
Another Subexponential-time Quantum Algorithm
for the Dihedral Hidden Subgroup Problem∗

Greg Kuperberg

University of California, Davis
greg@math.ucdavis.edu

Abstract
We give an algorithm for the hidden subgroup problem for the dihedral group DN , or equivalently
the cyclic hidden shift problem, that supersedes our first algorithm and is suggested by Regev’s
algorithm. It runs in exp(O(

√
logN)) quantum time and uses exp(O(

√
logN)) classical space,

but only O(logN) quantum space. The algorithm also runs faster with quantumly addressable
classical space than with fully classical space. In the hidden shift form, which is more natural
for this algorithm regardless, it can also make use of multiple hidden shifts. It can also be
extended with two parameters that trade classical space and classical time for quantum time. At
the extreme space-saving end, the algorithm becomes Regev’s algorithm. At the other end, if
the algorithm is allowed classical memory with quantum random access, then many trade-offs
between classical and quantum time are possible.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases quantum algorithm, hidden subgroup problem, sieve, subexponential
time

Digital Object Identifier 10.4230/LIPIcs.TQC.2013.20

1 Introduction

In a previous article [7], we established a subexponential-time algorithm for the dihedral
hidden subgroup problem, which is equivalent to the abelian hidden shift problem. That
algorithm requires exp(O(

√
log N)) time, queries, and quantum space to find the hidden

shift s in the equation g(x) = f(x+ s), where f and g are two injective functions on Z/N . In
this article we present an improved algorithm, Algorithm 7, which is much less expensive in
space, as well as faster in a heuristic model. Our algorithm was inspired by and generalizes
Regev’s algorithm [10]. It uses exp(O(

√
log N)) classical space, but only O(logN) quantum

space. We heuristically estimate a total computation time of Õ(2
√

2 log2 N) for the new
algorithm; the old algorithm takes time Õ(3

√
2 log3 N).

The algorithm also has two principal adjustable parameters. One parameter allows the
algorithm to use less space and more quantum time. A second parameter allows the algorithm
to use more classical space and classical time and less quantum time, if the classical space
has quantum access [5]. (See also Section 2.) Finally, the new algorithm can take some
advantage of multiple hidden shifts; somewhat anomalously, our old algorithm could not.

The new algorithm can be called a collimation sieve. As in the original algorithm and
Regev’s algorithm, the weak Fourier measurement applied to a quantum query of the hiding
function yields a qubit whose phases depend on the hidden shift s. The sieve makes larger
qudits from the qubits which we call phase vectors. It then collimates the phases of the

∗ Partly supported by NSF grant DMS CCF-1013079

T Q C

© Greg Kuperberg;
licensed under Creative Commons License CC-BY

8th Conference on Theory of Quantum Computation, Communication and Cryptography.
Editors: Simone Severini and Fernando Brandao; pp. 20–34

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TQC.2013.20
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

G. Kuperberg 21

qudits with partial measurements, until a qubit is produced whose measurement reveals the
parity of s. We also use a key idea from Regev’s algorithm to save quantum space. The sieve
is organized as a tree with O(

√
logN) stages, and we can traverse the tree depth first rather

than breadth first. The algorithm still uses a lot of classical space to describe the coefficients
of each phase vector when it lies in a large qudit. If the qudit has dimension `, then this is
only O(log `) quantum space, but the classical description of its phases requires Õ(`) space.

The main discussion of the dihedral hidden subgroup problem has been as an algorithm
with a black-box hiding function. Recently Childs, Jao, and Soukharev [4] found a classical,
white-box instance of the dihedral hidden subgroup problem, or the abelian hidden shift
problem. The instance is that an isogeny between isogenous, ordinary elliptic curves can
be interpreted as a hidden shift on a certain abelian group. Thus, just as Shor’s algorithm
allows quantum computers to factor large numbers, an abelian hidden shift algorithm allows
quantum computers to find isogenies between large elliptic curves. This is a new impetus to
study algorithms for the dihedral hidden shift problem.

Before describing the algorithm, we review certain points of quantum complexity theory
in general, and quantum algorithms for hidden structure problems. We adopt the general
convention that if X is a finite set of orthonormal vectors in a Hilbert space H (but not
necessarily a basis), then

|X〉 def=
√
|X|

∑
x∈X
|x〉

is the constant pure state on X. Also if X is an abstract finite set, then C[X] is the Hilbert
space in which X is an orthonormal basis. Also we use the notation

[n] = {0, 1, . . . , n− 1},

so that C[[n]] becomes another way to write the vector space Cn.

2 Quantum time and space

As with classical algorithms, the computation “time” of a quantum algorithm can mean more
than one thing. One model of quantum computation is a quantum circuit that consists of
unitary operators and measurements, or even general quantum operations, and is generated
by a classical computer. (It could be adaptively generated using quantum measurements.)
Then the circuit depth is one kind of quantum time, a type of parallel time. The circuit
gate complexity is another kind of quantum time, a type of serial time. We can justify serial
quantum time with the following equivalence with a RAM-type machine.

I Proposition 1. The gate complexity of a classically uniform family of quantum circuits is
equivalent, up to a constant factor, to the computation time of a RAM-type machine with a
classical address register, a quantum data register, a classical tape, and a quantum tape.

We will discuss Proposition 1 more rigorously in Section 2.1. From either the circuit
viewpoint or the RAM machine viewpoint, serial computation time is a reasonable cost
model: in practice, gate operations are more expensive than simple memory multiplied by
clock time.

An interesting and potentially important variation of the random-access model is quantum
random access memory, or QRAM [5]. In this model, there is an address register composed
of qubits and a memory can be accessed in quantum superposition, whether or not the
cells of the memory tape are classical. Of course, if the memory is classical, only read
operations can be made in quantum superposition. A RAM quantum computer thus has four

TQC’13

22 Another Quantum DHSP Algorithm

possible types of memory tapes: classical access classical memory (CRACM), quantum access
classical memory (QRACM), classical access quantum memory (CRAQM), and quantum
access quantum memory (QRAQM).

Hypothetically, one could cost quantum access classical memory (QRACM) simply as
quantum memory. But for all we know, quantum access classical memory (QRACM) and
classical-access quantum memory (CRAQM) are non-comparable resources. We agree with
the suggestion [3] that quantum-access classical memory could be cheaper than quantum
memory with either classical or quantum access. After all, such memory does not need to be
preserved in quantum superposition. Our own suggestion for a QRACM architecture is to
express classical data with a 2-dimensional grid of pixels that rotate the polarization of light.
(A liquid crystal display has a layer that does exactly that.) When a photon passes through
such a grid, its polarization qubit reads the pixel grid in superposition. Such an architecture
seems easier to construct than an array of full qubits.

A good example of an algorithm that uses QRACM is the Brassard-Høyer-Tapp algorithm
for the 2-to-1 collision problem [3], as the authors themselves point out. Given a function
f : X → Y where X has N elements, the algorithm generates N1/3 values of f at random
and then uses a Grover search over N2/3 values to find a collision; thus the time complexity
is Õ(N1/3). This is a large-memory algorithm, but the bulk of the memory only needs to be
quantumly addressable classical memory. By contrast, Ambainis’ algorithm [2] for the single
collision problem uses true quantum memory.
I Proposition 2. In the RAM model, a quantum access memory with N quantum or classical
cells can be simulated with a classical linear access memory, with the same cells, with Õ(N)
time overhead.

2.1 Some rigor
Here we give more precise definitions of quantum RAM machine models, and we argue
Propositions 1 and 2. We would like models that have no extraneous polynomial overhead,
although they might have polylogarithmic overhead. On the other hand, it seems very difficult
to regularize polylogarithmic overhead. In our opinion, different models of computation
that differ in polylogarithmic overhead could be equally good. Actually, at some level
a physical computer has at most the computational strength of a 3-dimensional cellular
automaton, where again, the total number of operations is as important as the total clock
time. (Or even a 2-dimensional cellular automaton; a modern computer is approximately a
2-dimensional computer chip.) Procedural programming languages typically create a RAM
machine environment, but usually with polylogarithmic overhead that depends on various
implementation details.

A classical Turing machine M is a tuple (S,Γ, δ), where S is a finite set of states, Γ is a
finite alphabet, and δ is a transition map. The Turing machine has a tape which is linear in
one direction with a sequence of symbols in Γ, which initially are all the blank symbol b ∈ Γ
except for an input written in the alphabet Σ = Γ \ {b}. The state set S includes an initial
state, a “yes” final state, and a “no” final state. Finally the transition map δ instructs the
Turing machine to change state, write to the tape, and move along the tape by one unit.

In one model of a RAM machine, it is a Turing machine M with two tapes, an address
tape TA with the same rules as a usual linear tape; and a main work tape TW . The machine
M (as instructed by δ) can now also read from or write to TW (TA), meaning the cell of the
tape TW at the address expressed in binary (or some other radix) on the tape TA. It is
known [8, 9] that a RAM machine in this form is polylog equivalent to a tree Turing machine,
meaning a standard Turing machine whose tape is an infinite rooted binary tree.

G. Kuperberg 23

It is useful to consider an intermediate model in which the transition map δ is probabilistic,
i.e., a stochastic matrix rather than a function. (Or a substochastic matrix rather than
a partial function.) Then the machine M arrives at either answer, or fails to halt, with a
well-defined probability. This is a non-deterministic Turing machine, but it can still be called
classical computation, since it is based on classical probability.

One workable model of a RAM quantum computer is all of the above, except with two
work tapes TC and TQ, and a register (a single ancillary cell) RQ. In this model, each cell
of TQ has the Hilbert space C[Γ], and the cell RQ does as well. The machine M can apply
a joint unitary operator (or a TPCP) to the state of RQ and the state of the cell of TQ at
the classical address in TA. Or it can decide its next state in S by measuring the state in
RQ. Or it can do some classical computation using the classical tape TC to decide what to
do next. All of this can be arranged so that δ is a classical stochastic map (which might
depend on quantum measurements), TA and TC are classical but randomized, and all of the
quantum nondeterminism is only in the tape TQ and the register RQ. In some ways this
model is more complicated than necessary, but it makes it easy to keep separate track of
quantum and classical resources. TC is a CRACM and TQ is a CRAQM.

Proposition 1 is routine in this more precise model. The machine can create a quantum
circuit drawn from a uniform family using TA and TC . Either afterwards or as it creates the
circuit, it can implement it with unitary operations or quantum operations on TQ and RQ.
Finally it can measure RQ to decide or help decide whether to accept or reject the input. At
linear time or above, it doesn’t matter whether the input is first written onto TC or TQ.

The basic definition of quantum addressability is to assume that the address tape TA
is instead a quantum tape. For simplicity, we assume some abelian group structure on the
alphabet Γ. Then adding the value of TC(TA) to RQ is a well-defined unitary operator on
the joint Hilbert space of TA and RQ; in fact it is a permutation operator. This is our model
of QRACM. Analogously, suppose that we choose a unitary operator UQR that would act
on the joint state of TQ(TA) and RQ if TA were classical. Then it yields a unitary operator
UQAR on the joint state of TQ, TA, and RQ that, in superposition, applies UQR to TQ(TA)
and RQ. This is a valid model of QRAQM.

To prove Proposition 2, we assume that TC can no longer be addressed with TA, and
that instead the Turing machine has a position n on the tape TC that can be incremented or
decremented. Then to emulate a quantum read of TC(TA), the machine can step through the
tape TC and add TC(n) to RQ on the quantum condition that n matches TA. This is easiest
to do if the machine has an auxiliary classical tape that stores n itself. Even otherwise, the
machine could space the data on TC so that it only uses the even cells, and with logarithmic
overhead drag the value of n itself on the odd cells.

3 Hide and seek

3.1 Hidden subgroups

This section is strictly a review of ideas discussed in our earlier article [7].
In the usual hidden subgroup problem, G is a group, X is an unstructured set, and

f : G→ X is a function that hides a subgroup H. This means that f factors through the
coset space G/H (either left or right cosets), and the factor f : G/H → X is injective. In a
quantum algorithm to find the subgroup H, f is implemented by a unitary oracle Uf that
adds the output to an ancilla register. More precisely, the Hilbert space of the input register
is the group algebra C[G] when G is finite (or some finite-dimensional approximation to it

TQC’13

24 Another Quantum DHSP Algorithm

when G is infinite), the output register is C[X], and the formula for Uf is

Uf |g, x0〉 = |g, f(g) + x0〉.

All known subexponential algorithms for the hidden subgroup problems make no use
of the output when the target set X is unstructured. (We do not know whether it is even
possible to make good use of the output with only subexponentially many queries.) The best
description of what happens is that the algorithm discards the output and leave the input
register in a mixed state ρ. However, it is commonly said that the algorithm measures the
output. This is a strange description if the algorithm then makes no use of the measurement;
its sole virtue is that it leaves the quantum state of the input register in a pure state |ψ〉.
The state |ψ〉 is randomly chosen from a distribution, which is the same as saying that the
register is in a mixed state ρ.

If the output of f is always discarded, then the algorithm works just as well if the output
of f is a state |ψ(g)〉 in a Hilbert space H. The injectivity condition is replaced by the
orthogonality condition 〈ψ(g)|ψ(h)〉 = 0 when g and h lie in distinct cosets of H. In this
case f would be implemented by a unitary

Uf |g, x0〉 = |g〉 ⊗ Ug|x0〉,

with the condition that if x0 = 0, then

Ug|0〉 = |ψ(g)〉.

Or we can have the oracle, rather than the algorithm, discard the output. In this case, the
oracle is a quantum operation (or quantum map) EG/H that measures the name of the coset
gH of H, and only returns the input conditioned on this measurement.

Suppose that the group G is finite. Then it is standard to supply the constant pure state
|G〉 to the oracle Uf , and then discard the output. The resulting mixed state,

ρG/H = EG/H(|G〉〈G|),

is the uniform mixture of |gH〉 over all (say) left cosets gH of H. This step can also be
relegated to the oracle, so that we can say that the oracle simply broadcasts copies of ρG/H
with no input.

Like our old algorithm, our new algorithm mainly makes use of the state ρG/H , in the
special case of the dihedral group G = DN . When N = 2n, it is convenient to work by
induction on n, so that technically we use the state ρD2k/Hk

for 1 ≤ k ≤ n. However, this is
not essential. The algorithm can work in various ways with identical copies of ρDN/H .

An important point is that the state ρG/H is block diagonal with respect to the weak
Fourier measurement on C[G]. More precisely, the group algebra C[G] has a Burnside
decomposition

C[G] ∼=
⊕
V

V ∗ ⊗ V,

where the direct sum is over irreducible representations of G and also the direct sum is
orthogonal. The weak Fourier measurement is the measurement the name of V in this
decomposition. Since ρG/H is block diagonal, if we have an efficient algorithm for the
quantum Fourier transform on C[G], then we might as well measure the name of V and
condition the state ρG/H to a state on V ∗ ⊗ V , because the environment already knows1 the

1 In other words, Schrödinger’s cat is out of the bag (or box).

G. Kuperberg 25

name of V . Moreover, the state on the “row space” V ∗ is known to be independent of the
state on V and carry no information about H [6]. So the algorithm is left with the name
of V , and the conditional state ρV/H on V . The difference in treatment between the value
f(g), and the name of the representation V , both of which are classical data that have been
revealed to the environment, is that the name of V is materially useful to existing quantum
algorithms in this situation. So it is better to say that the name of V is measured while the
value f(g) is discarded. (In fact, the two measurements don’t commute, so in a sense, they
discredit each other.)

3.2 Hidden shifts
In our earlier work [7], we pointed out that if A is an abelian group, then the hidden subgroup
problem on the generalized dihedral group G = (Z/2)nA is equivalent to the abelian hidden
shift problem. The hard case of a hidden subgroup on G consists of the identity and a
hidden reflection. (By definition, a reflection is an element in G \ A, which is necessarily
an element of order 2.) In this case, a single hiding function f on G is equivalent to two
injective functions f and g on A that differ by a shift:

f(a) = g(a+ s).

(Note that we allow an algorithm to evaluate them jointly in superposition.) Finding the
hidden shift s is equivalent to finding the hidden reflection.

In this article, we will consider multiple hidden shifts. By this we mean that we have a
set of endomorphisms

φj∈J : A→ A

and a set of injective functions
fj∈J : A→ X

such that
fj(a) = f0(a+ φj(s)).

Here J is an abstract finite indexing set with an element 0 ∈ J . We assume that we know
each φj explicitly (with φ0 = 0) and that we would like to find the hidden shift s. In the
cyclic case A = Z/N , we can write these relations as

fj(a) = f0(a+ rjs)

for some elements rj ∈ Z/N . Note that, for s to be unique, the maps φj or the factors rj
must satisfy a non-degeneracy condition. Since we will only address multiple hidden shifts in
the initial input heuristically, we will not say too much about non-degeneracy when |J | > 2.
If |J | = 2 then r1 or φ1 must be invertible to make s unique, in which case we might as well
assume that they are the identity.

As a special case, we can look at the hidden subgroup problem in a semidirect product
G = K n A, where K is a finite group, not necessarily abelian. Our original algorithm
was a sieve that combined irreducible representations of such a group G to make improved
irreducible representations. Anomalously, the sieve did not work better when |K| > 2 than in
the dihedral case. The new algorithm can make some use of multiple hidden shifts, although
the acceleration from this is not dramatic.

The principles of Section 3.1 apply to the hidden shift or multiple hidden shift problem.
For the following, assume that A is a finite group. We write

f(j, a) = fj(a),

TQC’13

26 Another Quantum DHSP Algorithm

and we can again make a unitary oracle Uf that evaluates f as follows:

Uf |j, a, x0〉 = |j, a, f(j, a) + x0〉.

Suppose also that we can’t make any sense of the value of f(j, a), so we discard it. As
in Section 3.1, the unitary oracle Uf is thus converted to a quantum map E that makes a
hidden measurement of the value of f and returns only the input registers, i.e., a state in
C[J]⊗ C[A]. Suppose that we provide the map E with a state of the form

ρ = σ ⊗ (|A〉〈A|) (1)

where σ is some possibly mixed state on C[J]. As in Section 3.1, we claim that we might
as well measure the Fourier mode b̂ ∈ Â of the state E(ρ), because the environment already
knows what it is. To review, the dual abelian group Â is by definition the set of group
homomorphisms

b̂ : A→ S1 ⊂ C,

and the Fourier dual state |̂b〉 is defined as

|̂b〉 = 1√
|A|

∑
a∈A

b̂(a)|a〉.

We state the measurement claim more formally.
I Proposition 3. Let E be the partial trace of Uf given by discarding the output, and let the
state ρ be as in (1). Then the state E(ρ) is block diagonal with respect to the eigenspaces of
the measurement of |̂b〉. Also, the measurement has a uniformly random distribution.

Proof. The key point is that ρ is an A-invariant state and E is an A-invariant map, where A
acts by translation on the C[A] register. The state |A〉 is A-invariant by construction, while
A has no action on the C[J] register. Meanwhile E is A-invariant because it discards the
output of f , and translation by A can be reproduced by permuting the values of f . Since ρ
is an A-invariant state, and since the elements of A are unitary, this says exactly that ρ as
an operator commutes with A. The eigenspaces of the action of A on C[J]⊗ C[A] are all of
the form C[J]⊗ |̂b〉, so the fact that ρ commutes with A is equivalent to the conclusion that
ρ is block diagonal with respect to the eigenspaces of the measurement |̂b〉.

To prove the second part, imagine that we also measure |j〉 on the register C[J]. This
measurement commutes with both measuring the Fourier mode |̂b〉 and measuring or discard-
ing the output register C[X], so it changes nothing if we measure |j〉 first. So we know j,
and since fj : A→ X is injective, measuring its value is the complete measurement of |a〉
starting with the constant pure state |A〉. This yields the uniform state ρunif on C[A], so the
value of |̂b〉 is also uniformly distributed. J

Suppose further that in making the state ρ, the state σ on the C[J] register is the constant
pure state |J〉. If the measured Fourier mode is b̂ ∈ Â, then the state of the j register after
measuring this mode is:

|ψ〉 ∝
∑
j∈J

b̂(φj(s))|j〉. (2)

This can be written more explicitly in the cyclic case A = Z/N . In this case there is an
isomorphism A ∼= Â, and we can write any element b̂ ∈ Â as

b̂(a) = exp(2πiab/N),

G. Kuperberg 27

and we can also write
φj(a) = rja

for some elements rj ∈ Z/N . So we can then write

|ψ〉 ∝
∑
j∈J

exp(2πibrjs)|j〉. (3)

At this point we know both b and each rj , although for different reasons: rj is prespecified by
the question, while b was measured and is uniformly random. Nonetheless, we may combine
these known values as bj = rjb and write:

|ψ〉 ∝
∑
j∈J

exp(2πibjs)|j〉. (4)

To conclude, the standard approach of supplying the oracle Uf with the constant pure
state and discarding the output leads us to the state (2), or equivalently (3) or (4). (Because
measuring the Fourier mode does not sacrifice any quantum information.) In the rest of this
article, we will assume a supply of states of this type.

4 The algorithm

4.1 The initial and final stages
For simplicity, we describe the hidden shift algorithm when A = Z/N and N = 2n. The
input to the algorithm is a supply of states (4). As explained in our previous work [7], the
problem for any A, even A infinite as long as it is finitely generated, can be reduced to the
cyclic case with overhead exp(O(

√
d)). Also for simplicity, we will just find the parity of the

hidden shift s. Also as explained in our previous work [7], if we know the parity of s, then
we can reduce to a hidden shift problem on Z/2n−1 and work by induction. Finally, just as
in our previous algorithm, we seek a wishful special case of (4), namely the qubit state

|ψ〉 ∝ |0〉+ exp(2πi(2n−1)s/2n)|1〉 = |0〉+ (−1)s|1〉. (5)

If we measure whether |ψ〉 is |+〉 or |−〉, that tells us the parity of s.
Actually, although we will give all of the details in base 2, we could just as well work

in any fixed base, or let N be any product of small numbers. This generalization seems
important for precise optimization for all values of N , which is an issue that we will only
address briefly in the conclusion section.

4.2 Combining phase vectors
Like the old algorithm, the new algorithm combines unfavorable qubits states |ψ〉 to make
more favorable ones in stages, but we change what happens in each stage. The old algorithm
was called a sieve, because it created favorable qubits from a large supply of unfavorable
qubits, just as many classical sieve algorithms create favorable objects from a large supply of
candidates [1]. The new algorithm could also be called a sieve, but all selection is achieved
with quantum measurement instead of a combination of measurement and matching. The
process can be called collimation, by analogy with its meaning in optics: Making rays parallel.

Consider a state of the form (4), where we write the coefficient bj instead as a function
b(j), except that we make no assumption that bj = rjb for a constant b. We also assume
that the index set is explicitly the integers from 0 to `− 1 for some `, the length of |ψ〉:

J = [`] = {0, 1, . . . , `− 1}.

TQC’13

28 Another Quantum DHSP Algorithm

We obtain:
|ψ〉 ∝

∑
0≤j<`

exp(2πib(j)s/2n)|j〉.

Call a vector of this type a phase vector. We view a phase vector as favorable if every
difference b(j1) − b(j2) is divisible by many powers of 2, and we will produce new phase
vectors from old ones that are more favorable. In other words, we will collimate the phases.
The algorithm collimates phase vectors until finally it produces a state of the form (5). Note
that the state |ψ〉 only changes by a global phase if we add a constant to the function b.
(Or we can say that as a quantum state, it does not change at all.) If 2m|b(j1)− b(j2) for
some m ≤ n, then we can both subtract a constant from b and divide the numerator and
denominator of b(j)/2n by 2m. So we can |ψ〉 as

|ψ〉 ∝
∑

0≤j<`
exp(2πib(j)s/2h)|j〉,

where h = m− n is the height of |ψ〉. (We do not necessarily assign the smallest height h to
a given |ψ〉.) We would like to collimate phase vectors to produce one with length 2 and
height 1 (but not height 0).

Given two phase vectors of height h,

|ψ1〉 ∝
∑

0≤j1<`1

exp(2πib1(j1)s/2h)|j1〉

|ψ2〉 ∝
∑

0≤j2<`2

exp(2πib2(j2)s/2h)|j2〉,

their joint state is a double-indexed phase vector that also has height h:

|ψ1, ψ2〉 = |ψ1〉 ⊗ |ψ2〉

∝
∑

0≤j1<`1
0≤j2<`2

exp(2πi(b1(j1) + b2(j2))s/2h)|j1, j2〉.

We can now collimate this phase vector by measuring

c ≡ b1(j1) + b2(j2) (mod 2m)

for some m < h. Let Pc be the corresponding measurement projection. The result is another
phase vector

|ψ〉 = Pc|ψ1, ψ2〉,

but one with a messy indexing set:

J = {(j1, j2)|b1(j1) + b2(j2) ≡ c (mod 2m)}.

We can compute the index set J , in fact entirely classically, because we know c. We can
compute the phase multiplier function b as the sum of b1 and b2. Finally, we would like to
reindex |ψ〉 using some bijection π : J → [`new], where `new = |J |. As we renumber J , we
also permute the phase vector Pc|ψ1, ψ2〉. Then there is a subunitary operator

Uπ : C`1 ⊗ C`2 → C`new

that annihilates vectors orthogonal to C[J] and that is unitary on C[J]. Then

|ψnew〉 = Uπ|ψ〉.

G. Kuperberg 29

The vector |ψnew〉 has height h−m.
Actually, collimation generalizes to more than two input vectors. Given a list of phase

vectors
|ψ1〉, |ψ2〉, . . . , |ψr〉,

and given a collimation parameter m, we can produce a collimate state |ψnew〉 from them.
We summarize the process in algorithm form:

I Algorithm 4 (Collimation). Input: A list of phase vectors

|ψ1〉, |ψ2〉, . . . , |ψr〉

of length `1, . . . , `r, and a collimation parameter m.
1. Notionally form the phase vector

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ . . .⊗ |ψr〉

with indexing set
[`1]× [`2]× · · · × [`r]

and phase multiplier function

b(~j) = b(j1, j2, . . . , jr) = b1(j1) + b2(j2) + · · ·+ br(jr).

2. Measure |ψ〉 according to the value of

c = b(~j) mod 2m (6)

to obtain Pc|ψ〉.
3. Find the set J of tuples ~j that satisfy (6). Set `new = |J | and pick a bijection

π : J → [`new].

4. Apply π to the value of b on J and apply Uπ to |ψ〉 to make |ψnew〉 and return it.

Algorithm 4 is our basic method to collimate phase vectors. We can heuristically estimate
the length ` by assuming that b(~j) is uniformly distributed mod 2m. In this case,

`new ≈ 2−m`1`2 . . . `r. (7)

So ` stays roughly constant when ` ≈ 2m/(r−1).

4.3 The complexity of collimation
I Proposition 5. Let |ψ1〉 and |ψ2〉 be two phase vectors of length `1 and `2 and height
h, and suppose that they are collimated mod 2m to produce a phase vector |ψnew〉 of
length `new. Suppose also that the quantum computer is allowed QRACM. Then taking
`max = max(`1, `2, `new) and r = 2, Algorithm 4 needs

Õ(`max) classical time (where “Õ” allows factors of both log `max and h ≤ n = logN).
O(`maxh) classical space,
O(`max max(m, log `max)) classical space with quantum access,
poly(log `max) quantum time, and
O(log `max) quantum space.

TQC’13

30 Another Quantum DHSP Algorithm

Proof. First, we more carefully explain the data structure of a phase vector |ψ〉. The vector
|ψ〉 itself can be stored in dlog2 `maxe qubits. The table b of phase multipliers is a table
of length O(`max) whose entries have h bits, so this is O(`maxh) bits of classical space.
Algorithm 4 needs the low m bits of each entry in the table, so O(`maxm) bits are kept in
quantum access memory. We also assume that the table b is sorted on low bits.

We follow through the steps of Algorithm 4, taking care to manage resources at each step.
First, measuring

c ≡ (b1(j1) + b2(j2)) (mod 2m)

can be done in quantum time poly(log `,m) by looking up the values and adding them.
As usual, when performing a partial quantum measurement, the output must be copied
to an ancilla and the scratch work (in this case the specific values of b1 and b2) must be
uncomputed.

The other step of collimation is the renumbering. To review, the measurement of c
identifies a set of double indices

J ⊆ [`1]× [`2].

These indices must be renumbered with a bijection

π : J → [`new],

indeed the specific bijection that sorts the new phase multiplier table b = b1 + b2. The
function π can be computed in classical time Õ(`) using standard algorithms, using the fact
that b1 and b2 are already sorted. More explicitly, we make an outer loop over decompositions

c = c1 + c2 ∈ Z/2m.

In an inner loop, we write all solutions to the equations

b1(j1) ≡ c1 (mod 2m) b2(j2) ≡ c2 (mod 2m)

using sorted lookup. This creates a list of elements of J in some order. We can write the
values of

b(j1, j2) = b1(j1) + b2(j3)

along with the pairs (j1, j2) ∈ J themselves. Then b can be sorted and J can be sorted along
with it.

This creates a stored form of the inverse bijection π−1, which is an ordinary 1-dimensional
array. We will want this, and we will also want quantum access to the forward bijection π
stored as an associative array. Since we will need quantum access to π, we would like to
limit the total use of this expensive type of space. We can make a special associative array
to make sure that the total extra space is O(`max(log `max)) bits. For instance, we can make
a list of elements of J sorted by (j1, j2), a table of π sorted in the same order, and an index
of pointers from [`1] to the first element of J with any given value of j1.

The final and most delicate step is to apply the bijection π to |ψ〉 in quantum polynomial
time in log `. Imagine more abstractly that |ψ〉 is a state in a Hilbert space Cs supported
on a subset X ⊆ [s], and that we would like to transform it to a state in a Hilbert space Ct
supported on a subset Y ⊂ [t] of the same size, using a bijection π : X → Y . We use the
group structures [s] = Z/s and [t] = Z/t, and we assume quantum access to both π and π−1.
Then we will use these two permutation operators acting jointly on a Cs register and a Ct
register:

U1|x, y〉 = |x, y + π(x)〉 U2|x, y〉 = |x− π−1(y), y〉.

G. Kuperberg 31

A priori, π(x) is only defined for x ∈ X and π−1(y) is only defined for y ∈ Y ; we extend
them by 0 (or extend them arbitrarily) to other values of x and y. Then clearly

U2U1|x, 0〉 = |0, π(x)〉.

Thus
|ψnew〉 = U2U1|φ, 0〉

is what we want. Following the rule of resetting the height to 0, we can also let

bnew(j) = b(j)/2m.

J

I Corollary 6. Taking the hypotheses of Proposition 5, if the quantum computer has no
quantum access memory, then Algorithm 4 can be executed with r = 2 with

Õ(`max) quantum time (and classical time),
Õ(`max) classical space, and
O(log `max) quantum space.

Corollary 6 follows immediately from Proposition 5 and Proposition 2. The point is that,
even though there is a performance penalty in the absence of quantum access memory, the
same algorithm still seems competitive.

4.4 The outer algorithm
In this section we combine the ideas of Sections 3.2, 4.1, 4.2, and 4.3 to make a complete
algorithm. We present the algorithm with several free parameters. We will heuristically
analyze these parameters in Section 4.5. Then in Section 2.1 we will simply make convenient
choices for the parameter to prove that the algorithm has quantum time and classical space
complexity exp(O(

√
n)).

The algorithm has a recursive subroutine to produce a phase vector of height 1. The
subroutine uses a collimation parameter 0 < m(h) ≤ n− h and a starting minimum length
`0.

I Algorithm 7 (Collimation sieve). Input: A height h, a collimation parameter m = m(h), a
branching parameter r = r(h), a starting minimum length `0, and access to the oracle Uf .
Goal: To produce a phase vector of height h.
1. If h = n, extract phase vectors

|ψ1〉, |ψ2〉, . . . , |ψs〉

of height n from the oracle as described in Section 3 until the length of

|ψnew〉 = |ψ1, ψ2, . . . , ψs〉

is at least `0. Return |ψnew〉.
2. Otherwise, recursively and sequentially obtain a sequence of phase vectors

|ψ1〉, |ψ2〉, . . . , |ψr〉

of height h+m.
4. Collimate the vectors mod 2m using Algorithm 4 to produce a phase vector |ψnew〉 of

height h. Return it.

TQC’13

32 Another Quantum DHSP Algorithm

When called with h = 1, Algorithm 7 produces a phase vector

|ψ〉 ∝
∑

0≤j<`
(−1)b(j)s|j〉.

Otherwise, we pick a maximal subset X ⊆ [`] on which b is equally often 0 and 1. (Note that
this takes almost no work, because the collimation step sorts b.) If X is empty, then we must
run Algorithm 7 again. Otherwise, we measure whether |ψ〉 is in C[X]. If the measurement
fails, then again we must run Subroutine A again. Otherwise the measured form of |ψ〉 has a
qubit factor of the form

|0〉+ (−1)s|1〉,

and this can be measured to obtain the parity of s.
Algorithm 7 recursively makes a tree of phase vectors that are more and more collimated,

starting with phase vectors obtained from the hiding function f(j, a) by the weak Fourier
measurement. An essential idea, which is due to Regev and is used in his algorithm, is
that with the collimation method, the tree can be explored depth-first and does not need
to be stored in its entirety. Only one path to a leaf needs to be stored. No matter how the
collimation parameter is set, the total quantum space used is O(n2), while the total classical
space used is O(nmax(`)). (But the algorithm is faster with quantum access to the classical
space.)

An interesting feature of the algorithm is that its middle part, the collimation sieve, is
entirely pseudoclassical. The algorithm begins by applying QFTs to oracle calls, as in Shor’s
algorithm. It ends with the same parity measurement as Simon’s algorithm. These parts
of the algorithm are fully quantum in the sense that they use unitary operators that are
not permutation matrices. However, collimation consists entirely of permutations of the
computational basis and measurements in the computational basis.

4.5 Heuristic analysis
Heuristically the algorithm is the fastest when r = 2.

Suppose that the typical running time of the algorithm is f(n), with some initial choice
of m = m(1). First, creating a phase vector of height h is similar to running the whole
algorithm with n′ = n− h. So the total computation time (both classical and quantum) can
be estimated as

f(n) ≈ min
m

(2m + 2f(n−m)) .

Here the first term is dominated by the classical work of collimation, while the second term
is the recursive work. The two terms of the minimand are very disparate outside of a narrow
range of values of m. So we can let g(n) = log2 f(n), and convert multiplication to addition
and approximate addition by max. (This type of asymptotic approximation is lately known
in mathematics as tropicalization.) We thus obtain

g(n) ≈ min
m

(max(m, g(n−m) + 1) .

The solutions to this equation are of the form

g(m(m+ 1)
2 + c) = m,

where c is a constant. We obtain the heuristic estimate

f(n) ?= Õ(2
√

2n) (8)

G. Kuperberg 33

for both the quantum plus classical time complexity and the classical space complexity of the
algorithm. We put a question mark because we have not proven this estimate. In particular,
our heuristic calculation does not address random fluctuations in the length estimate (7).

If the quantum computer does not have QRACM or if it is no cheaper than quantum
memory, then the heuristic (8) is the best that we know how to do. If the algorithm is
implemented with QRACM, then the purely quantum cost is proportional to the number of
queries. In this case, if there is extra classical space, we can make m larger and larger to fill
the available space and save quantum time. This is the “second parameter” mentioned in
Section 1. However, this adjustment only makes sense when classical time is much cheaper
than quantum time. In particular, (8) is our best heuristic if classical and quantum time are
simply counted equally.

If classical space is limited, then equation (7) tells us that we can compensate by increasing
r. To save as much space as possible, we can maintain ` = 2 and adjust in each stage of the
sieve r to optimize the algorithm. In this case the algorithm reduces to Regev’s algorithm.

5 Conclusions

At first glance, the running time of our new algorithm for DHSP or hidden shift is “the same”
as our first algorithm, since both algorithms run in time 2O(

√
logN). Meanwhile Regev’s

algorithm runs in time 2O(
√

(logN)(log logN), which may appear to be almost as fast. Of
course, these expressions hide the real differences in performance between these algorithms,
simply because asymptotic notation has been placed in the exponent. All polynomial-time
algorithms with input of length n run in time

nO(1) = 2O(logn).

Nonetheless, polynomial accelerations are taken seriously in complexity theory, whether they
are classical or quantum accelerations.

For many settings of the parameters, Algorithm 7 is superpolynomially faster than Regev’s
algorithm. It is Regev’s algorithm if we have exponentially more quantum time than classical
space. However, in real life, classical computation time has only scaled polynomially faster
than available classical computer memory. So it is reasonable to consider a future regime in
which quantum computers exist, but classical memory is cheaper than quantum time, or is
only polynomially more expensive.

Regev [11] established a reduction from certain lattice problems (promise versions of the
short vector and close vector problems) to the version of DHSP or hidden shift in which f(a)
and g(a+ s) are overlapping quantum states. At first glance, our algorithms apply to this
type of question. However, we have not found quantum accelerations for these instances.
The fundamental reason is that we have trouble competing with classical sieve algorithms for
these lattice problems [1]. The classical sieve algorithms work in position space, while our
algorithms work in Fourier space, but otherwise the algorithms are similar. Instead, DHSP
seems potentially even more difficult than related lattice problems (since that is the direction
of Regev’s reduction) and the main function of our algorithms is to make DHSP roughly
comparable to lattice problems on a quantum computer.

One significant aspect of Algorithm 7, and also in a way Regev’s algorithm, is that
it solves the hidden subgroup problem for a group G = DN without staying within the
representation theory of G in any meaningful way. It could be interesting to further explore
non-representation methods for other hidden structure problems.

TQC’13

34 Another Quantum DHSP Algorithm

Acknowledgments. The author would like to thank Scott Aaronson and Oded Regev for
useful discussions.

References
1 Miklós Ajtai, Ravi Kumar, and Dandapani Sivakumar, A sieve algorithm for the shortest

lattice vector problem, Proceedings of the thirty-third annual ACM symposium on Theory
of computing, 2001, pp. 601–610.

2 Andris Ambainis, Quantum walk algorithm for element distinctness, SIAM J. Comput. 37
(2007), no. 1, 210–239, arXiv:quant-ph/0311001.

3 Gilles Brassard, Peter Høyer, and Alain Tapp, Quantum algorithm for the collision problem,
arXiv:quant-ph/9705002.

4 Andrew M. Childs, David Jao, and Vladimir Soukharev, Constructing elliptic curve isoge-
nies in quantum subexponential time, arXiv:1012.4019.

5 Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone, Architectures for a quantum ran-
dom access memory, Phys. Rev. A 78 (2008), no. 5, 052310, arXiv:0807.4994.

6 Michelangelo Grigni, Leonard J. Schulman, Monica Vazirani, and Umesh V. Vazirani, Quan-
tum mechanical algorithms for the nonabelian hidden subgroup problem, ACM Symposium
on Theory of Computing, 2001, pp. 68–74.

7 Greg Kuperberg, A subexponential-time quantum algorithm for the dihedral hidden subgroup
problem, SIAM J. Comput. 35 (2005), no. 1, 170–188, arXiv:quant-ph/0302112.

8 Michael C. Loui and David R. Luginbuhl, Optimal on-line simulations of tree machines by
random access machines, SIAM J. Comput. 21 (1992), no. 5, 959–971.

9 W. Paul and R. Reischuk, On time versus space. II, J. Comput. System Sci. 22 (1981),
no. 3, 312–327.

10 Oded Regev, A subexponential time algorithm for the dihedral hidden subgroup problem with
polynomial space, arXiv:quant-ph/0406151.

11 Oded Regev, Quantum computation and lattice problems, SIAM J. Comput. 33 (2004),
no. 3, 738–760, arXiv:cs.DS/0304005.

http://arxiv.org/abs/quantph/0311001
http://arxiv.org/abs/quantph/9705002
http://arxiv.org/abs/1012.4019
http://arxiv.org/abs/0807.4994
http://arxiv.org/abs/quantph/0302112
http://arxiv.org/abs/quantph/0406151
http://arxiv.org/abs/cs/0304005

	Introduction
	Quantum time and space
	Some rigor

	Hide and seek
	Hidden subgroups
	Hidden shifts

	The algorithm
	The initial and final stages
	Combining phase vectors
	The complexity of collimation
	The outer algorithm
	Heuristic analysis

	Conclusions

