail(m,p, q) denote the probability that when m independent coins are flipped each
with probability p of heads, at least a ¢ fraction of the coins are heads (in other words, the
probability the (m,p) binomial distribution is at least gm). For our proof of Theorem 6 we
need extremely tight upper and lower bounds on the value of Tail(m,p,q). Such bounds
can be given in terms of the fundamental quantity RE(q|lp) = ¢logy(£) + (1 —¢q) logz(}%g)
which is known by a variety of names such as relative entropy, information divergence, and
Kullback-Leibler distance.
We need the following fact, which can be seen using derivatives.

» Fact 7. For all 1/4 < p < ¢ < 3/4, we have 2(q — p)? < RE(q||p) < 4(q — p)%.

We also need the following standard and well-known form of the Chernoff-Hoeffding
bound.

» Lemma 8. For allm > 1 and all 0 < p < ¢ <1, we have Tail(m,p,q) < 2~ RE(qllp)m
The following lemma (see the full version for the proof) shows that Lemma 8 is very tight.

» Lemma 9. For allm > 1 and all 1/4 < p < ¢ < 1, we have Tail(m,p,q) >
92— RE(qllp)m

1.
48\/m

Although Lemma 9 is very simple and general, for our purpose we can only use it for a
limited range of parameters, namely when e > §. This is because RE(g||p) could be so close
to 0 that ﬁ completely swamps 2~ BE@lIP)™ i which case Lemma 9 is not very tight.
To handle the full range of € and §, we use the following stronger lower bound for the case
q = 1/2. We prove this lemma in the full version.

» Lemma 10. For allm > 9 and all 1/4 < p < 1/2, we have

Tail(m,p,1/2) > min (g, m) . 9~ RE(1/2|p)m_

3.2 Combinatorial Designs

For our proof of Theorem 6 we need the existence of large families of almost-disjoint subsets
of a finite set. Such combinatorial designs have numerous applications in theoretical computer
science.

» Definition 11. An (¢, k, s,b)-design is a family of sets Ir,...,I; C [k] all of size s such
that |I; N I;/| < b for every j # j'.



T. Watson

» Lemma 12. For cvery k,s,b there exists an (¢, k, s,b)-design with £ > kb8 provided
k> 16s%.

There is nothing very novel about this lemma, and this precise version follows from a
result in [4], but we provide a simple, self-contained proof in the full version. The proof
uses the probabilistic method with a simple concentration bound for the hypergeometric
distribution.

3.3 Notational Preliminaries

The parameters n, €, d, €, k, and w are fixed as in the statement of Theorem 6, and we always
use D, M, R, U (possibly subscripted) to denote distributions in D,,, in their roles as in
Definition 5.

We let Maj denote the majority function on bit strings, and for even length strings we
break ties by returning 1. We let And denote the and function on bit strings. We let Maj*
denote the function that takes ¢ bit strings and returns their majorities as a length-t bit
string. We use o for function composition.

We also adhere to the following notational conventions. We use z for elements of {0,1}"
and X for subsets of {0,1}". We use f for elements of {0,1}2" (identified with functions
from {0,1}" to {0,1}) and F for subsets of {0,1}?". We use [k] to index functions f, and
we use ¢ for elements of [k] and I for subsets of [k]. We use [¢] to index subsets I (as in
Definition 11), and we use j for elements of [¢] and J for subsets of [¢]. We generally use s
for the size of I, and t for the size of J.

The following notation is with respect to fixed fi,..., fr € {0,1}?". Given I C [k] we
define

fr is the function that takes x € {0,1}™ and returns the length-|I| bit string (f;(x)):er;

X7 is the set of z € {0,1}"™ on which Majof; returns 1;

Dy is the uniform distribution over X; (and if X; = () then Dj is undefined).

The following notation is with respect to fixed fi,..., fr € {0, I}Zn and fixed Iy,...,I, C
[k]. Given J C [¢] we define

f1, is the function that takes x € {0,1}" and returns the |J|-tuple (f1,(x));cs;

X, is the set of x € {0,1}"™ on which Maj o Maj'”! ofr, returns 1.

J

We use ~ to denote sampling from a distribution (for example z ~ D), and we use the
convention that sampling from a set (for example ¢ ~ I') means sampling from the uniform
distribution over that set.

3.4 Proof of Theorem 6

Consider an arbitrary function Dec : ({071}2n)k x {0,1}* — {0,1}?". Supposing that
o < | 155=1/(1/€)logy(1/6) | -logy k —logy w — 1, we show that Dec is not an (n,€, 6, €, k, o)-
reduction. We first introduce some terminology to make things concise. Given fi,..., fx €
{0,1}2", a dense model for D € D,, is an M € D,, that is 6-dense in the uniform distribution
U € D,, and is such that for all i € [k], f; does not e-distinguish D and M. We say a function
f€{0,1}%" covers D € D, if for every R € D,, in which D is d-dense, f ¢’-distinguishes R
and U.

Thus to show that Dec is not an (n, €, d, €, k, «)-reduction, we need to find fi,..., fx €
{0,1}2" such that some D has no dense model but is not covered by Dec(f1, ..., fx,a) for

any advice string a € {0,1}*.
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3.4.1 Distributions Without Dense Models

The following claim is our tool for finding distributions that have no dense models. We prove
this claim in the full version.

» Claim 13. For every fi,..., fr € {0,1}%" and every I C [k] of size 0 < s < 1/4¢ (for some
s), if 0 < | X7] < (26/3)2™ then D; has no dense model.

3.4.2 Distributions That Cannot Be Covered

We say a function f € {0,1}?" positively covers D € D, if for every R € D,, in which D
is 0-dense, Eg[f] — Eu[f] > € (note the absence of absolute value signs). Observe that if
feH{o, 1}2" covers D then either f or its complement positively covers D. This is because if
there existed Ry, Ry € D,, in which D is d-dense and such that Eg, [f] < Ev[f] < Eg,[f],
then some convex combination R3 of Ry and Ry would have Eg,[f] = Ey[f]. However, D
would be §-dense in Rj3 since the set of R in which D is J-dense is convex, so f would not
cover D.

» Claim 14. For every fi,..., fr € {0,1}?", every I1,..., I, C [k] (for some £), and every
J C [£] of size t > 1 (for some t), if | X1,| < (¢//2)2" and | Xy, | > (6/2 — €' /4)2" for all j € J
then there is no function that simultaneously positively covers D;, for all j € J.

Proof. Assume that |X7,| < (¢//2)2" and |Xp,| > (6/2 — €//4)2" for all j € J. Consider
an arbitrary f € {0,1}?" and let X be the set of z € {0,1}" such that f(z) = 1. For
7€ {0,1,...,t} let X(7) be the set of x € {0,1}" such that there are exactly 7 values of
j € J for which = € X, (in other words, (Maj ofr,)(z) has Hamming weight 7). Note that
X7, =U_, X where t' = [t/2]. Let 7 = minjc, [EDzj [f]]. Then for every j € J we

T=t'

have [X N Xy, | > 7 | X[ > 7-(6/2 —€/4)2". We have

t/2) - (IX|+X5,1) = (t/2)- X0 Xy, | +t-|X N Xy,
S T XN X

djes 1 X N X

t-m-(6/2 —€/4)2™

Y

V

which implies that
| X| > 7-(6—€/2)2" — |X1,| > 7d2" —€'2" = (w—¢€/0) 02"

since 7 < 1 and | Xy, | < (¢//2)2™. We might have m — ¢/ /6 < 0, but this is not problematic.
Let M be a distribution d-dense in U that maximizes Es[f], and observe that

En[f] = min (| X|/027,1) > m—¢€/d.

We have U = 6M + (1 — 5)]\/4\ for some M € D,,. Let j € J be such that Ep,, [f] = 7, and
define the distribution R = 6Dy, + (1 — 5)]\//.7 so that Dy, is d-dense in R. Then we have

Er[f] = ém+ (1 -0)Egl/]

Eulf] = 0Bulf]+ (1= 0)Bglf] > or—¢ +(1-0)Eqlf] = Ealf]—¢

so f does not positively cover Dy,. This finishes the proof of Claim 14. <
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3.4.3 Setting the Parameters

Define s = |1/4¢] and t = w and b = | 55:1/(1/€)log,(1/6)|. By Lemma 12 there exists

an (¢, k, s,b)-design I1,. .., I, with £ = [k*®] (note that we do have k > 16s*). Define p to
be such that Tail(s,p,1/2) = §/2. We prove the following claim in the full version, using
Lemma 10.

» Claim 15. 1/elog,(1/0) < 1/2—p < 2\/elog,(1/5) < 1/4.

3.4.4 The Majority of Majorities

We choose f1, ..., fr randomly by setting f;(z) = 1 with probability p independently for
each i € [k] and each z € {0,1}".

» Claim 16. For every J C [{] of size t and every x € {0,1}", we have Pry,  r [z € X1,] <
€' /4.

Proof. Define t' = [t/2]. Note that if (MajoMaj’of;,)(z) = 1 then there exists a subset
J' C J of size t’ such that (AndoMaj" ofy ,)(z) = 1. Thus we have

Prf17~--7fk [(Ma.] oMajt OfIJ)('T) = 1]
S 2t . maXJ/gJ s =t PI’fl)m,fk [(AndoMajt/ Of]],)(],‘) = 1] .

Consider an arbitrary J' C J of size t’. Define m = | UjeJ' Ij| and notice that since Iy, ..., I,
is an (¢, k, s,b)-design, by inclusion-exclusion we have
ts—(5)b < m < ts. (1)

Define s’ = [s/2] and ¢ = 1/2 — t'b/2s. If (And o Maj" ofr, )(x) =1 then for each j € J" we
have >°.c; fi(z) > s’ and so by inclusion-exclusion we have

’

Yiel,, 1, fil@) = (Zje]’ Dier, fz‘(l‘)> — (b = s’ = (4)b > qt's > qm.

J

It follows that

Pry,.. 5 [(AndoMajt of; ,)(x) = 1]

IN

Prflwuyfk‘ [ZiGUng/ I; fl(l’) > qm}
Tail(m, p, q)

9~ RE(q|lp)m

IA

(2— RE(l/QHp)s) (m/s)-(RE(qllp)/ RE(1/2[lp))
(51/10)(m/5)~(RE(qllp)/ RE(1/2llp))

IN

where the third line follows by Lemma 8 and the fifth line follows by nonnegativity of RE
and

9—RE(1/2[|p)s < 9-2(1/2—p)*s < 5es/2 < §1/10
which holds by Fact 7, Claim 15, and € < 1/20. We have

m/s > t' — (t")2%b/2s > t'/2 > t/4 (2)
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by (1) and b < s/t' (which can be shown using the final inequality in Claim 15). We also
have t'b/2s < %1/elog,(1/8) and thus ¢ — p > 2(1/2 — p) by Claim 15. Hence by Fact 7 we
have

—p)? 2(1/2—p))?
RE(q|lp)/ RE(1/2]p) > 5ty > SU2ZZHE > 14, (3)

Using (2) and (3) we get

Prf17u~;fk [(AndoMajt, OfIJ,)(HC) _ 1] < (61/10)(t/4)'(1/4) _ 5t/160_
We conclude that Pry,  p [z € Xp,] < 20 §t/160 < ¢'/4. This finishes the proof of
Claim 16. <
3.4.5 Putting It All Together

For every j € [{] and every x € {0,1}", we have Pry [z € X;,] = Tail(s,p,1/2) = §/2.
Standard relative-error forms of the Chernoff bound give

.....

Pr,f1,...,fk [‘ijl < ((5/2 _ 6//4)2"] < 6—2”(6/)2/166
Pry g [1 X1 > (26/3)27] < em2M0/54
Pry,.... [| X1, > (€/2)2"] < e

where the latter holds for each J C [{] of size ¢, using Claim 16. Thus by a union bound we
have

(6/2 =€ /4)2™ < |Xy,| < (20/3)2" for all j € [¢] and
X, < (€/2)2™ for all J C [€] of size t

> 1— 0. e 2" (€)7/165 _ g o=2"6/54 _ (4) o=2"e/12

Pry . r

>0
since 2" > %. Fix a choice of f1,..., fi such that the above event occurs.

For every J* C [{] of size 2t — 1, there is no a € {0,1}“ such that Dec(fi,..., fi,a)
simultaneously covers Dy, for all j € J*, because otherwise for some J C J* of size t, either
Dec(f1,..., fr,a) or its complement would simultaneously positively cover Dy, for all j € J,
which would contradict Claim 14.

Therefore for each a € {0,1}*, the number of j € [{] such that Dj, is covered by
Dec(f1,..., fr,a) is at most 2¢t — 2. This implies that the number of j € [¢] for which there
exists an a € {0, 1}* such that Dec(f1, ..., fy,a) covers Dy, is at most 2 - (2t —2) < k/& < ¢
since a < (b/8)logy k —logy t — 1. Thus there exists a j € [/] such that Dy, is not covered by
Dec(f1,..., fr,a) for any a € {0,1}*. By Claim 13, D;; has no dense model, so Dec is not
an (n,e,d, €k, a)-reduction. This finishes the proof of Theorem 6.
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