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Abstract
We give the first linear kernels for Dominating Set and Connected Dominating Set

problems on graphs excluding a fixed graph H as a topological minor.
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1 Introduction

Kernelization is an emerging technique in parameterized complexity. A parameterized prob-
lem is said to admit a polynomial kernel if there is a polynomial-time algorithm (the degree
of the polynomial is independent of the parameter k), called a kernelization algorithm, that
reduces the input instance down to an instance with size bounded by a polynomial p(k) in k,
while preserving the answer. This reduced instance is called a p(k) kernel for the problem.
If the size of the kernel is O(k), then we call it a linear kernel.

The Dominating Set (DS) problem together with its numerous variants is one of the
most classic and well-studied problems in algorithms and combinatorics [27]. In the Domin-
ating Set problem, we are given a graph G and a non-negative integer k, and the question
is whether G contains a set of k vertices whose closed neighborhood contains all the vertices
of G. In the connected variant, Connected Dominating Set (CDS), we additionally
demand the subgraph induced by the dominating set to be connected. A considerable part
of the algorithmic study on these NP-complete problems has been focused on the design of
parameterized and kernelization algorithms. In general, DS is W[2]-complete and therefore
it cannot be solved by a parameterized algorithm, unless an unexpected collapse occurs in
the Parameterized Complexity Hierarchy (see [18]) and thus also does not admit a kernel.
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However, there are interesting graph classes where FPT-algorithms exist for the DS prob-
lem. The project of widening the horizon where such algorithms exist spanned a multitude
of ideas that made DS the testbed for some of the most cutting-edge techniques of para-
meterized algorithm design. For example, the initial study of parameterized subexponential
algorithms for DS on planar graphs [13, 24] resulted in the creation of bidimensionality the-
ory characterizing a broad range of graph problems that admit efficient approximate schemes,
fixed-parameter algorithms or kernels on a broad range of graphs [14, 15, 20, 22, 21].

One of the first results on linear kernels is the celebrated work of Alber, Fellows, and
Niedermeier on DS on planar graphs [1]. This work augmented significantly the interest
in proving polynomial (or preferably linear) kernels for other parameterized problems. The
result of Alber et al. [1], see also [8], has been extended to a much more general graph
classes like graphs of bounded genus [6] and apex-minor free graphs [22]. An important
step in this direction was done by Alon and Gutner [2, 26] who obtained a kernel of size
O(kh) for DS on H-minor-free and H-topological-minor free graphs, where the constant h
depends on the excluded graph H. Later, Philip, Raman, and Sikdar [31] obtained a kernel
of size O(kh) on Ki,j-free and d-degenerated graphs, where h depends on i, j and d. In
particular, for d-degenerate graphs, a subclass of Ki,j-free graphs, the algorithm of Philip,
Raman, and Sikdar [31] produces a kernel of size O(kd2). Similarly, the sizes of kernels
in [26, 31] are bounded by polynomials in k with degrees depending on the size of the
excluded minor H. Alon and Gutner [2] mentioned as a challenging question to characterize
the families of graphs for which the dominating set problem admits a linear kernel, i.e. a
kernel of size f(h) · k, where the function f depends exclusively on the graph family. In
this direction, there are already results for more restricted graph classes. According to the
meta-algorithmic results on kernels introduced in [6], DS has a kernel of size f(g) · k on
graphs of genus g. An alternative meta-algorithmic framework, based on bidimensionality
theory [14], was introduced in [22], implying the existence of a kernel of size f(H) ·k for DS
on graphs excluding an apex graph H as a minor. Recently, the result on linear kernels on
apex-minor-free graphs was extended to graphs excluding an arbitrary graph H as a minor
[23]. Prior to our work, the only result on linear kernels for DS on graphs excluding H as
a topological subgraph, was the result of Alon and Gutner in [2] for a very special case
H = K3,h. See Fig. 1 for the relationship between these classes.

planar
DS: linear kernel [J.ACM 04]
CDS: linear kernel [FOCS 09]bounded genus

DS: linear kernel  [FOCS 09]
CDS: linear kernel [FOCS 09]

apex-minor-free
DS: linear kernel  [SODA 10]
CDS: linear kernel [SODA 10]

H-minor-free
DS: linear kernel  [SODA 12]
CDS: linear kernel [SODA 12]

d-degenerated
DS: poly-kernel for fixed d [ESA 09] 
CDS: no poly-kernel for  d>1 [WG 10]

bounded degree
DS: trivial linear kernel  
CDS: trivial linear kernel H-topological-minor-free

DS: linear kernel 
CDS: linear kernel 
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Figure 1 Kernels for DS and CDS on classes of sparse graphs. Arrows represent inclusions of
classes (where the class at the head is contained in the class at the tail). In the diagram, [J.ACM
04] is referred to the paper of Albers et al. [1], [FOCS 09] to the paper of Bodlaender et al. [6],
[SODA 10] and [SODA 12] to the papers of Fomin et al. [22] and [23], [ESA 09] to the paper of
Philip et al. [31], and [WG 10] to Cygan et al. [10].

It is tempting to suggest that similar improvements on kernel sizes are possible for more
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general graph classes like d-degenerated graphs. For example, for graphs of bounded vertex
degree, a subclass of d-degenerate graphs, DS has a trivial linear kernel. Unfortunately, for
d-degenerate graphs the existence of a linear kernel and even polynomial kernel with the
exponent of the polynomial independent of d is very unlikely. By the very recent work of
Cygan et al. [9], the kernelization algorithm of Philip, Raman, and Sikdar [31] is essentially
tight—existence of a kernel of size O(k(d−3)(d−1)−ε)), would imply that coNP is in NP/poly.
In spite of these negative news, we show how to lift the linearity of kernelization for DS
from bounded-degree graphs and H-minor free graphs to the class of graphs excluding H as
a topological subgraph. Moreover, a modification of the ideas for DS kernelization can be
used to obtain a linear kernel for CDS, which is usually a much more difficult problem to
handle due to the connectivity constraint. For example, CDS does not have a polynomial
kernel on 2-degenerated graphs unless coNP is in NP/poly [10].

The class of graphs excluding H as a topological subgraph is a wide class of graphs
containing H-minor-free graphs and graphs of constant vertex degrees. The existence of
a linear kernel for DS on this class of graphs significantly extends and improves previous
works [23, 26]. The basic idea behind kernelization algorithms on apex-minor-free and
minor-free graphs is the bidimensionality of DS. Roughly speaking, the treewidth of these
graphs with dominating set k is either o(k) (as in planar, bounded genus or apex-minor-
free graphs [14]) or becomes o(k) after applying the irrelevant vertex technique [23]. This
idea can hardly work on graphs of bounded degree, and hence on graphs excluding H as a
topological subgraph. The reason is that the bound o(k) on the treewidth of such graphs
would imply that DS is solvable in subexponential time on graphs of bounded degree, which
in turn can be shown to contradict the Exponential Time Hypothesis [28]. This is why the
kernelization techniques developed for H-minor-free graphs does not seem to be applicable
directly in our case.

2 Preliminaries
In this section we give various definitions which we make use of in the paper. We refer
to Diestel’s book [16] for standard definitions from Graph Theory. Let G be a graph with
vertex set V (G) and edge set E(G). A graph G′ is a subgraph of G if V (G′) ⊆ V (G)
and E(G′) ⊆ E(G). For subset V ′ ⊆ V (G), the subgraph G′ = G[V ′] of G is called the
subgraph induced by V ′ if E(G′) = {uv ∈ E(G) | u, v ∈ V ′}. By NG(u) we denote the
(open) neighborhood of u in graph G. That is, the set of all vertices adjacent to u and
by N [u] = N(u) ∪ {u}. Similarly, for a subset D ⊆ V , we define NG[D] = ∪v∈DNG[v]
and NG(D) = NG[D] \ D. We omit the subscripts when they are clear from the context.
Throughout the paper, given a graph G and vertex subsets Z and S, whenever we say that a
subset Z dominates all but (everything but) S then we mean that V (G)\S ⊆ N [Z]. Observe
that a vertex of S can also be dominated by the set Z.

We denote by Kh the complete graph on h vertices. Also for a given graph G and a
vertex subset S, by K[S] we mean a clique on the vertex set S. For an integer r ≥ 1 and
vertex subsets P,Q ⊆ V (G), we say that a subset Q is r-dominated by P , if for every v ∈ Q
there is a u ∈ P such that the distance between u and v is at most r. For r = 1, we simply
say that Q is dominated by P . We denote by Nr

G(P ) the set of vertices r-dominated by P .
Given an edge e = xy of a graph G, the graph G/e is obtained from G by contracting

the edge e, that is, the endpoints x and y are replaced by a new vertex vxy which is adjacent
to the old neighbors of x and y (except from x and y). A graph H obtained by a sequence
of edge-contractions is said to be a contraction of G. We denote it by H ≤c G. A graph H
is a minor of a graph G if H is the contraction of some subgraph of G and we denote it by
H ≤m G. We say that a graph G is H-minor-free when it does not contain H as a minor.
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We also say that a graph class GH is H-minor-free (or, excludes H as a minor) when all its
members are H-minor-free. An apex graph is a graph obtained from a planar graph G by
adding a vertex and making it adjacent to some of the vertices of G. A graph class GH is
apex-minor-free if GH excludes a fixed apex graph H as a minor. A subdivision of a graph
H is obtained by replacing each edge of H by a path of at least one edge. We say that H
is a topological minor of G if some subgraph of G is isomorphic to a subdivision of H and
denote it by H �T G. A graph G excludes graph H as a (topological) minor if H is not a
(topological) minor of G. For a graph H, by CH , we denote all graphs that exclude H as
topological minor.
Tree Decompositions. A tree decomposition of a graph G = (V,E) is a pair (M,β) where
M is a rooted tree and β : V (M)→ 2V , such that :
1.

⋃
t∈V (M) β(t) = V .

2. For each edge {u, v} ∈ E, there is a t ∈ V (M) such that both u and v belong to β(t).
3. For each v ∈ V , the nodes in the set {t ∈ V (M) | v ∈ β(t)} form a subtree of M .
The following notations are the same as that in [25]. Given a tree decomposition of graph
G = (V,E), we define mappings σ, γ : V (M)→ 2V and κ : E(M)→ 2V . For all t ∈ V (M),
σ(t) = ∅ if t is the root of M else σ(t) = β(t) ∩ β(s) if s is the parent of t in M . We also
set γ(t) =

⋃
u is a descendant of t β(u). For all e = uv ∈ E(M), κ(e) = β(u) ∩ β(v). For a

subgraph M ′ of M by β(M ′) we denote ∪t∈V (M ′)β(t).
Let (M,β) be a tree decomposition of a graph G. The width of (M,β) is min{|β(t)|−1 |

t ∈ V (M)}, and the adhesion of the tree decomposition is max{|σ(t)| | t ∈ V (M)}. We
use tw(G) to denote the treewidth of the input graph, that is the minimum width of a
tree-decomposition of G. For every node t ∈ V (M), the torso at t is the graph τ(t) :=
G[β(t)] ∪ E(K[σ(t)]) ∪

⋃
u child of tE(K[σ(u)]).

Given a graph G, we say that a set X ⊆ V (G) is an r-protrusion of G if tw(G[X]) ≤ r

and the number of vertices in X with a neighbor in V (G) \X is at most r.
Known Decomposition Theorem. The decomposition theorem that we use extensively
for our proofs is given in the next theorem.
I Theorem 1 ([25, 32]). For every graph H, there exists a constant h, depending only on the
size of H, such that for every graph G with H 6�T G, there is a tree decomposition (M,β) of
adhesion at most h such that for all t ∈ V (M), one of the following conditions is satisfied:
1. τ(t) excludes a clique of size h as a minor.
2. τ(t) has at most h vertices of degree at least h (we call these vertices apices of τ(t)).
Moreover, if G is H-minor free graph G then nodes of second type do not exist. Furthermore,
there is an algorithm that, given graphs G, H of sizes n and h respectively, computes such
a tree decomposition in time h · nO(1) and computes the corresponding apex set Zt of size at
most h for every bag τ(t).

Actually, we can assume that in (M,β), for any x, y ∈ V (M), β(x) 6⊆ β(y). That is, no
bag is contained in other. See [18, Lemma 11.9] for the proof.

3 An approximation algorithm for DS on H 6�T G
In this section we give a constant factor approximation for DS on CH . It is well known
that graphs in CH have bounded degeneracy. In a recent manuscript a subset of the au-
thors together with others show that DS has a O(d2) factor approximation algorithm on
d-degenerate graphs [29]. To make this paper self contained we provide an approximation
algorithm for DS on CH here. The main idea of the approximation algorithm is to first
compute the tree-decomposition (M,β) given by Theorem 1 for G and then suitably select
a bag of this decomposition that still contains a vertex that is not dominated. Then we
locally find an approximate dominating set for this bag by using either an approximation
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algorithm for DS on H-minor free graphs or on graphs of almost bounded degree. We apply
this step iteratively and finally show that the dominating set returned by the algorithm is
indeed a constant factor approximation. This results in the following lemma.
I Lemma 2. Let H be a graph. Then there exists a constant η(H) depending only on |H|
such that DS admits a η(H)-factor approximation algorithm on CH .

4 Generalized Protrusions
A parameterized graph problem Π can be seen as a subset of Σ∗×Z+ where, in each instance
(x, k) of Π, x encodes a graph and k is the parameter (we denote by Z+ the set of all non-
negative integers). Here we define the notion of t-boundaried graphs and various operations
on them.

I Definition 1. [t-Boundaried Graphs] A t-boundaried graph is a graph G with a set
B ⊆ V (G) of at most t distinguished vertices and an injective labeling from B to the set
{1, . . . , t}, . The set B is called the boundary of G and vertices in B are called boundary
vertices or terminals. Given a t-boundaried graph G we denote its boundary by δ(G). We
use the notation Ft to denote the class of all t-boundaried graphs.

I Definition 2. [Gluing by ⊕] Let G1 and G2 be two t-boundaried graphs. We denote
by G1 ⊕ G2 the graph obtained by taking the disjoint union of G1 and G2 and identifying
equally-labeled vertices of the boundaries of G1 and G2. We stress that, in G1 ⊕G2, there
is an edge between two labeled vertices if there is an edge between them in G1 or in G2.

When we are dealing with a gluing operation we use the term common boundary in G1 and
G2 in order to denote the set of identified vertices in G1 ⊕G2.

I Definition 3. [Gluing by ⊕δ] The boundaried gluing operation ⊕δ is similar to the normal
gluing operation, but results in a t-boundaried graph rather than a graph. Specifically
G1 ⊕δ G2 results in a t-boundaried graph where the graph is G = G1 ⊕G2 and a vertex is
in the boundary of G if it was in the boundary of G1 or G2. Vertices in the boundary of G
keep their label from G1 or G2.

Let G be a class of (not boundaried) graphs. By slightly abusing notation we say that
a boundaried graph belongs in a graph class G if the underlying graph belongs in G. By
∂G(X), we denote the boundary of X in G, that is the vertices of G that are not in X and
are neighbours of vertices in X.

I Definition 4. [Replacement] Let G be a t-boundaried graph containing a set X ⊆ V (G)
such that ∂G(X) = δ(G). Let G1 be a t-boundaried graph. The result of replacing X with
G1 is the graph G? ⊕ G1, where G? = G \ (X \ ∂(X)) is treated as a t-boundaried graph,
where δ(G?) = δ(G).

I Definition 5. [Equivalence of t-boundaried graphs] Let Π be a parameterized graph
problem whose instances are pairs of the form (G, k). Given two t-boundaried graphs G1, G2,

we say that G1 ≡Π,t G2 if there exist a transposition constant c ∈ Z such that ∀(F, k) ∈
Ft × Z(G1 ⊕ F, k) ∈ Π⇔ (G2 ⊕ F, k + c) ∈ Π.

Note that for every t, the relation ≡Π,t on t-boundaried graphs is an equivalence relation.
Next we define a notion of “transposition-minimality” for the members of each equivalence
class of ≡Π,t .

I Definition 6. [Progressive representatives] Let Π be a parameterized graph problem
whose instances are pairs of the form (G, k) and let C be some equivalence class of ≡Π,t for
some t ∈ Z+. We say that J ∈ C is a progressive representative of C if for every H ∈ C there
exist c ∈ Z−, such that ∀(F, k) ∈ Ft × Z (H ⊕ F, k) ∈ Π⇔ (J ⊕ F, k + c) ∈ Π.
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I Lemma 3 ([6]). Let Π be a parameterized graph problem whose instances are pairs of
the form (G, k) and let t ∈ Z+. Then each equivalence class of ≡Π,t has a progressive
representative.

After Lemma 3 we are in position to give the following definitions.
I Definition 7. A parameterized graph problem Π whose instances are pairs of the form (G, k)
has Finite Integer Index (or simply has FII), if and only if for every t ∈ Z+, the equivalence
relation ≡Π,t is of finite index, that is, has a finite number of equivalence classes. For
each t ∈ Z+, we define St to be a set containing exactly one progressive representative of
each equivalence class of ≡Π,t . We say that a parameterized graph problem Π is positive
monotone if for every graph G there exists a unique ` ∈ N such that for all `′ ∈ N and `′ ≥ `,
(G, `′) ∈ Π and for all `′ ∈ N and `′ < `, (G, `′) /∈ Π. A parameterized graph problem Π is
negative monotone if for every graph G there exists a unique ` ∈ N such that for all `′ ∈ N
and `′ ≥ `, (G, `′) /∈ Π and for all `′ ∈ N and `′ < `, (G, `′) ∈ Π. Π is monotone if it is either
positive monotone or negative monotone. We denote the integer ` by Thr(G). Let Π be a
monotone parameterized graph problem that is FII. Let St be a set containing exactly one
progressive representative of each equivalence class of ≡Π,t . For a t-boundaried graph G by
κ(G) we denote maxG′∈St

Thr(G⊕G′).

I Lemma 4. Let Π be a monotone parameterized graph problem that is FII. Furthermore,
let A be an algorithm for Π that given a pair (G, k) decides whether it is in Π in at most
f(|V (G)|, k) steps for some function f : N × N → N. Then for every t ∈ N, there exists a
ξt ∈ Z+ (depending on Π and t), and an algorithm that, given a t-boundaried graph G with
|V (G)| > ξt, outputs, in O(κ(G)(f(|V (G)|+ ξt, κ(G))) steps, a t-boundaried graph G∗ such
that G ≡Π,t G

∗ and |V (G∗)| < ξt. Moreover we can compute the translation constant c from
G to G∗ in the same time.

We remark that the algorithm whose existence is guaranteed by the Lemma 4 assumes that
the set St of representatives are hardwired in the algorithm and that in general there is no
procedure that for FII problems Π outputs such a representative set.

5 Slice-Decomposition
In this section our objective is to show that in polynomial-time we can partition the graph
G satisfying certain properties that will be useful later. To obtain our decomposition we
need to use a more general notion of protrusion. More precisely, we need the following kind
of protrusions.
I Definition 8. [r-DS-protrusion] Given a graph G, we say that a set X ⊆ V (G) is an
r-DS-protrusion of G if the number of vertices in X with a neighbor in V (G) \X is at most
r and there exists a subset S ⊆ X of size at most r such that S is a dominating set of G[X].

The notion of r-DS-protrusion X differs from normal protrusion in the following way. In
the normal protrusion we demand that tw(X) is at most r while in the r-DS-protrusion we
demand that the dominating set of the graph induced on X is small. We can similarly define
the notion of r-Π-protrusion for various other graph problems Π. The next question is what
do we achieve if we get a large r-DS-protrusion (or r-CDS-protrusion). The next lemma
shows that in that case we can replace it with an equivalent small graph. More precisely we
have the following.

I Lemma 5. Let H be a fixed graph. For every t ∈ Z+, there exist a ξt ∈ Z+ (depending
on DS (CDS), t and H), and an algorithm A such that given a t-DS-protrusion (t-CDS-
protrusion) X, with |X| > ξt, and H 6�T X, A outputs in O(|X|) time (|X|O(1)) time), a
t-boundaried graph X ′ such that X ≡DS,t X

′ (X ≡CDS,t X
′) and |X ′| ≤ ξt. Moreover in the

same time we can also find the translation constant c from X to X ′.
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Let (M,β) be a tree decomposition of a graph G. For a subtree Mi of M , we define
E(Mi) as the set of edges in M that have exactly one endpoint in V (Mi). Furthermore we
define R+

i = β(Mi) and τ(M ′) := G[R+
i ] ∪

⋃
e∈E(Mi)K[κ(e)]. Our main objective in this

section is to obtain the following (α, β)-slice decomposition for α = β = O(k).

I Definition 9. [(α, β)-slice decomposition] Let G be a graph with H 6�T G and let (M,β)
be the tree decomposition given by Theorem 1. An (α, β)-slice decomposition of a graph G
is a collection P of pairwise disjoint connected subtrees {M1, . . . ,Mα} of M such that the
following holds.

Each of τ(Mi) is either H∗-minor free for some graph H∗ whose size only depends on h
or τ(Mi) has at most h vertices of degree at least h.∑ρ
i=1(

∑
e∈E(Mi) |κ(e)|) ≤ β.

We call the sets R+
i , i ∈ {1, . . . , ρ}, slices of P.

Essentially, the slice-decomposition allows us to partition the input graph G into sub-
graphs C0, C1, . . . , C`, such that |C0| = O(k); for every i ≥ 1, the neighbourhood N(Ci) ⊆
C0, and

∑
1≤i≤` |N(Ci)| = O(k). Now we define a notion of measure.

I Definition 10. Let (M,β) be the tree decomposition of a graph G given by the Theorem 1.
For a subset Q ⊆ V (G) and a subtree M ′ of M we define µ(M ′, Q) = |β(M ′) ∩ Q|. If we
delete an edge e = uv ∈ E(M) from the tree M then we get two trees. We call the trees as
Mu and Mv based on whether they contain u or v.

I Lemma 6. Let H be a fixed graph and CH be the class of graphs excluding H as a topological
minor. Then there exist two constants δ1 and δ2 (depending on the problem DS (CDS))
and a polynomial time algorithm such that given a yes instance (G, k) of DS (CDS), can
either find

a (δ1k, δ2k)-slice decomposition; or
a 2h-DS-protrusion (or 2h-CDS-protrusion) of size more than ξ2h or;
a h′-protrusion of size more than ξh′ where h′ depends only on h.

Sketch of the proof. To obtain the slice-decomposition we introduce our marking scheme
as follows.

1. Apply Lemma 2 on the input graph G and compute a η(H)-factor approximation (con-
nected) dominating set D for G.

2. Use Theorem 1 and compute a tree-decomposition (M,β). We call a tree edge e = uv ∈
E(M) heavy if µ(Mu, D) ≥ h + 1 and µ(Mv, D) ≥ h + 1. Mark all the edges of M that
are heavy. We use F to denote all the set of edges that have been marked.

Let M∗ be the subtree (requires proof) induced on all the heavy edges. We use this
tree M∗ to obtain the decomposition. If (G, k) is a yes instance then one can show that
the number of leaves in the tree M∗ is upper bounded by O(k). This immediately implies
that the number of maximal paths consisting only of degree 2 vertices is upper bounded
by O(k). We show that if any of these paths is too long then we can obtain a 2h-DS-
protrusion of large size. This implies that the size of the treeM∗ is upper bounded by O(k).
Now we delete all the edges appearing in M∗ from M . This breaks the tree M into O(k)
subtrees, P = {M1, . . . ,Mα}. We argue that these subtrees form the partition described in
the definition of slice decomposition. To show that

∑ρ
i=1(

∑
e∈F(Mi) |κ(e)|) ≤ O(k), we use

the fact that any edge of M∗ sees at most two trees among P. J
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6 Final Kernel
In this section we use slice-decomposition obtained in the last section and the reduction
rules used in [23] to obtain linear kernels for DS and CDS. We first outline our algorithm
for DS and then explain how we can obtain a linear kernel for CDS.
Kernelization Algorithm for DS. Given an instance (G, k) of DS we first apply Lemma 2
and find a dominating set D of G. If |D| > η(H)k we return that (G, k) is a no instance to
DS. Else, we apply Lemma 6 and

either find (δ1k, δ2k)-slice decomposition; or
a 2h-DS-protrusion X of G (or 2h-CDS-protrusion) of size more than ξ2h; or
a h′-protrusion of size more than ξh′ where h′ depends only on h.

In the second case we apply Lemma 5. Given X we apply Lemma 5 and obtain a boundaried
graph X ′ such that |X ′| ≤ ξ2h and X ≡DS,2h X

′ (X ≡CDS,2h X
′). We also compute the

translation constant c between X and X ′. Now we replace the graph X with X ′ and obtain
a new equivalent instance (G′, k + c). (Recall that c is a non-positive integer). In the third
case we apply the protrusion replacement lemma of [6, Lemma 7] to obtain a new equivalent
instance (G′, k′) for k′ ≤ k with |V (G′)| < |V (G)|. We repeat this process until Lemma 6
returns a slice-decomposition. For simplicity we denote by (G, k) itself the graph on which
Lemma 6 returns the slice-decomposition. Since the number of times this process can be
repeated is upper bounded by n = |V (G)|, we can obtain (δ1k, δ2k)-slice decomposition for
(G, k) in polynomial-time.

Let P be the pairwise disjoint connected subtrees {M1, . . . ,Mα} of M coming from
the slice-decomposition of G. Recall that R+

i = β(Mi). Let Qi =
⋃
e∈E(Mi) κ(e), Bi =

(D ∩ R+
i ) ∪ Qi and bi = |Bi|. In this section we will treat Gi := G[R+

i ] as a graph with
boundary Bi. Observe that Bi is a dominating set for Gi.

We have two kinds of graphs Gi. In one case we have that Gi is H∗-minor free for a
graph H∗ whose size only depends on h. In the other case we have that the graph Gi has at
most h′ vertices of degree at least h′. To obtain our kernel we will show the following two
lemmata.
I Lemma 7. There exists a constant δ and a polynomial time algorithm that, given a graph
G with boundary S where S is a dominating set for G and G has at most h′ vertices of degree
at least h′, outputs a graph G′ with boundary S such that G′ ≡DS,|S| G and |V (G′)| ≤ δ|S|.
Furthermore we can also compute the translation constant c of G and G′ in polynomial-time.

I Lemma 8. There exists a constant δ and a polynomial time algorithm that, given an
H-minor free graph G with boundary S where S is a dominating set for G, outputs a graph
G′ with boundary S such that G′ ≡DS,|S| G and |V (G′)| ≤ δ|S|. Furthermore we can also
compute the translation constant c of G and G′ in polynomial-time.

Once we have proved Lemmata 7 and 8, we obtain the linear sized kernel for DS as
follows. Given the graph G we obtain the slice-decomposition and check if any of Gi has size
more than δbi. If yes then we either apply Lemma 7 or Lemma 8 based on the type of Gi and
obtain a graph G′i such that G′i ≡DS,bi Gi and |V (G′i)| ≤ δbi. We think G = Gi⊕G?, where
G? = G \ (R+

i \Bi) as a bi-boundaried graph with boundary Bi. Then we obtain a smaller
equivalent graph G′ = G? ⊕G′i and k′ = k + c. After this we can repeat the whole process
once again. This implies that when we can not apply Lemmata 8 or 7 on (G, k) we have
that each of |V (Gi)| ≤ δbi. Furthermore notice that ∪αi=1R

+
i = V (G). This implies that in

this case we have the following:
∑α
i=1 |R

+
i | ≤ δ

∑α
i=1 bi = δ(

∑α
i=1(|Qi|+ |(D∩R+

i )\Qi|)) =
δ(

∑α
i=1 |Qi|+

∑α
i=1 |(D∩R

+
i )\Qi|) ≤ δδ2k+δη(H)k = O(k). This bring us to the following

theorem.
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I Theorem 9. DS admits a linear kernel on graphs excluding a fixed graph H as a topological
minor.

It only remains to prove Lemmata 7 and 8 to complete the proof of Theorem 9.
Irrelevant Vertex Rule and proof for Lemma 7. For the proofs of Lemmata 7 and 8 we
need to use an irrelevant vertex rule developed in [23]. Furthermore, the proof of Lemma 8
is essentially a reformulation of the results presented in [23].

If the graph G is Kh′ -minor free then the irrelevant vertex rule will be used in a recursive
fashion. In each recursive step it is used in order to reduce the treewidth of torsos and hence
also the entire graph. Then the graph is split in two pieces and the procedure is applied
recursively to the two pieces. In the bottom of the recursion when the graph becomes smaller
but still big enough then we apply Lemma 5 on it and obtain an equivalent instance.

Let G be a graph given with its tree-decomposition (M,β) as described in Theorem 1,
and τ(t) be one of its torsos. Let S be a dominating set of G, and Zt = A, |A| ≤ h, be the
set of apices of τ(t). The reduction rule essentially “preserves” all dominating sets of size at
most |S| in G, without introducing any new ones. To describe the reduction rule we need
several definitions. The first step in our reduction rule is to classify different subsets A′ of
A into feasible and infeasible sets. The intuition behind the definition is that a subset A′ of
A is feasible if there exists a set D in G of size at most |S| + 1 such that D dominates all
but S and D ∩ A = A′. However, we cannot test in polynomial-time whether such a set D
exists. We will therefore say that a subset A′ of A is feasible if the 2-approximation for DS
on H-minor-free graphs [20] outputs a set D of size at most 2(|S|+2) such that D dominates
V (G) \ (A ∪ S) and D ∩A = A′. Observe that if such a set D of size at most |S|+ 1 exists
then A′ is surely feasible, while if no such set D of size at most 2|S| + 2 exists, then A′ is
surely not feasible. We will frequently use this in our arguments. Let us remark that there
always exists a feasible set A′ ⊆ A. In particular, A′ = S ∩ A is feasible since S dominates
G. For feasible sets A′ we will denote by D(A′) the set D output by the approximation
algorithm.

For every subset A′ ⊆ A, we select a vertex v of G such that A′ ⊆ NG[v]. If such a
vertex exist, we call it a representative of A′. Let us remark that some sets can have no
representatives and some distinct subsets of A may have the same representative. We define
R to be the set of representative vertices for subsets of A. The size of R is at most 2|A|. For
A′ ⊆ A, the set of dominated vertices (by A′) is W (A′) = N(A′) \ A. We say that vertex
v ∈ V (G) \ A is fully dominated by A′ if N [v] \ A ⊆ W (A′). A vertex w ∈ V (G) \ A is
irrelevant with respect to A′ if w /∈ R, w /∈ S, and w is fully dominated by A′. Now we are
ready to state the irrelevant vertex rule.
Irrelevant Vertex Rule: If a vertex w is irrelevant with respect to every feasible A′ ⊆ A,

then delete w from G.

I Lemma 10. Let S be a dominating set in G, and G′ be the graph obtained by applying
the Irrelevant Vertex Rule on G, where w was the deleted vertex. Then G′ ≡DS,|S| G.

Proof. Let the transposition constant be 0. To show that G′ ≡DS,|S| G, we show that given
a |B|-boundaried graph G1 and a positive integer ` we have that (G ⊕ G1, `) ∈ DS ⇔
(G′ ⊕ G1, `) ∈ DS . Let Z ⊂ V (G ⊕ G1) be a dominating set for G ⊕ G1 of size at most
`. Let Z1 = V (G) ∩ Z. If |Z1| > |S| then (Z \ Z1) ∪ S is a smaller dominating set for
G ⊕ G1. Therefore we assume that |Z1| ≤ |S|. Let A′ = Z ∩ A, and observe that A′ is
feasible because Z1 dominates all but S. If w /∈ Z, then Z ′ = Z is a dominating set of
size at most ` for G′ ⊕ G1. So assume w ∈ Z. Observe that w ∈ Z1 and w /∈ S and
therefore all the neighbors of w lie in G. Since w is irrelevant with respect to all feasible
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subsets of A and A′ is feasible, we have that w is irrelevant with respect to A′. Hence
NG⊕G1(w) \NG⊕G1(Z \ w) ⊆ A. There is a representative w′ ∈ R, w′ 6= w (since w /∈ R),
such that (NG⊕G1(w) = NG(w)) ∩ A ⊆ NG(w′) ∩ A. Hence Z ′ = (Z ∪ {w′}) \ {w} is a
dominating set of G′ ⊕G1 of size at most `.

Now, let Z ′ ⊆ V (G′ ⊕ G1) be a dominating set of size at most ` for G′ ⊕ G1. Let
Z ′1 = V (G′)∩Z ′. As in the forward direction we can assume that |Z ′1| ≤ |S|. We show that
Z ′ also dominates w in G⊕G1. Specifically Z ′1 ∪ {w} is a dominating set of all but S in G
of size at most |S|+ 1 so Z ′1 ∩A is feasible. Since {w} is irrelevant with respect to Z ′1 ∩A,
we have w ∈ NG(Z ′1 ∩A) and thus Z ′ is a dominating set for G′⊕G1 of size at most `. This
concludes the proof. J

For a graph G and its dominating set S, we apply the Irrelevant Vertex Rule exhaustively
on all torsos of G, obtaining an induced subgraph G′ of G. By Lemma 10 and transitivity of
≡DS,t we have that G′ ≡DS,|S| G. We now prove that a graph G which can not be reduced
by the irrelevant vertex rule has a property that each of its torso has a small 2-dominating
set (the proof is omitted in this extended abstract).
I Lemma 11. There is a polynomial-time algorithm that for a given graph G and a dom-
inating set S of G, outputs graph G′ such that G′ ≡DS G and for every torso τ(t) of the
tree-decomposition (M,β) of G, we have that τ(t)\Zt has a 2-dominating set of size O(|S|).
Furthermore if G is a H-minor free graph then tw(G) = O(

√
|S|).

Proof of Lemma 7. We apply Lemma 11 to G with a decomposition that has a single bag
containing the entire graph and the apices A of the bag being the vertices of degree at least
h′. By Lemma 11, G \ A has a 2-dominating set of size δ3|S|. Since all vertices of G \ A
have degree at most h′ it follows that |V (G)| ≤ h′ + δ3h|S|δ3h2|S| ≤ δ|S|. J

Kernelization algorithm for CDS. To obtain kernelization algorithm for CDS the only
thing that remains to show are results analogous to Lemmata 8 and 7 for DS. However to
obtain this we need to apply reduction rules developed in [23] for CDS. Finally we need to
adapt the proofs of Lemmata 11, 12, 13 and 14 given in the full-version available at [23] with
the new perspective. Two of these lemmata essentially shows the correctness of reduction
rules for CDS and that every torso has 2-dominating set of size at most O(|S|). Here S
is a connected dominating set of the input graph G. The only result that is not proved
in [23] is the result analogous to Lemma 7 for DS. However, the size of a dominating set is
at most the size of a connected dominating set. After this the proof for the case that given a
graph G with at most h′ vertices of degree at least h′ we can return a canonically equivalent
graph G′ is verbatim to the proof of Lemma 7. We omit these adaptation details from this
extended abstract.
I Theorem 12. CDS admits a linear kernel on graphs excluding a fixed graph H as a
topological minor.

7 Conclusions

In this paper we give linear kernels for two widely studied parameterized problems, namely
DS and CDS, for every graph class that excludes some graph as a topological minor. The
emerging questions are the following two: (1 ) Can our techniques be extended to more
general sparse graph classes? (2) Can our techniques be applied to more general families
of parameterized problems? We believe that any step towards resolving the first question
should be based on significant graph-theoretical advances. Our results make use of the
decomposition theorem of Grohe and Marx in [25] that, in turn, can be seen as an extension
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of seminal results of the Graph Minor Series by Robertson and Seymour [32]. So far no
similar structural theorem is known for more general sparse graph classes. We also believe
that a broadening of the kernelization horizon for these two problems without the use of
some tree-based structural characterization of sparsity requires completely different ideas.

The first move towards resolving the second question is to extend our techniques for
more variants of the dominating set problem. Natural candidates in this direction could be
the r-Domination problem (asking for a set S that is within distance r from any other
vertex of the graph), the Independent Domination problem (asking for a dominating set
that induces an edgeless graph), or, more interestingly, the Cycle Domination problem
(asking for a set S that dominates at least one vertex from each cycle of G). However, a more
general meta-algorithmic framework, including general families of parameterized problems,
seems to be far from reach.
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