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Abstract
We adapt the TreeRePair tree compression algorithm and use it as an intermediate step in
proving termination of term rewriting systems. We introduce a cost function that approximates
the size of constraint systems that specify compatibility of matrix interpretations. We show how
to integrate the compression algorithm with the Dependency Pairs transformation. Experiments
show that compression reduces running times of constraint solvers, and thus improves the power
of automated termination provers.
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1 Introduction

For proving termination of rewrite systems automatically, a standard approach is to use
monotone interpretations, e.g., by polynomials [11] or matrices [6] for the function symbols.
The conditions of monotonicity and of compatibility with a given rewrite system result in a
constraint system for the coefficients of the interpretation. Termination provers then use a
constraint solver to obtain an actual interpretation. One way of solving constraint systems
is bit-blasting [7, 13, 4]: The unknown numerical coefficients are represented by sequences
of boolean unknowns, the constraints are transformed to a formula in propositional logic,
and a state-of-the-art SAT solver [5] is applied to find a satisfying assignment, from which
the interpretation can be reconstructed.

In the present paper, we describe and investigate a method that allows to obtain small
constraint systems for the termination problem of a given rewrite system. From a given
rewrite system we compute a straight line program that produces all left-hand and right-
hand sides of the rewrite system. The elementary operation of this straight line program
is substitution of terms. Such straight line programs were used for tree compression in
[12]. The computed straight line program can be directly seen as a straight line program
that computes the coefficients of the linear interpretations for all left-hand and right-hand
sides from the unknown coefficients of the function symbols. The elementary operations
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of this new straight line program are matrix-matrix and matrix-vector multiplications. We
define the cost of the straight line program as the number of matrix-matrix multiplications,
which is justified by the fact that matrix-vector multiplications are cheap in comparision to
matrix-matrix multiplications.

Hence, our goal is to compute from a given rewrite system a straight line program
with small cost. We do this by an adaptation of the TreeRePair algorithm [12] for tree
compression. In each iteration, TreeRePair finds a most frequently occurring digram (a
term pattern consisting of two function symbols) in the input tree and replaces this digram
by a fresh symbol. For the purpose of proving termination with matrix interpretations,
TreeRePair has been used in [6] (where a naive implementation of TreeRePair has been
described independently from [12]). Our new adaptation of TreeRePair chooses in each
iteration a digram that reduces the cost (number of matrix multiplications) maximally.

Our cost function (number of matrix multiplications) directly relates to the size of the
constraint system (size of the CNF formula). This is a simple monotonic relation. It depends
on the number of matrix constraints, the dimensions of the matrices, and the encoding of
the operations on the matrix elements. In the present paper, we omit the discussion of
elementary operations, and refer to [3] instead. The size of the formula relates, in turn,
to the running time of the SAT solver. In general this relation is not monotonic, and
it seems impossible to predict the relation exactly, since it depends on the particulars of
simplification and resolution strategies embedded in the SAT solver, which is outside the
scope of this paper. We therefore just assume that smaller formulas give, in general, shorter
running times for solvers, and we test this hypothesis by experiments.

The new contributions of the present paper are:
We define a cost function for terms (digrams) that reflects the size of constraint systems
more accurately, by taking occurrences of variables in subterms into account.
We present the algorithm MCTreeRePair that finds optimal digrams and discuss its
performance.
We combine our approach with the dependency pairs transformation [1].
We present an open-source implementation of our algorithm, and we give an experimental
evaluation, when applied as part of a realistic termination prover.

2 Terms

We use standard notations for terms and term rewriting systems. Let Σ be a finite ranked
alphabet of symbols (also called a signature), where the rank or arity of f ∈ Σ is denoted with
rk(f) ∈ N. Let Σl = {f ∈ Σ | rk(f) = l} for l ∈ N and let k be maximal such that Σk 6= ∅.
A term (or tree) over Σ is a pair t = (D,λ) where D is a finite prefix closed and non-empty
subset of {1, . . . , k}∗ and λ is a function from D to Σ such that for all p ∈ D and 1 ≤ d ≤ k:
pd ∈ D if and only if 1 ≤ d ≤ rk(λ(p)). Elements of D are also called positions or nodes of t.
Define |t| = |D| (the size of the term t). For p ∈ D let t|p = ({q ∈ {1, . . . , k}∗ | pq ∈ D}, λ′),
where λ′(q) = λ(pq) for pq ∈ D, be the subterm of t rooted at position p. We write s E t

(resp. sC t) if s is a subterm (resp., a proper subterm) of t. With Term(Σ) we denote the
set of all terms over Σ. We use the standard term notation, i.e., if for t = (D,λ) we have
λ(ε) = f , rk(f) = n, and ti = t|i for 1 ≤ i ≤ n, then t = f(t1, . . . , tn).

Let V be a finite set of variables with Σ∩V = ∅. We define Term(Σ, V ) = Term(Σ∪V ),
where every variable x ∈ V gets rank 0, i.e., is treated as a constant. For a term t ∈
Term(Σ, V ) let Var(t) be the set of variables that occur at least once in t. A term rewriting
system (TRS) over the signature Σ is a finite set R ⊆ Term(Σ, V ) × Term(Σ, V ) such that
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H2 coefficients of variables:

coeffx(t1) = C1 · S1
coeffy(t1) = C2 · C2
coeffx(t) = H1 · coeffx(t1)
coeffy(t) = H1 · coeffy(t1)

absolute parts:

coeff1(t3) = S1 · 00
coeff1(t2) = C0 + C1 · coeff1(t3)
coeff1(t1) = C0 + C1 · S0 + C2 · coeff1(t2)
coeff1(t) = H0 +H1 · coeff1(t1)

Figure 1 Bottom-up computation of the coefficient matrices of [h(c(s(x), c(s(0), y)), z)].

for every rule (` → r) ∈ R we have ` 6∈ V and Var(r) ⊆ Var(`). The one-step rewriting
relation →R is defined as usual.

3 Matrix interpretation of terms and the cost of terms

As explained in the introduction we use matrix interpretations for proving termination of
term rewriting systems. To define such interpretations, let us fix a semiring S (the ring
of matrix coefficients) and a dimension n ≥ 1 for the further consideration. We want to
interpret a term t with m different variables as an m-ary function from Sn to Sn. For a
set of variables U ⊆ V we denote with (Sn)U the set of all mappings from U to Sn, or
alternatively, the set of U -indexed tuples over Sn. Moreover, for every symbol f ∈ Σm we
fix matrices F1, . . . , Fm ∈ Sn×n and a vector F0 ∈ Sn. This allows us to define the linear
function [f ] : (Sn)m → Sn by

[f ](x1, . . . , xm) = F0 + F1x1 + · · ·+ Fmxm, (1)

where x1, . . . , xm ∈ Sn. Now let t ∈ Term(Σ, V ) be a term with U = Var(t). The inter-
pretation [t] : (Sn)U → Sn is computed by composing the interpretations for the ranked
symbols in the natural way: Let t = f(t1, . . . , tk). Then [t](x) = [f ]([t1](x1), . . . , [tk](xk)),
where x ∈ (Sn)U and xi is the restriction of x to Var(ti) ⊆ U .

We next define a cost measure for terms that reflects the number of matrix multiplications
that have to be done when the coefficients of the linear function that is represented by a term,
are computed in a bottom-up manner. Recall that a term t ∈ Term(Σ, V ) with U = Var(t)
represents the linear function [t] : (Sn)U → Sn, which can be written as an expression
T0 + T1x1 + · · · + Tkxk, where Var(t) = {x1, . . . , xk}, T0 ∈ Sn and T1, . . . , Tk ∈ Sn×n. We
identify [t] with this expression. Moreover, let coeffxi

(t) = Ti. Figure 1 shows the bottom-up
calculation of the coefficients of an example term (from Example 2 below). The constant
term (F0 in (1)) is denoted by coeff1(·). In total, the computation of [t] needs 4 multiplica-
tions of an (n× n)-matrix by an (n× n)-matrix, and 5 multiplications of an (n× n)-matrix
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by an (n × 1)-matrix (a vector). In the following, we will only count matrix-by-matrix
multiplications, and ignore matrix-by-vector multiplications, as well as additions. This is
justified by higher asymptotic cost of multiplications (n3 versus n2). The matrix dimen-
sion in our applications is small (at most 5), see Section 7. Hence, matrix multiplication
algorithms with an asymptotic running time better than O(n3) (e.g., Strassen’s algorithm)
are not useful in our context.

Let t = f(t1, . . . , tk), and assume that all coefficient matrices coeffx(ti) are already
known. Then we can compute the coefficient matrix coeffx(t) as

coeffx(t) =
k∑
i=1

Fi · coeffx(ti),

where Fi is from (1), and we set coeffx(ti) = 0 if x 6∈ Var(ti). Hence, we have one matrix
multiplication for each i with x ∈ Var(ti). But note that the multiplication is trivial if x = ti
(multiplication by the identity matrix, which costs nothing). This motivates the following
definition:

I Definition 1. The (matrix multiplication) cost of a term t = (D,λ) ∈ Term(Σ, V ) is

cost(t) =
∑

p∈D\{ε},λ(p)/∈V

|Var(t|p)|. (2)

The cost of a tuple (t1, . . . , tm) of terms is
∑m
i=1 cost(ti).

Note that this definition models a bottom-up evaluation where we do not use any caching,
memoization, etc. The following example has been taken from [6].

I Example 2. Let rk(h) = rk(c) = 2, rk(s) = 1, and rk(0) = 0. Then we have

cost(h(x, c(y, z))) = 2 cost(h(c(s(x), c(s(0), y)), z)) = 4
cost(h(c(s(y), x), z)) = 3 cost(h(y, c(s(0), c(x, z)))) = 4

Figure 1 shows a detailed computation of the coefficients of the interpretation of the term
h(c(s(x), c(s(0), y)), z).

4 Term compression with TreeRePair

In this section we describe an adaptation of the RePair compression algorithm for strings,
which is called TreeRePair in [12], see also [6]. The idea is to replace frequently occurring
tree patterns of size 2 (so called digrams) by new symbols (called non-terminals in [12]) and
to store in a table the patterns corresponding to the new symbols. Most of the notation from
this section will be needed in the next section where we outline an adaptation of TreeRePair
with the goal of reducing the matrix multiplication cost of a list of terms.

Let us fix a ranked alphabet Σ.

I Definition 3. A digram over Σ is a triple d = [f, i, g] where f, g ∈ Σ and 1 ≤ i ≤ rk(f)).
The rank (or arity) of this digram is rk(d) = rk(f)− 1 + rk(g).

We consider a digram d as a new symbol of rank rk(d).

I Definition 4. To the digram d = [f, i, g] with rk(d) = n and rk(g) = l we associate the
rewrite rule

rule(d) = (d(x1, . . . xn)→ f(x1, . . . xi−1, g(xi, . . . , xi+l−1), xi+l, . . . xn)).
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Figure 2 The replaced digrams from Example 7.

With rule(d)−1 we denote the reverse rule

f(x1, . . . xi−1, g(xi, . . . , xi+l−1), xi+l, . . . xn))→ d(x1, . . . xn).

The right-hand side of the rule rule(d) can be seen as the tree pattern represented by the
digram d.

I Definition 5. A compressed term list is a list (t1, . . . , tm | d1, . . . , dn), where
for each 1 ≤ i ≤ n, di is a digram over the signature Σ ∪ {d1, . . . , di−1}, and
for each 1 ≤ i ≤ m, ti ∈ Term(Σ ∪ {d1, . . . , dn}, V ).

The idea is that a compressed term list (t1, . . . , tm | d1, . . . , dn) represents the term list
(s1, . . . , sm) that is obtained by replacing nodes labeled with digram symbols by the corres-
ponding tree patterns (of size 2). This motivates the following definition:

I Definition 6. The expansion of a compressed term list (t1, . . . , tm | d1, . . . , dn) is the list
(s1, . . . , sm) where si is the unique normal form of ti w.r.t. to the (confluent and terminating)
term rewriting system {rule(d1), . . . , rule(dn)}.

I Example 7. Let rk(h) = rk(c) = 2, rk(s) = 1, rk(0) = 0, and consider the following
compressed term list:

([h, 2, c](x, y, z), [[h, 1, c], 1, s](y, x, z), [[h, 1, c], 1, s](x, c(s(0), y), z), [h, 2, c](y, s(0), c(x, z)) |
[h, 1, c], [h, 2, c], [[h, 1, c], 1, s])

The expansion of this list is the following term list consisting of the terms from Example 2:

(h(x, c(y, z)), h(c(s(y), x), z), h(c(s(x), c(s(0), y)), z), h(y, c(s(0), c(x, z)))). (3)

Figure 2 shows the replaced digrams from the above list.

RTA’13
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In our applications, a term list will be a list of all left-hand and right-hand sides of a TRS.
If term (list) compression is the main objective, then the goal would be to compute a small
compressed term list whose expansion is the input term list. For this let us define the size
of a compressed term list (t1, . . . , tm | d1, . . . , dn) as

∑m
i=1 |ti|+n. This definition is justified

by the fact that a digram can be stored by two symbols (either symbols from the initial
signature or references to previously defined digrams) and an integer, which needs constant
space in a uniform cost model. In Example 7 the compressed term list has size 25, whereas
the expanded term list has size 28.

From the results of [2] it follows immediately that it is NP-complete to check whether for
a given term list t = (t1, . . . , tm) and a given number k there exists a compressed term list
of size at most k whose expansion is t. This holds even for the special case that all symbols
in t are unary and m = 1 (in this case t = t1 is basically a string and a compressed term list
is a context-free grammar in Chomsky normal form that only produces t1).

In [12], the algorithm TreeRePair for producing a small compressed term list was presen-
ted. Let us briefly explain the idea, for which we need a few definitions. Fix a digram
d = [f, i, g] and a term list t = (t1, . . . , tm), where tj = (Dj , λj). An occurrence of d in t is a
pair (j, p) where 1 ≤ j ≤ m, p ∈ Dj , λj(p) = f , and λj(pi) = g. A set Occ of occurrences of
d in t is non-overlapping if for every (j, p) ∈ Occ we have (j, pi) 6∈ Occ. Clearly, if f 6= g, then
every set of occurrences is non-overlapping. If Occ is non-overlapping then we can apply in
each term tj simultaneously at all positions p with (j, p) ∈ Occ the rewrite rule rule(d)−1.
Let t′j be the resulting term. We write (t1, . . . , tm)→Occ (t′1, . . . , t′m).

Let max(d, t) be the maximal size among all non-overlapping sets of occurrences of d
in t. We can easily determine a non-overlapping set maxOcc(d, t) of occurrences of d in t

such that |maxOcc(d, t)| = max(d, t): If f 6= g then we can set maxOcc(d, t) to the set of all
occurrences of d in t. On the other hand, if f = g, then we obtain maxOcc(d, t) as follows.
For every maximal chain of positions p, pi, pii, . . . , pik ∈ Dj in a term tj = (Dj , λj) from
our list such that λj(pi`) = f for all 0 ≤ ` ≤ k we do the following: If k is odd, then we add
the pairs (j, p), (j, pi2), . . . , (j, pik−1) to maxOcc(d, t). If k is even, then we add the pairs
(j, p), (j, pi2), . . . , (j, pik−2) to maxOcc(d, t). In the case that k is even we could have also
put the pairs (j, pi), (j, pi3), . . . , (j, pik−1) into maxOcc(d, t); this choice would also lead to
an occurrence set of size max(d, t). We prefer (j, p), (j, pi2), . . . , (j, pik−2) since this is the
better choice for our adaptation MCTreeRePair of TreeRePair described in Section 5. A
high-level description of the TreeRePair algorithm looks as follows:

input: a term list t = (t1, . . . , tm)
d := ε (a list of digrams)
while there exists a digram d with max(d, t) > 1 do

let d be a digram with max(d, t) ≥ max(d′, t) for all digrams d′
let u such that t→maxOcc(d,t) u

t := u; d := (d, d)
endwhile
output: (t | d)

In [12] the user of TreeRePair may specify a parameter r with the following meaning: Only
digrams d with rk(d) ≤ r will be considered in each iteration of the algorithm. This has two
advantages:

For the test data in [12] (large XML tree structures) it leads to a better compression
ratio, see [12] for an explanation of this possibly surprising fact. The optimal value
turned out to be r = 4.
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Bounding the maximal rank of digrams improves the running time of TreeRePair drastic-
ally.

Let us briefly explain the second point: A naive implementation of the above algorithm,
where we count digram frequencies in each iteration of the while-loop from scratch needs
quadratic time. The implementation from [12] avoids this; thereby some occurrences of self-
overlapping digrams of the form [f, i, f ] get lost (as explained at the end of this section).
But the resulting negative effect on the compression ratio turned out to be negligible. We
recall some implementation details from [12], since our implementation of MCTreeRePair
uses the same principles.

The input terms from t are represented as pointer structures, where every node stores
a pointer to its parent node and a list of pointers to its children. An occurrence (j, p) of
d in t is simply represented by a pointer to node p of tj . Initially, for every digram d all
occurrences from the set maxOcc(d, t) are inserted into a doubly linked list (one for each
digram) and the size of maxOcc(d, t) (which is max(d, t)) is counted. This can be done in a
single pass over the input term list t. If the total number of nodes in the input term list t is
n then clearly at most n digram replacements can be done in total. Each time an occurrence
(j, p) of the digram d = [f, i, g] is replaced, the following steps are done:

Delete the node pi of tj , set the parent pointer for every children pik (1 ≤ k ≤ rk(g)) of
pi to p, insert the list of child pointers of node pi into the list of child pointers of node
p, and change the label of p to d.
Decrement the count-value for digrams d′ that overlap the replaced occurrence of d at
position p, and remove the overlapping occurrences of d′ from the current list of d′-
occurrences.
Increment the count-value for those digrams d′ that are introduced by the replacement
step (digrams of the form [h, l, d] or [d, l, h]), and insert new occurrences of d′ into the
list of d′-occurrences.

Assume that rk(f) = m and rk(g) = n. Then at most m+n digram occurrences overlap the
replaced occurrence of d at position p. The rank of d is m+n− 1. Hence, if we only replace
digrams of rank at most r, then at most r + 1 digram occurrences overlap the replaced
occurrence of d at position p. Hence, per digram replacement only a constant number of
updates is necessary.

A problem arises with self-overlapping digrams of the form [f, i, f ]. Consider for instance
the term f(a, f(b, f(c, d))). The occurrence of [f, 2, f ] at the root position ε would belong
to the set maxOcc([f, 2, f ], t), whereas the second occurrence at position 2 would not. Now
assume that we replace the digram [f, 1, a] (by adding further terms to the term list, [f, 1, a]
might become the most frequent digram). We obtain the term A1(f(b, f(c, d))). If we would
compute the set maxOcc([f, 2, f ], t) from scratch, the occurrence of [f, 2, f ] at position 1
in the term A1(f(b, f(c, d))) would be inserted into the set maxOcc([f, 2, f ], t). But in the
implementation from [12] described above this occurrence is lost.

5 Minimizing the matrix multiplication cost using TreeRePair

In this section we present our adaptation of TreeRePair with the goal of reducing the matrix
multiplication cost of a given term list. We call our algorithm MCTreeRePair (“MC” for
“matrix cost”). The point is that a compressed term list may have smaller cost than its
expansion. First, we have to define the cost of a digram:

I Definition 8. The cost of digram d = [f, i, g] is cost(d) = rk(g).

RTA’13



104 Compression of Rewriting Systems for Termination Analysis

Note that cost(d) = rk(g) is exactly the number of matrix multiplications needed to compute
the coefficients for the linear function that is represented by d.

I Definition 9. The (matrix multiplication) cost of a compressed term list (t1, . . . , tm |
d1, . . . , dn) is

cost(t1, . . . , tm | d1, . . . , dn) =
m∑
i=1

cost(ti) +
n∑
i=1

cost(di). (4)

If (s1, . . . , sm) is the expansion of (t1, . . . , tm | d1, . . . , dn) then we can compute the coef-
ficients for the linear functions [s1], . . . , [sm] with cost(t1, . . . , tm | d1, . . . , dn) many matrix
multiplications.

I Example 10. Let us compute the cost of the compressed term list from Example 7. We
have:

cost([h, 2, c](x, y, z)) = 0 cost([h, 1, c]) = 2
cost([[h, 1, c], 1, s](y, x, z)) = 0 cost([h, 2, c]) = 2

cost([[h, 1, c], 1, s](x, c(s(0), y), z)) = 1 cost([[h, 1, c], 1, s]) = 1
cost([h, 2, c](y, s(0), c(x, z))) = 2

Hence, the total cost is 8. In contrast, the cost of the expanded term list in (3) is 13.

I Definition 11. The savings of a non-overlapping set of occurrences Occ of a digram
d = [f, i, g] in a term list t = (t1, . . . , tm), briefly save(Occ, t), is defined as follows, where
tj = (Dj , λj):

save(Occ, t) = − cost(d) +
∑

(j,p)∈Occ

|Var(tj |pi)|. (5)

In other words: We add to the negative cost of d for each (j, p) ∈ Occ the number of different
variables below the i-th child of node p (the lower digram node).

By the following lemma, save(Occ, t) is exactly the cost-reduction obtained by replacing
all digram occurrences from Occ.

I Lemma 12. Let (t1, . . . , tm | d1, . . . , dn) be a compressed term list, let d = [f, i, g] be
a digram, and let Occ be a non-overlapping set of occurrences of d in (t1, . . . , tm). Let
(t1, . . . , tm)→Occ (t′1, . . . , t′m). Then we have

cost(t′1, . . . , t′m | d1, . . . , dn, d) = cost(t1, . . . , tm | d1, . . . , dn)− save(Occ, [t1, . . . , tm]). (6)

Proof. Let Occj = {p | (j, p) ∈ Occ}. Using (4) and (5), it follows that (6) is equivalent to
m∑
j=1

cost(tj) =
m∑
j=1

cost(t′j) +
∑

(j,p)∈Occ

|Var(tj |pi)|.

This follows from
cost(tj) = cost(t′j) +

∑
p∈Occj

|Var(tj |pi)|

for all 1 ≤ j ≤ m. But this is a consequence of (2). Applying rule rule(d)−1 at all positions
p ∈ Occj in tj means that we remove all nodes pi with p ∈ Occj from tj . Moreover, for all
other nodes of tj the number of different variables below the node does not change. Also
note that for all p ∈ Occj , node pi of tj is not labeled with a variable. J
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By Lemma 12, in order to reduce the cost of a (compressed) term list maximally, we
have to find a non-overlapping set of occurrences (of some digram d) with maximal savings.

IDefinition 13. For the digram d = [f, i, g] and the term list t = (t1, . . . , tm) let maxsave(d, t)
be the maximum of save(Occ, t), where we maximize over all non-overlapping sets of occur-
rences Occ of d in t.

Recall the definition of the non-overlapping occurrence set maxOcc(d, t) from Section 4.

I Lemma 14. We have save(maxOcc(d, t), t) = maxsave(d, t).

Proof. Let d = [f, i, g]. The case f 6= g is clear, since then maxOcc(d, t) is the set of all
occurrences of d in t. Now assume that f = g. Recall that we obtain maxOcc(d, t) by
considering all maximal chains of positions p, pi, pii, . . . , pik ∈ Dj in a term tj = (Dj , λj)
from our list such that λj(pi`) = f for all 0 ≤ ` ≤ k. If k is odd, then we put the
occurrences (j, p), (j, pi2), . . . , (j, pik−1) into maxOcc(d, t). If k is even, then we put the
occurrences (j, p), (j, pi2), . . . , (j, pik−2) into maxOcc(d, t). Note that in case k is even, the
set of occurrences {(j, pi), (j, pi3), . . . , (j, pik−1)} has the same size as the chosen set of
occurrences {(j, p), (j, pi2), . . . , (j, pik−2)}. But the latter gives a larger (or the same) savings
according to (5), since Var(tj |pi`+1) ⊆ Var(tj |pi`) and thus |Var(tj |pi`+1)| ≤ |Var(tj |pi`)| for
all 0 ≤ ` ≤ k − 1. J

On a high level, MCTreeRePair works as follows:

input: a term list t = (t1, . . . , tm)
d := ε (a list of digrams)
while there exists a digram d with maxsave(d, t) > 0 do

let d be a digram with maxsave(d, t) ≥ maxsave(d′, t) for all digrams d′
let u such that t→maxOcc(d,t) u

t := u; d := (d, d)
endwhile
output: (t | d)

Here is a complete example run of MCTreeRePair.

I Example 15. Let rk(h) = rk(c) = 2, rk(s) = 1 and rk(0) = 0. Consider the following
term rewriting system (which consists of the terms from Example 2):

h(x, c(y, z))→ h(c(s(y), x), z), h(c(s(x), c(s(0), y)), z)→ h(y, c(s(0), c(x, z)))

The matrix multiplication cost is 13, see Example 2. The maxsave-values of the digrams in
this system are (we omit the second parameter in maxsave for the term list):

maxsave(h, 1, c) = 2, maxsave(c, 1, s) = 1, maxsave(s, 1, 0) = 0
maxsave(h, 2, c) = 2, maxsave(c, 2, c) = 1,

Let us decide to replace the digram d := (h, 1, c) (we could also choose (h, 2, c)). We obtain
the following system:

h(x, c(y, z))→ d(s(y), x, z), d(s(x), c(s(0), y), z)→ h(y, c(s(0), c(x, z)))

The new maxsave-values are:

maxsave(h, 2, c) = 2, maxsave(c, 2, c) = 0, maxsave(c, 1, s) = −1
maxsave(d, 1, s) = 1, maxsave(d, 2, c) = −1,
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So, we next replace the digram e := (h, 2, c) and obtain the system:

e(x, y, z)→ d(s(y), x, z), d(s(x), c(s(0), y), z)→ e(y, s(0), c(x, z))

At this point, f := (d, 1, s) is the only diagram with a strictly positive maxsave-value, namely
1. Hence, we replace this digram and get the final compressed system

e(x, y, z)→ f(y, x, z), f(x, c(s(0), y), z)→ e(y, s(0), c(x, z)).

Our implementation of MCTreeRePair follows the same strategy as TreeRePair described
in the previous section. In a first step we compute for each node p of a tree tj in the input
term list t the number |Var(tj |p)| of different variables in the subtree rooted at p. These
numbers are necessary to compute the savings of a set of digram occurrences according to
(5). Then, as for standard TreeRePair, we insert for every digram d all occurrences from the
set maxOcc(d, t) into a doubly linked list (one for each digram). Thereby, we also compute
the savings maxsave(d, t) = save(maxOcc(d, t), t) according to (5). Note that when we replace
a certain occurrence (j, p) of the digram d = [f, i, g] in the tree tj , and the resulting tree
is t′j (i.e., we apply the inverse rule rule(d)−1 at position p in tj), then we do not have to
recompute the numbers |Var(t′j |q)| (for all nodes q of t′j): In our implementation of the
digram replacement, we remove the node pi from the pointer structure representing tj , The
new parent node of pik (1 ≤ k ≤ rk(g)) becomes node p. Thereby, the number of different
variables below a certain node does not change.

One might try to reduce the computation of the maxsave(d, t)-values to ordinary digram
counting (as done in TreeRePair) as follows: Let t be a term, let u be a subterm of t and
let x be a variable. We say that a subterm sE t is a maximal non-x subterm of t if x does
not occur in s, but x occurs in every subterm u with s C u. We denote by tx the term in
which all maximal non-x subterms have been replaced by some dummy symbol N .

I Example 16. Let t = f(g(x), h(x, s(y))). Then tx = f(g(x), h(x,N), ty = f(N,h(N, s(y)).

For a term t, let {x1, . . . , xn} be the set of variables occurring in t. Then one can check
that maxsave(d, t) equals the number of non-overlapping occurrences of d in the term list
(tx1 , . . . , txn

) minus the cost of d. However this can lead to a quadratic blowup of the input
terms. To see that, consider the term

tn = f(. . . (f︸ ︷︷ ︸
n times

g (x1, . . . , xn)︸ ︷︷ ︸
n times

)).

where f has rank 1 and g has rank n. This tree has size 2n+1, but the term list (tx1 , . . . , txn
)

has total size n(2n+ 1).

6 Compression and the dependency pairs transformation

The dependency pairs transformation [1] converts the full termination problem of R over Σ
into the top termination problem of DP(R) relative to R, over signature Σ ∪ Σ#, where

DP(R) := {l# → s# | (l→ r) ∈ R, s = (D,λ) E r, λ(ε) ∈ defined(R), s 6El},

where defined(R) is the set of all symbols that occur in root positions of left-hand sides of
rules of R, and the operation of marking the top symbol is f(t1, . . . , tn)# = f#(t1, . . . , tn).

I Example 17. For (the string rewrite system) R = {a2b2 → b3a3}, we obtain defined(R) =
{a} and DP(R) = {a#ab2 → a#a2, a#ab2 → a#a, a#ab2 → a#}.
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When using monotone matrix interpretations to prove relative top termination, one uses
two-sorted interpretations (called weakly monotone algebras [6]). An m-ary marked symbol
f# is interpreted by a linear function [f#] : (Sn)m → S, whereas an m-ary unmarked
symbol f is interpreted by a linear function [f ] : (Sn)m → Sn.

We now discuss how two-sortedness affects compression. We observe that the cost model
that just counts matrix multiplications is wrong for computing interpretations for DP(R),
and consequently MCTreeRePair produces inefficient results. This is shown in the following
example.

I Example 18. Let f# be a marked binary symbol and g, h be unmarked unary symbols.
The interpretation of f# has coefficient matrices F#

1 , F
#
2 (of dimension 1×n), and the inter-

pretation of g (resp., h) has a coefficient matrix G1 (resp., H1) of dimension n×n. Consider
the computation of the coefficient for variable x in the term t = f#(g(h(x)), g(h(x))). It
is tempting to first replace the two occurrences of the digram e = (g, 1, h). So we compute
E1 = G1H1 (a product of two (n × n)-matrices) with n3 elementary multiplications. Then
we compute the coefficient of x in t as F#

1 E1 +F#
2 E1, which needs another 2n2 elementary

multiplications (this can be reduced to n2 multiplications by computing (F#
1 + F#

2 )E1).
Hence, in total we need n3 + 2n2 (or n3 + n2 if we use the alternative) multiplications.

But there is a better way: Compute (F#
1 G1)H1, that is, first multiply F#

1 by G1 and then
the result by H1, and similarly (F#

2 G1)H1, which needs in total only 4n2 multiplications.
In terms of digrams, this means that we replace the following digrams (which occur only
once) in this order: c := (f#, 1, g), d := (c, 1, h), e := (d, 2, g), f := (e, 2, h).

The example shows that computation of the interpretation of marked terms is best done
“from the top”. In this way we can avoid multiplications of two (n × n)-matrices. We
draw the conclusion that we should compress only R, because that is where the expensive
multiplications take place.

We now describe how we obtain compression for DP(R) as a side effect. The reason is
that all terms in DP(R) have shape f#(t1, . . . , tn) where each ti is a subterm of some term
in R. This implies that we can extract a compressed version of ti.

We compress R over Σ, obtaining a compressed system Rc over the extended alphabet
Σc consisting of Σ and digrams. We then compute the compressed version of DP(R) by
applying a modified operation DPc on the compressed system Rc. This operation DPc(Rc)
has two ingredients:

computation of the set of all subterms (in compressed form) of a compressed term, and
marking of the top symbol of a compressed term.

In both cases the output term(s) should be compressed, and be obtained without completely
unpacking the input term. These operations can be realized in a straightforward manner by
expanding digrams as needed, at the current position. We make no attempts at constructing
fresh digrams.

I Example 19. Let f be a unary and t = f8(x). Consider the compressed term tc = d3(x)
with digrams d3 = (d2, 1, d2), d2 = (d1, 1, d1), d1 = (f, 1, f). The proper subterms of t in
compressed form are fd1d2(x), d1d2(x), fd2(x), d2(x), fd1(x), d1(x), f(x), x, and d3(x)#

is f#fd1d2(x).

I Example 20 (Example 17 continued). For R = {a2b2 → b3a3} compression produces
Rc = {de → ebda} with digrams d = (a, 1, a), e = (b, 1, b). We obtain DPc(Rc) = {a#ae →
a#a2, a#ae → a#a, a#ae → a#}. Note that the right-hand side a#a2 of the first rule gets
a#a from marking the expansion of the digram d, plus an adjacent a.
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To compute efficiently the interpretations of marked terms, like f#fd1d2(x) from Ex-
ample 19, we work from the top, i.e., left-to-right. This can be modelled by the introduction
of digrams e1 = (f#, 1, f), e2 = (e1, 1, d1), e3 = (e2, 1, d2). The interpretations of these
digrams are linear functions from Sn to S. For the computation of the coefficients of these
linear functions, we have to multiply a (1× n)-matrix with a (n× n)-matrix (but never two
(n × n)-matrices). We therefore compress DPc(Rc) by repeatedly replacing digrams that
occur at the root of some term from DPc(Rc). The algorithm stops when all children of all
top symbols are variables.

We summarize the DP-MCTreeRePair algorithm:

input: a rewriting System R over Σ
Rc := MCTreeRePair(R)
Dc := DPc(Rc)
while there exists a digram d that occurs at the top of some rule in Dc

Dc := replace each occurence of d in lhs and rhs of Dc

endwhile
output: (Dc, Rc) such that expand(Dc) = DP(R) and expand(Rc) = R.

I Example 21 (Example 20 continued). In DPc(Rc) we introduce digrams d1 = (a#, 1, a), d2 =
(d1, 1, e), d3 = (d1, 1, a), and obtain {d2 → d3, d2 → d1, d2 → a#}.

We now compare the number of matrix and vector operations for different compres-
sion methods applied with the dependency pairs transformation. We compare to a “naive”
compression method as well.

I Example 22. For the symbolic evaluation of an n-dimensional matrix interpretation for
the rewriting system from Example 2, Table 1 contains in column (p, q, r) the number of
multiplications of a (p× q)-matrix by a (q × r)-matrix.

Table 1 Number of matrix multiplications for the rewriting system from Example 2.

method (1, n, 1) (1, n, n) (n, n, 1) (n, n, n)

uncompressed (DP(R) ∪R) 4 8 20 18
MCTreeRePair(DP(R) ∪R) 4 8 13 12

DP-MCTreeRePair(R) 9 11 9 8

By applying algorithm DP-MCTreeRePair, the number of matrix-by-matrix multiplic-
ations is lowest—in fact it is equal to the number of matrix-by-matrix multiplications of
MCTreeRePair(R).

7 Experiments

We implemented a version of MCTreeRePair as described in Sections 5 and 6, and we
evaluated our implementation in two settings:

We evaluated how compression reduces the size of constraint systems for rewrite systems
from the Termination Problems Data Base (more precisely, the SRS/TRS standard/rel-
ative subsets of TPDB version 8), which consists of 3027 files.
We determined the influence of compression on the power of an actual termination prover.

The source code is available from https://github.com/jwaldmann/matchbox. The com-
plete experimental data (log files) is available from http://www.informatik.uni-leipzig.
de/~noeth/

https://github.com/jwaldmann/matchbox
http://www.informatik.uni-leipzig.de/~noeth/
http://www.informatik.uni-leipzig.de/~noeth/
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To measure the “compressibility” of TPDB problems, we used the matrix multiplication
cost from (2) as well as the actual size of the resulting SAT constraint system with fixed
parameters for the matrix dimension and the bit width of matrix entries. We compared
these measures for the settings with and without compression, for both the original systems
and for their DP-transformed versions. Table 2 shows the results. Column “cost” shows the
accumulated costs of all terms from the corpus. Column “CNF-size” shows the accumulated
number of variables and clauses that are being generated by the “bit blasting” translation
from the (arctic) integer constraint problem. For “no compression” and “compression” we
use (3× 3)-matrices with 3-bit entries, for “DP” and “DP and compression” we use (3× 3)-
matrices with 5-bit entries. Note that we obtain an overall compression ratio of about 3
for both the matrix multiplication cost and the actual CNF size (number of clauses). For
DP, these ratios are 3.44 and 1.71, respectively. We conclude that our cost model gives, on
average, a very good approximation of the real cost.

Table 2 Total cost and CNF-size with and without compression, for 3027 systems from TPDB.

method cost CNF-size (variables, clauses)

no compression 1.61 · 106 4.04 · 108, 3.23 · 109

compression 5.18 · 105 1.30 · 108, 1.04 · 109

dependency pairs (DP) 1.51 · 106 1.92 · 109, 6.22 · 109

DP and compression 4.39 · 105 1.11 · 109, 3.63 · 109

For estimating the effect of compression on the performance of a termination prover, we
used a restricted version of matchbox. It optionally applies the dependency pairs transform-
ation and then repeats the following steps until there are no more strict rules:

If the system is linear, remove rules by additive weights (linear polynomials of slope 1
with absolute coefficients computed by the GLPK solver for linear inequalities).
For increasing matrix dimensions, try to remove rules by natural matrix interpretations
for original systems [6] (solved by binary bit-blasting) and arctic matrix interpreta-
tions for DP-transformed systems [10] (solved by unary bit-blasting [3]). In both cases,
MINISAT [5] is used as the backend solver.

We apply the “cheap” method (additive weights) first so that the remaining constraint
systems are non-trivial. We isolate the effect of compression by using matrix interpretations
as the only non-cheap method.

Our experiment then consists of a comparison between the performances of an implement-
ation with and without compression. The following parameters are fixed at the beginning:
the boolean encoding of numbers (in particular, their bit width), the matrix dimensions
that are being used, the compiler settings, runtime settings, and resources of the execution
platform (timeout, memory size, cores). We choose “sensible” values for these parameters,
but make no particular attempt to optimize them.

Our implementation exploits parallelism: We search for matrix interpretations in dimen-
sions 1, 2, . . . , D in parallel (for some parameter D that is fixed in advance), i.e., we generate
constraint systems C1, C2, . . . , CD and submit each of them to a separate instance of the
SAT solver. As soon as one Ci is solved, we stop the other computations, remove some rules
from the input problem (according to the interpretation that was obtained as the solution
of Ci), and start afresh. In this way, we actually measure the time that the constraint solver
needs in the positive case(s) only. Compare this with a sequential implementation, where we
would have to wait for Ci to be recognized as unsolvable, before attempting to solve Ci+1. In
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this case, the total time would include several unsuccessful attempts as well. But in reality
(of proving termination automatically), we are not interested in unsolvable Ci, because they
do not contain information on the termination problem. (We cannot distinguish between
unsatisfiability due to non-termination, or due to insufficient bit width.)

Table 3 shows the results of our experiments. Column “# yes instances” shows the
number of rewrite systems for which termination is successfully proven within 1 minute (the
time out). Column “average time yes” is the average time needed to prove termination overall
yes instances. It shall be noted that the number of “# yes instances” includes the number
of systems for which termination could be proven by “cheap” methods, as described above
(there were 50 such cases without using the dependency pairs method, and 250 with it). As
can be seen, the number of systems which can be proven to be terminating increases by about
7% (3,5% for DP) when using MCTreeRepair-compression. We conclude that compression
of rewriting systems using MCTreeRePair does improve the power of a termination prover
that uses a constraint solver to find interpretations.

Table 3 also shows our results when “naive” compression based on TreeRePair (as out-
lined in Section 4) instead of MCTreeRePair is used in the termination prover. Surprisingly,
the number of systems for which termination can be proven is less than without any com-
pression. Here is a possible explanation: When computing the interpretation of a term t

without variables bottom-up, only cheap matrix-by-vector multiplications are needed; ex-
pensive matrix-by-matrix multiplications do not occur. But compression based on ordin-
ary TreeRePair only tries to reduce the size of t and therefore may introduce diagrams
which lead to expensive matrix-by-matrix multiplications when evaluating the digrams. On
the other hand, MCTreeRePair will not introduce any diagrams in t: Every digramm oc-
currence d = [f, i, g] in t, where g has at least arity 1 yields the negative contribution
− cost(d) = − rk(g) to the savings according to (5).

Table 3 Influence of compression on the matchbox termination prover.

method average time yes # yes instances

no compression 11.9 584
compression with MCTreeRePair 12.2 628
naive compression with TreeRePair 11.9 571
dependency pairs (DP) 1.85 681
DP and compression 4.10 709

All values in Table 3 were obtained for an unlimited maximal rank for diagrams. We also
experimented with bounded maximal ranks, and it turned out that the optimal value (w.r.t.
resulting number of termination proofs for Matchbox using DP-MCTreeRePair) seems to
be r = 4 (whis is also the optimal value for XML-compression based on TreeRePair in
[12]): The number of proofs is slightly larger than with unbounded rank, and we have no
explanation at the moment.

8 Discussion and summary

Does compression really preserve semantics? For any given interpretation of function
symbols, the interpretation of a compressed term is equivalent to the interpretation of the
original term. The underlying reason is that matrix multiplication is associative: digrams
correspond to sub-multiplications.
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When solving matrix constraints by bit-blasting, the range for matrix elements is a finite
set, prescribed by the bit width of the encoding. This implies that arithmetical operations
may overflow (For natural numbers, addition and multiplication may overflow; for arctic
numbers, multiplication may), so they are partial functions. These partial functions are
no longer associative: For instance, consider the integer product abc for three bit integers
a, b and c. For a = 7, b = 7, c = 0 the product a(bc) is representable, while the product
(ab)c is not. Now, (ab) could be a digram that occurs during compression, while (bc)
could correspond to an evaluation of the uncompressed term. Then the constraint system
generated from the compressed terms may be unsatisfiable, while the original system is
satisfiable. Take the bit width w as a parameter. It can be shown that the original system O

and the compressed system C are equivalent in the sense that for each satisfying assignment
s of O(w) there is some w′ ≥ w such that a padded version s′ of s satisfies C(w′).

Does compression work with more advanced termination methods? The basic
dependency pairs method has many refinements [9, 8], which we ignore here since they appear
orthogonal to the topic of compression. For instance, by using (estimated) dependency
graphs, one obtains termination subproblems that refer to subsets of DP(R). The “usable
rules” method creates subproblems that contain subsets of R. In both cases, compression
can be obtained by the methods shown in Section 6.

Is the data base sufficient? We were running experiments on problems contained in the
Termination Problems Data Base (TPDB). It may be argued that most of the problems in
TPDB are small, and do not need compression. Our experiments show that even for small
problems, compression may help. For instance, consider problem TRS/Gebhardt_06/02.trs.
We apply the DP transformation, a simplex solver, and arctic matrix interpretations. The
nontrivial part is to find a matrix interpretation of dimension 4. We use 5 bit arctic unary
numbers. Without compression, we get 16 multiplications of (4 × 4)-matrices, resulting
in a CNF with 45423 variables and 146770 clauses, which is solved in 18 seconds. With
compression, we get only 7 matrix multiplications, the CNF has 22303 variables and 71970
clauses, and is solved in 10 seconds. Another point is that TPDB problems might not
be typical “real life” termination problems. It appears that most of the TPDB problems
are hand-crafted: They are taken from publications, where they serve to illustrate certain
isolated points. So, they tend to be small but hard (and trivial only when one applies a
specific, advanced method). Application problems, on the other hand, may be large but
“easy”, and appear hard only because of their size, and compression can reduce size.

Extensions. The method given in the paper counts matrix-by-matrix multiplications only.
Our experiments confirm that this is a reasonable simplification. For still better compression,
we additionally need to take into account the cost of vector-by-matrix multiplications at the
top of DP-transformed rules, and also the matrix-by-vector multiplications for evaluating
absolute parts. This implies extensions in the definition of the savings of a digram, and
in the algorithm to incrementally update the savings information. In full generality, this
includes the “matrix chain multiplication” optimization problem—and goes beyond it, since
it is not just about parenthesizing matrix chains, but also about re-using subexpressions.
We leave that as possible direction for future work.

Conclusion. We presented the MCTreeRePair algorithm, which reduces the size of con-
straint systems that determine matrix interpretations for automatically proving termination
of rewriting. MCTreeRePair is based on the tree compression algorithm TreeRePair. To
obtain a good compression for these constraint systems, we enriched TreeRePair with a cost
function that is sensitive to the number of variables in subtrees. We showed that this addi-
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tional information can be handled without too much extra work. We also showed that the
dependency pairs transformation can be applied to compressed systems directly. We tested
our implementation for problems from the Termination Problems Data Base. MCTreeRe-
Pair reduces the sizes of the resulting constraint systems by factor of approx. 1/3. We also
provided experimental evidence showing that smaller constraint systems tend to be solved
faster by a state-of-the art solver. To conclude, compression seems to be a useful addition
to termination provers that use interpretation methods.
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