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Abstract
We investigate the asymptotic relationship between quantum cloning and quantum estimation
from the global point of view where all the copies produced by the cloner are considered jointly.
For an N -to-M cloner, we consider the overall fidelity between the state of theM output systems
and the state ofM ideal copies, and we ask whether the optimal fidelity is attained by a measure-
and-prepare protocol in the limit M → ∞. In order to gain intuition into the general problem,
we analyze two concrete examples: (i) cloning qubit states on the equator of the Bloch sphere
and (ii) cloning two-qubit maximally entangled states. In the first case, we show that the optimal
measure-and-prepare fidelity converges to the fidelity of the optimal cloner in the limit M →∞.
In the second case, we restrict our attention to economical covariant cloners, and again, we
exhibit a measure-and-prepare protocol that achieves asymptotically the optimal fidelity. Quite
counterintuitively, in both cases the optimal states that have to be prepared in order to maximize
the overall fidelity are not product states corresponding toM identical copies, but instead suitable
M -partite entangled states.
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1 Introduction

It is well known that every quantum machine producing a large number of indistinguishable
clones—referred to as asymptotic cloning machine—is “equivalent” to a machine that measures
the input states and re-prepares many identical copies of a state depending on the outcome
[1, 2, 3, 4]. Here, “equivalent” has to be understood in the following sense: when one restricts
the attention to a few clones, their state will be almost indistinguishable from the state
that can be produced by a measure-and-prepare protocol. Precisely, the trace distance
between the state of k clones produced by machine and the state of k clones produced by the
measure-and-prepare protocol goes to zero as k/M , where M is the number of output copies
[3, 4]. For k = 1, the fact that the state of each individual clone is asymptotically equal to
the state produced by a measure-and-prepare protocol implies that the single-copy fidelity
of quantum cloning is asymptotically equal to the fidelity of state estimation, a fact that is
commonly known as “equivalence between asymptotic cloning and state estimation” [5].

In this paper we raise the question whether the equivalence between asymptotic cloning
and state estimation continues to hold when one considers all the M clones together, rather
than restricting the attention to a single clone or a small subset of k clones. We refer to this
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new form of equivalence as global asymptotic equivalence between quantum cloning and state
estimation and we conjecture that the equivalence holds. A few observations supporting
the conjecture are the following: First of all, in the known cases—cloning of arbitrary pure
states [6, 7] and the cloning of coherent states [8, 9, 10, 11, 12]—the equivalence holds, and
in a fairly strong sense: the joint state of all the output clones converges in trace distance to
the output state of a measure-and-prepare protocol. A more general argument supporting
our conjecture comes from the intuition that producing a large number of identical copies
means “classicalizing” the information contained in the input states, and therefore it is
natural to expect that the optimal way to classicalize quantum information is to perform a
measurement.

In order to discuss the question of the global equivalence one needs first to fix the rules
of the game, by defining a suitable figure of merit. Here we consider the global fidelity,
namely the overlap between the output state of all clones and the desired quantum state
of M identical copies. In this setting, proving the equivalence means proving that the
global fidelity of the optimal N -to-M cloner can be achieved by a measure-and-prepare
protocol in the asymptotic limit M →∞. In order to gain intuition into the problem, we
consider two concrete examples: the cloning of qubit states on the equator of the Bloch
sphere and the cloning of two-qubit maximally entangled states. In the first case it is known
that the optimal cloner, derived in Ref. [13], is economical [14, 15, 16], that is, it can be
implemented by a unitary interaction between the N input copies and M −N blank copies.
An economical cloner is far from being implementable by a measure-and-prepare protocol,
and observing an asymptotic equality of fidelities becomes here a quite non-trivial matter.
In the second case (cloning of maximally entangled states), we will deliberately restrict
ourselves to economical cloning machines, asking the question whether the global fidelity
of the optimal economical cloner can be achieved by measurement and re-preparation. In
both cases we will give an affirmative answer, showing that the difference between the global
fidelity of the optimal economical N -to-M cloner and the global fidelity of the optimal
measure-and-prepare protocol becomes negligible in the asymptotic limit M →∞, for every
fixed value of N . Quite counterintuitively, we observe that the obvious protocols consisting
in estimation of the unknown state and re-preparation of M identical copies do not reach
the maximum fidelity, even in the asymptotic limit. This feature is in stark contrast with the
intuition coming from the single-copy scenario, where re-preparing identical copies of the
same state is asymptotically the best strategy.

2 Preliminaries

In this section we formalize the problem of the joint asymptotic equivalence and give an
overview of the methods used in the rest of the paper.

2.1 The problem of the global asymptotic equivalence

Consider a set of states {|ψx〉}x∈X in a finite dimensional Hilbert space H. The task of
optimal quantum cloning is to convert N perfect copies of an unknown state |ψx〉, given with
probability px, into M approximate copies that are as accurate as possible. Examples of this
problem are the universal cloning of pure states [17, 18, 19, 6, 7, 20] and the phase-covariant
cloning [21, 13, 22, 23, 15, 16].

The most general cloning process will be described by a quantum channel (completely
positive trace-preserving map) C transforming density matrices on H⊗N to density matrices
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on H⊗M . As a figure of merit for the quality of the copies we will consider the global fidelity,

F [N →M ] =
∑
x∈X

Tr
[
ψ⊗Mx C(ψ⊗Nx )

]
ψx := |ψx〉〈ψx|. (1)

When the set {|ψx〉}x∈X is continuous, it is understood that the sum over the possible input
states has to replaced with an integral with a suitable probability distribution p(x) dx. The
optimal cloner will be the quantum channel that maximizes F [N →M ]. The fidelity of the
optimal cloner will be denoted by by Fclon[N →M ].

In addition to the maximum over all channels, it is important to consider the maximum
of F [N → M ] over the set of measure-and-prepare channels. Operationally, a measure-
and-prepare channel can be realized by measuring the input copies with a POVM (Py)y∈Y
and, when the measurement gives outcome y, by re-preparing a state ρy. Averaging over
the measurement outcomes, the action of the measure-and-prepare channel on the density
matrices is given by C(ρ) =

∑
y∈Y Tr[Pyρ] ρy. We will denote by Fest[N →M ] the maximum

of the fidelity over the set of measure-and-prepare channels. Such a maximum is known in the
literature as classical fidelity threshold [24, 25, 26, 27, 12] and can be used as a benchmark
for the experimental demonstration of quantum advantages.

In the following we will ask the question whether the difference between Fclon[N →M ]
and Fest[N → M ] becomes negligible in the asymptotic limit M → ∞, while keeping
N fixed. An affirmative answer to this question would mean that the quantum way to
process information and the classical way fare equally well in the asymptotic limit. In the
formalization of the problem there is a catch, because both fidelities converge to zero in
many interesting cases when the family of states to be cloned is continuous: a non-vanishing
fidelity would indeed violate the Heisenberg limit of quantum metrology [28]. In order not to
trivialize the question, it is then important to consider the relative difference between the
two fidelities, given by

∆[N →M ] := Fclon[N →M ]− Fest[N →M ]
Fclon[N →M ] . (2)

Our conjecture is that, for every fixed N , the relative difference vanishes in the limit
M →∞. In formula:

lim
M→∞

Fclon[N →M ]− Fest[N →M ]
Fclon[N →M ] = 0 ∀N ∈ N. (3)

We refer to the conjectured equality as global asymptotic equivalence between quantum cloning
and quantum state estimation. Of course, here the word “global” refers to the fact that we
are considering the global fidelity as the performance measur, as opposed to the single-copy
fidelity considered in the previous literature. [19, 6, 20]

From previous results on optimal cloning we know that the relation is satisfied in the case
of universal quantum cloning [6, 7] (see [4] for the proof that the optimal channel converges
to a measure-and-prepare channel) and in the case of the coherent-state quantum cloning
[8, 9, 10, 11, 12] (see [12] for the proof that Fclon[N →M ] becomes asymptotically equal to
Fest[N →M ], up to a negligible error). In the following we will exhibit two new examples
supporting the conjecture that joint cloning is asymptotically equivalent to state estimation.

In the first example, we consider the optimal cloning of qubit states on the equator of
the Bloch sphere. In this case, the optimal N -to-M cloner is known [13]) and has a very
interesting feature: it can be realized through a unitary interaction between the N input
copies and only M −N blank copies of the input system. In formula, the optimal quantum
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channel has the form

C(ρ) = U
[
ρ⊗ |0〉〈0|⊗(M−N)

]
U†, (4)

where U : H⊗M → H⊗M is a unitary operator and |0〉 is a fixed state in H. Cloning channels
of this form are usually referred to as economical [14, 15, 16]. For the optimal cloner of qubit
states on the equator, we will show that our conjecture holds, by explicitly constructing a
family of measure-and-prepare channels that attains the maximum fidelity Fclon[N →M ].
In a sense, this example is more intriguing than the previous ones, because the economical
cloner considered here is far from being achieved by measure-and-prepare protocols: the
asymptotic equivalence is then a non-trivial relation between the optimal joint fidelities.

In the second example, we consider the cloning of two-qubit maximally entangled states.
For simplicity, here we restrict our attention to economical quantum cloners satisfying a
natural symmetry requirement, and we denote by Fclon,eco[N →M ] the maximum fidelity
achieved by these channels. In this case, we show that the maximum value Fclon,eco[N →M ]
can be achieved by a suitable family of measure-and-prepare channels, in the limit M → N .
Again, this example supports the validity of our conjecture.

2.2 General methods
Here we make some general considerations that apply to the two specific examples considered
in the paper.

2.2.1 Covariant economical channels
In many relevant cases, the unknown state to be cloned is of the form |ψg〉 := Ug|ψ〉 , where
|ψ〉 ∈ H is unit vector and U : G→ Lin(H), g 7→ Ug is a unitary representation of a compact
group G on the set Lin(H) of linear operators on H. Examples of this problem are the
universal cloning of pure states [7] and the phase-covariant cloning [21, 13, 22, 23, 15, 16].
Due to the symmetry of the states, the maximum of the fidelity can be achieved by choosing
a covariant channel, namely a quantum channel satisfying the property

C ◦ U⊗Ng = U⊗Mg ◦ C g ∈ G, (5)

where Ug is the unitary channel defined by Ug(ρ) = UgρU
†
g , for every density matrix ρ. For

covariant channels, the expression of the fidelity is reduced to

F [N →M ] = Tr
[
ψ⊗MC(ψ⊗N )

]
. (6)

A further simplification arises if we assume that the covariant channel C is economical,
namely C(ρ) = V ρV † for a suitable isometry V : the fidelity takes the simple form

F [N →M ] =
∣∣〈ψ|⊗MV |ψ〉⊗N ∣∣2 (7)

and the covariance condition becomes

U⊗Mg V
(
U⊗Ng

)† = ωg V g ∈ G, (8)

where ω : G → C is a one-dimensional representation of the group G. For the cloning of
maximally entangled states of qudits, where the group is SU(d), Eq. (8) is simply

U⊗Mg V
(
U⊗Ng

)† = V g ∈ G, (9)

because the only one-dimensional representation of SU(d) is the trivial one (ωg = 1, ∀g).
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2.2.2 Covariant measure-and-prepare protocols

In order to prove the global asymptotic equivalence, our goal is to construct a family of
measure-and-prepare protocols that attains the fidelity of the best quantum cloners in the
limit M → ∞. To achieve this goal, we will make a series of assumptions motivated by
physical intuition. A posteriori, the fact that our protocols attain the desired fidelity will
provide a confirmation that the intuition was sound.

First of all, for an input state of the form |ψg〉 = Ug|ψ〉 we will consider measure-and-
prepare strategies that are based on state estimation, namely strategies where the set of
measurement outcomes coincides with the set parametrizing the input states, namely X ≡ G.
Hence, the measurement is described by a POVM Pĝ dĝ with in the group G, normalized as∫

d ĝ Pĝ = I⊗N .
For the re-preparation stage , we will require that the states that are re-prepared have

the form |Φĝ〉 = U⊗Mĝ |Φ〉, for a given unit vector |Φ〉 ∈ H⊗M . With this particular choice,
the optimization of the measure-and-prepare protocol is equivalent to the optimization of a
state estimation protocol that is designed to maximize the average of the function

f(ĝ, g) := Tr
[
Φĝ ψ⊗Mg

]
. (10)

In this case, is known that the optimal POVM can be chosen to be covariant [29], that is,
Pĝ = U⊗Nĝ ηU†⊗Nĝ where η ∈ Lin

(
H⊗N

)
is a suitable positive operator, called the seed of

POVM. For a covariant POVM, the probability density p(ĝ|g) = Tr[Pĝψ⊗Ng ] satisfies the
relation

p(hĝ|hg) = p(ĝ|g) ∀h, ĝ, g ∈ G. (11)

Hence, the fidelity of the corresponding measure-and-prepare protocol becomes

F [N →M ] =
∫

d g Tr
[
η ψ⊗Ng

]
Tr
[
Φ ψ⊗Mg

]
. (12)

Finding the optimal measure-and-prepare protocol is then reduced to finding the optimal
operator η and the optimal state |Φ〉. To this purpose, in the two examples considered in
this paper we will make a suitable ansatz on the form of the state |Φ〉, which guarantees
that Tr

[
η ψ⊗Ng

]
, as a function of g, varies slowly with respect to Tr

[
Φ ψ⊗Mg

]
, which is

concentrated around its maximum at g = e, the identity element of the group. Under this
ansatz, the fidelity can be approximated as

F [N →M ] ≈
{∫

d g Tr
[
Φ ψ⊗Mg

]}
Tr
[
η ψ⊗N

]
= 〈Φ|ρ(M)

aver|Φ〉 p
(N)
true. (13)

where ρ(M)
aver :=

∫
dg ψ⊗Mg is the average state of M ideal copies and p(N)

true := Tr
[
η ψ⊗N

]
is

the probability density that the estimated value ĝ coincides with true values g.
Thanks to Eq. (13), optimizing the measure-and-prepare protocol is reduced to two

independent optimization problems: the maximization of the fidelity between the state |Φ〉
and the average state ρ(M)

aver (under the restriction that |Φ〉 must be compatible with the
ansatz) and the maximization of the probability density p(N)

true. In the specific cases considered
in this paper, we will show that the ansatz can be done without loss of generality: indeed,
the fidelity achieved by measure-and-prepare protocols satisfying the ansatz approaches the
fidelity of the optimal quantum channel.



Y. Yang and G. Chiribella 225

3 Cloning equatorial qubit states

Here we consider the optimal N -to-M cloning of pure qubit states on the equator of the
Bloch sphere, evaluating the asymptotic expression of the optimal quantum fidelity and
showing that it can be achieved via a suitable measure-and-prepare protocol.

3.1 The performance of the optimal quantum cloner
Consider the qubit states on the equator of the Bloch sphere, defined as

|ψθ〉 = |0〉+ eiθ|1〉√
2

θ ∈ [−π, π)

= Uθ|ψ〉

Uθ := exp
[
iθ(σz + I)

2

]
, |ψ〉 := |0〉+ |1〉√

2
.

The state of the N input copies can be represented as

|ψ〉⊗N =
N/2∑

n=−N/2

√
bN,n|N/2, n〉 bN,n := 1

2N

(
N

N/2 + n

)

where {|N/2, n〉 | n = −N/2, . . . , N/2} are the Dicke states and bN,n is the binomial
distribution.

The optimal cloning channel was derived in Ref. [13]. When M −N is even, the optimal
channel is covariant with respect to the action of the phase shifts Uθ and economical, i.e. of
the form C(ρ) = V ρV † where V : H⊗N → H⊗M is an isometry(i.e. V †V = I). Specifically,
the isometry of the optimal cloner is V =

∑N/2
n=−N/2 |M/2, n〉〈N/2, n| and produces the

output state

V |ψ〉⊗N =
N/2∑

m=−N/2

√
bN,m|M/2,m〉. (14)

Inserting this expression in Eq. (7) one gets the maximum fidelity [13]

Fclon[N →M ] =

 N/2∑
n=−N/2

√
bN,nbM,n

2

. (15)

When M is large compared to N , the fidelity becomes:

Fclon[N →M ] ≈ bM,0

 N/2∑
n=−N/2

√
bN,n

2

M � N. (16)

In the next subsection we will construct a measure-and-prepare channel that achieves this
asymptotic value for every N ∈ N.

Note that the optimal quantum fidelity in Eq. (15) has a simple expression when N is large
(N � 1). In this case, the probability distributions bN,n and bM,n are well approximated by
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the Gaussian distributions gN (x) =
√

2
πN e

−2x2/N and gM (x) =
√

2
πM e−2x2/M , respectively.

Replacing the summation in Eq. (15) with a Gaussian integral, one gets

Fclon[N →M ] ≈
√

4MN

M +N
N � 1. (17)

Incidentally, it is interesting to observe that in this regime the fidelity is close to 1 whenever
the number of extra-copies M − N is negligible compared to N , whereas it is close to 0
whenever N is negligible compared toM . This fact is an illustration of the standard quantum
limit for cloning introduced in Ref. [28].

3.2 A family of measure-and-prepare protocols achieving
asymptotically the optimal fidelity

Here we consider the maximization of the cloning fidelity over measure-and-prepare protocols
based on state estimation (cf. subsection 2.2.2). For equatorial qubit states, the measure-
and-prepare protocol consists in the estimation of the parameter θ ∈ [0, 2π) from the N input
copies and in the re-preparation of an M -qubit output state |Φθ̂〉 conditional to the estimate
θ̂. In order to maximize the global fidelity, the states |Φθ̂〉 = U⊗N

θ̂
|Φ〉 should be contained

in the symmetric space spanned by the Dicke states {|M/2,m〉 | m = −M/2, . . . ,M/2}, i.e.
|Φθ̂〉 = U⊗M

θ̂
|Φ〉 with

|Φ〉 =
M/2∑

m=−M/2

√
pM,m|M/2,m〉, (18)

for some suitable coefficients {pM,m} that can be chosen to be positive without loss of
generality. For states of this form, the optimal covariant POVM is known [29] and is given
by Pθ̂ = U⊗N

θ̂
ηU†⊗N

θ̂
where the seed η is the rank-one operator η = |η〉〈η| with

|η〉 :=
N/2∑

n=−N/2

|N/2, n〉. (19)

Now, the expression for the fidelity is given by

F [N →M ] =
∫ d θ

2π Tr
[
η ψ⊗Nθ

]
Tr
[
Φ ψ⊗Mθ

]
. (20)

and the goal is to maximize it over all possible choices for the coefficients in Eq. (18). The
optimization can be carried out for given values of N and M . However, the full optimization
is not needed if one just wants to discuss the large M asymptotics. To this purpose, we make
a variational ansatz for the coefficients {pM,m} and later we will prove that asymptotically
the ansatz is not too restrictive, because it allows one to achieve the fidelity of the optimal
cloner. Our variational ansatz is the following:

pM,m(λ) =
{
bdM/λe,m − dM/λe

2 6 m 6 dM/λe
2

0 otherwise
(21)

for some λ > 1. We denote by |Φ(λ)〉 the state in Eq. (18) with the above choice of
coefficients.
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With our variational choice, the expression for the fidelity in Eq. (20) can be simplified
in the regime

M

1 + λ
� N. (22)

Indeed, under this condition the function Tr
[
η ψ⊗Nθ

]
varies slowly with respect to Tr

[
Φ(λ) ψ⊗Mθ

]
(see the proof in the Appendix) and therefore we can approximate Eq. (20) with

F [N →M ] ≈ Tr
[
η ψ⊗N

] (∫ d θ
2π Tr

[
Φ(λ) ψ⊗Mθ

])
= p

(N)
true 〈Φ(λ)|ρ(M)

aver|Φ(λ)〉 (23)

where ρ(M)
aver =

∑M/2
m=−M/2 bM,m|M/2,m〉〈M/2,m| and p(N)

true =
(∑

n

√
bN,n

)2
.

If there were no constraint on |Φ(λ)〉, the optimal choice that maximizes the expectation
value 〈Φ(λ)|ρ(M)

aver|Φ(λ)〉 would be |Φ(λ)〉 = |M/2, 0〉, the eigenvector corresponding to the
maximum eigenvalue of ρ(M)

aver. However, from Eq. (21) it is clear that this would require
M/λ < 1, in contradiction with the condition M/(1 + λ)� N , under which Eq. (23) was
derived. What can be done instead is to choose λ in such a way that both conditions λ� 1
and M/(1 + λ)� N are satisfied. With this choice, the expectation value 〈Φ(λ)|ρ(M)

aver|Φ(λ)〉
is still close to the maximum eigenvalue:

〈Φ(λ)|ρ(M)
aver|Φ(λ)〉 =

dM/λe/2∑
m=−dM/λe/2

bM,mbdM/λe,m ≈ bM,0 λ� 1

Hence, the fidelity of our variational measure-and-prepare protocol, denoted by Fλ[N →M ],
becomes

Fλ[N →M ] ≈ 〈Φ(λ)|ρ(M)
aver|Φ(λ)〉 p(N)

true ≈ bM,0

 N/2∑
n=−N/2

√
bN,n

2

≈ Fclon[N →M ],

(24)

where the last approximate equality comes from Eq. (16). Since by definition the maximum
fidelity Fest[N →M ] over all measure-and-prepare channels is lower bounded by Fλ[N →M ]
and upper bounded by Fclon[N →M ], we conclude that

Fest[N →M ] ≈ Fλ[N →M ] ≈ Fclon[N →M ] M

1 + λ
� N,λ� 1.

This shows that asymptotically, there is no loss of generality in our ansatz: the protocols
satisfying the ansatz have a fidelity that is arbitrarily close to the fidelity of the best measure-
and-prepare protocol, which in turn is asymptotically equal to the fidelity of the best quantum
cloner.

Let us consider now the fidelity of the naive measure-and-prepare protocol that consists
in estimating the phase θ and re-preparing M identical copies of the estimated state. In
this case, we have |Φ〉 = |ψ〉⊗M ≡ |Φ(λ = 1)〉 [cf. Eqs. (18) and (21)], and, therefore,
〈Φ(λ = 1)|ρ(M)

aver|Φ(λ = 1)〉 =
∑M/2
m=−M/2 b

2
M,m.

For largeM , the Gaussian approximation gives 〈Φ(λ = 1)|ρ(M)
aver|Φ(λ = 1)〉 ≈

√
1/(πM) ≈

bM,0/
√

2, and the fidelity becomes

Fλ=1[N →M ] ≈ bM,0√
2

 N/2∑
n=−N/2

√
bN,n

2

≈ Fclon[N →M ]√
2

∀N ∈ N.
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This proves that re-preparing M identical copies is a strictly suboptimal strategy, which
cannot reach the global fidelity of the optimal cloner.

In summary, in this section we showed that the fidelity of the optimal quantum cloner
Fclon[N → M ] is asymptotically equal to the fidelity of the optimal measure-and-prepare
protocol Fest[N → M ] in the limit M → ∞. Hence, the conjectured equality in Eq. (3)
is verified. However, achieving the optimal fidelity requires one to prepare suitable M -
partite entangled states: the simple strategy consisting in re-preparing M identical copies of
estimated state does not give the maximal fidelity, even in the asymptotic limit.

4 Cloning two-qubit maximally entangled states

In this section we consider the N-to-M cloning of two-qubit maximally entangled states,
computing the fidelity of the optimal economical covariant cloner and showing that it can be
asymptotically attained via a suitable measure-and-prepare protocol.

Consider a general two-qubit maximally entangled state |ψg〉 ∈ HA⊗HB , HA ' HB ' C2,
which can be parametrized as

|ψg〉 = (Ug ⊗ I)|I〉〉√
2

, g ∈ SU(2). (25)

Here we are using the “double-ket notation” |A〉〉 :=
∑
m,n〈m|A|n〉 |m〉|n〉 for a generic

operator A ∈ Lin(H) [30].
We now give a convenient decomposition of the input state |ψg〉⊗N = (HA ⊗HB)⊗N '

H⊗NA ⊗H⊗NB . With a suitable choice of basis, the Hilbert space H⊗NA , can be decomposed
as a direct sum of tensor product pairs

H⊗NA =
N/2⊕

j=j(N)
min

(
R

(j,N)
A ⊗M

(j,N)
A

)
, (26)

where j is the quantum number of the total angular momentum and j(N)
min = 0 for even N

while j(N)
min = 1

2 for odd N , R(j,N)
A is a representation space, of dimension dj = 2j + 1, and

M
(j,N)
A is a multiplicity space, of dimension m

(N)
j = 2j+1

N/2+j+1
(

N
N/2+j

)
(see e.g. Ref. [31]).

Relative to this decomposition, we can express U⊗Ng as a block diagonal matrix, where each
block corresponds to an irreducible representation of SU(2), namely

U⊗Ng =
N/2⊕

j=j(N)
min

[
U (j,N)
g ⊗ I(N)

mj

]
. (27)

where U (j,N)
g ∈ Lin(R(j,N)

A ) is the unitary operator representing the action of the element
g ∈ SU(2) and I(N)

mj denotes the identity on M
(j,N)
A .

Using Eq. (27), the input state |ψg〉⊗N can be cast in the form

|ψg〉⊗N = 2−N/2(Ug ⊗ I)⊗N |I〉〉⊗N = 2−N/2
N/2⊕

j=j(N)
min

(
|U (j,N)
g 〉〉 ⊗ |I(N)

mj 〉〉
)

(28)

with |U (j,N)
g 〉〉 ∈ R

(j,N)
A ⊗ R

(j,N)
B and |I(N)

mj 〉〉 ∈ M
(j,N)
A ⊗M

(j,N)
B . Hence, we obtained the

decomposition

|ψg〉⊗N =
N/2⊕

j=j(N)
min

√
c

(N)
j |ψ(j,N)

g 〉 |ψ(j,N)
g 〉 := |U

(j,N)
g 〉〉√
dj

⊗
|I(N)
mj 〉〉√
m

(N)
j

(29)
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and c(N)
j := djm

(N)
j

2N = (2j+1)2

(N/2+j+1) bN,j , bN,j being the binomial distribution bN,j =
(

N
N/2+j

)
/2N .

Note that every state |ψg〉⊗N in Eq. (29) belongs to the subspace

H
(N)
ent :=

N/2⊕
j=j(N)

min

(
R

(j,N)
A ⊗ R

(j,N)
B ⊗M

(j,N)
A ⊗M

(j,N)
B

)
⊂ (HA ⊗HB)⊗N . (30)

Hence, for the optimization of the fidelity we can restrict our attention to this subspace
and consider quantum channels that map states on H

(N)
ent to states on H

(M)
ent .

4.1 The performance of the optimal economical covariant cloner
Here we focus here on a special type of cloning machines, namely economical covariant
cloning machines [14, 15, 16]. An economical covariant cloner is described by an isometric
channel C(ρ) = V ρV †, where V : H(N)

ent → H
(M)
ent is an isometry satisfying the covariance

requirement, which in our case is expressed by the relation

(Ug ⊗ Uh)⊗MV
(
U†g ⊗ U

†
h

)⊗N
= V ∀g, h ∈ G. (31)

Note that the action of (Ug ⊗ Uh)⊗N , restricted to the subspace H
(N)
ent is

(Ug ⊗ Uh)⊗N
∣∣
H

(N)
ent

=
N/2⊕

j=j(N)
min

(
U (j,N)
g ⊗ U (j,N)

h ⊗ I(N)
mj ,A

⊗ I(N)
mj ,B

)
,

where I(N)
mj ,A

(I(N)
mj ,B

) denotes the identity on the multiplicity space M(j,N)
A (M(j,N)

B ). A similar
decomposition holds for the action of (Ug ⊗ Uh)⊗M restricted to the subspace H

(M)
ent .

Now, using the Schur’s lemma, Eq. (31) is reduced to

V =
N/2⊕

j=j(N)
min

(Rj ⊗Mj), (32)

where Rj : R(j,N)
A ⊗ R

(j,N)
B → R

(j,M)
A ⊗ R

(j,M)
B is an isometry acting on the representation

spaces and satisfying
(
U

(j,M)
g ⊗ U (j,M)

h

)
Rj

(
U

(j,N)
g ⊗ U (j,N)

h

)
= V ∀g, h ∈ G, and Mj :

M
(j,N)
A ⊗M

(j,N)
B →M

(j,M)
A ⊗M

(j,M)
B is an isometry acting on the multiplicity spaces.

The fidelity of the economical cloner with isometry V in Eq. (32) is given by

F [N →M ] =
∣∣〈ψ|⊗M V |ψ〉⊗N

∣∣2 =

∣∣∣∣∣∣∣
N/2∑

j=j(N)
min

√
c

(N)
j c

(M)
j 〈ψ(j,N)|V |ψ(j,M)〉

∣∣∣∣∣∣∣
2

≤

 N/2∑
j=j(N)

min

√
c

(N)
j c

(M)
j


2

.

The equality holds when V |ψ(j,N)〉 = |ψ(j,M)〉 for every j = j
(N)
min, . . . , N/2, or, equivalently,

Rj
|I(j,N)〉〉√

dj
= |I

(j,N)〉〉√
dj

, Mj
|I(N)
mj 〉〉√
m

(N)
j

=
|I(M)
mj 〉〉√
m

(M)
j
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Interestingly, the optimal covariant economical cloner can be achieved using local operations,
because the above isometries only represent an embedding of the state of N systems on
A’s and B’s sides into Hilbert space of M systems, and these embedding operations can be
carried out locally.

The maximal fidelity among all possible economical covariant cloner is then

Feco,clon[N →M ] =

 N/2∑
j=j(N)

min

√
c

(N)
j c

(M)
j


2

, (33)

and, when M is large compared to N , becomes

Feco,clon[N →M ] ≈ 2bM,0

M

 N/2∑
j=j(N)

min

√
bN,j(2j + 1)4

N/2 + j + 1


2

M � N. (34)

In the next subsection we will construct a measure-and-prepare channel that achieves this
asymptotic value, despite the fact that the fact that the cloning machine considered here is
economical, and, therefore, far from a measure-and-prepare channel.

Before concluding, it is worth noting that the expression for the optimal quantum fidelity
becomes simpler when N is large (N � 1). Approximating the summation in Eq. (33) with
a Gaussian integral, one obtains the fidelity

Feco,clon[N →M ] ≈
(∫ N/2

0
8x2

√
gM (x)gN (x)

MN
dx
)2

≈
(

4N
M

)3/2
N � 1. (35)

Also in this case, it is also interesting to observe that the fidelity is close to 1 whenever the
number of extra-copies M −N is negligible compared to N , whereas it is close to 0 whenever
N is negligible compared to M , in agreement with the standard quantum limit for cloning
[28].

4.2 A family of measure-and-prepare protocols achieving
asymptotically the optimal fidelity

Here we show how to reach the fidelity Fclon,eco[N →M ] with a suitable measure-and-prepare
protocol. Also in this case, we will first make a series of assumptions on the protocol, and we
will eventually show that asymptotically our choice achieves the desired fidelity.

To start with, we consider strategies where the states re-prepared are of the form

|Φĝ〉 =
M/2⊕

j=j(M)
min

√
p

(M)
j |ψ(j,M)

g 〉 (36)

where |ψ(j,M)
g 〉 is the vector defined in Eq. (29) and {p(M)

j } are some non-negative coefficients.
Our choice is quite natural, as it is motivated by the form of the desired states |ψg〉⊗M [cf.
Eq. (29) ].

Once we assume states of this form for the re-preparation, the optimal POVM for the
measurement is known [31] and is given by the square-root measurement [32], which in this
case has the expression Pĝ = U⊗Nĝ ηU†⊗Nĝ , where η = |η〉〈η| and |η〉 =

⊕N/2
j=j(N)

min

dj |ψ(j,N)〉
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Then, we make a variational anstaz on the form of the coefficients {p(M)
j } in Eq. (36),

similar to the ansatz made in subsection 3.2: we assume

p
(M)
j (λ) =

{
c

(dM/λe)
j j 6 dM2λe

0 j > dM2λe,
(37)

for a parameter λ ≥ 0 to be optimized. Denoting by |Φ(λ)〉 the state of Eq. (36) with
the variational choice of coefficients, one can argue that asymptotically |〈η|ψg〉⊗N |2 varies
slowly with respect to |〈Φ(λ)|ψg〉⊗M |2 provided that M/(1 + λ) � N , following the same
lines illustrated in the Appendix for the case of equatorial qubits. Hence, the fidelity can be
turned into Eq. (13) with:

ρ(M)
aver =

M/2∑
j=j(M)

min

c
(M)
j

[
I

(j,M)
A

dj
⊗
I

(j,M)
B

dj
⊗
|I(M)
mj 〉〉〈〈I

(M)
mj |

m
(M)
j

]
(38)

where I(j,M)
A ( I(j,M)

B ) denotes the identity on the representation space R
(j,M)
A (R(j,M)

B ), and

p
(N)
true =

 N/2∑
j=j(N)

min

√
c

(N)
j dj


2

. (39)

With similar observation as in subsection 3.2, λ should be chosen in such a way that
both conditions λ� 1 and M/λ� N are satisfied. With this choice, the expectation value
〈Φ(λ)|ρ(M)

aver|Φ(λ)〉 is

〈Φ(λ)|ρ(M)
aver|Φ(λ)〉 =

dM/λe/2∑
j=j(dM/λe)

min

c
(dM/λe)
j c

(M)
j

d2
j

≈ 2bM,0

M
λ� 1

Hence, the fidelity of our measure-and-prepare protocol, denoted by Fλ[N →M ], becomes

Fλ[N →M ] ≈ 〈Φ(λ)|ρ(M)
aver|Φ(λ)〉 p(N)

true ≈
2bM,0

M

 N/2∑
j=j(N)

min

(2j + 1)2

√
bN,j

N/2 + j + 1


2

≈ Feco,clon[N →M ], (40)

the last approximate equality coming from Eq. (34). This shows that asymptotically, the
fidelity of the protocols satisfying the assumptions gets arbitrarily close to the fidelity of the
best economical covariant cloner.

Also in this case, we can compare the fidelity of our measure-and-prepare protocol with
the naive protocol that consists in estimating the state and re-preparing M identical copies
according to the estimate. In this case, we have |Φ〉 = |ψ〉⊗M ≡ |Φ(λ = 1)〉 [cf. Eqs. (36)
and (37)], and, therefore,

〈Φ(λ = 1)|ρ(M)
aver|Φ(λ = 1)〉 =

M/2∑
j=j(M)

min

(
c

(M)
j

dj

)2

. (41)
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For large M , this gives 〈Φ(λ = 1)|ρ(M)
aver|Φ(λ = 1)〉 ≈

√
1/(πM3) ≈ bM,0/(

√
2M), and the

fidelity becomes

Fλ=1[N →M ] ≈ bM,0√
2M

 N/2∑
j=j(N)

min

√
c

(N)
j dj


2

≈ Feco,clon[N →M ]
23/2 .

This proves that re-preparing M identical copies is a strictly suboptimal strategy, which
cannot reach the fidelity of the optimal economical covariant cloner.

In summary, in this section we showed that for the case of two-qubit maximally entangled
states, the fidelity of the optimal economical covariant cloner Feco,clon[N → M ] can be
achieved by a measure-and-prepare protocol Fλ[N →M ] in the asymptotic limit M →∞.
However, achieving the optimal fidelity requires one to prepare suitable M -partite entangled
states: the simple strategy consisting in re-preparing M identical copies of estimated state
does not give the desired fidelity, even in the asymptotic limit.

5 Discussion and conclusions

In this paper we posed the question whether the asymptotic cloning is equivalent to state
estimation in terms of the global fidelity between the output state of all clones and the
desired state ofM perfect copies. To gain insight into the problem, we provided two examples
(cloning of equatorial qubit states and cloning of two-qubit maximally entangled states)
where the equivalence between cloning and estimation is satisfied in a rather non-trivial way,
despite the cloning machines under consideration are economical. Our results suggest the
existence of a general mechanism that guarantees the equality of fidelities in Eq. (3). Finding
a general proof, or finding a counterexample to the conjectured equivalence between global
asymptotic cloning and state estimation is the most pressing open question raised by our
work.
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A Justification of the asymptotic approximation for the fidelity

In order to study the asymptotic behavior of the fidelity for measure-and-prepare protocols,
we can use a Taylor expansion of Tr

[
η ψ⊗Ng

]
up to the second order term:

Tr
[
η ψ⊗Ng

]
=

N/2∑
n,m=−N/2

√
bN,nbM,me

i(n−m)θ

≈

 N/2∑
n=−N/2

√
bN,n

2

− θ2

2

 N/2∑
n,m=−N/2

√
bN,nbN,m(n−m)2


=

 N/2∑
n=−N/2

√
bN,n

2

− θ2

 N/2∑
n=−N/2

n2√bN,n
 N/2∑

m=−N/2

√
bN,m

 . (42)

In the asymptotic limit of large amplification, i.e. M � N , bM,m can be approximated by
the Gaussian gM (x) :=

√
2
πM e−

2x2
M , thus we have:

Tr
[
Φ ψ⊗Mg

]
=

∣∣∣∣∣∣
dM/2λe∑

m=−dM/2λe

√
bdM/λe,mbM,me

imθ

∣∣∣∣∣∣
2

≈

∣∣∣∣∣
∫ dM/2λe

−dM/2λe
dx

√
2
πM

λ
1
4 e−

(1+λ)x2
M +iθx

∣∣∣∣∣
2

= 2
√
λ

1 + λ
e−

Mθ2
2(1+λ) .

Taking these into Eq. (12) we get the expression of measure-and-prepare fidelity for large
amplification:

F [N →M ] =
∫ d θ

2π Tr
[
η ψ⊗Nθ

]
Tr
[
Φ ψ⊗Mθ

]
≈ 2
√
λ

1 + λ

 N/2∑
n=−N/2

√
bN,n

 N/2∑
n=−N/2

√
bN,n

∫ π

−π

d θ
2π e−

Mθ2
2(1+λ)

−
N/2∑

n=−N/2

n2√bN,n ∫ π

−π

d θ
2π θ2 e−

Mθ2
2(1+λ)


=

√
2λ

πM(1 + λ)

 N/2∑
n=−N/2

√
bN,n


 N/2∑
n=−N/2

√
bN,n −

1 + λ

2πM

N/2∑
n=−N/2

n2√bN,n
 .

(43)

It is clear that the contribution resulting from the second order term of the expansion
is negligible whenever M/(1 + λ) � N . In particular, for large N the binomial can be
approximated by a Gaussian, giving

N/2∑
n=−N/2

√
bN,n ≈ (2πN)1/4

N/2∑
n=−N/2

n2 √bN,n ≈ (2πN)1/4N

2 . (44)

so that the ratio between the second and first order term in Eq. (43) is N(1 + λ)/M .
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