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—— Abstract
Linear inferences are sound implications of propositional logic where each variable appears exactly
once in the premiss and conclusion. We consider a specific set of these inferences, MS, first
studied by StraBburger, corresponding to the logical rules in deep inference proof theory. Despite
previous results characterising the individual rules of MS, we show that there is no polynomial-
time characterisation of MS, assuming that integers cannot be factorised in polynomial time.
We also examine the length of rewrite paths in an extended system MSU that also has unit
equations, utilising a notion dubbed trivialisation to reduce the case with units to the case
without, amongst other observations on MS-rewriting and the set of linear inferences in general.
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1 Introduction

Linear inferences are sound implications of propositional logic where the same variables
occur in the premiss and conclusion, and occur exactly once in both. For example,

ArnB - AvB and AA(BvC)— (AAB)vC

The left implication is usually known as miz, while the right is logically equivalent to A,V
introduction rules in Gentzen calculi, and is also known as switch. While these two rules
have traditionally been at the core of proof theory, the advent of deep inference proof theory
has triggered the study of an additional rule, medial:

(AAB)v(CAD)— (AvC)a(Bv D)

The motivation to consider such a rule is to obtain locality for the contraction rule in proofs,
an impossible task in traditional Gentzen systems [2]. In recent years there has been much
work on understanding the role of medial in proofs and logic [4] [15] [5] [18]. Most recently,
Straburger commenced a study of it from the point of view of rewriting theory [17].

In proof theory we are interested in derivations from one formula to another, under some
set of inference rules. In deep inference these rules operate on formulae as in a rewriting
system, i.e. they may be applied anywhere in the formula, not just at the root connective.
Two typical questions a proof theorist might ask are the following:

1. Is there a derivation from a formula A to a formula B?
2. What is the complexity of a derivation from A to B?
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In deep inference systems derivations can be considered as rewrite paths by the inference
rules, and in this work we ask these questions particularly for the switch-medial fragment.

In [17] Strafiburger considered (1) and gave polynomial-time characterisations of switch
and medial individually in terms of relation webs, graphs that record certain logical in-
formation about a formula. An open problem arising from the work was whether a similar
characterisation could be given for the combined switch-medial system. In this work we an-
swer this question negatively, if such a characterisation is to decide (1) in polynomial-time,
conditional on the assumption that integer factoring cannot be computed by polynomial-size
circuits. Along the way we (essentially) show that proof-search in Frege systems (and so
also Gentzen/deep inference systems with cut [5]) can be reduced in polynomial time to
the search for switch-medial rewrite paths between formulae, suggesting that a lot of the
computational content of deep inference proofs lies in this switch-medial fragment.

With regards to (2), it is well-known that switch-medial derivations have polynomial
size, in the absence of units. However this does not remain true when units are added, as is
common for deep inference proof systems, even after quotienting the set of formulae by unit-
equivalences. We exhibit a specific example of this in Sect. 4.1 where we present a derivation
using units that contains exponentially many logically distinct formulae. We show that such
derivations can only occur when a variable is trivialised, i.e. put in disjunction with T or
conjunction with |, and give a transformation from any switch-medial derivation with units
to one of polynomial-size with same premiss and conclusion.

While this is beyond the scope of the current work, the results given have certain con-
sequences for atomic flows, diagrams recording structural changes in a proof [11] [9], essen-
tially a type of trace for rewriting derivations. We do not introduce them here, but will
briefly comment on these consequences as remarks in this work.

Finally we consider the set of all linear inferences. From the previous results it can
be shown that switch and medial are insufficient to derive every linear inference, assuming
coNP # NP. Stralburger gives an explicit linear inference in [19] on 36 variables that
cannot be derived, the smallest known thusfar. We improve this result by constructing a
linear inference on 10 variables that cannot be derived by switch and medial, even in the
presence of units, and conjecture that this is the minimal such inference.

Since this work is primarily motivated by proof theory, we adopt the notational conven-
tion presented in [10] for deep inference proofs or, equivalently, rewriting derivations. The
main purpose of this work is to better understand the complexity of the logical fragment of
deep inference systems, specifically in answering the two questions above.
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helpful discussions on this work, and also the anonymous referees for their thorough reviews.

2 Preliminaries

The language of propositional logic consists of countably many atoms a,b, etc. and their
duals a, b etc., units T, L and the connectives A, V, with their usual interpretations. We also
have formula variables, or simply variables, denoted A, B, etc. Terms are defined as follows:

te= a | A | T | L | (@at) | [tvi]

The distinction between brackets (,) and [,] is purely a notational convenience to aid the
reader distinguish conjunctions from disjuntions.
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Ground terms, i.e. terms free of variables, are called formulae, and are denoted «, (3 etc.

» Remark (Negation). Note that we have no symbol for negation in our language. Instead
atoms come in pairs with their duals and we can express all of propositional logic using the
De Morgan laws to push negation to the atoms.

Consequently all contexts (defined below) are positive, and so the soundness of an infer-
ence rule is preserved by applying it anywhere in a term.

» Definition 1 (Contexts). A context is a term with a hole, denoted { }, occurring in place
of a subterm. We write {{t} to denote the result of substituting the term ¢ for the hole in
&{ }. Contexts can also have multiple holes, e.g. £{ }---{ }, defined in the natural way.

We identify inference rules with term rewriting rules, and derivations with rewrite paths.
Derivations are considered as objects in proof theory, sometimes themselves subject to re-
writing, and so it will be convenient to adopt a notation that allows for this. The notation
described below was introduced in [10] as a proof formalism, open deduction, but can be
thought of as just a convenient notation for term rewriting.

» Definition 2. Let R be a term rewriting system for propositional logic, i.e. a set of rewrite
S

rules on terms of propositional logic. We write || R to denote an R-derivation from a term s
t

to a term t, defined as follows:

s
P n is an R-derivation from s to ¢, if s — ¢ is an instance of a rule p: [ — 7 in R.!

S t
[[R % |IR | is an R-derivation from (s *t) to (s’ xt’), for x € {A,V}.
st

s

IR

t is an R-derivation from s to u.

IR

U

All rewriting rules operate modulo associativity and commutativity of V, A in the usual
way. For this reason we often exclude internal brackets of a formula.
Sometimes, if two terms s,t are considered equivalent up to some relation, e.g. associ-

S
ativity and commutativity, we may aid the reader by adding a ‘fake’ rewrite step: t

» Definition 3. A term is linear if no variable occurs more than once. A (sound) linear
inference is a sound? rewrite rule p : I — 7 where [ and r are linear terms on the same
variables. We define L as the set of all (sound) linear inferences.

» Definition 4. We define the system MS to consist of the following rules,
M: (AAB)v(CAD)—[AvC]a[BvD] , S: AA[BvC]— (AAB)vC
The system U consists of rules for both directions of the following equations:
Avl=A |, ArT=A , Ial=1 , TvT=T
The system MSU is defined as MS U U.

! Note in particular that this is a one-step shallow rewrite step.
2 A rule is sound if every substitution of formulae for formula variables is sound in propositional logic.
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3 Complexity of characterising MS

The motivation behind this section originates from the following result in [17].

» Theorem 5 (StraBburger). There are polynomial-time criteria deciding whether there is a
S or M rewrite path between two terms.

In the same work the task of characterising MS was raised as an open problem.

In this section we give a polynomial-time reduction from the problem of finding a Frege
proof? of a given tautology to the problem of finding a MS-rewrite path between two formu-
lae. Consequently, we deduce that there is no polynomial-time characterisation of MS (and
also MSU) under the assumption that integers factoring is outside P/poly.

Throughout this section we deal with formulae (i.e. ground terms), which are the natural
objects of proof theory, rather than generic terms.

3.1 Reducing proof-search to rewriting in MS

We utilise some results from previous work that is beyond the scope of this paper, and so
we state them with references but give no proofs. In particular, we refer to a specific deep
inference system KSg, on which more can be found in [3],[5].

n n

. ——— ——
» Notation. For a formula a let "™ :=aA---Aa@andn-a:=av---Vva.

» Proposition 6 (Jefabek). A Frege or Gentzen proof (with cut) of a formula T can be
polynomially transformed to a KSg-proof of 7v (ay Aay) V-V (an Aay), where a; are the
atoms occurring in T, and vice-versa.

Proof. See e.g. [13], [8]. <

» Proposition 7. A KSg-proof of a formula T can be polynomially transformed to a derivation
of the following shape,

Aaivaivﬂi
7

| ms

7_/

where 7' differs from T only by replacing some atom occurrences a by a disjunction n - a.
Proof. See e.g. [3], [7]. <

» Lemma 8. Given a formula N\ a;va;Vv B; there is a polynomial-size derivation of the
i

following form,

«
|+

Nki-a; vk -a;vp;

where « s a valid formula in conjunctive normal form, for some k;.

3 A Frege proof is a sequence of formulae where each line follows from some previous lines under modus
ponens (from « and « D S infer ) or is drawn from some complete set of axioms.
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Proof. Freely apply the inverse of S to each B; to obtain a formula 3] of same size in
conjunctive normal form, with disjunctions 81, ..., 5},. Construct the following derivations
as required:

lai va; v By A naiva; v B

s
Bi
k-a;vk-a; v ||s

Bi
Validity follows since each disjunction at the top contains a pair of dual atoms. <

» Lemma 9. Let a be a valid formula in conjunctive normal form, with at least two con-
juncts, such that each atom occurs as many times as its dual. Then there is a polynomial-size
derivation of the following shape:
Naiva;
3
| ms

«

Proof. Since « is valid each of its disjunctions must contain a pair of dual atoms. If there
are two such pairs in some disjunction then build the following derivation:
favaln[8val [bvbval
2-S =
“(avalnp)v (o )
l[avavbvbvalaBvy]

Read bottom-up, the number of pairs of dual atoms in the same disjunction has reduced
and validity has been preserved, so we can repeatedly apply this construction until there are
no disjunctions with two pairs of dual atoms.

Now each disjunction has exactly one pair of dual atoms, so match each other atom in a
disjunction with an occurrence of its dual in another disjunction; the matching is bijective
by the given condition.

We build the following derivation:

bs anrBAfaval
S(ara)v(Bra)

[ava] n (B ra)

Read bottom-up, if a and a are a matching pair, the total number of matching pairs in
distinct disjunctions has reduced and validity has been preserved, so we can repeatedly
apply this construction to obtain a derivation of the required form. |

» Theorem 10. A Frege proof of a formula T can be polynomially transformed to a derivation
of the following form,

Alai v ai]™

i
|ms

7_/
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where 7' is obtained from o =1V (a1 Aay) V- -+ V (ap A ay), where a; are the atoms occurring
in T, by replacing each atom occurrence a; by k-m;-a;, where m; is the number of occurrences
of a; in o, k is some fized global constant and n; is determined by m; and k by linearity of
MS, and similarly for dual atoms.

Proof sketch. Follows from Props. 6, 7 and Lemmata 8, 9, under suitable substitution of
disjunctions [ - a for an atom a everywhere in a MS-derivation. |

» Corollary 11. Verifying the validity of a tautology T can be reduced to determining the
existence of a MS-rewrite path between two formulae in time polynomial in the size of the
smallest Frege proof of 7.

Proof. The premiss and conclusion of the derivations in Thm. 10 are governed by a single
parameter, k. We simply run any algorithm that determines the existence of a MS-rewrite
path between two formulae on the premiss and conclusion determined by each value of k,
from 1 upwards, until it returns. |

» Remark. The above results could have equivalently been obtained for MSU, rather than
MS, with similar proofs.

3.2 No polynomial-time characterisation for MS

By the corollary above, any polynomial-time characterisation of MS would yield an algorithm
verifying any tautology in time polynomial in the size of its smallest Frege proof. The
existence of such an algorithm for a proof system, known as weak automatisability, was
proved to be impossible for Frege systems in [1], conditional on the assumption that integer
factoring is outside P/poly.

» Definition 12. A proof system P is weakly automatisable if there is a procedure verifying
the validity of any tautology 7 in time polynomial in the size of the smallest P-proof of 7.

» Theorem 13 (Bonet et al.). If integer factoring is outside P/poly then Frege is not weakly
automatisable.

» Corollary 14. If integer factoring is outside P/poly then there is no polynomial-time
characterisation of MS.

» Remark. With slight modifications, it follows from the results in this section that atomic
flows do not form a proof system, in the sense that they cannot be verified in polynomial-
time, unless integer factoring is in P/poly . This (conditionally) refutes a conjecture of
Guglielmi that atomic flows form a proof system [9].

4 Length of paths with units

In this section we address the complexity of rewriting paths in MSU. The length of MS-paths
is well-known to be polynomial, and we give a simple proof below that the length is at most
cubic in the size of an input term. Much tighter bounds can be obtained, and this is the
subject of ongoing work by Bruscoli, Guglielmi and StraSburger.*

It should be pointed out that the general belief that units do not contribute to the
complexity of a proof is commonplace in the deep inference community, with some results

4 Personal correspondence.
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as folklore, for example the theorem below. Nonetheless, the technicalities of proving this
belief, or even formalising what this means, seems nontrivial to the author and this sentiment
is communicated via numerous examples.

» Theorem 15. MS has only polynomial-length paths.

Proof. Let n(t) denote the number of As occurring in a term ¢, and let m(¢) denote the
number of pairs of leaves in the term-tree of ¢ whose least common connective is A. Clearly
each medial step reduces the n-value of a term and each switch step reduces the m-value of
a term, while not changing the n-value.

Let M denote the product measure n x m : ¢t — (n(t),m(t)), then each step of an MS-
derivation strictly reduces M. But n is linear in the size of a term and m is quadratic, so
an MS-derivation can only contain a cubic number of steps. |

The situation becomes more complicated when units are considered. Since the rules
of U are bidirectional, cycles can be trivially constructed, yielding infinite rewrite paths.
Moreover non-cyclic infinite ‘increasing’ paths can be constructed:

a — Tra — TATra — TATATAa —

One approach here would be to conduct rewriting modulo the equational theory gener-
ated by U, i.e. consider formulae equivalent up to U-rewriting.?

» Definition 16 (Rewriting modulo). Let R be a rewriting system and ~ an equivalence
relation on the terms of R. A derivation in R/ ~ is a sequence,

S~ 8] =ty ~8Sy —~>tyg~s >t~
where each s; — t; is a one-step rewrite in R and s; ¢ t;.

We should note that this is a nonstandard definition of rewriting modulo, since we
enforce that each rewriting step is between ~-distinct terms. This condition crucially affects
termination of a system, but makes sense in the current setting since the equivalence relations
induced by our equations can be checked efficiently.

In any case this approach does not quite work here, since we can still construct cycles
when rewriting modulo U. For example the following,

ey
............ Vv (a A
TAT
[Tval A [TV
2.5
a b
........... AV
TAT anT bAT
T [avT]AbvT]
2.5
TvTvV(anb)
Tv(anb)

is a derivation for a cycle Tv (anb) = -+ = Tvavb—--- = Tv(anrb).

5 We will not address here complexity issues arising from such an approach. There are ways to present
such rewritings such that each step can still be checked efficiently [5].
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These situations only occur when a subterm appears in conjunction with | or disjunction
with T, a concept we later define as trivialisation. They can be avoided by adding to U the
following ‘non-linear’ equations:

AvT =T Anl =1

Let us call the resulting system U’. We state the following results, whose proofs appear
elsewhere and are not difficult to reconstruct.

» Proposition 17. Every term is U’ -equivalent to a unique unit-free term or T or L.

Proof. See e.g. [7]. <

» Proposition 18. If two unit-free formulae are distinct, modulo associativity and commut-
ativity, with each atom occurring at most once, then they compute distinct boolean functions.

Proof. See e.g. [12]. <

From these we can deduce the strong normalisation property.
» Corollary 19. Rewriting in MS/U’ is terminating.

Proof. Assume the input is a formula (i.e. a ground term) without loss of generality, since
MS and U’ do not distinguish between atoms and variables. By Props. 17 and 18 it follows
that, for each step @ — 3 in a MS/U’ derivation, o and 8 compute distinct boolean functions.

There are 2™ assignments on n atoms, and each boolean function determines a unique
set of these assignments. Since rewriting in MS/U’ preserves logical implication, any rewrite
path determines a strictly decreasing sequence of sets of assignments with respect to C. <«

Notice that the complexity bound on termination above is exponential, unlike the unit-
free case which is polynomial. Perhaps surprisingly, one cannot do better than this, and we
prove this by constructing explicit rewrite-paths of exponential length.

4.1 An exponential-length path in MS/U’

We present a new class of rules, collectively known as supermiz, that are derivable in MSU
and show that one can construct exponential-length paths with it, with exponentially many
U’-distinct formulae occurring.

» Definition 20 (Supermix). We define the supermix rules, indexed by n, below:
smix Av/\Bi — A/\\/Bi
i=1 i=1

Each supermix rule is clearly a sound linear inference and, for the special case when n =1,
it coincides with the usual mix rule.

The following results aim to prove that supermix is derivable in MSU.

» Lemma 21. There is a rewrite path from L to T in both M/U and S/U.

Proof.
i i
] s e T
[LvTia[LvT] 7 (LAL)vT
e e

165

RTA’'13



166 Rewriting with Linear Inferences in Propositional Logic

€
We will simply write - if we do not mind which rules are used.

» Lemma 22. There is a MS/U derivation from \/ B; to Tv \ B;.
i=1 =1

K2

Proof. We proceed by induction on n.
€
Base Case: by Lemma 21 we have - v B.

Inductive Step: Suppose there are such derivations ®,. for r < n. Define:

n—1
V B;
i=1
B, &, _1||MSU
.............. n—1
TAB, Tv A B;
=1
o _ e e
" TA {T v A Bl}
: =
[T v By A [TvTv A Bi]
2.5 =1
TvTvT n—1
.................... Vv (Bn A /\ Bz)
T i=1
<
» Theorem 23. Supermiz is derivable in MS/U.
Proof. Let ®,, be the derivations constructed in Lemma 22. The derivation is as follows:
V B;
i=1
An ®,||MsU
TV /\ Bz'
i=1
AnNT 7\ B
............ Vv p
A i=1
|

Note that the premiss and conclusion of a supermix step are distinct modulo U’, since
they are unit-free and compute distinct boolean functions, and so we can construct an
exponential-length path in MS/U’ as follows:

n

A ai

=1
An4+1 N Ay

n

V a;

=1

n

A ai

i=1
An+1 VA,

n
V a;
1=1

smix

Al = a s An+1 = smix

smix
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4.2 Construction of polynomial-length paths

The cause of problems in (complexity of) termination of MSU seems to be the trivialising of
atoms and variables in a derivation, by putting them in disjunction with T or conjunction
with 1. We define this property formally in this section and show that, although there
are paths of exponential length, any two terms with a MSU-path between them has one of
polynomial length. The general idea is to ‘push’ trivialised atoms and variables to one side
and reduce to the unit-free case, before reintroducing the trivialised symbols.

S
Throughout this section we use ‘dotted’ steps t to denote U-steps in a derivation, to

help distinguish MS-steps from U-steps. This is technically an overloading of notation, but
does not cause any problem since there is a polynomial-size MSU-derivation from s to ¢ just
if there is a polynomial-size MS/U-derivation from s to t.

» Definition 24 (Trivialisation). A term is trivial if it is a disjunction containing T or a
conjunction containing 1. In a derivation we say that an atom or variable is trivialised if at
any point it occurs inside a trivial subterm.

HA  Ang{T}
» Proposition 25. There are polynomial-size derivations [Isu , [|su

Ave{Lly A}

Proof. See e.g. [3], [16], [13]. The proof is similar to that of Lemma 27. <
E{A}

» Lemma 26. Let ||MsU be a derivation where A is trivialised. Then there is a derivation

TV A {4}

[|[MsU whose size is at most polynomial in the size of the former derivation.

({Ln A}

Proof. There are two cases. In the first case we transform the derivation as follows,

T v A}
<I>’HMSU
A
£{4) o[V
QHMSU TVC STV(lAA)
HTve(al = pd | & V(J_/\A) ......
\I/HMSU ells
Ay Toetdady
TVC{LNA)
| sy
E{LnA}

where ®, ¥’ are obtained by substituting T v A, L A A resp. everywhere for A, and the
derivation marked e is obtained by Prop. 25. In the second case we transform the derivation
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as follows,
E{Tv A}
P’ HMSU
A
{4} Tv [Tvi]~4
o s v )
HLnaclA) — TV<H“A>
o||lS
\mesu » Tv({LnaA}
il (L T)v(Lncla))
LAC{LnA}
o’ HMSU
¢{LnA}

where ®', U’ are obtained by substituting T v A, L A A resp. everywhere for A, and the
derivation marked e is obtained by Prop. 25. |

(LAA)ve{Ll} ETv A}
» Lemma 27. There are polynomial-size derivations [IMu , [|Mu .
HLnAr  [TvAIAgT}

Proof. We proceed by induction on the depth of the hole in £{ }. The base cases are trivial,
and we give the inductive steps for the first derivation below,

(LN VYV

(Lnd)ve{L) 1lvB ’ IHHM
,HHM e ELLAA)
E{LnAA}

where derivations marked I H are obtained by the inductive hypothesis. The second deriv-
ation is obtained by duality of the inference rules. |

» Lemma 28. Fvery MSU-derivation where no atoms or variables occur trivialised can be
transformed into an MS-derivation with U-equivalent premiss and conclusion.

Proof. We simply reduce every line in the derivation to a unit-free term by U. Since no
atoms or variables are trivialised we do not need any rules of U\ U. We rewrite derivations
using the four possible cases below, any other combination of rules with units results in some
term in either the premiss or conclusion being trivialised.

sA[Lvi TAalsvi]

S— — sat S —M— sVt

(snt)v L (TAas)vt
LEAvaL) o (aTvEaT)
[svL]Aftv 1] [sVviE]A[TVvT]

In particular these rewrite rules operate anywhere in a derivation. |
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» Theorem 29. FEvery MSU-derivation can be transformed to one with same premiss and
conclusion and whose size is polynomial in the size of its premiss and conclusion.

Proof. Let ® be an MSU-derivation. If there are no trivialisations then transform it into an
MS-derivation by Lemma 28 which must be of polynomial size by Thm. 15.
Otherwise assume there is a trivialised variable in ®, say A;, and transform & as follows:

§{AL} E{Tv A} ETvl}
<I>HMSU — o' [|[Msu  — @, ||Msu
C{A1r} C{L A} C{Lal}

where ®’ is obtained from ® by Lemma 26 and ®; from ®’ by substituting L for every
instance of A;.

Now do the same for ®;, and repeat this process until either there are no trivialisations
in some ®;. (Note that it is not sufficient to just do all the trivialised variables at once,
since the transformation above may result in new trivialisations.)

Now by Lemma 28 we can transform ®; to an MS-derivation ¥, with same premiss and
conclusion modulo U, which we assume to have polynomial size by Thm. 15.

gTvli}-{Tv1}

f{TVL}{TVL} ...........................................
Dy, || MSU —

C{LnalLl}--{LnAl}

Ar Ay
a Tvijnd; ... . [TV 1] A Ay
Tv(LnaA) Tv(LAAg)
o||S
HTv Ly {TVv 1}
(A} - Ay} e
<I>HMSU — MIIYS V(LAA) Vv (LA Ag)
A AAY A
{Lanl}-{LAl}
o||M
1
AT A Ay — A Ag
..... A 1 Ak
where the derivations marked o, e are obtained by repeatedly applying Lemma 27. |

» Remark. By the above theorem it follows that any derivation can be transformed to one
with the same premiss and conclusion, the same atomic flow and whose size is polynomial
in the size of its atomic flow. This is tacitly assumed in some papers where the complexity
of proofs is controlled by atomic flows, e.g. [6], [8], albeit never in a critical way.
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5 The system L of all linear inferences

In the previous sections we considered the specific rules S and M, due to their importance in
proof theory, in particular deep inference. However there are infinitely many other inferences
one could consider, and there is good reason to analyse the set of all linear inferences, from
the point of view of complexity, due to the following result by StraBburger.

» Proposition 30 (StraBburger). L is coN P-complete.

In this section we present two observations, first on a small linear inference not derivable
in MSU, and second an extension of the notion of trivialisation that simplifies any search of
new linear inferences.

5.1 A linear inference not derivable in MSU

MSU cannot derive every linear inference. This is immediate from Strafiburger’s result above,
and since the length of paths can be assumed to be polynomial, under the assumption that
coN P # N P. Nonetheless Strafiburger has given an explicit linear inference on 36 variables
that cannot be derived in MS [19]. Here we give an example on 10 variables, and conjecture
that it is the minimal inference not derivable in MS. By observing that there are no trivial
atoms, the same result follows for MSU.

» Theorem 31. The following is a linear inference that is not derivable in MS.
AV (BABYA[(CAC) v (DAD)| A [(EnE) v F|
([CVEI A [Av(C" A EN) v (B D) v F]  [B'v D]

Proof. The inference is linear by inspection and its soundness can be checked mechanically.
However we give an intuitive argument below, to give an idea of its meaning.

The inference is essentially an encoding of the pigeonhole principle with 3 pigeons and 2
holes. Consider the following grid:

A B B
C ¢ | D D
E FE F

The linear inference roughly® encodes the following statement,

if each row contains a boxr whose variables are true,
then some column has two boxes with a true variable

which is clearly a tautology since there are more rows than columns. The use of multiple
variables in some boxes is so that repetition of variables is avoided, ensuring linearity.
Using this interpretation, it is clear that any application of switch or medial leading to
the conclusion must be from a formula not logically implied by the premiss. This can also
be checked mechanically. |

» Corollary 32. The above inference cannot be derived in MSU.

Proof. If it could then some variable must be trivialised by Lemma 28, meaning we could
substitute T for it in the premiss and 1 in the conclusion and obtain a valid implication.
Inspection shows that no variable has this property (the aforementioned interpretation makes
it easier to verify this). <

6 Not exactly since not all combinations of variables in boxes are exhausted.
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5.2 Towards a basis for L

Can we find a basis for L? I.e. can we find some polynomial-time decidable set of linear
inferences from which every linear inference can be derived? This question remains open,
but it is worth noting that such a set cannot be finite; the encoding in Thm. 31 can easily be
generalised to arbitrary n x (n—1) grids, and it is not difficult to show that each subsequent
linear inference cannot be derived from all the previous ones, along with MSU. Tt is also
worth noting that any basis would have to admit (necessarily) superpolynomial-length paths,
unless coNP = NP.

Here we present an observation extending the previous notion of trivialisation. We
considered previously syntactic trivialisation of an atom or variable, when it is explicitly
put in disjunction with T or conjunction with L. However, when talking about all linear
inferences we will want a more general concept that is not reliant on how it is derived in any
particular system:

» Definition 33 (Semantic trivialisation). Let p : ({A} — ({A} be a linear inference. We
say that p is semantically trivial at A, or simply trivial, if £{T} — ({L} is sound.

The condition in the above definition is equivalent to demanding that £{s} — ({t} is
sound for every s, t.

Note that trivialities may depend on each other, and so one should say that an inference
is “trivial at A then B” or “trivial at A or B” rather than “trivial at A and B”. For example
mix : AA B — Av B is trivial at A or B but not both at once.

» Theorem 34. If a linear inference p is trivial somewhere then there is a linear inference
P on fewer variables that is not trivial anywhere and from which p is derivable in MSU.

Proof. Let p: s — tand let Ay,..., A be the trivial variables (in order). We construct the
following derivation in p’ UMS/U,

S
.................. R
neRes
o||M
AR,
’ S,
[A;VT]A- - A[Ap v T]A p?
e J
LT
ol|s
S[AlvT]AJ_ S[Ava]AJ_
¢ Apv(TAalLl)p o9 Apv(Tal)
.......... A1 Ak
.......................................... e

where the derivation marked e is obtained from Lemma 27, the derivation marked o from
Prop. 25 and ¢, ¢’ are the unique unit-free terms U-equivalent to £{T}---{T}, ({L}---{L}
respectively. |
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6 Conclusions

In this work we considered the linear inferences of propositional logic, in particular from the
point of view of complexity and termination of rewriting derivations. This was motivated by
the seemingly fundamental role played by linear inferences in deep inference proof theory;
as well as being necessary for locality of the inference rules in deep inference, we showed
in Sect. 3 that proof search in Frege and Gentzen systems with cut can be reduced in
polynomial-time to finding MS-rewrite paths. In contrast, we showed in Sect. 4 that the
length of MS(U)-rewrite paths can always be made polynomial, and so the size of a proof
is determined by the use of structural rules in a deep inference derivation. Finally we
considered the set of all linear inferences and made some general observations.

One particular outcome of this research is the possibility to implement proof search based
on strong systems. Typically, proof search algorithms are based on weak proof systems, due
to an apparent tradeoff between proof size and proof search. This is most significantly
exemplified by the presence of nonanalytic rules in stronger systems, e.g.

A ADB r-AA AX—1

B Y- AI
modus ponens cut

When searching for a proof we tend to work ‘bottom-up’, and in the two rules above there
are seemingly infinitely many choices for A, which is terrible for proof-search. The tradeoff
is that weak systems, such as cut-free Gentzen and Resolution, have much larger proofs.
In many cases there are only exponential-size proofs, as opposed to polynomial-size ones in
Frege systems [14], for example the propositional encodings of the pigeonhole principle. This
lower bound acts as a barrier to efficient proof search, since the complexity of the search
procedure is bounded below by the complexity of the objects it searches for.

However, in Sect. 3 we gave a polynomial-time reduction of the problem of proof-search in
Frege and Gentzen systems to finding MS-rewrite paths between formulae. This is arguably
a simpler problem, firstly since there is no infinite choice present as variables in a term are
preserved by linear inferences, and secondly since we already have some understanding of
various subproblems, namely a characterisation of S and M in [17]. It would be interesting to
see what progress could be made on proof search algorithms based on MS-rewriting, enabling
access to the shorter proofs of stronger systems while still restricting the nondeterminism of
proof search.

Even more powerful systems, e.g. Extended Frege, could also be used as a base for proof
search in the same way, by adding more linear rules. A proof system P can be simulated by
Frege when axioms expressing the soundness of P are added [14], and using a trick from [19]
these can be encoded as linear inference rules which could be added to MS, again preserving
analyticity.

—— References

1 ML Bonet, T. Pitassi, and R. Raz. No feasible interpolation for tcO-frege proofs. In focs,
page 254. Published by the IEEE Computer Society, 1997.

2 Kai Briinnler. Two restrictions on contraction. Logic Journal of the IGPL, 11(5):525-529,
2003. http://www.iam.unibe.ch/~kai/Papers/RestContr.pdf.

3 Kai Brinnler. Deep Inference and Symmetry in Classical Proofs. Logos Verlag, Berlin,
2004. http://www.iam.unibe.ch/~kai/Papers/phd.pdf.


http://www.iam.unibe.ch/~kai/Papers/RestContr.pdf
http://www.iam.unibe.ch/~kai/Papers/phd.pdf

A. Das

10

11

12

13

14

15

16

17

18

19

Kai Briinnler and Alwen Fernanto Tiu. A local system for classical logic. In R. Nieuwen-
huis and A. Voronkov, editors, LPAR 2001, volume 2250 of Lecture Notes in Computer
Science, pages 347-361. Springer-Verlag, 2001. http://www.iam.unibe.ch/~kai/Papers/
lcl-1lpar.pdf.

Paola Bruscoli and Alessio Guglielmi. On the proof complexity of deep inference. ACM
Transactions on Computational Logic, 10(2):1-34, 2009. Article 14. http://cs.bath.ac.
uk/ag/p/PrComplDI.pdf.

Paola Bruscoli, Alessio Guglielmi, Tom Gundersen, and Michel Parigot. Quasipolynomial
normalisation in deep inference via atomic flows and threshold formulae. Submitted. http:
//cs.bath.ac.uk/ag/p/QuasiPolNormDI.pdf, 2009.

Anupam Das. On the proof complexity of cut-free bounded deep inference. 2011.
Tableaux’11.

Anupam Das. Complexity of deep inference via atomic flows. In S. Barry Cooper, Anuj
Dawar, and Benedikt Lowe, editors, Computability in Europe, volume 7318 of Lecture Notes
in Computer Science, pages 139—-150. Springer-Verlag, 2012. http://www.anupamdas.com/
items/RelComp/RelComp.pdf.

Alessio Guglielmi and Tom Gundersen. Normalisation control in deep inference via atomic
flows. Logical Methods in Computer Science, 4(1:9):1-36, 2008. http://www.lmcs-online.
org/ojs/viewarticle.php?id=341.

Alessio Guglielmi, Tom Gundersen, and Michel Parigot. A proof calculus which reduces
syntactic bureaucracy. In Christopher Lynch, editor, RTA 2010, volume 6 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 135-150. Schloss Dagstuhl-Leibniz-
Zentrum fiir Informatik, 2010. http://drops.dagstuhl.de/opus/volltexte/2010/2649.
Alessio Guglielmi, Tom Gundersen, and Lutz Strafiburger. Breaking paths in atomic flows
for classical logic. In Jean-Pierre Jouannaud, editor, 25th Annual IEEE Symposium on Logic
in Computer Science, pages 284-293. IEEE, 2010. http://www.lix.polytechnique.fr/
~lutz/papers/AFII.pdf.

VA Gurvich.  Repetition-free boolean functions. Uspekhi Matematicheskikh Nauk,
32(1):183-184, 1977.

Emil Jerdbek. Proof complexity of the cut-free calculus of structures. Journal of Lo-
gic and Computation, 19(2):323-339, 2009. http://www.math.cas.cz/~jerabek/papers/
cos.pdf.

Jan Krajicek. Bounded arithmetic, propositional logic, and complexity theory. Cambridge
University Press, New York, NY, USA, 1995.

Frangois Lamarche. Exploring the gap between linear and classical logic. Theory and Applic-
ations of Categories, 18(17):473-535, 2007. http://www.loria.fr/~lamarche/papers/
Gap.pdf.

Lutz StraBburger. MELL in the calculus of structures. Theoretical Computer Science,
309:213-285, 2003. http://www.lix.polytechnique.fr/~1lutz/papers/els.pdf.

Lutz Straflburger. A characterisation of medial as rewriting rule. In Franz Baader, editor,
RTA 2007, volume 4533 of Lecture Notes in Computer Science, pages 344-358. Springer-
Verlag, 2007. http://www.lix.polytechnique.fr/~1lutz/papers/CharMedial.pdf.
Lutz Strafburger. On the axiomatisation of boolean categories with and without me-
dial. Theory and Applications of Categories, 18(18):536-601, 2007. http://www.lix.
polytechnique.fr/~lutz/papers/medial.pdf.

Lutz StraBburger. Extension without cut. Ann. Pure Appl. Logic, 163(12):1995-2007, 2012.

173

RTA’'13


http://www.iam.unibe.ch/~kai/Papers/lcl-lpar.pdf
http://www.iam.unibe.ch/~kai/Papers/lcl-lpar.pdf
http://cs.bath.ac.uk/ag/p/PrComplDI.pdf
http://cs.bath.ac.uk/ag/p/PrComplDI.pdf
http://cs.bath.ac.uk/ag/p/QuasiPolNormDI.pdf
http://cs.bath.ac.uk/ag/p/QuasiPolNormDI.pdf
http://www.anupamdas.com/items/RelComp/RelComp.pdf
http://www.anupamdas.com/items/RelComp/RelComp.pdf
http://www.lmcs-online.org/ojs/viewarticle.php?id=341
http://www.lmcs-online.org/ojs/viewarticle.php?id=341
http://drops.dagstuhl.de/opus/volltexte/2010/2649
http://www.lix.polytechnique.fr/~lutz/papers/AFII.pdf
http://www.lix.polytechnique.fr/~lutz/papers/AFII.pdf
http://www.math.cas.cz/~jerabek/papers/cos.pdf
http://www.math.cas.cz/~jerabek/papers/cos.pdf
http://www.loria.fr/~lamarche/papers/Gap.pdf
http://www.loria.fr/~lamarche/papers/Gap.pdf
http://www.lix.polytechnique.fr/~lutz/papers/els.pdf
http://www.lix.polytechnique.fr/~lutz/papers/CharMedial.pdf
http://www.lix.polytechnique.fr/~lutz/papers/medial.pdf
http://www.lix.polytechnique.fr/~lutz/papers/medial.pdf

	Introduction
	Preliminaries
	Complexity of characterising MS
	Reducing proof-search to rewriting in MS
	No polynomial-time characterisation for MS

	Length of paths with units
	An exponential-length path in MS/U'
	Construction of polynomial-length paths

	The system L of all linear inferences
	A linear inference not derivable in MSU
	Towards a basis for L

	Conclusions

