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Abstract
We study the quantum error correction threshold of Kitaev’s toric code over the group Zd subject
to a generalized bit-flip noise. This problem requires novel decoding techniques, and for this
purpose we generalize the renormalization group method we previously introduced in [5, 6] for
Z2 topological codes.
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1 Introduction

Kitaev’s topological code (KTC) [11] on qubits is the archetypical topological code and has
been extensively studied. As explained in Kitaev’s original paper [11], this construction
applies to any group. Much less is known about these generalizations, and in this paper we
investigate the quantum error correction (QEC) thresholds of the KTCs built with the groups
Zd, where d ≥ 2. We label these as Zd-KTC, so the original code on qubits corresponds to
Z2-KTC.

As explained in [4], Z2-KTC can be decoded by a binary perfect matching algorithm [7],
since every particle is its own anti-particle in this model. Because this is not the case for
d > 2, other techniques are required and for this purpose we generalize the renormalization
group (RG) soft decoder that we introduced in [5, 6]. Our numerical simulations show that
the threshold increases monotonically with d and appears to follow the general trend of the
qudit hashing bound.

This paper is organized as follows. First, we introduce a generalized Pauli group (see
[12, 9] for more details), stabilizer codes, and Zd-Kitaev’s toric code. Next, we briefly review
the decoding problem of these systems and show how the RG decoder applies in this case.
Finally, we present the numerical results and close with a discussion.

2 Zd generalization of Kitaev’s toric code

In this section, we review the definition of Zd-KTC and show that many features of KTC
on qubits extend to them. Since we will be working with qudits, we introduce a generalized
Pauli group. The Hilbert space of a qudit, Hd, is spanned by the states {|0〉, |1〉, . . . , |d−1〉}.
We define the operators X and Z such that

X|g〉 = |g ⊕ 1〉, Z|g〉 = ωg|g〉, (1)
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Figure 1 Zd-KTC stabilizer generators. To each vertex v, we associate an operator Av(left) and
to each plaquette p, we associate an operator Bp (right).
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Figure 2 Plaquette defects created by the application of some power of X. The values a (−a)
in the plaquettes are such that the eigenvalue of the corresponding Bp is ωa (ω−a). By choosing
appropriately the powers of X, we can build string operators with defects only on their endpoints.
Non-trivial cocyles of Xa correspond to Xa logical operators.

where 0 ≤ g < d, “⊕" denotes addition modulo d, and ω = ei2π/d. The generalized
Pauli group is generated by X, Z, and a phase, i.e., Pd = 〈ω,X,Z〉 if d is odd and
Pd = 〈ω1/2, X, Z〉 if d is even (XZ has order 2d in this case). From the definitions of
Eq. (1), we deduce the following properties

Xa|g〉 = |g ⊕ a〉, ZX|g〉 = ωXZ|g〉, (2)
Za|g〉 = ωag|g〉, ZaXb|g〉 = ωabXbZa|g〉.

Lastly, we define the n-qudit Pauli group Pnd ≡ P
⊗n
d as the n-fold tensor product of Pd.

The stabilizer group S is an ablian subgroup of Pnd . The code is defined as the sim-
ultaneous +1 eigenspace of all stabilizers. Note that even though the generalized Pauli
operators are unitary, they are not hermitian in general so do not correspond to physical
observables. However, the operator 1

2 (s+ s†) is hermitian and can be measured. Since s has
eigenvalues ωa, 1

2 (s+ s†) has eigenvalues 1
2 (ωa+ω−a) = cos(2πa/d) which are in one-to-one

correspondence with the eigenvalues of s.
With these definitions in place, we present a generalization of KTC on qudits, which we

call Zd-KTC, using Kitaev’s original construction [11] on the cyclic groups Zd with d ≥ 2.
The system is a square lattice of linear size L with periodic boundary conditions. Each edge
is occupied by a qudit, so there are in total n = 2L2 qudits. We define vertex operators
Av and plaquette operators Bp as shown in Fig. 1. There is one such operator for each
vertex and each plaquette. We verify that they commute using the last line of Eq. (2).
These operators generate the stabilizer group S = 〈Av, Bp〉 and the code is spanned by the
simultaneous +1 eigenstates of the stabilizer generators.

Figure 2 illustrates how applying some power of X on a codestate creates defects on
the lattice. Indeed, Xa applied on some qudit does not commute with the two plaquette
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operators involving that qudit. The eigenvalues of the plaquettes to the north or east of
the error will change from 1 to ωa, and those of the plaquettes to the south or west will
change from 1 to ω−a. One can show that the defects thus created are topological charges;
we associate the charge a to a plaquette defect corresponding to an eigenvalue ωa of that
plaquette. With this choice of labeling, the charge group restricted to plaquettes is Zd with
addition.

From these simple facts, it follows that string operators can be built with defects attached
only to their endpoints (these strings actually live on the dual lattice, just like in KTC).
This requires a careful choice of the powers of X on the qudits along the string such that the
total charge in each plaquette is 0 except on its endpoints. For instance, one can adopt the
convention that power a is used when heading north or east, and −a when heading south or
west. Moreover, we can verify that non-trivial cocycles (loops on the dual lattice, see Fig. 2)
of any power of X obeying this convention commute with the stabilizer. These operators
are not in the stabilizer as all the vertex generators of Fig. 1 are trivial cocyles. It follows
that such operators, e.g. the one found at the bottom of Fig. 2, are logical operators (for
any value of a).

A similar analysis holds for defects created by powers of Z operators. In this case, the
defects live on vertices and string operators, on the direct lattice. Also, non-trivial cycles
of any power of Z are logical operators. From the form of the logical operators, we directly
deduce that there are two qudits encoded in the code space. Again, this is analogous to the
case of KTC.

3 Zd-KTC decoding

We are now interested in the problem of error correcting Zd-KTCs for d > 2. In our study,
we consider a simple noise model that generalizes the independent symmetric bit-flip channel
to qudits1: with probability 1 − pphys, the qudit remains unaffected and with probability
pphys, we apply at random (uniformely distributed) one of X,X2, . . . , Xd−1. Suppose an
error E ∈ Pnd occurs on a code state. It creates defects on the lattice and by measuring the
eigenvalues of every 1

2 (Av+A†v) and 1
2 (Bp+B†p) we can learn the position and charge of each

defect. The role of the decoder is to bring the system back in the code space by applying a
correcting Pauli operator, C ∈ Pnd . However, care must be taken in choosing an appropriate
correcting operation. Indeed, if the operator CE resulting from the combination of the error
and the recovery is an element of S, the state is unaffected. However, if CE is a non-trivial
logical operator, then the system is returned to the code space but potentially in a different
code state, so the information is corrupted.

Any operator E ∈ Pnd creating the measured configuration of defects is a potential error.
However, we classify these operators by their logical effect on the code space: two operators
E1, E2 with the same configuration of defects are equivalent iff E†2E1 has a trivial effect
on the code, i.e. E1 ∼ E2 iff E†2E1 ∈ S. Note that since E1 and E2 lead to the same
defect configuration, E†2E1 creates no defect, or equivalently, E1 creates some defects that
E†2 annihilates.

Given a measured defect configuration, the decoder seeks for the best correction among
the set of all errors which would lead to this defect configuration. One strategy would be to
identify the error from this set that has the largest probability P(E), where the probability

1 This noise model can also be seen as emerging from a qudit depolarization channel that maps ρ →
(1− q)ρ+ q Id when X and Z errors are treated independently, and pphys = q(1− d−1).
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Figure 3 (a) The lattice is cut into unit cells containing ten qudits (edges). The renormalization
process takes the defect configuration and the noise model on a unit cell as inputs and outputs a two-
qudit distribution (white disks) which corresponds to a probability on the charge flow through the
corresponding boundaries. Green disks represent plaquette operators. The plaquette corresponding
to the green circle is replaced by the product of all four plaquettes of the unit cell, such that its
eigenvalue gives the total charge of the cell. This value is only going to be used in the next round
of RG (larger green disk). (b) Labeling convention for qudits in Eq. (3).

of an error is specified by the physical noise model, in our case the symmetric bit-flip channel.
This turns out not to be optimal however, because some errors have equivalent effects on
all code states. Thus, the decoder should instead seek for the most likely equivalence class
of errors. The probability of an equivalence class of errors is obtained by summing over the
probability of each error within a class. Given these probabilities, the optimal correction
consists in applying the adjoint of any representative of the class with maximal probability.

4 RG decoder generalization to Zd-KTC

Unfortunately, the above procedure cannot be realized efficiently in general since the number
of errors in each equivalence class scales exponentially with the system size. In [5, 6], we
introduced a renormalization group soft decoder (RG decoder) that efficiently approximates
the exact calculation (see [3] for a related scheme). The general idea is to cut the lattice into
small unit cells (e.g. 2× 2 sub-lattices) and to “distill" from each cell an effective two-qubit
noise model, c.f. Fig. 3(a). This is realized by keeping track of the flow of charges through
the cell and summing over the microscopic details leading to this flow. This has the effect
of shrinking the lattice linear size by a constant factor (k for cells of size k × k). Recursing
on this process, one can shrink the lattice to a constant, manageable, size where the exact
decoding can be performed. With appropriate simple modifications, this method can be
used for charges over Zd.

There are two technical difficulties in realizing the above heuristic description, which are
both caused by charge conservation. First, because the unit cells share boundaries, the flow
of charge through one boundary of a cell should be equal and opposite to the flow of charge
of the corresponding boundary of the neighbouring cell. Thus, the variable corresponding
to charge flows in each cell are highly constrained. This problem is easily circumvented by
keeping only track of the flow of charge through the northern and the western boundary of
each cell, i.e. by eliminating this redundancy.

Second, the sum of the charge flow through the boundaries of a cell must be equal to its
total charge, revealed by the syndrome measurement. This once again sets a hard constraint
between the variables corresponding to the charge flows, which would in principle require
a probability distribution that correlates all the variables of the system. This cannot be
realized efficiently, so we must resort to some approximation. As a first approximation, we
choose to ignore the cross-cell correlations, and keep only marginal probabilities on the flows
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associated to a given cell (we keep a probability distribution that involves the northern and
western boundary only). To diminish the effect of these correlations we are neglecting, we
let the charge inside a unit cell fluctuate. For each unit cell, we measure all but one of the
plaquettes it encloses. This remaining plaquette thus determines the total charge of the
unit cell, and indeed we can substitute the corresponding stabilizer generator by a plaquette
enclosing the entire unit cell (obtained by multiplying all the plaquette operators contained
in the unit cell). This new stabilizer generator represents a renormalized charge.

This procedure is illustrated on Fig. 3(a) where green disks represent plaquettes that are
measured and the green circle represents the plaquette that is left fluctuating. This green
circle is replaced by the larger, renormalized green disk (on the right) that is used in the
next RG step. The white disks on this figure each represent a probability distribution on
charge flow, or equivalently a two-qudit probability distribution. Thus, after one round of
RG, we are left with a smaller lattice and both renormalized charges and renormalized noise
models.

Equation (3) lists a set of generators for all X operators living on a unit cell (see Fig. 3(b)
for labelling). This basis will be used to decompose any X-type error contained on the unit
cell. These operators are defined in accordance to the renormalization process itself as we
now explain. The Ti operators are used to build a representative error with the appropriate
defect configuration. Indeed, only the Ti operators of Eq. (3) do not commute with all three
plaquette operators in the unit cell (green disks of Fig. 3(a)). Label the defect configuration
on a unit cell as ~a = (a0, a1, a2), where a0 is the charge of the north-west plaquette, a1 is
the charge of the north-east one, and a2 is the charge of the south-west one. Then, the
Pauli operator t(~a) = T a0

0 T a1
1 T a2

2 creates the defect configuration ~a. Moreover, given a
defect configuration ~a, every potential error has to contain this product in its decomposition
on basis Eq. (3) since only the Ti operators do not commute with plaquettes. The Li
operators characterize the flow of charge through the northen and western boundaries, so
the two-qudit ouput distribution of a RG round is precisely the probability distribution
over these two operators. The Si operators are stabilizer operators (or parts of stabilizer
generators supported on the unit cell). They only deform strings without changing their
defect configuration or their associated charge flow. Lastly, the Ei operators correspond
to charge flowing through the southern and eastern boundaries into the plaquette operator
that is left out. Thus, they are responsible for the charge fluctuation inside the unit cell and
they are summed over.

S0 = X0X
−1
2 X−1

3 T0 = X4X
−1
7

S1 = X1X
−1
4 X−1

5 T1 = X6

S2 = X3X4X
−1
6 X−1

7 T2 = X−1
7

(3)
E0 = X6X8 L0 = X2X6

E1 = X−1
7 X−1

9 L1 = X5X7

With these definitions, we can formally describe a RG round that starts with a defect
configuration ~a, and computes the marginal probability of each l ∈ 〈L0, L1〉 conditioned on
the measured defect configuration,

P(l) =
∑

e∈〈E0,E1〉

∑
s∈〈S0,S1,S2〉

P(tles), (4)

TQC’13
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where t = T a0T a1T a2 is given by the defect configuration and P(tles) is the probability
assigned to the error E = tles by the noise model. The complexity of decoding a unit cell
is given by the number of operators that are considered in Eq. (4): |〈L0, L1〉| · |〈E0, E1〉| ·
|〈S0, S1, S2〉|. Since all Li, Ei and Si have order d, the complexity is the constant d7. For
different unit cell sizes, the complexity is still a power of d, but with a different exponent
which depends on the number of qudits in the cell and the number of measured stabilizer
generators. Moreover, the number of unit cells to decode in a given round of RG is given by
(L/k)2 where k and L are the linear sizes of the unit cell and the global lattice, respectively.
Thus, the complexity of a step of RG goes as dc(L/k)2 for some constants c and k that
depend on the choice of unit cell. Of course, the RG calculations on different cells can be
executed in parallel.

The procedure we have described above to evade the correlations caused by local charge
conservation is only a heuristic, and can be improved using belief propagation (BP). Roughly,
the role of BP is to ensure consistency between the marginal probability of qubits located at
the boundary of two or more unit cells, e.g. qudits 0, 1, 8 and 9 (see Fig. 3(b) for labeling).
First, given a defect configuration inside a unit cell, one can compute the marginal error
probability Pq(tles|q) for each qudit q, obtained by taking a marginal of P(tles). These
are called messages and denoted mout

q (p), where q labels a qudit and p is a one-qudit Pauli
operator. These outgoing messages are then exchanged between neighbouring cells, and
become incoming messages, e.g. a cell c sends to its northern neighbour c′ the message
mout

0 that becomes min
9 in c′, and receives from c′ the message mout

9 that becomes min
0 in c.

Subsequent rounds of messages can be calculated using the received messages, following the
prescription

mout
q (p)←

∑
l,s,e

δ(tles|q, p)
P(tles)
Pq(tles|q)

∏
q′ 6=q

min
q′ (tles|q′), (5)

Here, q, q′ ∈ {0, 1, 8, 9}, tles|q is the restriction to qudit q of the Pauli operator tles and Pq
is the marginal on qudit q of the noise model as above. BP can be iterated a few times (e.g.
three rounds) before executing a RG step. This has the effect of replacing Eq. (4) by

P(l) =
∑

e∈〈E0,E1〉

∑
s∈〈S0S1S2〉

P(tles)
∏
q

min
q (tles|q). (6)

5 Numerical results

In this section, we present our numerical estimates of the thresholds of Zd-KTCs for 2 ≤
d ≤ 6 subject to the generalized bit-flip noise model introduced in the previous section. The
threshold is defined as the value of the physical noise rate pphys below which the decoding
error probability pdec can be made arbitrarily small by increasing the lattice size L.

The simulations were performed as follows. For various values of d, L and pphys, specifiy-
ing a Zd-KTC of linear size L subject to a noise of parameter pphys, we performed a Monte
Carlo simulation to estimate the decoding error probability pdec. We used sample sizes of
the order of 104. For a fixed value of d, we plotted estimates of pdec vs pphys for different
values of L. We then used the fitting model pdec = (pphys − pth)L1/ν (see [4, 10] for more
details) to estimate the value of the threshold. As an example, we plotted the results and
the fits for Z3-KTC on Fig. 4.

Repeating this for 3 ≤ d ≤ 6 (2 was studied in [5, 6]), Fig. 5 shows pth as a function of
d. Heuristically, we did expect that the value of pth increases with d. Indeed, if we imagine
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Figure 4 Threshold estimation for Z3-KTC. The x-axis represents physical error rate and the
y-axis, decoding error rate. The blue dots, red squares and yellow diamonds correspond to L = 32,
L = 64 and L = 128 respectively. The fitting curve used is pdec = (pphys − pth)L1/ν . In this case,
we find pth = 0.13(0).
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Figure 5 The blue diamonds are the values extracted by fitting the threshold values for 2 ≤ n ≤ 6
(see Fig. 4 for example). The red squares are obtained via the generalized hashing bound (see text)
rescaled by a common factor α = pth(2)/C2 ≈ 0.81. The error bars are (pessimistically) obtained
e.g. by replacing each line in Fig. 4 by a stripe of width equal to the statistical error bars, and
determining the values of pphys above and below the crossing point where the strips cease to overlap.
We do not report the fitting parameter ν because they are too sensitive to statistical fluctuations
and therefore unreliable in our study.
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simulating a qudit using log2 d qubits, a fixed noise rate for increasing values of d translates
into a decreased noise rate per qubit. Moreover, it was reported in [1] that the performance
of BP for Zd-KTC, which is very poor in the qubit case, is greatly increased as d grows.

It is intringuing to note that for Z2-KTC subject to bit-flip or depolarizing noise, pth is
numerically very close to the hashing bound [4, 10, 2]. The hashing bound, obtained by a
simple packing argument [8], states that for non-degenerate CSS codes,

0 ≤ 1− 2H2(p), (7)

where H2 is the binary entropy: H2(p) = (1−p) log2(1−p)+p log2 p. From Eq. (7), one can
calculate the saturating point C2 ≈ 0.110 which is indeed quite close to the optimal threshold
of the Z2-KTC subject to independent bit-flip and phase-flip errors, pth(2) ≈ 0.109(4) [4, 10].
This near coincidence is intriguing given that topological codes are highly degenerate, so
there is no reason they should obey the hashing bound. Of course, the decoder we are
using here is sub-optimal, so the threshold we find pth(2) ≈ 0.89(6) is a smaller fraction
α = pth(2)/C2 ≈ 0.81(4) of the hashing bound.

For qudits, the hashing bound is

0 ≤ 1− 2Hd(p) with Hd(p) = (1− p) log(1− p) + p log p

d− 1 . (8)

In this case, we find C3 ≈ 0.159, C4 ≈ 0.189 and so on. Figure 5 shows the threshold
pth(d) obtained with the RG decoder as well as a rescaled hashing bound αCd where α is
determined by the Z2 fit. The agreement is both unexplained and surprisingly good. Note
also that even though our decoder is sub-optimal, pth(d+ 1) > Cd for all d we have studied,
which strongly support the claim that the threshold increases with d.

6 Conclusion

In this paper, we presented a generalization of the renormalization group decoder of [5, 6]
to Kitaev topological codes built with the groups Zd. Our numerical results show that the
threshold value increases as a function of the local dimension d. Moreover, its behaviour is
in very good agreement with a scaling predicted by the hashing bound. This trend could be
confirmed by more accurate numerical estimates using a mapping to a statistical mechanics
model, which does not require solving the decoding problem [4, 2]. A theoretical under-
standing of this behavior is also desirable. Lastly, estimating the threshold in the presence
of measurement error and detailed syndrome measurement circuits on qudits remains an
interesting open question.
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