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Abstract
We present extensions of our Isabelle Formalization of Rewriting that cover two historically
related concepts: the Knuth-Bendix order and the Knuth-Bendix completion procedure.

The former, besides being the first development of its kind in a proof assistant, is based on
a generalized version of the Knuth-Bendix order. We compare our version to variants from the
literature and show all properties required to certify termination proofs of TRSs.

The latter comprises the formalization of important facts that are related to completion, like
Birkhoff’s theorem, the critical pair theorem, and a soundness proof of completion, showing that
the strict encompassment condition is superfluous for finite runs. As a result, we are able to
certify completion proofs.
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1 Introduction

In their seminal paper [10], Knuth and Bendix introduced two important concepts: a
procedure that allows us to solve certain instances of the word problem – (Knuth-Bendix)
completion – as well as a specific order on terms that is useful to orient equations in the
aforementioned procedure – the Knuth-Bendix order (or KBO, for short).

Our main contributions around KBO and completion are:
There are several variants of KBO (e.g., incorporating quasi-precedences, infinite signatures,
subterm coefficient functions, and generalized weight functions). In fact, not for all of
these variants well-foundedness has been proven. We give the first well-foundedness
proof for a variant of KBO that combines infinite signatures, quasi-precedences, and
subterm-coefficient functions. Our proof is direct, and we illustrate why we could employ
Kruskal’s tree theorem only for a less powerful variant of KBO.
We dropped the strict encompassment condition in the inference rules of completion and
present a new proof which shows that the modified rules are still sound for finite runs.
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All our results have been formalized with the proof assistant Isabelle/HOL [17] as part
of our library IsaFoR [25]. That is, we developed the first mechanized proofs of KBO,
Birkhoff’s theorem [3], and completion.
We extended our certifier CeTA [25] (whose soundness is formally verified) by the facility
to check completion proofs. For accepted proofs, CeTA provides a decision procedure for
the word problem.

Note that most termination techniques, besides KBO, that are used by modern termination
tools were already formalized in IsaFoR before. Our extensions further increase the percentage
of termination proofs (generated by some termination tool) that can be certified and also
enables the certification of completion proofs. Moreover, in its current state, IsaFoR covers most
of the theorems in the first seven chapters of [1] (only confluence beyond weak orthogonality
and decision procedures for special cases like right-ground TRSs are missing), and hence
significantly contributes to a full formalization of standard rewriting techniques for first-order
rewrite systems.

Both IsaFoR and CeTA are freely available from http://cl-informatik.uibk.ac.at/
software/ceta/. The results of this paper are available in IsaFoR/CeTA version 2.10.

The paper is organized as follows: In Section 2, we present some preliminaries on term
rewriting. Our results on KBO and its formalization are discussed in Section 3. Afterwards,
in Section 4, we present our formalization of the critical pair theorem and the algorithm for
certifying confluence. These results are required in Section 5, where we prove soundness of
completion and illustrate how we certify completion proofs. Our formalization of Birkhoff’s
theorem is the topic of Section 6, before we conclude and discuss related work in Section 7.

2 Preliminaries

We assume familiarity with rewriting, equational logic, and completion [1].
In the sequel, let R denote an arbitrary binary relation. We say that R is well-founded if

and only if there is no infinite sequence a, s.t., a1 R a2 R a3 R · · · .
We call R almost-full if and only if all infinite sequences a contain indices j > i, s.t.,

aj R ai. The same property is sometimes expressed by saying that all infinite sequences are
good. (Note that every almost-full relation is reflexive.)

A binary relation % that is reflexive and transitive, is a quasi-order (or preorder). The
strict part � of % is defined by x � y = x % y∧y 6% x. Two elements x and y are equivalent if
x % y and y % x. A quasi-order whose strict part is well-founded is called a quasi-precedence.
(The “quasi” part of the name, stems from the fact that different elements may be equivalent.)

A partial order, denoted �, is a binary relation that is transitive and irreflexive. Its
reflexive closure is denoted by �. If % is a quasi-order, then its strict part � is a partial
order. In that case, % = � if and only if % is antisymmetric. (This is in contrast to
alternative definitions of partial orders that start from a quasi-order % and additionally
require antisymmetry; then we always have % = �.)

A well-partial-order (well-quasi-order) is a partial order � (quasi-order %), s.t., � (%) is
almost-full. For every well-partial-order � (well-quasi-orders %), � (�) is well-founded.

A non-strict order % is compatible with a strict order � if and only if % ◦ � ◦% ⊆ �.
We say that a list x1, . . . , xm is a superlist of the list y1, . . . , yn (or equivalently that

y1, . . . , yn is embedded in x1, . . . , xm), written x1, . . . , xm D∗ y1, . . . , yn, if y1, . . . , yn is ob-
tained from x1, . . . , xm by deleting elements (but not changing their order).

A signature F is a set of function symbols (denoted by f , g, . . . for non-constants and
a, b, c, . . . for constants). The set of terms over a signature F and a set of variables V is

http://cl-informatik.uibk.ac.at/software/ceta/
http://cl-informatik.uibk.ac.at/software/ceta/
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denoted by T (F ,V). We write Vmul(t) for the multiset of variables occurring in a term t. Let
p be a position in a term t. Then t|p denotes the subterm of t at position p and t[s]p denotes
the result of replacing the subterm of t at position p by the term s. We write sD t (sB t)
if t is a (proper) subterm of t. A rewrite order is an irreflexive and transitive order that is
closed under contexts and closed under substitutions. For terms s and t from T (F ,V) we
call s ≈ t an equation. An equational system (ES) E is a set of equations.

Sometimes we orient an equation s ≈ t, write s→ t, and call it a rule. Then for an ES E
we denote by →E the smallest relation that contains E and is closed under contexts and
substitutions. Let → be a relation. We write (→)−1 (or simply ←) for the inverse of →, ↔
for → ∪ ←, and →∗ for the reflexive and transitive closure of →.

An ES E is called a term rewrite system (TRS) if all equations are rules. A TRS R
is terminating if →R is well-founded, and (locally) confluent if (R← · →R ⊆ →∗R · ∗R←)
∗
R← · →∗R ⊆ →∗R · ∗R←. A term s is in (R-)normal form if there is no term t with s→R t.
We write s↓R for an R-normal form of a term s, i.e., some term t such that s→∗R t and t
is in normal form. Terms s and t are (R-)joinable if s →∗R · ∗R← t, and (E-)convertible if
s↔∗E t. A TRS R and an ES E are equivalent if ↔∗E =↔∗R, i.e., their respective equational
theories coincide.

We call (s, t) a critical pair of a TRS R if and only if there are two (not necessarily
distinct) variable renamed rules `i → ri, i = 1, 2 (without common variables) and a position p
in `1 such that θ is an mgu of `1|p and `2, `1|p is not a variable, s = r1θ, and t = `1θ[r2θ]p.

An F-algebra A consists of a non-empty set A (the carrier) and an interpretation
I : F → A∗ → A. For each F-algebra A = (A, I), and each variable assignment α : V → A,
we define the term evaluation [·]Aα : T (F ,V) → A as [x]Aα = α(x) and [f(t1, . . . , tn)]Aα =
I(f)([t1]Aα , . . . , [tn]Aα ). We drop A whenever it is clear from the context.

An F-algebra A is a model of an equation s ≈ t if for each variable assignment α the
equality [s]α = [t]α is holds. If every F-algebra that is a model of all equations in E also is
a model of s ≈ t, we write E |= s ≈ t and say that s ≈ t follows from E . The relation |= is
called semantic entailment.

3 Knuth-Bendix Order

We start by presenting our definition of KBO as it is formalized in IsaFoR in the files KBO.thy
and KBO_Impl.thy. It comes in the form of two mutually recursive functions which define
the strict order �kbo and the compatible non-strict order %kbo. The mutual dependency
is created by the lexicographic extension of two compatible orders: each of �lex

kbo and %lex
kbo

require both �kbo and %kbo in their definition.

I Definition 3.1 (Knuth-Bendix Order). Let % be a quasi-precedence, w0 ∈ N \ {0}, and
w : F → N. Further, let w be admissible, i.e., w(c) ≥ w0 for all constants c and, if w(f) = 0
and f is unary, then f is of largest precedence, i.e., f % g for all g.

The weight function w is lifted to terms as follows.

w(x) = w0

w(f(t1, . . . , tn)) = w(f) +
∑

1≤i≤n
w(ti)

RTA’13
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We define s �kbo t if and only if Vmul(s) ⊇ Vmul(t) and w(s) ≥ w(t)
and w(s) > w(t) (weight)
or s = f(s1, . . . , sm)

and t is a variable (fun-var)
or t = g(t1, . . . , tn)

and f � g (prec)
or f % g and (s1, . . . , sm) �lex

kbo (t1, . . . , tn) (lex)
and s %kbo t if and only if Vmul(s) ⊇ Vmul(t) and w(s) ≥ w(t)

and w(s) > w(t) (weight)
or s is a variable

and t is a variable (var-var)
or t is a constant and least(t) (least)

or s = f(s1, . . . , sm)
and t is a variable (fun-var)
or t = g(t1, . . . , tn)

and f � g (prec)
or f % g and (s1, . . . , sm) %lex

kbo (t1, . . . , tn) (lex-eq)

Here, least is a predicate that checks whether a constant c has weight w0 and is of least
precedence among all constants with weight w0, i.e., ∀d.w(d) = w0 −→ d % c.

The lexicographic extension, (s1, . . . , sm) �lex
kbo (t1, . . . , tn) is defined by

(∃i ≤ min(m,n). si �kbo ti∧ (∀j < i. sj %kbo tj))∨ (m > n∧ (∀j ≤ n. sj %kbo tj)), (lex-def)

and its non-strict part (s1, . . . , sm) %lex
kbo (t1, . . . , tn) is defined similarly, except that m > n

is replaced by m ≥ n.

Note that due to the condition Vmul(s) ⊇ Vmul(t), we have that s and t are the same
variable in (var-var), and t is a variable occurring in s in (fun-var).

Before we give details of our formalization of KBO, we relate our definition to other
definitions of KBO as in [6, 10,14,19,30].

Non-strict Part. In [6,10,14,19,30] only the strict order �kbo, without accompanying %kbo,
is defined. In lexicographic comparisons = is used instead of %kbo. However, the usage of
%kbo leads to a more powerful variant of KBO, since %kbo is reflexive and thus, replacing = by
%kbo can only enlarge �kbo. Moreover, our (syntactic) definition of KBO can treat examples
that have been used before to illustrate the power of non-syntactic definitions, where s �kbo t

for non-ground terms s and t is defined by sσ �kbo tσ for all ground instances. Using our
definition, we can orient the leading example g(x, a, b) �kbo g(b, b, a) of [11] by choosing
w0 = w(g) = w(b) = 1, w(a) = 2, and a precedence that makes all symbols equivalent.

Quasi-Precedence. In [6,10,14] no quasi-precedences are allowed, i.e., f % g is replaced by
f = g in (lex) and (lex-eq), which is clearly less powerful.

Lexicographic-Extension. Our definition of lexicographic extension allows comparisons
where the decrease is due to a decrease in the lengths of the lists. Of course, this is only
relevant for quasi-precedences [19, 30], since otherwise the argument lists always have the
same length. Whereas this kind of definition is also used in [19], in [30], a lexicographic
decrease is only possible if at some position i ≤ min(m,n) there is a strict decrease.
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However, this small change has an important impact: KBO as defined in [30] is neither
closed under substitutions nor does it have the subterm property; taking w0 = w(a) = 1,
w(f) = 0 and a precedence where all symbols are equivalent, we have f(x) �kbo x, but not
f(a) �kbo a, since (a) 6�lex

kbo () for the definition of lexicographic extension of [30].

Infinite Signatures. Our definition as well as [19, 30] admit arbitrary, possibly infinite,
signatures, whereas in [6, 10, 14], only finite signatures are considered. However, neither [19]
nor [30] mention a solution to the problem that Kruskal’s tree theorem cannot be easily
applied: the result that every rewrite order containing the subterm relation is well-founded,
only holds for finite signatures. Hence, a well-foundedness proof for their versions of KBO
using infinite signatures is missing.

And indeed, it is questionable whether our definition of KBO on infinite signatures has all
the desired properties: the lexicographic extension as defined in (lex-def) does not preserve
well-foundedness in general. Consider unbounded arities and take the lexicographic extension
of the standard order on natural numbers. Then, we have (1) >lex (0, 1) >lex (0, 0, 1) . . .. If
we bound arities for lexicographic comparisons, we do not achieve the subterm property:
if w(f) = 0 and all symbols have equal precedence, then f(g(a, . . . , a)) �kbo g(a, . . . , a) can
only be shown by proving (g(a, . . . , a)) �lex

kbo (a, . . . , a), i.e., for each g of arity n we require a
successful comparison of lists of length 1 with lists of length n.

Status Functions. In contrast to [19], we do not integrate a status function which decides
how to compare argument lists. Thus, our definition of KBO is incomparable to the one in
[19]. The reason for this omission is simple: We are not aware of any termination tool that
uses KBO with status. Nevertheless, we do not expect severe difficulties for adding a status
function, as we already did this in a formalization of the recursive path order [24].

Ordinal Weights. Another generalization that we do not consider are weight functions over
ordinal numbers [14].

To summarize, we are not aware of any proof of well-foundedness for a KBO variant that
allows quasi-precedences and infinite signatures. Moreover, the subterm property and closure
under substitutions look interesting as they are not satisfied by the definition in [30].

We now state all the desired properties that have been formalized for our version of KBO.
Incidentally, we proved all these properties for a variant of KBO that also incorporates the
subterm coefficient functions from [14]. That is, for each argument, we can specify how often it
should be counted when computing weights and multisets of variables. E.g., for Ψ(f) = [2, 3]
we compute the weight function w.r.t. Ψ as wΨ(f(t1, t2)) = w(f) + 2wΨ(t1) + 3wΨ(t2), and
the multiset of variables w.r.t. Ψ as VΨ

mul(f(t1, t2)) = VΨ
mul(t1)∪VΨ

mul(t1)∪VΨ
mul(t2)∪VΨ

mul(t2)∪
VΨ

mul(t2). Since, for the proofs of the following properties, subterm coefficient functions did
not pose any severe challenges, we omit them in the remainder to simplify our presentation.

I Lemma 3.2 (Properties of �kbo and %kbo).
1. Every term has a weight not less than w0, i.e., w(t) ≥ w0 for all t.
2. Strict KBO is irreflexive and non-strict KBO reflexive, i.e., t 6�kbo t and t %kbo t for all t.
3. The non-strict part is an extension of the strict part, i.e., �kbo ⊆ %kbo.
4. KBO is closed under contexts, i.e., s (%)kbo t −→ C[s] (%)kbo C[t] for all s, t, and C.
5. A weak decrease from an argument implies a strict decrease from the overall term, i.e.,

s %kbo t −→ f(. . . , s, . . . ) �kbo t for all f , s, and t.
6. KBO has the subterm property, i.e., B ⊆ �kbo. (We also have D ⊆ %kbo.)

RTA’13
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7. Every term is larger than a least constant, i.e., least(c) −→ t %kbo c for all c and t.
8. KBO is closed under substitutions, i.e., s (%)kbo t −→ sσ (%)kbo tσ for all s, t, and σ.
9. All combinations of �kbo and %kbo are transitive, i.e., %kbo ◦%kbo ⊆ %kbo, %kbo ◦ �kbo ⊆
�kbo, �kbo ◦%kbo ⊆ �kbo, and �kbo ◦ �kbo ⊆ �kbo

Proof. We only present the proofs of the most interesting properties. All other proofs are
provided in IsaFoR, file KBO.thy.

5. This is the main auxiliary fact for proving the subterm property. We prove it by
induction on t. If t is a variable x, then we have Vmul(f(. . . , s, . . . )) ⊇ Vmul(s) ⊇ Vmul(x), since
s %kbo t = x, and w(f(. . . , s, . . . )) ≥ w0 = w(x) follows from 1. Hence, f(. . . , s, . . . ) �kbo x

by (fun-var). Otherwise, t is a term of the form g(t1, . . . , tn) and s %kbo g(t1, . . . , tn).
Using s %kbo g(t1, . . . , tn) we conclude that the conditions on the variables and weights
are satisfied when comparing f(. . . , s, . . . ) and g(t1, . . . , tn), e.g., w(f(. . . , s, . . . )) ≥ w(s) ≥
w(g(t1, . . . , tn)). If w(f(. . . , s, . . . )) > w(g(t1, . . . , tn)) or f � g then we are done. Otherwise,
w(f(. . . , s, . . . )) = w(s) = w(g(t1, . . . , tn)) which can only be the case when w(f) = 0 and f
is unary, i.e., f(. . . , s, . . . ) = f(s). By admissibility, we conclude f % g and since f 6� g we
know g % f , and hence, by transitivity of % and admissibility, we know that g % h for all
symbols h. Then we consider the following cases:

case (n = 0). Then f(s) �kbo g = g(t1, . . . , tn) by (lex), since (s) �lex
kbo (). This is the

part of the proof where the length comparisons of lists in �lex
kbo play a crucial role.

case (n ≥ 1). We know from s %kbo g(t1, . . . , tn) that s cannot be a variable. So let
s = h(s1, . . . , sm) for some h and s1, . . . , sm. Since w(s) = w(g(t1, . . . , tn)) and g % h

we conclude s1, . . . , sm %lex
kbo t1, . . . , tn. Using n ≥ 1 and 3 we know that m ≥ 1 and

s1 %kbo t1. Using the induction hypothesis, we conclude s = h(s1, . . . , sm) �kbo t1 and
thus, (s) �lex

kbo (t1, . . . , tn) – and in this last comparison one can observe why we must
not bound the lengths of the lists in (lex-def). In combination with f % g we conclude
f(s) �kbo g(t1, . . . , tn) by (lex).

6. From sB t, we first obtain a non-empty context such that s = C[t]. Then C[t] �kbo t

is shown by induction on C, with the help of 2, 3, and 5. Afterwards, the result for sD t
follows by 2 and 3.

8. We show (s %kbo t −→ sσ %kbo tσ) ∧ (s �kbo t −→ sσ �kbo tσ) to ensure closure under
substitutions. The proof works by induction on s followed by a case analysis on t. Most of
the proof is straight-forward, just note that we require 7 (if the decrease is due to (least))
and 6 (if the decrease is due to (fun-var)). J

It remains to investigate well-foundedness of KBO. For finite signatures, this property
follows from Kruskal’s tree theorem, as �kbo is a rewrite order which contains the strict
subterm relation (and thus is a simplification order for finite signatures). Therefore, the
definitions of KBO in [6, 10,14] are well-founded.

As shown in [16], also for infinite signatures the tree theorem can be employed to show
well-foundedness. However, this time the subterm property alone is not enough. Instead we
need to regard homeomorphic embedding in the definition of simplification order. Given a
relation �, homeomorphic embedding on terms, written �he, is defined inductively by the
rules

t ∈ t1, . . . , tn
f(t1, . . . , tn) �he t

s �he t t �he u

s �he u

s �he t

C[s] �he C[t]
f � g s1, . . . , sm D

∗ t1, . . . , tn

f(s1, . . . , sm) �he g(t1, . . . , tn)
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I Theorem 3.3 (Kruskal’s Tree Theorem). If � is a well-partial-order on the signature F ,
then �he is a well-partial-order on the set of ground terms T (F).

Proof. A formalization of Theorem 3.3 is given in [21] and the proofs presented in [20]. J

I Definition 3.4 (Simplification Order). A simplification order is a rewrite order R, s.t., �he
is contained in R, for some well-partial-order �.

Every simplification order is well-founded. Thus, instead of proving well-foundedness
of R directly, it suffices to show that R is a rewrite order that contains �he for some
well-partial-order �.

We were able to show (and formalize in Isabelle/HOL) the following theorem.

I Theorem 3.5. If � is a well-partial-order, then �kbo is a simplification order (and thus
well-founded).

Proof. The proof of [16, Theorem 7.10] works also for our definition. J

For definitions of KBO that are not based on a quasi-precedence (e.g., [16]), the above
theorem is enough to show that any KBO �kbo over a well-founded partial order � is
a simplification order. This can be seen as follows: every well-founded partial order �
can be extended to a total well-order �′ (i.e., a well-founded partial order that satisfies
∀x y. x = y ∨ x �′ y ∨ y �′ x); moreover, every total well-order is a well-partial-order.

I Lemma 3.6. Every total well-order is a well-partial-order.

Proof. Let � be a total well-order. Assume that it is not a well-partial-order (i.e., not
almost-full). Then there is an infinite sequence a such that aj 6� ai for all j > i. By totality,
we have ai � aj for all j > i and thus a1 � a2 � a3 � · · · , contradicting well-foundedness. J

Furthermore, KBO is monotone w.r.t. the given precedence (i.e., � ⊆ �′ implies �kbo ⊆
�′kbo); thus, we can apply Theorem 3.5 to obtain well-foundedness of �′kbo and then, by
�kbo ⊆ �′kbo, conclude well-foundedness of �kbo.

Unfortunately, the same procedure is not applicable with our definition of KBO, since it
does not seem to be monotone w.r.t. the given quasi-precedence, unless % is antisymmetric
and thus % = � (and we are back at not having a quasi-precedence).

Unfortunately, that means that Theorem 3.5 is not relevant for termination tools, since
those typically provide some quasi-precedence, but do not care, whether its strict part is a
well-partial-order.

Besides the problems with quasi-precedences, further note that the proof of Theorem 3.5
does not apply in the presence of subterm coefficient functions. Therefore, we also formalized a
direct well-foundedness proof which has some similarities to [16] and integrates all extensions:
arbitrary signatures, quasi-precedences, and subterm coefficient functions (again, the last
extension is only visible in IsaFoR).

I Theorem 3.7 (Well-Foundedness). KBO is well-founded, i.e., SN(�kbo).

Proof. Let strong normalization of a term t, written SN(t), be the property that there is no
infinite sequence t �kbo t1 �kbo t2 �kbo . . . . Then it suffixes to show that for all terms s, we
have SN(s). Let s be an arbitrary but fixed term. We perform four inductions, labeled (I),
(II), (III), and (IV).

The outermost induction (I) is on s. The variable case is easy as variables are nor-
mal forms w.r.t. �kbo. For the non-variable case we have to show SN(s1, . . . , sm) −→

RTA’13
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SN(f(s1, . . . , sm)) where SN(s1, . . . , sm) abbreviates ∀s ∈ s1, . . . , sm. SN(s). This property
is proven by induction (II) on f and s1, . . . , sm where the induction relation compares the
pairs (w(f(s1, . . . , sm)), f) lexicographically, using the standard order > on natural numbers
for the first component, and � to compare the function symbols in the second component.

In principle, we would like to add a third component to the lexicographic comparisons,
where we compare the argument lists s1, . . . , sm by �lex

kbo. But �lex
kbo is not necessarily well-

founded, as we did not bound the lengths of these lists. We bound the lengths in a further
induction (III). To be more precise, once, we have to prove the property of induction (II) for
some given f and s1, . . . , sm, we define �lexb

kbo as lexicographic extension of �kbo where the
lengths of all lists are bounded by w(f(s1, . . . , sm)) and where it is assumed that all elements
in the lists are already strongly normalizing. Then indeed, �lexb

kbo is strongly normalizing,
so we can prove the following property by induction (III) on t1, . . . , tn for all g w.r.t. the
induction relation �lexb

kbo .

f % g −→ w(f(s1, . . . , sm)) ≥ w(g(t1, . . . , tn)) −→ SN(t1, . . . , tn) −→ SN(g(t1, . . . , tn)) (?)

Clearly, once this property is proven, we can finish induction (II) by choosing g = f and
t1, . . . , tn = s1, . . . , sm.

To prove (?), we assume the preconditions of (?) for some g and t1, . . . , tn and have
to show SN(g(t1, . . . , tn)). To this end, we prove that all successors of g(t1, . . . , tn) are
strongly normalizing, i.e., for all u: g(t1, . . . , tn) �kbo u −→ SN(u). This property we show
by induction (IV) which is a structural induction on u.

There is nothing to show if u is a variable, so let u = h(u1, . . . , uk). Since g(t1, . . . , tn) �kbo
h(u1, . . . , uk) we also know that g(t1, . . . , tn) is larger than every element of u1, . . . , uk using
the subterm property and transitivity. Hence, using induction hypothesis (IV) we know
SN(u1, . . . , uk).

Now, if (w(f(s1, . . . , sm)), f) is larger than (w(h(u1, . . . , uk), h) w.r.t. induction relation
(II), then we are done using the induction hypothesis (II). Otherwise, in combination with
the preconditions of (?) and g(t1, . . . , tn) �kbo h(u1, . . . , uk) we conclude w(f(s1, . . . , sm)) ≥
w(h(u1, . . . , uk)), f % h, and (t1, . . . , tn) �lex

kbo (u1, . . . , uk). Since both w(h(u1, . . . , uk))
and w(g(t1, . . . , tn)) are smaller than w(f(s1, . . . , sm)) in particular this shows, that the
lengths of u1, . . . , uk and t1, . . . , tn are smaller than w(f(s1, . . . , sm)). As additionally
both SN(u1, . . . , uk) and SN(t1, . . . , tn) we can derive (t1, . . . , tn) �lexb

kbo (u1, . . . , uk) from
(t1, . . . , tn) �lex

kbo (u1, . . . , uk). But then induction hypothesis (III) can be applied to derive
the desired property SN(h(u1, . . . , uk)). J

4 Confluence

In this section we first discuss challenges in the formalization of the critical pair theorem
(which is essential to prove soundness of completion), and afterwards present our algo-
rithm to actually certify confluence proofs (which is reused later to certify completion
proofs). The corresponding formalizations are provided in files Critical_Pairs.thy and
Critical_Pairs_Impl.thy.

4.1 Critical Pair Theorem
Recall that in the context of completion, we are interested in terminating and confluent
TRSs. Using our formalization of KBO (and other termination criteria that are available
in IsaFoR), we can already certify termination proofs. Hence, we only require a criterion
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to check for confluence. By Newman’s lemma (which is trivially formalized), it suffices to
analyze local confluence. Here, the key technique is the critical pair theorem of Huet [9] –
making a result by Knuth and Bendix [10] explicit. It states that R is locally confluent if
and only if all critical pairs of R are joinable.

By definition, every critical pair (s, t), gives rise to a peak

s = r1θ R← `1θ = `1θ[`1|pθ]p = `1θ[`2θ]p →R `1θ[r2θ]p = t.

Hence, for local confluence all critical pairs must be joinable. Huet, Knuth, and Bendix have
shown that for local confluence it is indeed sufficient to show joinability of critical pairs:
whenever t1 R← s→R t2 where t1 and t2 are not joinable, then there are C, σ, t′1, and t′2
such that t1 = C[t′1σ], t2 = C[t′2σ], and (t′1, t′2) or (t′2, t′1) is a critical pair of R.

In order to formalize the notion of critical pairs in Isabelle, we need a unification algorithm.
To this end, we have formalized the algorithm of [1, Figure 4.5]. In contrast to [1] we directly
proved all properties (termination, soundness, and completeness) for this concrete algorithm
(as opposed to the abstract algorithm of [1, Chapter 4.6], which transforms unification
problems). As a result, the termination argument is a bit easier (it does not rely upon the
notion of solved variable), whereas the soundness proof becomes a bit harder (as we had to
prove that every result of the unification algorithm is in solved form), cf. Substitution.thy.

Having unification, a problem when formalizing the definition of critical pairs occurred.
Notice that in IsaFoR, terms are polymorphic in the set of function symbols (all elements of
type α) and the set of variables V (all elements of type β). Hence, to prove the critical pair
theorem in a generic way we cannot assume anything on the set of variables. In particular,
V might be finite and thus, we might not even have enough variables for building the critical
pairs (as their definition requires variable renamed rules) and thus cannot even formulate
the critical pair theorem for arbitrary V.1

Since the definition of critical pairs should be executable, we actually do not only want
that there are enough variables for the renaming, but we want some executable algorithm
which actually performs such a renaming. Therefore, we did not formalize the critical pair
theorem for arbitrary infinite sets V , but for strings. For this type of variables it was easy to
define an efficient and executable renaming algorithm: it just prefixes all variables by x in
the one rule, and by y in the other rule.

I Theorem 4.1. A TRS R over T (F ,String) is locally confluent if and only if all critical
pairs of R are joinable.

Note that the theorem does not require any variable-condition for R. Hence, R may, e.g.,
contain left-hand sides which are variables or free variables in right-hand sides.

Further note that there are prior formalizations of the critical pair theorem in other
theorem provers. The first one is described in [18] using ACL2, and another one is presented
in [7] using PVS. Our own formalization is similar to the one in [7], as both are based on the
higher-order structure of Huet’s proof. However, there are some differences to [7], e.g., in
the definition of critical pairs. Whereas in [7] arbitrary renaming substitutions and most
general unifiers are allowed for building critical pairs, our definition uses specific renaming
and unification algorithms. As a consequence, for a finite TRS we only get finitely many
critical pairs, whereas in [7] one usually has to consider infinitely many critical pairs (which
arise from using different variable names in the substitutions).

1 Also other well-known results are problematic if there are not enough variables. For example, during our
formalization we figured out that infinitely many variables are also essential for Toyama’s modularity
result on confluence [27].
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4.2 Certifying Joinability
To actually certify local confluence proofs, we have to ensure that all critical pairs are joinable.
There are two possibilities.

The certificate provides the joining rewrite sequences for each critical pair.
The certifier itself computes joining sequences.

The first possibility has the advantage that it is easy to formalize. However, it will
make the certificates bulky. Even more important, this approach cannot be used to prove
non-confluence, since it does not allow to certify that a critical pair is not joinable.

Both disadvantages are resolved in the second approach, where due to termination, for
each critical pair (s, t) we just have to check s↓R = t↓R. Hence, in IsaFoR we integrated an
automatic check which computes normal forms.

This sounds like a trivial task, where we just define:

compute-NF R s ≡ if {t | s→R t} = ∅ then t else compute-NF R (SOME t. s→R t)

The problem is that compute-NF is not a total function (since the parameter R might be a
nonterminating TRS). Hence, the function package of Isabelle [13] accepts compute-NF only
as partial function, where the defining equation of compute-NF is guarded by a condition (if
the input belongs to the domain, i.e., R is terminating, then the equation is valid). However,
conditional equations prevent to use the code generation facility of Isabelle [8]. Thus, the
above definition is not suitable for our setting.

The solution is to use the partial function command of [12]. It allows to define partial
functions which can be code generated, if the functions have a specific shape. In our case,
we just have to wrap the result of compute-NF in an option-type (where None represents
nontermination) and everything works fine. For the generated code this means that a call to
compute-NF may diverge in general. However, we invoke compute-NF only if termination of
R has already been ensured.

5 Knuth-Bendix Completion

As in the previous section on confluence, we start with the formalization of the general
soundness theorem of completion, and afterwards discuss the certification algorithm for
checking completion proofs. The formalizations are available in files Completion.thy and
Check_Completion_Proof.thy.

5.1 Soundness of Completion
Having formalized the critical pair theorem, we proceed to also formalize soundness of
Knuth-Bendix completion. Since in the end, we are only able to certify finite completion
runs (as the input cannot be infinite), we only formalized soundness for finite runs. To this
end, we used the completion rules from [1] as illustrated in Figure 1. However, the restriction
to finite runs allowed us to drop the requirement of strict encompassment in the collapse-rule,
cf. Theorem 5.2.

We write (Ei,Ri) (Ei+1,Ri+1) for the application of an arbitrary inference rule to the
pair (Ei,Ri) resulting in (Ei+1,Ri+1).

I Definition 5.1. A completion run for E is a finite sequence (E0,R0) n (En,Rn) of rule
applications, where E0 = E and R0 = ∅. A run is successful if En = ∅ and every critical pair
of Rn is contained in

⋃
i≤n Ei or is joinable by Rn.
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(E ,R)
(E ∪ {s ≈ t},R)

(deduce) if s R← u→R t
(E ∪ {s ≈ s},R)

(E ,R)
(delete)

(E ∪ {s ≈ t},R)
(E ,R∪ {s→ t})

(orientl) if s � t
(E ∪ {s ≈ t},R)
(E ,R∪ {t→ s})

(orientr) if t � s

(E ∪ {s ≈ t},R)
(E ∪ {u ≈ t},R)

(simplifyl) if s→R u
(E ∪ {s ≈ t},R)
(E ∪ {s ≈ u},R)

(simplifyr) if t→R u

(E ,R∪ {s→ t})
(E ,R∪ {s→ u})

(compose) if t→R u
(E ,R∪ {s→ t})
(E ∪ {u ≈ t},R)

(collapse) if s→R u

Figure 1 The inference rules of completion.

If (E ,∅)  n (∅,Rn) is a successful run for E , then Rn is confluent, terminating, and
equivalent to E (cf. Theorem 5.2). Note that the requirement on critical pairs for a successful
run can be replaced by one of the two weaker criteria: either local confluence of Rn (all
critical pairs are joinable) or generation of all critical pairs of Rn during the run (all critical
pairs are contained in

⋃
i≤n Ei).

We have formally proven soundness of completion in IsaFoR.

I Theorem 5.2 (Soundness of Completion). If (E ,∅)  n (∅,R) is a successful run of
completion then R is confluent, terminating, and equivalent to E.

Proof. Let (E ,∅) n (∅,R) be a successful run. Then there are Ei and Ri with (Ei,Ri) 
(Ei+1,Ri+1) for all 0 ≤ i < n, E0 = E , R0 = ∅, En = ∅, and Rn = R. In total, we have to
prove that R and E are equivalent, that R is terminating, and that R is confluent. Here, for
equivalence and termination we just formalized the proofs which are provided in [1] since
they do not depend on the encompassment condition in the original collapse rule.

The real interesting part is to prove confluence of R, where we use proof orders [2], which
are also utilized in [1]. More specifically, we formalized the proof using the same structure as
in the proof of [1, Lemma 7.3.4] and just list the most important differences.

In our case, the persistent rules Rω are Rn, the set R∞ is
⋃
i≤nRi, the persistent

equations are Eω = En = ∅, and E∞ =
⋃
i≤n Ei.

The cost of a proof step (si−1, si) is just a pair and not a triple as in [1], where we keep
the first component of the original triple, but drop the part that is concerned with strict
encompassment. Instead, we use another well-founded order on rules. To this end, we define
the latest occurrence function as o(·) where o(`→ r) = max{i | i ≤ n, `→ r ∈ Ri}. Then we
define the cost c(·) of a proof step as follows: if si−1 ↔E∞ si then c(si−1, si) = ({si−1, si},−)
where the first component is a multiset of terms and the second component is irrelevant; if
si−1

`→r→ R∞ si then c(si−1, si) = ({si−1}, n− o(`→ r)); if si−1
`→r← R∞ si then c(si−1, si) =

({si}, n− o(`→ r)).
As in the original proof, these pairs are compared lexicographically, where the first

component is compared via the multiset extension of the reduction order �, and the second
using the standard greater-than order on natural numbers. Hence, the order on the cost of
proof steps is well-founded. Finally, as in the original proof, the cost of a conversion proof
s ↔∗E∞∪R∞ t is the multiset of costs of each single proof step, and these conversion costs
are compared via the multiset extension of the cost of a single proof step. This defines the
relation �C on conversion proofs which is well-founded.
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In [1, Lemma 7.3.4] it is stated that whenever there is a conversion s↔∗E∞∪R∞ t which
is not a rewrite proof of Rω, i.e., a conversion of the form s →∗Rω

· ∗
Rω
← t, then there is

another conversion between s and t with less cost. This is performed via a large case analysis
(cases 1.1, 1.2, 1.3, 2.1, 2.2, 3.1, and 3.2). This proof can almost completely be formalized in
our setting with the new collapse-rule and the different cost function. The reason is that in
cases 1.1, 1.2, 1.3, 3.1, and 3.3, collapse does not occur and moreover, there is a decrease
of cost due to the first component in the lexicographic combination – and as we have the
identical first component, we obtain a decrease of cost by the same reasoning.

Hence, it remains to investigate cases 2.1 and 2.2 where the precondition of both cases
is that si−1 →R∞ si at position p using a rule s → t ∈ R∞ −Rω and substitution σ. Let
k = o(s → t). Thus, c(si−1, si) = ({si−1}, n − k). By definition of o and the fact that
s→ t /∈ Rω = Rn, we conclude k < n. Hence, in the step from (Ek,Rk) to (Ek+1,Rk+1) the
rule s→ t is removed from Rk, so let Rk = R′ ∪ {s→ t}.

Now we consider both cases how s→ t has been removed in the k-th step.
If we used compose (case 2.1) then s → t has been replaced by s → u since t `→r→ R′ u

for some ` → r ∈ R′. As s → u ∈ Rk+1 we know that o(s → u) > k and thus, n − k >
n − o(s → u). We follow the original proof by replacing the one proof step si−1 →R∞ si

by the two proof steps si−1 = si−1[sσ]p
s→u→ R∞ si−1[uσ]p

`→r← R′ si−1[tσ]p = si. Since the
cost of the original proof step c(si−1, si) = ({si−1}, n− k) is strictly larger than the cost of
both new proof steps – c(si−1, si−1[uσ]p) = ({si−1}, n− o(s→ u)) yields a decrease in the
second component and c(si−1[uσ]p, si) = ({si}, n− o(`→ r)) yields a decrease in the first
component – we have constructed a conversion with smaller cost.

Similarly, if we used collapse (case 2.2) then s → t has been replaced by u ≈ t since
s
`→r→ R′ u for some ` → r ∈ R′. As ` → r ∈ R′ = Rk+1 we know that o(` → r) > k and

thus, n − k > n − o(` → r). We follow the original proof by replacing the one proof step
si−1 →R∞ si by the two proof steps si−1 = si−1[sσ]p

`→r→ R∞ si−1[uσ]p
u≈t↔ E∞ si−1[tσ]p = si.

Since the cost of the original proof step c(si−1, si) = ({si−1}, n−k) is strictly larger than the
cost of both new proof steps – c(si−1, si−1[uσ]p) = ({si−1}, n− o(`→ r)) yields a decrease
in the second component and c(si−1[uσ]p, si) = ({si−1[uσ], si},−) yields a decrease in the
first component – we have constructed a conversion with smaller cost.

In total, also for our completion rules, we can prove the major lemma that whenever
there is a conversion s↔∗E∞∪R∞ t which is not a rewrite proof of Rω, then there is another
conversion between s and t with less cost w.r.t. �C . Using this result it is straightforward to
show confluence of Rn = Rω.

Since Rn is terminating it suffices to prove local confluence. By the critical pair theorem
we only have to prove joinability of all critical pairs. So, let (s, t) be some critical pair of Rn.
If it is not joinable, then by the definition of a successful run we know that (s, t) ∈ E∞ and
thus, s↔∗E∞∪R∞ t. Since �C is well-founded and by using the major lemma we know that
there also is a conversion of s and t which is a rewrite proof of Rn. But this is the same as
demanding that s and t are joinable via Rn. J

5.2 Certification of Completion Proofs
For checking completion proofs, although Theorem 5.2 has been formalized, it is not checked
whether the completion rules are applied correctly. This allows us to also certify proofs from
completion tools which are based on other inference rules than those in Figure 1. Instead it
is just verified whether the result of the completion procedure is a confluent and terminating
TRS that is equivalent to the initial set of equations. How to ensure confluence was already



C. Sternagel and R. Thiemann 299

described in Section 4.2, and for termination we use the existing machinery of IsaFoR [26].
It remains to check that R is equivalent to E which is done by showing ` ↔∗E r for all

`→ r ∈ R and s↔∗R t for all s ≈ t ∈ E .
For the latter, since we already know that R is confluent and terminating, we just compare

the normal forms of s and t in the same way as we check joinability of critical pairs in
Section 4.2.

For the former, we demand a step-wise conversion from ` to r as input. Such a conversion
can be obtained by storing additional information during the completion run, e.g., a history
of all applied inference rules.

Given some successful completion proof from E toR, we can of course also easily implement
the decision procedure for s↔∗E t. In combination with a formalization of Birkhoff’s theorem
in the upcoming section, we obtain a formalized decision procedure for E |= s ≈ t. To be
more precise, in the file Check_Equational_Proof.thy we provide two means to prove and
disprove E |= s ≈ t, namely by checking a completion proof and afterwards check whether
the normal forms of s and t coincide or not. For ensuring E |= s ≈ t one can alternatively
provide a derivation s↔∗E t, or a proof tree using the inference rules of equational logic.

6 Birkhoff’s Theorem

Birkhoff’s theorem [3] states that semantic entailment and convertibility are equivalent:
E |= s ≈ t if and only if s ↔∗E t. To show this theorem we had to formalize semantic
entailment. Already at this point we encountered the first problem. Whereas it was easy
to formalize term evaluation and whether an F-algebra (A, I) is a model of an equation
(written I |= s ≈ t), a problem occurred in the definition of semantic entailment.

Before describing the problem, we show how F -algebras are formalized in IsaFoR, within the
file Equational_Reasoning.thy. As shown in Section 2 we consider F-algebras consisting
of a non-empty carrier A and an interpretation I. In Isabelle, a (non-dependently) typed
higher-order logic, we represent such interpretations by functions of type α ⇒ γ list ⇒ γ

(where lower-case Greek letters denote type variables and γ list is the type of finite lists having
elements of type γ) which corresponds to F → A∗ → A from Section 2. More specifically,
the carrier A as well as the signature F are implicit in the type. In Isabelle it is not possible
to quantify over types. Hence, we cannot define semantic entailment by

∀γ.∀I :: α⇒ γ list⇒ γ. ((∀s′ ≈ t′ ∈ E . I |= s′ ≈ t′) −→ I |= s ≈ t) (1)

To solve this problem we just omit the outer quantifier and define E |= s ≈ t by

∀I :: α⇒ γ list⇒ γ. ((∀s′ ≈ t′ ∈ E . I |= s′ ≈ t′) −→ I |= s ≈ t) (2)

where γ, the type of carrier elements, is a type variable. To make this dependence more
prominent, we write E |=γ s ≈ t in the following.

Using (2) we proved one direction of Birkhoff’s theorem – whenever s↔∗E t then E |=γ s ≈ t
– via induction over the length of the conversion s↔∗E t. Since in this theorem γ is arbitrary,
we have indeed formalized that provability implies semantic entailment as defined in Section 2.

For the other direction, we shortly recall the main ideas of the proof of Birkhoff’s
theorem as presented in [1]. We construct an F-algebra where the carrier is the set of
equivalence classes of ↔∗E , i.e., A = T (F ,V)/↔∗E and every symbol is interpreted by itself,
i.e., I(f)([t1]↔∗E , . . . , [tn]↔∗E ) = [f(t1, . . . , tn)]↔∗E . Note that I is well-defined, since ↔∗E is a
congruence. It can be shown that (A, I) is a model of all equations in E . Hence, whenever
E |= s ≈ t, then [s]↔∗E = [t]↔∗E and thus, s↔∗E t.
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The problem in the formalization of this proof is that the carrier A = T (F ,V)/↔∗E is not
expressible as type in Isabelle. The reason is that quotient types can only be built statically,
and may not depend on a dynamic input like an arbitrary set of equations E . To this end, in
the formalization we replaced (2) by

∀A :: γ set.∀I.well-definedA(I) ∧ (∀s′ ≈ t′ ∈ E . I |= s′ ≈ t′) −→ I |= s ≈ t (3)

where the carrier A is not a type, but an arbitrary set having elements from the parametric
type γ. Here, the predicate well-definedA(I) checks whether the interpretation I is well-
defined w.r.t. the carrier A, i.e., for every f it must be ensured that I(f)(a1, . . . , an) ∈ A
whenever each ai ∈ A. In (1) and (2) this was automatically enforced by the type system,
but this is no longer true in (3). With this definition we finally write E |=γ s ≈ t to denote
that the considered carriers are of type γ set.

By (3) it is straightforward to formalize Birkhoff’s theorem using the proof ideas above.
For the direction from semantic to syntactic entailment we choose γ to be the type of sets of
terms, written (α, β) term set in Isabelle, where α is the type of function symbols and β the
type of variables.

I Theorem 6.1 (Birkhoff). Let E be a set of equations over terms of type (α, β) term. Let α,
β, and γ be arbitrary types. Then we have:

Whenever s↔∗E t then E |=γ s ≈ t.
Whenever E |=(α,β) term set s ≈ t then s↔∗E t.
E |=(α,β) term set s ≈ t if and only if s↔∗E t.

7 Conclusion

In this paper we formalized several properties of KBO including well-foundedness, where we
used a variant with quasi-precedences, subterm coefficient functions, and infinite signatures.
For well-foundedness we used a direct proof, and we illustrated why Kruskal’s tree theorem
could only be applied in a less powerful variant of KBO. Moreover, we have formalized the
critical pair theorem, Birkhoff’s theorem, and soundness of Knuth-Bendix completion for
finite runs, where we could drop the strict encompassment condition. The latter result was
already mentioned in a preliminary paper [22] and it has been extended in [28, Sections 5.1.2
and 6.1.2] to other versions of completion: Winkler showed that the strict encompassment
condition can also be dropped for ordered completion [2] and normalized completion [15], if
one considers finite runs, although without any formalization.

As far as we know, our results are the first formalizations of KBO, completion, and
Birkhoff’s theorem. Besides the generic theorems, we also developed executable criteria
which allow us to certify completion proofs and (non-)derivability proofs, e.g., we can certify
proofs from KBCV [23] and MKBTT [29].

Related work in Coq also allows checking a TRS for local confluence and termination,
where CiME3 [5] generates proof scripts for Coq. Although CiME3 contains functionality
to check derivability, we did not find any possibility to certify completion proofs or non-
derivability proofs.

We also mention that resolution based ATPs are already used for finding and certifying
proofs, but in a different way than we have presented: Sledgehammer [4] extracts the axioms
used in a refutation proof (found by an external ATP) and then tries to find a certified proof
using a variant of the Metis ATP whose inferences go through Isabelle’s kernel.

An interesting future work would be to integrate our findings into Sledgehammer.



C. Sternagel and R. Thiemann 301

Acknowledgments
The authors are listed in alphabetical order regardless of individual contributions or seniority.
We thank the anonymous referees for their helpful comments and remarks.

References
1 F. Baader and T. Nipkow. Term Rewriting and All That. New York, USA, paperback

edition, Aug. 1999. doi:10.2277/0521779200.
2 L. Bachmair and N. Dershowitz. Equational inference, canonical proofs, and proof orderings.

J. ACM, 41(2):236–276, 1994. doi:10.1145/174652.174655.
3 G. Birkhoff. On the structure of abstract algebras. Math. Proc. Cambridge, 31(4):433–454,

1935. doi:10.1017/S0305004100013463.
4 S. Böhme and T. Nipkow. Sledgehammer: Judgement day. In International Joint Con-

ference on Automated Reasoning, IJCAR’10, volume 6173 of Lecture Notes in Computer
Science, pages 107–121. doi:10.1007/978-3-642-14203-1_9.

5 É. Contejean, P. Courtieu, J. Forest, O. Pons, and X. Urbain. Automated certified proofs
with CiME3. In Rewriting Techniques and Applications, RTA’11, volume 10 of Leibniz
International Proceedings in Informatics, pages 21–30. doi:10.4230/LIPIcs.RTA.2011.21.

6 J. Dick, J. Kalmus, and U. Martin. Automating the Knuth-Bendix ordering. Acta Inform.,
28(2):95–119, 1990. doi:10.1007/BF01237233.

7 A. L. Galdino and M. Ayala-Rincón. A formalization of the Knuth-Bendix-Huet critical pair
theorem. J. Automat. Reason., 45(3):301–325, 2010. doi:10.1007/s10817-010-9165-2.

8 F. Haftmann and T. Nipkow. Code generation via higher-order rewrite systems. In Func-
tional and Logic Programming, FLOPS’10, volume 6009 of Lecture Notes in Computer
Science, pages 103–117. doi:10.1007/978-3-642-12251-4_9.

9 G. Huet. Confluent reductions: Abstract properties and applications to term rewriting
systems. J. ACM, 27(4):797–821, 1980. doi:10.1145/322217.322230.

10 D. E. Knuth and P. Bendix. Simple word problems in universal algebras. In Computational
Problems in Abstract Algebra, pages 263–297. 1970.

11 K. Korovin and A. Voronkov. Orienting rewrite rules with the Knuth-Bendix order. Inform.
and Comput., 183(2):165–186, 2003. doi:10.1016/S0890-5401(03)00021-X.

12 A. Krauss. Recursive definitions of monadic functions. In Workshop on Partiality and
Recursion in Interactive Theorem Proving, PAR’10, volume 43 of Electronic Proceedings in
Theoretical Computer Science, pages 1–13. doi:10.4204/EPTCS.43.1.

13 A. Krauss. Partial and nested recursive function definitions in higher-order logic. J. Au-
tomat. Reason., 44(4):303–336, 2010. doi:10.1007/s10817-009-9157-2.

14 M. Ludwig and U. Waldmann. An extension of the Knuth-Bendix ordering with LPO-like
properties. In LPAR’07, volume 4790 of Lecture Notes in Computer Science, pages 348–362.
doi:10.1007/978-3-540-75560-9_26.

15 C. Marché. Normalized rewriting: An alternative to rewriting modulo a set of equations.
J. Symb. Comp., 21(3):253–288, 1996. doi:10.1006/jsco.1996.0011.

16 A. Middeldorp and H. Zantema. Simple termination of rewrite systems. Theor. Comput.
Sci., 175(1):127–158, 1997. doi:10.1016/S0304-3975(96)00172-7.

17 T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assistant for Higher-
Order Logic, volume 2283 of Lecture Notes in Computer Science. 2002. doi:10.1007/
3-540-45949-9.

18 J. Ruiz-Reina, J. Alonso, M. Hidalgo, and F.-J. Martín-Mateos. Formal proofs about
rewriting using ACL2. Ann. Math. Artif. Intel., 36(3):239–262, 2002. doi:10.1023/A:
1016003314081.

RTA’13

http://dx.doi.org/10.2277/0521779200
http://dx.doi.org/10.1145/174652.174655
http://dx.doi.org/10.1017/S0305004100013463
http://dx.doi.org/10.1007/978-3-642-14203-1_9
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.21
http://dx.doi.org/10.1007/BF01237233
http://dx.doi.org/10.1007/s10817-010-9165-2
http://dx.doi.org/10.1007/978-3-642-12251-4_9
http://dx.doi.org/10.1145/322217.322230
http://dx.doi.org/10.1016/S0890-5401(03)00021-X
http://dx.doi.org/10.4204/EPTCS.43.1
http://dx.doi.org/10.1007/s10817-009-9157-2
http://dx.doi.org/10.1007/978-3-540-75560-9_26
http://dx.doi.org/10.1006/jsco.1996.0011
http://dx.doi.org/10.1016/S0304-3975(96)00172-7
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1023/A:1016003314081
http://dx.doi.org/10.1023/A:1016003314081


302 Formalizing Knuth-Bendix Orders and Knuth-Bendix Completion

19 J. Steinbach. Extensions and comparison of simplification orders. In Rewriting Techniques
and Applications, RTA’89, volume 355 of Lecture Notes in Computer Science, pages 434–
448. doi:10.1007/3-540-51081-8_124.

20 C. Sternagel. A formal proof of Kruskal’s tree theorem in Isabelle/HOL. draft.
21 C. Sternagel. Well-Quasi-Orders. Archive of Formal Proofs, Apr. 2012. http://afp.

sourceforge.net/entries/Well_Quasi_Orders.shtml, Formal proof development.
22 T. Sternagel, R. Thiemann, H. Zankl, and C. Sternagel. Recording completion for finding

and certifying proofs in equational logic. In International Workshop on Confluence, IWC’12,
pages 31–36. Available at http://arxiv.org/abs/1208.1597.

23 T. Sternagel and H. Zankl. KBCV – Knuth-Bendix completion visualizer. In International
Joint Conference on Automated Reasoning, IJCAR’12, volume 7364 of Lecture Notes in
Artificial Intelligence, pages 530–536. doi:10.1007/978-3-642-31365-3_41.

24 R. Thiemann, G. Allais, and J. Nagele. On the formalization of termination techniques
based on multiset orderings. In Rewriting Techniques and Applications, RTA’12, volume 15
of Leibniz International Proceedings in Informatics, pages 339–354. doi:10.4230/LIPIcs.
RTA.2012.339.

25 R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In Theorem
Proving in Higher Order Logics, TPHOLs’09, volume 5674 of Lecture Notes in Computer
Science, pages 452–468. doi:10.1007/978-3-642-03359-9_31.

26 R. Thiemann and C. Sternagel. Loops under strategies. In Rewriting Techniques and
Applications, RTA’09, volume 5595 of Lecture Notes in Computer Science, pages 17–31.
doi:10.1007/978-3-642-02348-4_2.

27 Y. Toyama. On the Church-Rosser property for the direct sum of term rewriting systems.
J. ACM, 34(1):128–143, 1987. doi:10.1145/7531.7534.

28 S. Winkler. Termination Tools in Automated Reasoning. PhD thesis, University of Inns-
bruck, 2013.

29 S. Winkler, H. Sato, A. Middeldorp, and M. Kurihara. Optimizing mkbTT (system descrip-
tion). In Rewriting Techniques and Applications, RTA’10, volume 6 of Leibniz International
Proceedings in Informatics, pages 373–384. doi:10.4230/LIPIcs.RTA.2010.373.

30 H. Zankl, N. Hirokawa, and A. Middeldorp. KBO orientability. J. Automat. Reason.,
43(2):173–201, 2009. doi:10.1007/s10817-009-9131-z.

http://dx.doi.org/10.1007/3-540-51081-8_124
http://afp.sourceforge.net/entries/Well_Quasi_Orders.shtml
http://afp.sourceforge.net/entries/Well_Quasi_Orders.shtml
http://arxiv.org/abs/1208.1597
http://dx.doi.org/10.1007/978-3-642-31365-3_41
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.339
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.339
http://dx.doi.org/10.1007/978-3-642-03359-9_31
http://dx.doi.org/10.1007/978-3-642-02348-4_2
http://dx.doi.org/10.1145/7531.7534
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.373
http://dx.doi.org/10.1007/s10817-009-9131-z

	Introduction
	Preliminaries
	Knuth-Bendix Order
	Confluence
	Critical Pair Theorem
	Certifying Joinability

	Knuth-Bendix Completion
	Soundness of Completion
	Certification of Completion Proofs

	Birkhoff's Theorem
	Conclusion

