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Preface

The 8th Conference on the Theory of Quantum Computation, Communication and Crypto-
graphy was held at the University of Guelph, from the 21st to the 23rd May 2013.

Quantum computation, quantum communication, and quantum cryptography are subfields
of quantum information processing, an interdisciplinary field of information science and
quantum mechanics. The TQC conference series focuses on theoretical aspects of these
subfields. The objective of the conference is to bring together researchers so that they can
interact with each other and share problems and recent discoveries.

A list of the previous editions of TQC follows:
TQC 2012, The University of Tokyo, Japan
TQC 2011, Universidad Complutense de Madrid, Spain
TQC 2010, University of Leeds, UK
TQC 2009, Institute for Quantum Computing, University of Waterloo, Canada
TQC 2008, University of Tokyo, Japan
TQC 2007, Nara Institute of Science and Technology, Nara, Japan
TQC 2006, NTT R&D Center, Atsugi, Kanagawa, Japan

The conference consisted of invited talks, contributed talks, a poster session, a rump
session, and a business meeting. The invited talks were given by Jop Briët (CWI, Amsterdam),
Aram Harrow (MIT, Cambridge), Iordanis Kerenidis (CNRS – Université Paris Diderot-
Paris 7, Paris), Thomas Vidick (MIT, Cambridge), and Stephanie Wehner (National University
of Singapore, Singapore).

The conference was possible thanks to the financial support of the Institute for Quantum
Computing (IQC) at the University of Waterloo, the Perimeter Institute for Theoretical
Physics (PI), the Fields Institute for Research in Mathematical Sciences, and the University
of Guelph.

We wish to thank the members of the Program Committee and all subreviewers for their
precious help. Our warm thanks also go to the members of the Local Organizing Committee,
for their considerable efforts in organizing the conference, and to Sarah Plosker, James
Howard, and Tyler Jackson, for their help af the registration desk. We would like to thank
Marc Herbstritt and Michael Wagner (Dagstuhl Publishing) for their technical help. Finally,
we would like to thank the members of the Steering Committee for giving us the opportunity
to work for TQC. And, of course, all contributors and participants!
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Ancilla Driven Quantum Computation with
Arbitrary Entangling Strength
Kerem Halil Shah and Daniel K. L. Oi

SUPA Department Of Physics, University of Strathclyde
107 Rottenrow, Glasgow G4 0NG, UK
k.halil-shah@strath.ac.uk, daniel.oi@strath.ac.uk

Abstract
We extend the model of Ancilla Driven Quantum Computation (ADQC) by considering gates
with arbitrary entangling power. By giving up stepwise determinism, universal QC can still be
achieved through a variable length sequence of single qubit gates and probabilistic “repeat-until-
succes” entangling operations. This opens up a new range of possible physical implementations
as well as shedding light on the sets of resources sufficient for universal QC.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Ancilla, weak measurement, quantum computation, entanglement, ran-
dom walks

Digital Object Identifier 10.4230/LIPIcs.TQC.2013.1

1 Introduction

A fundamental question is “what set of resources are required for universal quantum compu-
tation?”. Many models have been proposed ranging from the conventional gate-based [13],
measurement-based [30], adiabatic [15], and topological [22] quantum computation. These
models utilise different sets of resources and are suited to various physical implementations.
By finding new models with different sets of sufficient resources, this may open up new
ways of implementing quantum computation as well as enrich our understanding of quantum
computation itself.

A hybrid model combining aspects of the gate-based and measurement-based approaches
was introduced as Ancilla Driven Quantum Computation [3]. The key feature of ADQC is
the restriction of resources to a single unitary interaction, and direct access (initialisation and
measurement) only to an ancilla qubit that can be coupled sequentially to system (register)
qubits. ADQC uses entanglement between the ancilla and register, and the kickback induced
by measurement on the ancilla to drive unitary evolution of the register. By coupling the
ancilla to various register qubits and choosing different measurements on the ancilla, universal
QC can be achieved.

There is often a trade off between easy access and manipulation or long coherence times.
ADQC lends itself to physical systems where register qubits with long decoherence times are
difficult to manipulate while relatively short-lived ancillary systems are more easily controlled
and can be quickly initialised and measured. There has been much work that looks at
dealing with such properties with the use of ancillas for specific physical implementations.
Work on optical clocks using aluminium ions have employed magnesium or beryllium ions
as an ancillary system to account for a lack of optical accessibility with aluminium ions [9].
Ohshima [27] considered maintaining low decoherence of quantum dots by only activating
access through an ancilla qubit in the same cell. It has been proposed that isolated, stable

T Q C
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2 Ancilla Driven Quantum Computation with Arbitrary Entangling Strength

NV centre nuclear spins be used as qubits manipulated by neighbouring electron spins [14, 5]
and Bermudez et al developed an proposal for nuclear spin interactions mediated by electron
spins that effects an Ising type interaction [5]. Ion trap+photon systems such as in [6] and
solid state systems with ballistic electrons have been considered for a class of systems that
involve generating quantum gates through scattering between a static and flying qubit [12].
In such cases we may have no interaction-time tuning [12] or restricted range of dynamic
modulation which is particularly relevant for the work of this paper.

These proposals often look at one system or particular parameters with a focus on gate
based QC. The proposals of Anders et al [3] and Kashefi et al[20] from which we will develop
our proposal considers a scheme without reference to a specific physical system. A general
description is provided, of the minimal resources require to achieve universality, expressed as
a finite resource set that can be compared to Measurement Based Quantum Computation
(MBQC) and the resources to form cluster states but aimed towards a Gate Based Quantum
Computation (GBQC) style circuit.

In the original ADQC scheme, the computation proceeds step-wise deterministically up to
Pauli corrections on the final output, very much in the spirit of MBQC [30, 8]. This requires
that the entangling unitary between register and ancilla be of either of two specific gates,
H ⊗H.CZ or SWAP.CZ. No other entangling gate would allow the measurement-induced
kickback to be unitary, and permit the different computation branches corresponding to the
possible measurement results to be reunited via Pauli corrections [3].

Here, we show that by relaxing the requirement for stepwise determinism a much larger
set of entangling gates can achieve universal QC which may open up a range of physical
implementations with fixed arbitrary coupling strengths and interaction times. Investigation
of to what extent the required entangling properties can be relaxed has been performed for
MBQC [16, 17]. Unlike that, we do not use many-body physics techniques but expand the
resource set using GBQC concepts.

Pauli corrections and the corresponding direct access of the register will not be required.
This may also reduce the control requirements for characterisation as described in [28]. This is
achieved by gate approximation, repeat-until-success strategies, and multi-step measurement.
Single qubit unitary gates can still be implemented deterministically while two qubit gates
and measurement and state initialisation will be probabilistic and require the development
of probabilistic protocols of which we provide examples.

2 Overview of ADQC

We will review how ADQC implements single qubit unitary gates and which conditions
on the available resources are necessary for the method to be step-wise deterministic. We
highlight the resource requirements that our proposal will extend; a full description can be
found in [3, 20, 2].

The evolution of a qubit in a quantum register can be driven by preparing an ancilla
qubit system in a state |a〉, coupling that ancilla with an entangling interaction, EAR and
then measuring the ancilla in some basis {|m+〉, |m−〉}. After measurement, the evolution of
the register qubit can be described by a Kraus operator K± = 〈m±|E|a〉 [26, 21, 32].

The interaction EAR can generally be composed of a product of gates that act locally on
the individual systems and a gate that produces some entanglement between the systems.
For classification of two qubit gates, we turn to the canonical decomposition [24, 35, 31]: A
unitary that acts on a system of a pair of qubits A and R, EAR, can be expressed as

EAR = (VA ⊗ VR)∆(αx, αy, αz)(UA ⊗ UR) (1)
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Figure 1 Anders et al. depiction of ancilla-driven implementation of a single qubit rotation [3].
The ancilla and register qubits are coupled with CZ and the local unitary gates are chosen such that
the interaction remains symmetrical with respect to ancilla-register exchange. A rotation XjJ(β) is
enacted on the register a result J(β) is enacted on the ancilla which is then measured in the z basis
with a result j=0,1.

where UA, UR, VA, VR are unitary gates that act only on the local systems of qubits 1 and 2
and ∆(αx, αy, αz) = exp(−i(αxσx ⊗ σx + αyσy ⊗ σy + αzσz ⊗ σz)).

If the final action on the register is to be unitary then the Kraus operator must be propor-
tional to unitary such that K±K†± = p±I where p± is the probability ot]f the measurement.
This does not depend on the local unitary gates acting on the register. The (αx, αy, αz)
parameters are the only parameters unique to EAR that determine whether the measurement
back-action will be unitary. The preparation of the state of the ancilla system can be adapted
for any unitary that immediate follows it; UA is effectively under full control and can be
represented entirely by ancilla state preparation. Similarly choice of measurement basis
equates to freedom of choice of the unitary after interaction, VA. Only the ∆(αx, αy, αz)
component is of interest when considering the entangling capabilities of the interaction
[24, 35].

K± are generated probabilistically and are not equivalent. In order to be deterministic,
a key idea from MBQC is utilised: if PK− = K+ where P is a Pauli operator correction,
this correction can then be commuted through several applications of the Kraus operator
and local unitary gates. Different computation branches associated with the measurement
outcomes can be reunited by a Pauli correction.

(VRPK−UR).(VRPK−UR).(VRPK−UR) = P ′P ′′P ′′′(VRK−UR).(VRK−UR).(VRK−UR)

To have the capability to enact any arbitrary unitary gate on the register, a sequence of
VRK−UR should be universal for single qubit unitary gates.

2.1 Control-Z Hadamard example
An example can be performed with EAR = (HA ⊗ HR).CZAR. The ancilla is prepared
in the |+〉 state, couples with the register qubit with EAR and then undergoes a unitary
J(β) = HRẑ(β) before being measured in the computational basis. The action on the
register qubit for a measurement result |j〉 is Xj

RJR(β). The difference between the two
resulting unitary operations can be corrected by XR. Any arbitrary single qubit unitary can
be decomposed into four rotations eiαJ(0)J(β)J(γ)J(δ) so to implement any arbitrary single
qubit unitary up to a global phase, four ancilla interaction-measurements are performed
changing the parameter of the local unitary on the ancilla to be the Euler angles δ, γ, β and
then 0,

XiJ(0)XjJ(β)XkJ(γ)X lJ(δ). (2)

TQC’13



4 Ancilla Driven Quantum Computation with Arbitrary Entangling Strength

As in MBQC, the Pauli corrections can be commuted through each application of J(β) if we
make adaptations to the local unitary applied to the ancilla measurement basis [30, 8, 20].

XiJ(0)XjJ(β)XkJ(γ)X lJ(δ) = XiZjXkZlJ(0)J((−1)kβ)J((−1)lγ)J(δ) (3)

To extend to larger computations all corrections on register qubits are required to inter-
change with future entangling operations ∆(αx, αy, αz) so that they remain local corrections
on the register and on the ancilla preparation or measurement basis choice. This allows all
the Pauli corrections to accumulate at the final step. This provides the condition that the
entangling operation ∆(αx, αy, αz) tensor commutes with the corrections [3]; as a result only
two classes of coupling are universal.

2.2 Conditions on the class of interactions
In order to allow achronical Pauli operator corrections ensuring general stepwise deterministic
single qubit gates exactly, we must have interactions that belong to the classes of interactions
that are locally equivalent to CZ or CZ+SWAP gates. Expressed in terms of ∆(αx, αy, αz),
these classes are ∆(π4 , 0, 0) and ∆(π4 ,

π
4 , 0). There exists broader classes of interactions

which fulfil the weaker condition that the Kraus operators acting on the register qubit are
proportional to unitary. These are the classes for which there is at least one αi parameter
equal to zero- ∆(α, 0, 0) and ∆(α1, α2, 0) up to symmetries. It is symmetrical up to local
unitary gate corrections with respect to ± exchanges, π2 shifts and reflections in π

4 acting
on the parameters (αx, αy, αz) [24, 31]. The values are also symmetrical with respect to
permutations [31]. This allows us to consider only cases where |αj | < π

4 and to classify an
interaction by the number of non-zero parameters, e.g. e−i(ασz⊗σz) is equivalent, up to local
unitary corrections to any case where (αi = 0, αj = 0, αk 6= 0). We will demonstrate a way
in which we can eschew a stepwise construction of unitary gates, thus not requiring Pauli
corrections and allowing the broader class ∆(α, 0, 0), locally equivalent to the Control-unitary
set of gates, for ancilla driven quantum computation with arbitrary interactions. As a cost,
we will not be performing exact unitary gates but efficiently generated approximation.

Some characteristics are general for any member of the class so we will use e−iασz⊗σz

to represent them. Other effects are dependent on specific interactions with descriptions of
the local unitary gates. In the next section we will explain our choice of interaction in those
cases.

3 Single qubit gates using (H ⊗H).C-T

An interaction ∆(α, 0, 0) where 0 < α < π
4 has a restricted set of conditions on the choice of

ancilla preparation state |a〉 and measurement basis {|mj〉} that allow for a measurement
induced back action represented by the Kraus operator 〈mj |∆|a〉 to be unitary. The resulting
set of unitary gates that can be implemented deterministically is smaller than for ∆(π4 , 0, 0).
Using ∆(α, 0, 0), α < π

4 , only two gates can be implemented deterministically. If we consider
just using the non-local part of the Cartan decomposition e−iασz⊗σz , the only two possible
unitary gates that can be enacted independently of the random measurement result are
achieve by preparing the ancilla in the computational basis. A |0〉, |1〉 ancilla input always
corresponds to a Rẑ(2α), Rẑ(−2α) unitary gate on the register qubit respectively.

However, with local unitary gate corrections any member of the class ∆(α, 0, 0) is
equivalent to a Control-Unitary gate. Consider this in conjunction with a fixed local unitary
post-action, Ub, on the register. Ub,R.C-Ua can implement a two gate finite set {U0, U1}
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Figure 2 A generalised description of the action by which members of the interaction class
∆(0 < α < π

4 , 0, 0) can generate two unitary gates whose commutation rules do not form a closed
set. U0 = Ub and U1 = UbUa

where U0 = Ub, U1 = UaUb. If the Lie algebra closure of U0 and U1 covers SU(2) then these
two gates form a universal set for single qubit unitary gates [7].

To demonstrate our proposal we choose the fundamental unitary for ancilla driven
quantum computation E = (H ⊗H).C-Rẑ

(
π
4
)
(which corresponds to α = π

16 ). This specific
gate is chosen for two reasons; 1) It is directly comparable with the gate EAR = (H ⊗H).CZ
from [3] but with a smaller rotation angle parameter of the Control-unitary, 2) It will generate
{T,HT} which generates the same group as the finite set {H,T} which is well studied and
proven to be universal [7] and of interest for its applications in fault tolerant quantum
computation [7, 1]. The method can then be generalised to arbitrary coupling strengths and
local unitary gate products. With this method, the circuit is programmed by the ancilla
state preparation and requires no further manipulation nor measurement of the ancilla. This
may have benefits for particular physical systems depending on the lifetime and robustness
of the ancilla.

With this choice of interaction for producing single qubit gates, it is necessary to demon-
strate the ability to perform measurements, initialise the register qubit into a specific state
and enact a two qubit entangling gate in order to achieve universal quantum computation.
We will address these issues in later sections.

3.1 Two parameter interactions and stochastic ADQC
The above method can only be employed with “one-parameter” interactions – the class
∆(α, 0, 0). There does not exist an ancilla preparation basis for which the resulting action is
deterministic in the case of the ∆(αx, αy, 0)-“two-parameter” class. Instead there must be a
measurement of the ancilla which results in an action that is dependent on the measurement
result.

A two-parameter class interaction can be seen as a succession of one-parameter class
interactions with local unitary corrections to account for permutation of the parameters
e.g. e−i(αxσx⊗σx+αzσz⊗σz) ≡ e−iαzσz⊗σz (H ⊗ H)e−iαxσx⊗σx(H ⊗ H) ≡ C-Rẑ(4αz)(H ⊗
H)C-Rẑ(4αx) (up to local unitary corrections). Viewing it this way demonstrates why it
should not have a strictly deterministic set of parameters but also why the form of the
unitary actions brought about is always Rẑ(β)Rx̂(γ) = HJ(β)J(γ)H. Considering this the
issue for using the two parameter class is just the inability to make a deterministic choice
between two pairs of {β, γ} to produce a universal single qubit gate set. It is similar in effect
to flipping the resource requirements for the one-parameter case in time so that rather than
preparing in the {|j〉} basis, we only measure the ancilla in that basis. The resulting gates
on the register would still be the same {U0, U1} as described before but randomly generated
with probabilities p0, p1 dependent on the initial ancilla state.

TQC’13
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In fact, we can generate an approximation to any arbitrary single qubit unitary gate in
this way. The stochastically generated sequence

∏
k Ui(k) will perform a random walk on the

compact set of unitaries and be guaranteed by Poincaré recurrence to reach an approximation
of any unitary eventually. The generation of the strings

∏
k Ui(k), though probabilistic, are

still consistent with the conditions of the Solovay-Kitaev theorem [26] and so the efficiency
of these approximations might be improved.

Future research will look at finding the gate count required to hit a target averaged over
all unitaries for a given error and the scaling with the error. In addition to the relevance
to our work, it may serve as a benchmark for any circuit compilation sequence: to see how
much better inputting it through a string of ancilla is compared with than “measuring them
all and letting God sort it out”.

As a preliminary investigation, we simulated the random generation of gates using
the interactions (H ⊗ H)∆(0, 0, π16 ) and ∆( π16 , 0,

π
16 ), ancilla preparation state |+〉 and

measurement in the computational state basis. For the one-parameter class interaction
the resulting unitary gates are U0 = HRẑ(π8 ),U1 = HRẑ(−π8 ), p0 = p1 = 1

2 ; for the two-
parameter class,U0 = Rẑ(π8 )Rx̂(π8 ),U1 = Rẑ(−π8 )Rx̂(π8 ), p0 = p1 = 1

2 . The target unitary
was UT = Rx̂(π2 ). At each step a gate corresponding to the {U0, U1} of each interaction
was multiplied to the product of the previous step starting with the identity operator. The
normalised trace distance of the product,V =

∏
k Ui(k), and the target unitary was evaluated

at each step until within a chosen error size ε < 0.05.

‖V − UT ‖ =
√

2− |Tr[V †UT ]|
2 ≤ ε (4)

The number of gates required for this to occur was collected 1000 times and used to create a
probability distribution for the gate count required to reach the target unitary (see Figure 3).

This small investigation reveals some behaviours to be considered in further research.
While the target is not achievable in a single step and there is no finite probability for success
per step, the aggregate behaviour over many steps, taken over a large number of simulations,
can be modelled as a geometric or discretised exponential distribution. This is true for
both one-parameter and two-parameter interactions. Particular target unitaries may cause
anomalous effects; the two-parameter case is able to produce an exact solution of the target
unitary in 4 steps which causes a large peak in the distribution and then suppresses the
probability of a result for several steps after (see Figure 13d in Appendix B) but with a

(a) HR∆(0, 0, π16 ) (b) ∆( π16 , 0,
π
16 )

Figure 3 Probability distribution of required gate count to achieve target UT = Rx̂(π2 ). a) Use
of a single parameter interaction in a 20 bin histogram, b) Use of a two parameter interaction in
a 20 bin histogram. The probability distribution corresponding to the exponential distribution
parametrised by the mean of the results is displayed by the solid red curve (colour online).
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Figure 4 The circuit for implementing a two qubit gate and its generalisation. V1 ⊗ V2 allows us
to make any local unitary corrections to the register qubits. The preparation of the ancilla state is
represented by Ui while the choice of measurement basis is represented by Ug.

large enough bin size the exponential model dominates. This provides some features to test
when extending the average over a large number of target unitaries. An average over many
random target unitaries may smooth out such effects and verify the general applicability of
the exponential distribution model. Under this model, we can calculate the probability of
reaching any target unitary within a fixed number of steps and increase the number of steps
until it provides a desired fidelity.

4 Entangling gates

Given the ability to implement any single qubit unitary gate, universal quantum compu-
tation requires that we are also able to implement an entangling two-qubit unitary gate
between register qubits. Note that direct interaction between register qubits not allowed, the
interaction must be mediated by an ancilla qubit in the ADQC model. ADQC is capable
of implementing an entangling gate by the use of one ancilla and two implementations of
the same fundamental interaction EAR as used in the implementation of single qubit gates.
The measurement of the ancilla results in two outcomes but they are equivalent up to local
unitary corrections.

In our proposal, we attempt the same use of a single ancilla and two interactions but with
weaker coupling strength ∆(0 < α < π

4 ). We have the freedom to prepare and measure the
ancilla in any state/basis, as well as perform local unitary operations and post corrections
on it and the register qubits. Due to this, we will focus on the e−iασz⊗σz form of the
interaction, with any local unitary corrections being incorporated into a single gate; the local
H post-interaction unitary on the ancilla can be removed by the appropriate choice of Ua
– see Figure 4 .

4.1 Interpreting the unitary and entangling conditions
The operation on the register qubits after measuring the ancilla must be unitary and
entangling. This will restrict the unitary operations, prepared states and measurement
bases we can use on the ancilla. We need to be able to write the unitary and entangling
conditions as some parameter restraints on the circuit. Because the interaction is of the class
∆(α, 0, 0), we can make some simplifications. If a register qubit is in a computational basis
state |i〉, i = 0, 1, then it will, through the interaction ∆(α, 0, 0) cause a unitary Rẑ((−1)i2α)
action on the ancilla. So for two register qubits there are four potential final ancilla states

TQC’13
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corresponding to the computational basis |a00〉 for |00〉12 etc.. Therefore the transformation
of a general register qubit and ancilla state, |a〉|Φ〉12 will be transformed by the circuit thus:

|a〉|Φ〉12 = |a〉
∑
ij

Cij |ij〉12 →
∑
ij

Cij |aij〉|ij〉12 (5)

Each final ancilla state is a unitary evolution of the original determined by the parameters of
the circuit:

|aij〉 = UgRẑ((−1)j2α)UaRẑ((−1)i2α)|a〉 (6)

After a measurement of the ancilla in a state |m〉 the (unnormalised) state of the register
will be∑

ij

〈m|aij〉Cij |ij〉12 (7)

The evolution of the register can be represented by a Kraus operator in a matrix representation:

Km = diag(〈m|a00〉, 〈m|a01〉, 〈m|a10〉, 〈m|a11〉) (8)

For this operator to be proportional to unitary |〈m|ij〉| must be the same ∀i, j. This
encapsulates an expression of the equivalence between the unitary condition and the require-
ment that the measurement of the ancilla extracts no information about the register system.
〈m|aij〉=|〈m|aij〉|eiφij ; the probability of the measurement does not distinguish between the
register states and the term |〈m|aij〉| drops out and the effective unitary on the register pair
of qubits is:

U = diag(eiφ00 , eiφ01 , eiφ10 , eiφ11) (9)

The result is also of the class ∆(α, 0, 0) and is thus also equivalent to a Control-unitary
gate. Being diagonal in the computation basis, we can apply local unitary corrections
to convert it into a gate of the form C − Rẑ(Φ). Given a two qubit unitary of the form
diag(eiφ00 , eiφ01 , eiφ10 , eiφ11) we can multiply it by local unitary gates(

e−ia1

e−ia2

)
⊗
(
e−ib1

e−ib2

)
= diag(e−i(a1+b1), e−i(a1+b2), e−i(a2+b1), e−i(a2+b2))

(10)

to give diag(eiφ00−(a1+b1), eiφ01−(a1+b2), eiφ10−(a2+b1), eiφ11−(a2+b2))
We can choose a1, b1, a2, b2 such that

φ00 − (a1 + b1) = 0 (11)
φ01 − (a1 + b2) = 0 (12)
φ10 − (a2 + b1) = 0 (13)

→ a2 + b2 = a2 + b1 − (a1 + b1) + (a1 + b2) = φ10 − φ00 + φ01 (14)

the resulting gate (9) must therefore be equivalent to the form

Ũ = diag(1, 1, 1, ei((φ11−φ10)−(φ01−φ00) (15)

We therefore will use Φ = δφ1−δφ0 = (φ11−φ10)− (φ01−φ00) to characterise the entangling
power of each gate.
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4.2 A geometric picture of the unitary condition
We have four final ancilla states |aij〉 corresponding to the basis states of the register. To
allow a measurement basis {|m〉, |m⊥〉} for which |〈m|aij〉| is constant ∀i, j, these four points
must all lie in the same plane and form a ring around a cap with |m〉 at the midpoint. For
four |aij〉 given by the preparation of the ancilla state, the two ancilla-register couplings and
the intermediate local unitary gate on the ancilla, |m〉 will be fixed and unique. The relative
phases of 〈m|aij〉 = |〈m|aij〉|eiφij corresponds to the angles between the points on the ring
(see Figure 5).

Figure 5 For four states that have the same value |〈m|aij〉|, there are four points on the Bloch
sphere that define a ring that encircle and thus define the state |m〉. |〈m|aij〉|2 = cos2( γ2 ).

4.2.1 A geometric picture of the entanglement condition
After the first interaction but before the second the ancilla will be in one of two states |ai〉
corresponding to |Ψ〉1 = |i〉1, i = 0, 1. The second interaction induces a unitary on the second
register qubit that is given by 〈m|∆|ai〉. For entanglement between the first and second
register qubit, this unitary must be distinguishable by i. Therefore, each |ai〉 must have a
distinct value of 〈σz〉i. In the geometric picture, two points given by ai that are on the same
horizontal plane, before the second interaction, will produce four aij on the same horizontal
plane afterwards. However, the angle between states marked by different j in the pairs |a0j〉
and |a1j〉 would be the same for each i. To be entangling δφ1 − δφ0 must be non-zero.

Figure 6 All horizontal planes have a cap with a midpoint at the poles thus |m〉 = |0〉. An
ancilla state in the computational basis corresponds to the same constant unitary enacted with each
interaction and extracts no information from the first interaction to transmit in the intermediate
stage.
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10 Ancilla Driven Quantum Computation with Arbitrary Entangling Strength

From this geometric picture, we can show that the unitary and entangling conditions are
fulfilled when the intermediate ancilla states |ai〉 are restricted to the same vertical plane
(see Appendix A and Figure 12).

4.3 Construction of the ancilla states
With the intermediate states |ai〉 being of the same vertical plane but with some angle
between them that we will label as 2β, the final states |aij〉 will be

cos
(
θ − (−1)i2β

2

)
|0〉+ ei(−1)j2αsin

(
θ − (−1)i2β

2

)
(16)

We can construct the vertically split states |ai〉 and manipulate the angle 2β by the choice of
preparation state and intermediate unitary Ua. Rotations around the z axis will form a gauge
transformation since |m〉 is specified by {|aij〉} so we can, without a loss of generality, assume
that the ancilla preparation state is on the x–z plane: |a〉 = cos( θ

′

2 )|0〉+ sin( θ
′

2 )|1〉. After
the first interaction this becomes |a〉 = cos( θ

′

2 )|0〉+ ei(−1)i2αsin( θ
′

2 )|1〉. Now the solid angle
between the two resulting points is not given by 2α but by 2β where sin(2β) = sin(θ′)sin(2α).
There will always exist a unitary that can rotate the two points such that they lie in the
x–z plane: |a〉 = cos( θ

′

2 )|0〉+ ei(−1)i2αsin( θ
′

2 )|1〉 → cos( θ−(−1)i2β
2 )|0〉+ sin( θ−(−1)i2β

2 ). In the
geometric picture, this is a rotation around the point where the great circle that connects
the two points and the x–z plane cross, followed by any rotation around ŷ of our choice so
that θ is a parameter under control (see Figure 7). The next interaction produces the points
~aij which are, under this order of construction, dependent on the intermediate unitary and
the ancilla preparation state.

Figure 7 A geometric representation of the method of constructing an entangling two qubit unitary.
The first step corresponds to the ancilla preparation, the second and fourth to the interactions with
register qubits and the third to unitary actions on the ancilla in between the interactions.

4.4 An example of the relative entanglement powers of the Kraus
operators

As an example, take the intermediate state to have θ = π
2 so that the |ai〉 are vertically split

about the |+〉 state. It is helpful to think of the intermediate state as Rx̂(π2 )Rẑ(±2β)|+〉 while
the ancilla was prepared in |+〉. The effect of the preparation choice and the reduced solid angle
are treated like an effective reduction in the interaction strength of the first interaction while
the intermediate Ua = Rx̂(π4 ). The four states of |aij〉 = Rẑ((−1)j2α)Rx̂(π2 )Rẑ((−1)i2β)|+〉
will be all symmetrically placed around |+〉 so we can also say |m〉 = |+〉 and measure in the
{|+〉, |−〉} basis.
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〈m|aij〉 = 〈+|Rẑ((−1)j2α)Rx̂
(π

2

)
Rẑ((−1)i2β)|+〉 (17)

Rẑ(2α)Rx̂

(π
2

)
Rẑ(2β) = 1√

2

(
e−iA −ie−iB
−ieiB eiA

)
(18)

→ 〈+|a00〉 = 1
2
√

2
(e−iA − ie−iB − ieiB + eiA) = 1√

2
(cos(A)− icos(B))

(19)

〈−|a00〉 = 1
2
√

2
(e−iA − ie−iB + ieiB − eiA) = 1√

2
(−isin(A)− sin(B))

(20)

Table 1 Table of transformations of A and B
for different computational states of the register.

i j A→ B→ φ+
ij φ−

ij

0 0 A B φ+
00 φ−

00

0 1 -B -A −φ+
00 − π

2 −φ−
00 + π

2
1 0 B A −φ+

00 − π
2 −φ−

00 − π
2

1 1 -A -B φ+
00 φ−

00 + π

where we define A = α+ β, B = α− β. Each
other element of the two qubit evolution oper-
ator will just be a transformation of A and B
(which thus fulfils the unitary condition) and
because of the ± symmetries of sine and co-
sine we will be able to express the final Kraus
operator and Φ in terms of just φ00.

Φ+ = δφ1 − δφ0 = 4φ+
00 + π (21)

Φ− = 4φ−00 + π (22)

Figure 8 By manipulating the effective coupling strength, β, with the ancilla state preparation,
the difference in Φ for the two possible operator outputs can be adjusted.For α = π

16 , the difference
between outputs is plotted with the solid (black) curve while the value of Φ− is plotted with the
dashed (blue) curve (colour online). At β ≈ 0.183, δΦ = π

When the ancilla is prepared and measured in the Pauli-X eigenstates, it is possible
to perform this procedure with a two parameter interaction and induce only additional
local unitaries on the register qubits. A e−iαxσx⊗σx contribution would not perturb the
ancilla in that case and leave ancilla and register separable notwithstanding other parameter
contributions.

4.5 Repeat-until-success entangling gate generation (EGG)
Without any optimisation of the ancilla initial state and measurement, the generation of
entangling gates may, at the very least, be able to perform a random walk (a classical random
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12 Ancilla Driven Quantum Computation with Arbitrary Entangling Strength

Figure 9 Since all enacted gates are of the same group, Control-Rẑ(Φ) gates, multiple gates can
be easily combined. Random gate production is a Markovian process. By manipulating the relative
values, the output can be limited to a finite probability tree, including a case equivalent to a single
outcome “success/fail” gate suitable for a repeat-until-success method.

Figure 10 The probability of achieving two opposing ancilla measurements, 2p0p1, against β,
displayed against the resulting Φ. At the case where δΦ = π, p ≈ 0.128 (colour online).

walk, not to be confused with quantum walks) through the group of Control-Rẑ(γ). With
optimisation, we can apply a protocol to convert the output into a “success/fail” scenario
with failure corresponding to generation of identity.

In this protocol EGG is enacted twice: once as described before and once again with
local unitary changes that convert Φ→ −Φ. The latter can be done either by local Pauli-X
gate pre- and post-corrections on the register or, if there is access to the ancilla between
interactions, by making a correction to the intermediate ancilla unitary to exchange the
resulting intermediate states |a0〉—|a1〉. The change in the second implementation enacts a
change of the resulting gate C-Rẑ(γ)→ C-Rẑ(−γ). If these two output gates are (under local
operator corrections) C-Rẑ(Φ0) and C-Rẑ(Φ1) with probabilities p0 and p1 then after two
two EGG the Control-Unitary is one of C-Rẑ(Φ0 −Φ1), C-Rẑ(Φ1 −Φ0) or I. If Φ0 −Φ1 = π

then we have performed probabilistic CZ generation with a success probability of 2p0p1.
For example, in Figure 8, we see that we can lower x to match such conditions. In

Figure 10, the value of 2p0p1 is calculated, giving us a value of p ≈ 0.128.
We provide this one adaptation as a single example of the general principle of using
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a multi-step protocol to adapt the behaviour of a Markov chain. Though an arbitrary
interaction strength leads to the probabilistic generation of gates where the outputs are not
local unitary correctable, they are of the same interaction class and thus can be adapted
to the group of Control-Phase Rotations and generate group members. Specific physical
parameter constraints and choice of target gates may lead to methods that involve different
schemes and different groups of gates such as C-Rẑ(mπn ), m,n ∈ Z for a specific n or a
continuous parameter group C-Rẑ(γ). We provide a method that allows one to enact a
repeat-until success method similar to other probabilistic gate proposals for linear optical
systems [25, 18, 23].

5 Initialisation-Measurement

In ADQC, the ability to perform a projective measurement with an ancilla qubit was straight-
forward and generalized measurements could be performed by introducing a second ancilla
system. With a weak coupling, enacting a projective measurement is a less straightforward
proposition requiring many steps and possible fidelity loss. We will provide a protocol for
doing so in a naive adaptation of the Control-Z+Hadamard example, followed by discussion
of potential future investigation and improvement.

With a general register qubit |Ψ〉R = α|0〉 + β|1〉 and ancilla in initialised state |+〉A,
the interaction E acting on |Ψ〉R|+〉A would produce α|+〉R|0〉A + β|−〉R|1〉A. A z basis
measurement on the ancilla would replicate a z basis measurement on the register state
before the interaction; this can also be used to initialise the register qubit with a result |j〉
producing a register qubit in the state Zj |+〉. Local unitary gate preparations on the register
could be used to enable measurements or state initialisation in other abses.

In our proposal, the interaction between register and ancilla can be weaker, enabling us
to perform only non-projective measurements. Fortunately Oreskhov & Brun [29] show that
weak measurements are universal and provides an explicit construction for how to use weak
measurements to achieve projective and general measurements in a random walk, for two
outcome measurements. This can be extended to higher dimensions [29] and it has been shown
that one can build up many result general measurements from two output measurements
[4]. Thus we expect that it should be possible to achieve at least an approximation of
projective measurements using multiple successive non-projective measurements from a single
ancilla. We have a specific interest in being able to do so using our interaction of interest
(HA ⊗HR).C-TAR.

5.1 Initialisation and Measurement in logarithmic time with a fixed
interaction

At the heart of our proposal is the capability to perform a two qubit unitary that is equivalent
up to local unitary gates to a Control-Rz(θ) gate. Consider |Ψ〉 = α|0〉+ β|1〉 and an ancilla
in the |+〉 state:

(HA⊗HR).C-Rz(θ)|Ψ〉R|+〉A = H(α|0〉+βcos
(
θ

2

)
|1〉)R|0〉A+βsin

(
θ

2

)
H|1〉R|0〉A (23)

Now if we measure the ancilla qubit in the {|0〉, |1〉} eigenstate basis and make a local
Hadamard correction on the register, the register qubit will be projected into the respective
states 1√

N
(α|0〉 + βcos( θ2 )|1〉) (with probability N = |α|2 + |β|2cos2( θ2 )) and |1〉 (with

probability |β|2sin2( θ2 )).
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14 Ancilla Driven Quantum Computation with Arbitrary Entangling Strength

Consider the effect of many such measurements in the case where every successive result
on the ancilla is |0〉. The iterated effect over n steps is for the register qubit to be projected
into the state 1√

Nn
(α|0〉+ βcosn( θ2 )|1〉) (where Nn is the appropriate normalization factor).

As n increases the state tends to |0〉 exponentially. The probability of achieving such a
chain is Nn = |α|2 + |β|2cos2n( θ2 ) which will tend to |α|2. Thus we can replicate a projective
measurement in n steps up to a state fidelity error of βcosn( θ2 ) ≤ cosn( θ2 ) with the following
procedure:

Set a desired state fidelity error ε. Calculate n ∈ Z such that n ≥ ln(ε)/ln(cos( θ2 )).
Prepare ancilla qubit in the |+〉 state, couple to register qubit with the interaction EAR,
measurement ancilla qubit in computational basis, apply H gate correction to register qubit.
Repeat until measurement has been performed n times or until ancilla is measured as |1〉.
Label a result of |010203...0n〉A as |0〉R, any other result where the process was terminated
by a |1〉A as |1〉R.

Figure 11 The circuit description of the iterative measurement protocol using the fundamental
interaction EAR = (Ha ⊗HR)C-T . The local unitary gate components of the interaction require a
Hadamard gate correction; though not depicted, this is implemented using ancilla qubits as described
in the previous section, leading to a total number of ancilla qubits and interactions of 2n.

In this way, the measurement does not follow a random walk but occurs within a finite
bound on the number of steps that is logarithmic with respect to the state fidelity error.

6 Avenues of further investigation

Both the classes ∆(α, 0, 0) and ∆(αx, αy, 0) can be used to enact proportional-to-unitary
Kraus operators however our work has mainly dealt with the former. Stochastic ADQC
motivates extending the method of enacting two qubit gates to the two parameter interaction
class by providing means in which the ∆(αx, αy, 0) may be viable for single qubit gates. It also
may provide a useful tool for examining the trade off between control or time. The random
gate generation method we have described incoporates little control over the initial ancilla
state or measurement basis. Potentially future work could consider employing feedback to
optimise the choice of ancilla state preparation and measurement basis in each step, resulting
in a variable step size and guided random walk. The measurement we perform in each step
is biased and we incorporate no feedback in our protocol save for the decision to continue or
halt based on the previous measurement result. We have also only considered measurement
on one qubit while the use of an ancilla provides us with a natural system for making higher
dimensional measurements and generalised measurements. Combes & Jacobs [10] considered
using feedback to speed up the purification of states via continuous measurements. A case
where the measurement basis is kept unbiased to the state density operator through feedback
is faster than measurement alone [11]. Much work has been done considering the case where
we have a sequence of weak measurement with feedback enacted through unitary operations
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between steps in time for various goals and measures [33, 34]. Jacobs [19] raised the question
of whether there is a trade off between speed of projection and loss of initial information.
We propose the work of coming up with an unbiased basis feedback protocol for our specific
interaction and non-continuous discrete protocol for future investigation.

7 Conclusion and summary

We have show how, by relaxing the requirement for stepwise determinism up to Pauli
corrections, a broader class of interactions can be used to implement a form of ancilla
driven quantum computation. This is achieved by gate approximation, repeat-until-success
strategies, and generalised measurement. Single qubit unitary gates can still be implemented
deterministically while two qubit gates and measurement and state initialisation will be
probabilistic and require the development of probabilistic protocols which we provide examples
of. We provide a measurement process that is logarithmic to the bound on state fidelity error
and reduces to a deterministic approximation of projective measurements, with the potential
for further speed up to be examined in future research. The conditions for the generation of
a two qubit entangling unitary gate are described in geometric terms. We demonstrate how
choice of ancilla state preparation and local unitaries enable us to manipulate the entangling
strength of the output gates. This allows us to convert the result into a “repeat-until-success”
gate. Further research may reveal other protocols based around adaptations of the entangling
gate power. Future research into probabilistic protocols for enacting specific unitary gates
may also aid in expanding possible interactions to include the class ∆(αx, αy, 0).

We would like to acknowledge discussions with Dan Browne and Erika Andersson, and
comments on the draft manuscript by Janet Anders and Elham Kashefi. DKLO and KHS
are supported by the Quantum Information Scotland (QUISCO) network.
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A Restrictions of the parameters of the ancilla found in a geometric
proof

Each point can be represented by the spherical coordinates that describe the state ~ak =
(θk, φk), k = 1, 2, 3, 4. For out notation the values of k will correspond to the values expressed
by ij in binary.

Each point can be expressed in Cartesian coordinates by the relationships:

|~ak.~x| = sin(θk)cos(φk) (24)
|~ak.~y| = sin(θk)sin(φk) (25)
|~ak.~z| = cos(θk) (26)

Three points alone can always be found to be on the same plane. We will define a plane
from three points and then find the expression for the distance from the fourth point to that
plane. Thus we will find the conditions for the fourth point to be in the same plane as the
other three. The equation for a plane defined by three points is

a.x+ b.y + c.z + d = 0 (27)

a = −d
D

∣∣∣∣∣∣
1 y1 z1
1 y2 z2
1 y3 z3

∣∣∣∣∣∣ , b = −d
D

∣∣∣∣∣∣
x1 1 z1
x2 1 z2
x3 1 z3

∣∣∣∣∣∣ , c = −d
D

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ , D =

∣∣∣∣∣∣
x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣
(28)

There is a freedom of choice of d so it can be set d = D. The distance of point 4 to the plane
is given by

distance = |a.x4 + b.y4 + c.z4 + d|√
a2 + b2 + c2

(29)

As we are only interested in the case where the distance is zero, we can ignore the normalisation
factor and simply examine

distance′ = |a.x4 + b.y4 + c.z4 + d| (30)

We now make use of some restrictions on the formation of these four points. Before the
second interaction, there are intermediate ancilla states corresponding to the computational
basis of the first register qubit. The final four points are constructed from these two points
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by the second interaction which imparts a rotation around the ~z axis by ±2α with ±
corresponding to the second qubit being in the computational basis state |j〉, j = 0, 1. This
means that we can set

θ1 = θ2, θ3 = θ4 (31)

and

φ2 − φ1 = φ4 − φ3 = 4α (32)

Using (31), the distance between the fourth point and the plane can be simplified to

2(cos(θ2)−cos(θ4))
[
cos
(
φ2 −

φ3 + φ4

2

)
− cos

(
φ1 −

φ3 + φ4

2

)]
sin(θ2)sin(θ4)sin(φ3 − φ4

2 )

(33)

This generates several possible conditions for the fourth point to lie in the plane, some
more trivial than others. If cos(θ2) = cos(θ4) then all four points must lie on the same
horizontal plane which means that there is no entangling power. sin(θ2) = 0 and sin(θ4) = 0
would mean that there are only three distinct points with one being at the pole i.e. the |0〉
state. Due to the construction of these four points it is not possible for φ3 − φ4 = 0 to be
true. The final condition is that

cos
(
φ2 −

φ3 + φ4

2

)
= cos

(
φ1 −

φ3 + φ4

2

)
(34)

If (32) is then substituted in, this becomes

cos
(
φ1 + 4α− 2φ3 + 4α

2

)
= cos

(
φ1 −

2φ3 + 4α
2

)
(35)

cos (φ1 − φ3 + 2α) = cos (φ1 − φ3 − 2α) (36)

Since α is non-zero, this requires φ1 = φ3 + nπ for n ∈ Z i.e. the two points are in the same
vertical plane.

Figure 12 A 2d projection of the construction of four point on the Bloch sphere. By restricting
the points to only one of two polar and one of two azimuthal angles, the vectors that connect two
points of the same polar angle will be parallel. This guarantees that all four points lie on the same
plane.
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B Graphs of stochastic ADQC gate count and the exponential
distribution

(a) HR∆(0, 0, π16 ) (b) ∆( π16 , 0,
π
16 )

(c) HR∆(0, 0, π16 ) (d) ∆( π16 , 0,
π
16 )

Figure 13 Probability distribution of required gate count to achieve target UT = Rx̂(π2 ). a) Use
of a single parameter interaction in a 20 bin histogram, b) Use of a two parameter interaction in a
20 bin histogram,c) Use of a single parameter interaction in a 100 bin histogram, d) Use of a two
parameter interaction in a 100 bin histogram; note the large aberration in the first division. The
probability distribution corresponding to the exponential distribution parametrised by the mean of
the results is displayed by the solid red curve (colour online).

(a) HR∆(0, 0, π16 ) (b) ∆( π16 , 0,
π
16 )

Figure 14 The natural logarithm of the bin counts of the number of gates required to achieve
target UT = Rx̂(π2 ). By taking the natural logarithm the exponential distribution model forms a
linear curve which fits the points generated by the simulation. Noise distrupts the linear behaviour
for very low counts of high gate number. Figure (a) matches the one parameter interaction, Figure (b)
matches the two parameter interaction.
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Abstract
We give an algorithm for the hidden subgroup problem for the dihedral group DN , or equivalently
the cyclic hidden shift problem, that supersedes our first algorithm and is suggested by Regev’s
algorithm. It runs in exp(O(

√
logN)) quantum time and uses exp(O(

√
logN)) classical space,

but only O(logN) quantum space. The algorithm also runs faster with quantumly addressable
classical space than with fully classical space. In the hidden shift form, which is more natural
for this algorithm regardless, it can also make use of multiple hidden shifts. It can also be
extended with two parameters that trade classical space and classical time for quantum time. At
the extreme space-saving end, the algorithm becomes Regev’s algorithm. At the other end, if
the algorithm is allowed classical memory with quantum random access, then many trade-offs
between classical and quantum time are possible.
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1 Introduction

In a previous article [7], we established a subexponential-time algorithm for the dihedral
hidden subgroup problem, which is equivalent to the abelian hidden shift problem. That
algorithm requires exp(O(

√
log N)) time, queries, and quantum space to find the hidden

shift s in the equation g(x) = f(x+ s), where f and g are two injective functions on Z/N . In
this article we present an improved algorithm, Algorithm 7, which is much less expensive in
space, as well as faster in a heuristic model. Our algorithm was inspired by and generalizes
Regev’s algorithm [10]. It uses exp(O(

√
log N)) classical space, but only O(logN) quantum

space. We heuristically estimate a total computation time of Õ(2
√

2 log2 N ) for the new
algorithm; the old algorithm takes time Õ(3

√
2 log3 N ).

The algorithm also has two principal adjustable parameters. One parameter allows the
algorithm to use less space and more quantum time. A second parameter allows the algorithm
to use more classical space and classical time and less quantum time, if the classical space
has quantum access [5]. (See also Section 2.) Finally, the new algorithm can take some
advantage of multiple hidden shifts; somewhat anomalously, our old algorithm could not.

The new algorithm can be called a collimation sieve. As in the original algorithm and
Regev’s algorithm, the weak Fourier measurement applied to a quantum query of the hiding
function yields a qubit whose phases depend on the hidden shift s. The sieve makes larger
qudits from the qubits which we call phase vectors. It then collimates the phases of the
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qudits with partial measurements, until a qubit is produced whose measurement reveals the
parity of s. We also use a key idea from Regev’s algorithm to save quantum space. The sieve
is organized as a tree with O(

√
logN) stages, and we can traverse the tree depth first rather

than breadth first. The algorithm still uses a lot of classical space to describe the coefficients
of each phase vector when it lies in a large qudit. If the qudit has dimension `, then this is
only O(log `) quantum space, but the classical description of its phases requires Õ(`) space.

The main discussion of the dihedral hidden subgroup problem has been as an algorithm
with a black-box hiding function. Recently Childs, Jao, and Soukharev [4] found a classical,
white-box instance of the dihedral hidden subgroup problem, or the abelian hidden shift
problem. The instance is that an isogeny between isogenous, ordinary elliptic curves can
be interpreted as a hidden shift on a certain abelian group. Thus, just as Shor’s algorithm
allows quantum computers to factor large numbers, an abelian hidden shift algorithm allows
quantum computers to find isogenies between large elliptic curves. This is a new impetus to
study algorithms for the dihedral hidden shift problem.

Before describing the algorithm, we review certain points of quantum complexity theory
in general, and quantum algorithms for hidden structure problems. We adopt the general
convention that if X is a finite set of orthonormal vectors in a Hilbert space H (but not
necessarily a basis), then

|X〉 def=
√
|X|

∑
x∈X
|x〉

is the constant pure state on X. Also if X is an abstract finite set, then C[X] is the Hilbert
space in which X is an orthonormal basis. Also we use the notation

[n] = {0, 1, . . . , n− 1},

so that C[[n]] becomes another way to write the vector space Cn.

2 Quantum time and space

As with classical algorithms, the computation “time” of a quantum algorithm can mean more
than one thing. One model of quantum computation is a quantum circuit that consists of
unitary operators and measurements, or even general quantum operations, and is generated
by a classical computer. (It could be adaptively generated using quantum measurements.)
Then the circuit depth is one kind of quantum time, a type of parallel time. The circuit
gate complexity is another kind of quantum time, a type of serial time. We can justify serial
quantum time with the following equivalence with a RAM-type machine.

I Proposition 1. The gate complexity of a classically uniform family of quantum circuits is
equivalent, up to a constant factor, to the computation time of a RAM-type machine with a
classical address register, a quantum data register, a classical tape, and a quantum tape.

We will discuss Proposition 1 more rigorously in Section 2.1. From either the circuit
viewpoint or the RAM machine viewpoint, serial computation time is a reasonable cost
model: in practice, gate operations are more expensive than simple memory multiplied by
clock time.

An interesting and potentially important variation of the random-access model is quantum
random access memory, or QRAM [5]. In this model, there is an address register composed
of qubits and a memory can be accessed in quantum superposition, whether or not the
cells of the memory tape are classical. Of course, if the memory is classical, only read
operations can be made in quantum superposition. A RAM quantum computer thus has four
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possible types of memory tapes: classical access classical memory (CRACM), quantum access
classical memory (QRACM), classical access quantum memory (CRAQM), and quantum
access quantum memory (QRAQM).

Hypothetically, one could cost quantum access classical memory (QRACM) simply as
quantum memory. But for all we know, quantum access classical memory (QRACM) and
classical-access quantum memory (CRAQM) are non-comparable resources. We agree with
the suggestion [3] that quantum-access classical memory could be cheaper than quantum
memory with either classical or quantum access. After all, such memory does not need to be
preserved in quantum superposition. Our own suggestion for a QRACM architecture is to
express classical data with a 2-dimensional grid of pixels that rotate the polarization of light.
(A liquid crystal display has a layer that does exactly that.) When a photon passes through
such a grid, its polarization qubit reads the pixel grid in superposition. Such an architecture
seems easier to construct than an array of full qubits.

A good example of an algorithm that uses QRACM is the Brassard-Høyer-Tapp algorithm
for the 2-to-1 collision problem [3], as the authors themselves point out. Given a function
f : X → Y where X has N elements, the algorithm generates N1/3 values of f at random
and then uses a Grover search over N2/3 values to find a collision; thus the time complexity
is Õ(N1/3). This is a large-memory algorithm, but the bulk of the memory only needs to be
quantumly addressable classical memory. By contrast, Ambainis’ algorithm [2] for the single
collision problem uses true quantum memory.
I Proposition 2. In the RAM model, a quantum access memory with N quantum or classical
cells can be simulated with a classical linear access memory, with the same cells, with Õ(N)
time overhead.

2.1 Some rigor
Here we give more precise definitions of quantum RAM machine models, and we argue
Propositions 1 and 2. We would like models that have no extraneous polynomial overhead,
although they might have polylogarithmic overhead. On the other hand, it seems very difficult
to regularize polylogarithmic overhead. In our opinion, different models of computation
that differ in polylogarithmic overhead could be equally good. Actually, at some level
a physical computer has at most the computational strength of a 3-dimensional cellular
automaton, where again, the total number of operations is as important as the total clock
time. (Or even a 2-dimensional cellular automaton; a modern computer is approximately a
2-dimensional computer chip.) Procedural programming languages typically create a RAM
machine environment, but usually with polylogarithmic overhead that depends on various
implementation details.

A classical Turing machine M is a tuple (S,Γ, δ), where S is a finite set of states, Γ is a
finite alphabet, and δ is a transition map. The Turing machine has a tape which is linear in
one direction with a sequence of symbols in Γ, which initially are all the blank symbol b ∈ Γ
except for an input written in the alphabet Σ = Γ \ {b}. The state set S includes an initial
state, a “yes” final state, and a “no” final state. Finally the transition map δ instructs the
Turing machine to change state, write to the tape, and move along the tape by one unit.

In one model of a RAM machine, it is a Turing machine M with two tapes, an address
tape TA with the same rules as a usual linear tape; and a main work tape TW . The machine
M (as instructed by δ) can now also read from or write to TW (TA), meaning the cell of the
tape TW at the address expressed in binary (or some other radix) on the tape TA. It is
known [8, 9] that a RAM machine in this form is polylog equivalent to a tree Turing machine,
meaning a standard Turing machine whose tape is an infinite rooted binary tree.
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It is useful to consider an intermediate model in which the transition map δ is probabilistic,
i.e., a stochastic matrix rather than a function. (Or a substochastic matrix rather than
a partial function.) Then the machine M arrives at either answer, or fails to halt, with a
well-defined probability. This is a non-deterministic Turing machine, but it can still be called
classical computation, since it is based on classical probability.

One workable model of a RAM quantum computer is all of the above, except with two
work tapes TC and TQ, and a register (a single ancillary cell) RQ. In this model, each cell
of TQ has the Hilbert space C[Γ], and the cell RQ does as well. The machine M can apply
a joint unitary operator (or a TPCP) to the state of RQ and the state of the cell of TQ at
the classical address in TA. Or it can decide its next state in S by measuring the state in
RQ. Or it can do some classical computation using the classical tape TC to decide what to
do next. All of this can be arranged so that δ is a classical stochastic map (which might
depend on quantum measurements), TA and TC are classical but randomized, and all of the
quantum nondeterminism is only in the tape TQ and the register RQ. In some ways this
model is more complicated than necessary, but it makes it easy to keep separate track of
quantum and classical resources. TC is a CRACM and TQ is a CRAQM.

Proposition 1 is routine in this more precise model. The machine can create a quantum
circuit drawn from a uniform family using TA and TC . Either afterwards or as it creates the
circuit, it can implement it with unitary operations or quantum operations on TQ and RQ.
Finally it can measure RQ to decide or help decide whether to accept or reject the input. At
linear time or above, it doesn’t matter whether the input is first written onto TC or TQ.

The basic definition of quantum addressability is to assume that the address tape TA
is instead a quantum tape. For simplicity, we assume some abelian group structure on the
alphabet Γ. Then adding the value of TC(TA) to RQ is a well-defined unitary operator on
the joint Hilbert space of TA and RQ; in fact it is a permutation operator. This is our model
of QRACM. Analogously, suppose that we choose a unitary operator UQR that would act
on the joint state of TQ(TA) and RQ if TA were classical. Then it yields a unitary operator
UQAR on the joint state of TQ, TA, and RQ that, in superposition, applies UQR to TQ(TA)
and RQ. This is a valid model of QRAQM.

To prove Proposition 2, we assume that TC can no longer be addressed with TA, and
that instead the Turing machine has a position n on the tape TC that can be incremented or
decremented. Then to emulate a quantum read of TC(TA), the machine can step through the
tape TC and add TC(n) to RQ on the quantum condition that n matches TA. This is easiest
to do if the machine has an auxiliary classical tape that stores n itself. Even otherwise, the
machine could space the data on TC so that it only uses the even cells, and with logarithmic
overhead drag the value of n itself on the odd cells.

3 Hide and seek

3.1 Hidden subgroups

This section is strictly a review of ideas discussed in our earlier article [7].
In the usual hidden subgroup problem, G is a group, X is an unstructured set, and

f : G→ X is a function that hides a subgroup H. This means that f factors through the
coset space G/H (either left or right cosets), and the factor f : G/H → X is injective. In a
quantum algorithm to find the subgroup H, f is implemented by a unitary oracle Uf that
adds the output to an ancilla register. More precisely, the Hilbert space of the input register
is the group algebra C[G] when G is finite (or some finite-dimensional approximation to it
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when G is infinite), the output register is C[X], and the formula for Uf is

Uf |g, x0〉 = |g, f(g) + x0〉.

All known subexponential algorithms for the hidden subgroup problems make no use
of the output when the target set X is unstructured. (We do not know whether it is even
possible to make good use of the output with only subexponentially many queries.) The best
description of what happens is that the algorithm discards the output and leave the input
register in a mixed state ρ. However, it is commonly said that the algorithm measures the
output. This is a strange description if the algorithm then makes no use of the measurement;
its sole virtue is that it leaves the quantum state of the input register in a pure state |ψ〉.
The state |ψ〉 is randomly chosen from a distribution, which is the same as saying that the
register is in a mixed state ρ.

If the output of f is always discarded, then the algorithm works just as well if the output
of f is a state |ψ(g)〉 in a Hilbert space H. The injectivity condition is replaced by the
orthogonality condition 〈ψ(g)|ψ(h)〉 = 0 when g and h lie in distinct cosets of H. In this
case f would be implemented by a unitary

Uf |g, x0〉 = |g〉 ⊗ Ug|x0〉,

with the condition that if x0 = 0, then

Ug|0〉 = |ψ(g)〉.

Or we can have the oracle, rather than the algorithm, discard the output. In this case, the
oracle is a quantum operation (or quantum map) EG/H that measures the name of the coset
gH of H, and only returns the input conditioned on this measurement.

Suppose that the group G is finite. Then it is standard to supply the constant pure state
|G〉 to the oracle Uf , and then discard the output. The resulting mixed state,

ρG/H = EG/H(|G〉〈G|),

is the uniform mixture of |gH〉 over all (say) left cosets gH of H. This step can also be
relegated to the oracle, so that we can say that the oracle simply broadcasts copies of ρG/H
with no input.

Like our old algorithm, our new algorithm mainly makes use of the state ρG/H , in the
special case of the dihedral group G = DN . When N = 2n, it is convenient to work by
induction on n, so that technically we use the state ρD2k/Hk

for 1 ≤ k ≤ n. However, this is
not essential. The algorithm can work in various ways with identical copies of ρDN/H .

An important point is that the state ρG/H is block diagonal with respect to the weak
Fourier measurement on C[G]. More precisely, the group algebra C[G] has a Burnside
decomposition

C[G] ∼=
⊕
V

V ∗ ⊗ V,

where the direct sum is over irreducible representations of G and also the direct sum is
orthogonal. The weak Fourier measurement is the measurement the name of V in this
decomposition. Since ρG/H is block diagonal, if we have an efficient algorithm for the
quantum Fourier transform on C[G], then we might as well measure the name of V and
condition the state ρG/H to a state on V ∗ ⊗ V , because the environment already knows1 the

1 In other words, Schrödinger’s cat is out of the bag (or box).
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name of V . Moreover, the state on the “row space” V ∗ is known to be independent of the
state on V and carry no information about H [6]. So the algorithm is left with the name
of V , and the conditional state ρV/H on V . The difference in treatment between the value
f(g), and the name of the representation V , both of which are classical data that have been
revealed to the environment, is that the name of V is materially useful to existing quantum
algorithms in this situation. So it is better to say that the name of V is measured while the
value f(g) is discarded. (In fact, the two measurements don’t commute, so in a sense, they
discredit each other.)

3.2 Hidden shifts
In our earlier work [7], we pointed out that if A is an abelian group, then the hidden subgroup
problem on the generalized dihedral group G = (Z/2)nA is equivalent to the abelian hidden
shift problem. The hard case of a hidden subgroup on G consists of the identity and a
hidden reflection. (By definition, a reflection is an element in G \ A, which is necessarily
an element of order 2.) In this case, a single hiding function f on G is equivalent to two
injective functions f and g on A that differ by a shift:

f(a) = g(a+ s).

(Note that we allow an algorithm to evaluate them jointly in superposition.) Finding the
hidden shift s is equivalent to finding the hidden reflection.

In this article, we will consider multiple hidden shifts. By this we mean that we have a
set of endomorphisms

φj∈J : A→ A

and a set of injective functions
fj∈J : A→ X

such that
fj(a) = f0(a+ φj(s)).

Here J is an abstract finite indexing set with an element 0 ∈ J . We assume that we know
each φj explicitly (with φ0 = 0) and that we would like to find the hidden shift s. In the
cyclic case A = Z/N , we can write these relations as

fj(a) = f0(a+ rjs)

for some elements rj ∈ Z/N . Note that, for s to be unique, the maps φj or the factors rj
must satisfy a non-degeneracy condition. Since we will only address multiple hidden shifts in
the initial input heuristically, we will not say too much about non-degeneracy when |J | > 2.
If |J | = 2 then r1 or φ1 must be invertible to make s unique, in which case we might as well
assume that they are the identity.

As a special case, we can look at the hidden subgroup problem in a semidirect product
G = K n A, where K is a finite group, not necessarily abelian. Our original algorithm
was a sieve that combined irreducible representations of such a group G to make improved
irreducible representations. Anomalously, the sieve did not work better when |K| > 2 than in
the dihedral case. The new algorithm can make some use of multiple hidden shifts, although
the acceleration from this is not dramatic.

The principles of Section 3.1 apply to the hidden shift or multiple hidden shift problem.
For the following, assume that A is a finite group. We write

f(j, a) = fj(a),
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and we can again make a unitary oracle Uf that evaluates f as follows:

Uf |j, a, x0〉 = |j, a, f(j, a) + x0〉.

Suppose also that we can’t make any sense of the value of f(j, a), so we discard it. As
in Section 3.1, the unitary oracle Uf is thus converted to a quantum map E that makes a
hidden measurement of the value of f and returns only the input registers, i.e., a state in
C[J ]⊗ C[A]. Suppose that we provide the map E with a state of the form

ρ = σ ⊗ (|A〉〈A|) (1)

where σ is some possibly mixed state on C[J ]. As in Section 3.1, we claim that we might
as well measure the Fourier mode b̂ ∈ Â of the state E(ρ), because the environment already
knows what it is. To review, the dual abelian group Â is by definition the set of group
homomorphisms

b̂ : A→ S1 ⊂ C,

and the Fourier dual state |̂b〉 is defined as

|̂b〉 = 1√
|A|

∑
a∈A

b̂(a)|a〉.

We state the measurement claim more formally.
I Proposition 3. Let E be the partial trace of Uf given by discarding the output, and let the
state ρ be as in (1). Then the state E(ρ) is block diagonal with respect to the eigenspaces of
the measurement of |̂b〉. Also, the measurement has a uniformly random distribution.

Proof. The key point is that ρ is an A-invariant state and E is an A-invariant map, where A
acts by translation on the C[A] register. The state |A〉 is A-invariant by construction, while
A has no action on the C[J ] register. Meanwhile E is A-invariant because it discards the
output of f , and translation by A can be reproduced by permuting the values of f . Since ρ
is an A-invariant state, and since the elements of A are unitary, this says exactly that ρ as
an operator commutes with A. The eigenspaces of the action of A on C[J ]⊗ C[A] are all of
the form C[J ]⊗ |̂b〉, so the fact that ρ commutes with A is equivalent to the conclusion that
ρ is block diagonal with respect to the eigenspaces of the measurement |̂b〉.

To prove the second part, imagine that we also measure |j〉 on the register C[J ]. This
measurement commutes with both measuring the Fourier mode |̂b〉 and measuring or discard-
ing the output register C[X], so it changes nothing if we measure |j〉 first. So we know j,
and since fj : A→ X is injective, measuring its value is the complete measurement of |a〉
starting with the constant pure state |A〉. This yields the uniform state ρunif on C[A], so the
value of |̂b〉 is also uniformly distributed. J

Suppose further that in making the state ρ, the state σ on the C[J ] register is the constant
pure state |J〉. If the measured Fourier mode is b̂ ∈ Â, then the state of the j register after
measuring this mode is:

|ψ〉 ∝
∑
j∈J

b̂(φj(s))|j〉. (2)

This can be written more explicitly in the cyclic case A = Z/N . In this case there is an
isomorphism A ∼= Â, and we can write any element b̂ ∈ Â as

b̂(a) = exp(2πiab/N),
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and we can also write
φj(a) = rja

for some elements rj ∈ Z/N . So we can then write

|ψ〉 ∝
∑
j∈J

exp(2πibrjs)|j〉. (3)

At this point we know both b and each rj , although for different reasons: rj is prespecified by
the question, while b was measured and is uniformly random. Nonetheless, we may combine
these known values as bj = rjb and write:

|ψ〉 ∝
∑
j∈J

exp(2πibjs)|j〉. (4)

To conclude, the standard approach of supplying the oracle Uf with the constant pure
state and discarding the output leads us to the state (2), or equivalently (3) or (4). (Because
measuring the Fourier mode does not sacrifice any quantum information.) In the rest of this
article, we will assume a supply of states of this type.

4 The algorithm

4.1 The initial and final stages
For simplicity, we describe the hidden shift algorithm when A = Z/N and N = 2n. The
input to the algorithm is a supply of states (4). As explained in our previous work [7], the
problem for any A, even A infinite as long as it is finitely generated, can be reduced to the
cyclic case with overhead exp(O(

√
d)). Also for simplicity, we will just find the parity of the

hidden shift s. Also as explained in our previous work [7], if we know the parity of s, then
we can reduce to a hidden shift problem on Z/2n−1 and work by induction. Finally, just as
in our previous algorithm, we seek a wishful special case of (4), namely the qubit state

|ψ〉 ∝ |0〉+ exp(2πi(2n−1)s/2n)|1〉 = |0〉+ (−1)s|1〉. (5)

If we measure whether |ψ〉 is |+〉 or |−〉, that tells us the parity of s.
Actually, although we will give all of the details in base 2, we could just as well work

in any fixed base, or let N be any product of small numbers. This generalization seems
important for precise optimization for all values of N , which is an issue that we will only
address briefly in the conclusion section.

4.2 Combining phase vectors
Like the old algorithm, the new algorithm combines unfavorable qubits states |ψ〉 to make
more favorable ones in stages, but we change what happens in each stage. The old algorithm
was called a sieve, because it created favorable qubits from a large supply of unfavorable
qubits, just as many classical sieve algorithms create favorable objects from a large supply of
candidates [1]. The new algorithm could also be called a sieve, but all selection is achieved
with quantum measurement instead of a combination of measurement and matching. The
process can be called collimation, by analogy with its meaning in optics: Making rays parallel.

Consider a state of the form (4), where we write the coefficient bj instead as a function
b(j), except that we make no assumption that bj = rjb for a constant b. We also assume
that the index set is explicitly the integers from 0 to `− 1 for some `, the length of |ψ〉:

J = [`] = {0, 1, . . . , `− 1}.
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We obtain:
|ψ〉 ∝

∑
0≤j<`

exp(2πib(j)s/2n)|j〉.

Call a vector of this type a phase vector. We view a phase vector as favorable if every
difference b(j1) − b(j2) is divisible by many powers of 2, and we will produce new phase
vectors from old ones that are more favorable. In other words, we will collimate the phases.
The algorithm collimates phase vectors until finally it produces a state of the form (5). Note
that the state |ψ〉 only changes by a global phase if we add a constant to the function b.
(Or we can say that as a quantum state, it does not change at all.) If 2m|b(j1)− b(j2) for
some m ≤ n, then we can both subtract a constant from b and divide the numerator and
denominator of b(j)/2n by 2m. So we can |ψ〉 as

|ψ〉 ∝
∑

0≤j<`
exp(2πib(j)s/2h)|j〉,

where h = m− n is the height of |ψ〉. (We do not necessarily assign the smallest height h to
a given |ψ〉.) We would like to collimate phase vectors to produce one with length 2 and
height 1 (but not height 0).

Given two phase vectors of height h,

|ψ1〉 ∝
∑

0≤j1<`1

exp(2πib1(j1)s/2h)|j1〉

|ψ2〉 ∝
∑

0≤j2<`2

exp(2πib2(j2)s/2h)|j2〉,

their joint state is a double-indexed phase vector that also has height h:

|ψ1, ψ2〉 = |ψ1〉 ⊗ |ψ2〉

∝
∑

0≤j1<`1
0≤j2<`2

exp(2πi(b1(j1) + b2(j2))s/2h)|j1, j2〉.

We can now collimate this phase vector by measuring

c ≡ b1(j1) + b2(j2) (mod 2m)

for some m < h. Let Pc be the corresponding measurement projection. The result is another
phase vector

|ψ〉 = Pc|ψ1, ψ2〉,

but one with a messy indexing set:

J = {(j1, j2)|b1(j1) + b2(j2) ≡ c (mod 2m)}.

We can compute the index set J , in fact entirely classically, because we know c. We can
compute the phase multiplier function b as the sum of b1 and b2. Finally, we would like to
reindex |ψ〉 using some bijection π : J → [`new], where `new = |J |. As we renumber J , we
also permute the phase vector Pc|ψ1, ψ2〉. Then there is a subunitary operator

Uπ : C`1 ⊗ C`2 → C`new

that annihilates vectors orthogonal to C[J ] and that is unitary on C[J ]. Then

|ψnew〉 = Uπ|ψ〉.
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The vector |ψnew〉 has height h−m.
Actually, collimation generalizes to more than two input vectors. Given a list of phase

vectors
|ψ1〉, |ψ2〉, . . . , |ψr〉,

and given a collimation parameter m, we can produce a collimate state |ψnew〉 from them.
We summarize the process in algorithm form:

I Algorithm 4 (Collimation). Input: A list of phase vectors

|ψ1〉, |ψ2〉, . . . , |ψr〉

of length `1, . . . , `r, and a collimation parameter m.
1. Notionally form the phase vector

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ . . .⊗ |ψr〉

with indexing set
[`1]× [`2]× · · · × [`r]

and phase multiplier function

b(~j) = b(j1, j2, . . . , jr) = b1(j1) + b2(j2) + · · ·+ br(jr).

2. Measure |ψ〉 according to the value of

c = b(~j) mod 2m (6)

to obtain Pc|ψ〉.
3. Find the set J of tuples ~j that satisfy (6). Set `new = |J | and pick a bijection

π : J → [`new].

4. Apply π to the value of b on J and apply Uπ to |ψ〉 to make |ψnew〉 and return it.

Algorithm 4 is our basic method to collimate phase vectors. We can heuristically estimate
the length ` by assuming that b(~j) is uniformly distributed mod 2m. In this case,

`new ≈ 2−m`1`2 . . . `r. (7)

So ` stays roughly constant when ` ≈ 2m/(r−1).

4.3 The complexity of collimation
I Proposition 5. Let |ψ1〉 and |ψ2〉 be two phase vectors of length `1 and `2 and height
h, and suppose that they are collimated mod 2m to produce a phase vector |ψnew〉 of
length `new. Suppose also that the quantum computer is allowed QRACM. Then taking
`max = max(`1, `2, `new) and r = 2, Algorithm 4 needs

Õ(`max) classical time (where “Õ” allows factors of both log `max and h ≤ n = logN).
O(`maxh) classical space,
O(`max max(m, log `max)) classical space with quantum access,
poly(log `max) quantum time, and
O(log `max) quantum space.
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Proof. First, we more carefully explain the data structure of a phase vector |ψ〉. The vector
|ψ〉 itself can be stored in dlog2 `maxe qubits. The table b of phase multipliers is a table
of length O(`max) whose entries have h bits, so this is O(`maxh) bits of classical space.
Algorithm 4 needs the low m bits of each entry in the table, so O(`maxm) bits are kept in
quantum access memory. We also assume that the table b is sorted on low bits.

We follow through the steps of Algorithm 4, taking care to manage resources at each step.
First, measuring

c ≡ (b1(j1) + b2(j2)) (mod 2m)

can be done in quantum time poly(log `,m) by looking up the values and adding them.
As usual, when performing a partial quantum measurement, the output must be copied
to an ancilla and the scratch work (in this case the specific values of b1 and b2) must be
uncomputed.

The other step of collimation is the renumbering. To review, the measurement of c
identifies a set of double indices

J ⊆ [`1]× [`2].

These indices must be renumbered with a bijection

π : J → [`new],

indeed the specific bijection that sorts the new phase multiplier table b = b1 + b2. The
function π can be computed in classical time Õ(`) using standard algorithms, using the fact
that b1 and b2 are already sorted. More explicitly, we make an outer loop over decompositions

c = c1 + c2 ∈ Z/2m.

In an inner loop, we write all solutions to the equations

b1(j1) ≡ c1 (mod 2m) b2(j2) ≡ c2 (mod 2m)

using sorted lookup. This creates a list of elements of J in some order. We can write the
values of

b(j1, j2) = b1(j1) + b2(j3)

along with the pairs (j1, j2) ∈ J themselves. Then b can be sorted and J can be sorted along
with it.

This creates a stored form of the inverse bijection π−1, which is an ordinary 1-dimensional
array. We will want this, and we will also want quantum access to the forward bijection π
stored as an associative array. Since we will need quantum access to π, we would like to
limit the total use of this expensive type of space. We can make a special associative array
to make sure that the total extra space is O(`max(log `max)) bits. For instance, we can make
a list of elements of J sorted by (j1, j2), a table of π sorted in the same order, and an index
of pointers from [`1] to the first element of J with any given value of j1.

The final and most delicate step is to apply the bijection π to |ψ〉 in quantum polynomial
time in log `. Imagine more abstractly that |ψ〉 is a state in a Hilbert space Cs supported
on a subset X ⊆ [s], and that we would like to transform it to a state in a Hilbert space Ct
supported on a subset Y ⊂ [t] of the same size, using a bijection π : X → Y . We use the
group structures [s] = Z/s and [t] = Z/t, and we assume quantum access to both π and π−1.
Then we will use these two permutation operators acting jointly on a Cs register and a Ct
register:

U1|x, y〉 = |x, y + π(x)〉 U2|x, y〉 = |x− π−1(y), y〉.
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A priori, π(x) is only defined for x ∈ X and π−1(y) is only defined for y ∈ Y ; we extend
them by 0 (or extend them arbitrarily) to other values of x and y. Then clearly

U2U1|x, 0〉 = |0, π(x)〉.

Thus
|ψnew〉 = U2U1|φ, 0〉

is what we want. Following the rule of resetting the height to 0, we can also let

bnew(j) = b(j)/2m.

J

I Corollary 6. Taking the hypotheses of Proposition 5, if the quantum computer has no
quantum access memory, then Algorithm 4 can be executed with r = 2 with

Õ(`max) quantum time (and classical time),
Õ(`max) classical space, and
O(log `max) quantum space.

Corollary 6 follows immediately from Proposition 5 and Proposition 2. The point is that,
even though there is a performance penalty in the absence of quantum access memory, the
same algorithm still seems competitive.

4.4 The outer algorithm
In this section we combine the ideas of Sections 3.2, 4.1, 4.2, and 4.3 to make a complete
algorithm. We present the algorithm with several free parameters. We will heuristically
analyze these parameters in Section 4.5. Then in Section 2.1 we will simply make convenient
choices for the parameter to prove that the algorithm has quantum time and classical space
complexity exp(O(

√
n)).

The algorithm has a recursive subroutine to produce a phase vector of height 1. The
subroutine uses a collimation parameter 0 < m(h) ≤ n− h and a starting minimum length
`0.

I Algorithm 7 (Collimation sieve). Input: A height h, a collimation parameter m = m(h), a
branching parameter r = r(h), a starting minimum length `0, and access to the oracle Uf .
Goal: To produce a phase vector of height h.
1. If h = n, extract phase vectors

|ψ1〉, |ψ2〉, . . . , |ψs〉

of height n from the oracle as described in Section 3 until the length of

|ψnew〉 = |ψ1, ψ2, . . . , ψs〉

is at least `0. Return |ψnew〉.
2. Otherwise, recursively and sequentially obtain a sequence of phase vectors

|ψ1〉, |ψ2〉, . . . , |ψr〉

of height h+m.
4. Collimate the vectors mod 2m using Algorithm 4 to produce a phase vector |ψnew〉 of

height h. Return it.
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When called with h = 1, Algorithm 7 produces a phase vector

|ψ〉 ∝
∑

0≤j<`
(−1)b(j)s|j〉.

Otherwise, we pick a maximal subset X ⊆ [`] on which b is equally often 0 and 1. (Note that
this takes almost no work, because the collimation step sorts b.) If X is empty, then we must
run Algorithm 7 again. Otherwise, we measure whether |ψ〉 is in C[X]. If the measurement
fails, then again we must run Subroutine A again. Otherwise the measured form of |ψ〉 has a
qubit factor of the form

|0〉+ (−1)s|1〉,

and this can be measured to obtain the parity of s.
Algorithm 7 recursively makes a tree of phase vectors that are more and more collimated,

starting with phase vectors obtained from the hiding function f(j, a) by the weak Fourier
measurement. An essential idea, which is due to Regev and is used in his algorithm, is
that with the collimation method, the tree can be explored depth-first and does not need
to be stored in its entirety. Only one path to a leaf needs to be stored. No matter how the
collimation parameter is set, the total quantum space used is O(n2), while the total classical
space used is O(nmax(`)). (But the algorithm is faster with quantum access to the classical
space.)

An interesting feature of the algorithm is that its middle part, the collimation sieve, is
entirely pseudoclassical. The algorithm begins by applying QFTs to oracle calls, as in Shor’s
algorithm. It ends with the same parity measurement as Simon’s algorithm. These parts
of the algorithm are fully quantum in the sense that they use unitary operators that are
not permutation matrices. However, collimation consists entirely of permutations of the
computational basis and measurements in the computational basis.

4.5 Heuristic analysis
Heuristically the algorithm is the fastest when r = 2.

Suppose that the typical running time of the algorithm is f(n), with some initial choice
of m = m(1). First, creating a phase vector of height h is similar to running the whole
algorithm with n′ = n− h. So the total computation time (both classical and quantum) can
be estimated as

f(n) ≈ min
m

(2m + 2f(n−m)) .

Here the first term is dominated by the classical work of collimation, while the second term
is the recursive work. The two terms of the minimand are very disparate outside of a narrow
range of values of m. So we can let g(n) = log2 f(n), and convert multiplication to addition
and approximate addition by max. (This type of asymptotic approximation is lately known
in mathematics as tropicalization.) We thus obtain

g(n) ≈ min
m

(max(m, g(n−m) + 1) .

The solutions to this equation are of the form

g(m(m+ 1)
2 + c) = m,

where c is a constant. We obtain the heuristic estimate

f(n) ?= Õ(2
√

2n) (8)
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for both the quantum plus classical time complexity and the classical space complexity of the
algorithm. We put a question mark because we have not proven this estimate. In particular,
our heuristic calculation does not address random fluctuations in the length estimate (7).

If the quantum computer does not have QRACM or if it is no cheaper than quantum
memory, then the heuristic (8) is the best that we know how to do. If the algorithm is
implemented with QRACM, then the purely quantum cost is proportional to the number of
queries. In this case, if there is extra classical space, we can make m larger and larger to fill
the available space and save quantum time. This is the “second parameter” mentioned in
Section 1. However, this adjustment only makes sense when classical time is much cheaper
than quantum time. In particular, (8) is our best heuristic if classical and quantum time are
simply counted equally.

If classical space is limited, then equation (7) tells us that we can compensate by increasing
r. To save as much space as possible, we can maintain ` = 2 and adjust in each stage of the
sieve r to optimize the algorithm. In this case the algorithm reduces to Regev’s algorithm.

5 Conclusions

At first glance, the running time of our new algorithm for DHSP or hidden shift is “the same”
as our first algorithm, since both algorithms run in time 2O(

√
logN). Meanwhile Regev’s

algorithm runs in time 2O(
√

(logN)(log logN), which may appear to be almost as fast. Of
course, these expressions hide the real differences in performance between these algorithms,
simply because asymptotic notation has been placed in the exponent. All polynomial-time
algorithms with input of length n run in time

nO(1) = 2O(logn).

Nonetheless, polynomial accelerations are taken seriously in complexity theory, whether they
are classical or quantum accelerations.

For many settings of the parameters, Algorithm 7 is superpolynomially faster than Regev’s
algorithm. It is Regev’s algorithm if we have exponentially more quantum time than classical
space. However, in real life, classical computation time has only scaled polynomially faster
than available classical computer memory. So it is reasonable to consider a future regime in
which quantum computers exist, but classical memory is cheaper than quantum time, or is
only polynomially more expensive.

Regev [11] established a reduction from certain lattice problems (promise versions of the
short vector and close vector problems) to the version of DHSP or hidden shift in which f(a)
and g(a+ s) are overlapping quantum states. At first glance, our algorithms apply to this
type of question. However, we have not found quantum accelerations for these instances.
The fundamental reason is that we have trouble competing with classical sieve algorithms for
these lattice problems [1]. The classical sieve algorithms work in position space, while our
algorithms work in Fourier space, but otherwise the algorithms are similar. Instead, DHSP
seems potentially even more difficult than related lattice problems (since that is the direction
of Regev’s reduction) and the main function of our algorithms is to make DHSP roughly
comparable to lattice problems on a quantum computer.

One significant aspect of Algorithm 7, and also in a way Regev’s algorithm, is that
it solves the hidden subgroup problem for a group G = DN without staying within the
representation theory of G in any meaningful way. It could be interesting to further explore
non-representation methods for other hidden structure problems.
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1 Introduction

Entanglement sits at the core of the counterintuitive and useful properties of quantum
mechanics. At its inception Schrödinger labeled entanglement “the characteristic trait of
quantum mechanics, the one that enforces its entire departure from classical lines of thought.”
[19] This observation remains true today, and with the advent of quantum computing, its
practical consequences have never before been more real. However after decades of effort,
entanglement remains poorly understood [13, 1, 11]. A promising avenue for furthering our
understanding of entanglement is cataloguing and analyzing the various means of generating
it. There is a sense that those mechanisms which generate maximal amounts of entanglement,
or most consistently generate entanglement, are especially enlightening because they serve as
bounds on what can and can not be done, thus restricting our domain of inquiry.

One outcome of this line of thought is the concept of a universal entangler (UE). A UE
is a unitary operator which maps any non-entangled state to an entangled state [3]. A UE
can act as a useful tool, both theoretically and experimentally, due to its generality. This
generality is derived from the fact that a UE admits any non-entangled quantum states.
However this generality also makes demonstrating the properties of UEs very difficult. For
instance, while it has been shown that UEs do exist for a system with Hilbert space Cd1⊗Cd2

when min (d1, d2) ≥ 3 and (d1, d2) 6= (3, 3), proving this fact has been nontrivial, requiring
techniques from algebraic geometry [3]. To date no elementary method is known which can
achieve the same results. Additionally, although it has been shown that whenever UEs exist
almost all unitaries are UEs [4], explicit constructions of UEs remain ellusive. This is due to
the fact that the problem of verifying whether a given unitary is a UE is in general intractable
since the verification is equivalent to solving a quadratic system of equations which is hard
in general [6]. So far the only explicitly known UE is an example for the (d1, d2) = (3, 4),
from an order 12 Hadamard matrix [4]. In general more advanced methods may be needed
in order to construct UEs, as well as to verify their universality.

The theory of entanglement of systems of indistinguishable particles has garnered much
attention during the past decade [17, 16, 12, 14, 5, 1]. The entanglement of systems
of indistinguishable particles cannot necessarily be approached in the same way as the
distinguishable particle case because the symmetry requirement of the wave functions
(i.e. symmetrization for bosonic system and antisymmetrization for fermionic system) may
introduce ‘pseudo entanglement’ which is not accessible in practice [5, 16, 17, 12, 14]. It is
now widely agreed that non-entangled states correspond to the coherent states |v〉⊗N [15] for
indistinguishable bosonic systems and to Slater determinants for indistinguishable fermionic
systems [5, 1]. A natural line of inquiry is to identify the existence and construction of
UEs for systems of indistinguishable particles. Indistinguishable bipartite bosonic/fermionic
states are symmetric/antisymmetric states of the Hilbert space Cd ⊗ Cd. This does not
necessarily mean that the theory of UEs of distinguishable particles is readily generalizable
to UEs for indistinguishable particles. Some obvious reasons for this are: 1. although almost
all unitaries are UEs when d > 3, the lack of understanding of explicit constructions prevents
us from directly verifying whether there exist any UEs which are symmetric under particle
permutation; 2. the definition of a non-entangled state for systems of indistinguishable
fermions is dramatically different from that of systems of distinguishable particles (in fact, a
single Slater determinant, when viewed as an antisymmetric distinguishable particle state, is
indeed entangled).

This paper discusses the existence and construction of UEs for both indistinguishable
bipartite bosonic (BUE) and fermionic (FUE) systems. Employing techniques in algebraic
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geometry, considering the different algebraic structures of the bosonic and fermionic systems,
we show that, in contrast to the distinguishable particle case, BUEs exist for bosonic systems
if and only if the single particle Hilbert space has dimension d ≥ 3, and FUEs exist for
fermionic systems if and only if the single particle Hilbert space has dimension d ≥ 8. We also
show, similarly to the distinguishable particle case, that for dimensions where BUEs/FUEs
exist, almost all unitaries are BUEs/FUEs. Finally, because the unentangled states of
indistinguishable bosonic systems are of a relatively simple coherent state form |v〉 ⊗ |v〉,
which implies a hidden linear structure for the product states (i.e. the set of all single particle
states |v〉 form a vector space), the construction of BUEs becomes significantly simpler. We
have found a simple explicit construction of a BUE based on permutation matrices which
holds for all d ≥ 3, and another one based on Householder-type gates [10] which holds for all
d ≥ 5. Unfortunately the explicit construction and verification of FUEs, like distinguishable
particle UEs, remains a significantly more intractable problem.

We believe that our investigation provides insight into the entanglement properties of
identical particle systems, and in particular the different entanglement structures between
bosonic, fermionic and distinguishable particle systems.

We organize our paper as follows. In section 2 we review some previously established
results about UEs and provide some preliminaries about bosonic and fermionic systems to
help establish our main results. In section 3 we give a proof for the existence and prevalence
of BUEs, and give two explicit examples of their construction. In Section 4 we give a proof
for the existence and prevalence of FUEs. Finally, in section 5, we provide a brief summary
of our results and a discussion of future directions.

2 Preliminaries

This section provides preliminaries to help establish our main results for BUEs and FUEs.
We first briefly review UEs for distinguishable particle systems established in [3]. We then
further briefly review basic entanglement theory for bosonic and fermionic systems.

2.1 Universal entanglers
For the case of distinguishable particles, it is known that any given quantum system is
identified with some finite (or infinite) Hilbert space H. Moreover, two unit vectors are
indistinguishable if they differ only by a global phase factor. Hence, distinct pure states can
be put in correspondence with “rays” in H, or equivalently, points in the projective Hilbert
space P(H).

We consider pure states for bipartite systems, whose Hilbert space is Cd1 ⊗ Cd2 . A
bipartite quantum state is a product state if |ψ〉 = |ψ1〉 ⊗ |ψ2〉 for some |ψ1〉 ∈ Cd1 and
|ψ2〉 ∈ Cd2 . Otherwise, it is an entangled state. It is straightforward to see that the set of all
the product states do not form a linear vector space, so one does not expect that the UE
problem can be examined using basic tools from linear algebra.

Instead, it is observed that the set of normalized product states in a composite system
associated with Cd1 ⊗ Cd2 is isomorphic to a projective variety in Pd1d2−1, a well studied
object in algebraic geometry. Before continuing, we need some basic notations and necessary
background materials from algebraic geometry [8].

For any positive integer n, the set of all n-tuples from C is called an n-dimensional
affine space over C. An element of Cn is called a point, and if point P = (a1, a2, · · · , an)
with ai ∈ C, then the ai’s are called the coordinates of P . Informally, an affine space is what
is left of a vector space after forgetting its origin.
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38 Universal Entanglers for Bosonic and Fermionic Systems

We define projective n-space, denoted by Pn, to be the set of equivalence classes of
(n + 1)−tuples (a0, · · · , an) from C, not all zero, under the equivalence relation given by
(a0, · · · , an) ∼ (λa0, · · · , λan) for all λ ∈ C, λ 6= 0. We use [a0 : · · · : an] to denote the
projective coordinates of this point.

The polynomial ring in n variables, denoted by C[x1, x2, · · · , xn], is the set of polynomials
in n variables with coefficients in field C.

A subset Y of Cn is an algebraic set if it is the common zeros of a finite set of poly-
nomials f1, f2, · · · , fr with fi ∈ C[x1, x2, · · · , xn] for 1 ≤ i ≤ r, which is also denoted by
Z(f1, f2, · · · , fr).

One may observe that the union of a finite number of algebraic sets is an algebraic set,
and the intersection of any family of algebraic sets is again an algebraic set. Therefore, by
taking the open subsets to be the complements of algebraic sets, we can define a topology,
called the Zariski topology on Cn.

A nonempty subset Y of a topological space X is called irreducible if it cannot be expressed
as the union of two proper closed subsets. The empty set is not considered to be irreducible.

An affine algebraic variety is an irreducible closed subset of Cn, with respect to the
induced topology.

A notion of algebraic variety may also be introduced in projective spaces, called projective
algebraic variety: a subset Y of Pn is an algebraic set if it is the common zeros of a finite set
of homogeneous polynomials f1, f2, · · · , fr with fi ∈ C[x0, x1, · · · , xn] for 1 ≤ i ≤ r. We call
open subsets of irreducible projective varieties quasi-projective varieties.

Observe that a product state in Cd1 ⊗ Cd2 can be written as the Kronecker product of
a vector v1 ∈ Cd1 and another vector v2 ∈ Cd2 . Let’s further write these vectors in the
computational basis, say v1 =

(
x1, x2, · · · , xd1

)
and v2 =

(
y1, y2, · · · , yd2

)
.

Their product state is a d1d2-dimensional vector

(
z1, z2, · · · zd2 , zd2+1, · · · , zd1d2

)
=

(
x1y1, x1y2, · · · x1yd2 , x2y1, · · · , xd1yd2

)
Hence z(i−1)d2+j = xiyj for any 1 ≤ i ≤ d1, 1 ≤ j ≤ d2. It follows that

z(i1−1)d2+j1z(i2−1)d2+j2 = z(i1−1)d2+j2z(i2−1)d2+j1

for any 1 ≤ i1, i2 ≤ d1, 1 ≤ j1, j2 ≤ d2. On the other hand, any d1d2-dimensional vector
(zk)d1d2

k=1 satisfying the above polynomials can be written as the tensor product of v1 ∈ Cd1

and v2 ∈ Cd2 [8]. This implies that the set of normalized product states in Cd1 ⊗ Cd2 is
isomorphic to a projective variety in Pd1d2−1 which is called a “Segre variety” and denoted
as Σd1,d2 . This simple observation provides an algebraic geometric description of product
states and entangled states.

Therefore, a unitary operator U acting on Cd1 ⊗ Cd2 is a UE if and only

U(Σd1,d2)
⋂

Σd1,d2 = ∅.

From the geometric point of view, a UE will rotate the set of product states to another set
which is completely void of product states.

In [3], it is proved that UEs exist if and only if min{d1, d2} ≥ 3 and (d1, d2) 6= (3, 3).
Surprisingly, it is further illustrated that a random unitary operator acting on such a bipartite
system will even rotate the set of product states to another set which contains nothing but
nearly maximally entangled states [4].
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Although it has been shown that a random unitary gate will almost surely be a UE of a
bipartite quantum system Cd1 ⊗ Cd2 if min{d1, d2} ≥ 3 and (d1, d2) 6= (3, 3), constructing
an explicit UE for any bipartite quantum system is not that easy. One simple strategy is
to randomly pick a unitary gate acting on Cd1 ⊗ Cd2 , and then verify whether it is a UE
by solving a family of polynomial equations. Unfortunately, there is no known efficient
way to solve quadratic polynomial systems [6]. So far, explicit UEs are only known for
(d1, d2) = (3, 4) [4].

2.2 Bosonic systems
It is known that bosonic states lie in the 2nd symmetric tensor power of Cd, denoted by
∨2Cd. A state in ∨2Cd is a product state if it can be written as some |α〉 ⊗ |α〉, i.e. it is
a coherent state [14, 5]. Any state which cannot be written as such a symmetric product
form does demonstrate correlation which can be potentially used in quantum information
processing [14], and hence is considered entangled.

Any bipartite bosonic pure state is local unitarily equivalent to
∑
α λα|α〉 ⊗ |α〉 [12, 14].

This then indicates a hidden linear structure for bipartite bosonic pure states because the
single particles states |α〉 form a vector space.

From the algebraic geometric point of view, any bosonic product state |α〉 ⊗ |α〉 can be
written as a vector with projective coordinates

[a1a1 : a1a2 : · · · : a1ad : a2a1 : a2a2 : · · · : a2ad : a3a1 : · · · : adad]

where [a1 : · · · : ad] are the projective coordinates of |α〉.
Such points can be characterized by a family of polynomials again. In fact, the set of

projective points with coordinates

[a1a1 : a1a2 : · · · : a1ad : a2a1 : a2a2 : · · · : a2ad : a3a1 : · · · : adad]

is obviously isomorphic to the set of the following points

[a2
1 : a2

2 : · · · : a2
d : a1a2 : a1a3 : · · · : a1ad : a2a3 : · · · : ad−1ad]

which is known as the Veronese variety in algebraic geometry [7].
Hence the set of bosonic product states corresponds to a special case of Veronese variety

whose dimension is d− 1. This fact will be used in our further investigation.

2.3 Fermionic systems
Consider the pure states of a bipartite fermionic system whose Hilbert space is the antisym-
metric subspace of Cd ⊗ Cd. The Pauli exclusion principle requires that d ≥ 2. We denote
the 2nd exterior power of Cd, i.e. the antisymmetric subspace of Cd ⊗ Cd by ∧2Cd. For any
|α〉, |β〉 ∈ Cd, we use the notation

|α〉 ∧ |β〉 = 1√
2

(|α〉 ⊗ |β〉 − |β〉 ⊗ |α〉), (1)

to denote a single Slater determinant.
A quantum state |ψ〉 in ∧2Cd is said to be decomposable if it can be written as an exterior

product of individual vectors from Cd, i.e. there exists |α〉, |β〉 ∈ Cd such that |ψ〉 = |α〉∧ |β〉.
Decomposable states are considered unentangled, as any correlation results purely from the
fermionic statistics, and so is not useful for quantum information processing [17, 16]. Any
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40 Universal Entanglers for Bosonic and Fermionic Systems

state which cannot be written in such a decomposable form does demonstrate correlation
which can be potentially used in quantum information processing [17, 16] , and hence is
considered to be entangled.

Any bipartite fermionic pure state is local unitarily equivalent to
∑
α λi|αi〉∧ |βi〉 [17, 16],

where |αi〉, |βi〉 ∈ Cd, 〈αi|βj〉 = 0, 〈αi|αj〉 = δij , and 〈βi|βj〉 = δij . This is an analogue of
the Schmidt decomposition of a distinguishable particle system and hence is called the Slater
decomposition. Similarly to the distinguishable particle case, the set of all decomposable
states do not form a linear vector space, so one does not expect that the FUE problem can
be examined using basic tools from linear algebra.

Again, let’s look over the decomposable (or fermionic product) states from the algebraic
geometric point of view. As we showed before, a decomposable state can be written as
|ψ〉 = |α〉∧|β〉 where |α〉 and |β〉 are two vectors in Cd. Let Sψ be the 2-dimensional subspace
spanned by |α〉 and |β〉. A different basis for Sψ will give a different exterior product, but
the two exterior products will differ only by a nonzero scale. Ignoring the nonzero scale, any
decomposable state corresponds to a 2-dimensional subspace in Cd and vice versa. Hence
the set of decomposable states is isomorphic to the set of 2-dimensional subspaces which is
known as a Grassmannian G(2, d) [7]. It is not that obvious that G(2, d) can be characterized
by a set of polynomials, but it can be. The correspondence we have just shown is known as
the Plücker embedding of a Grassmannian into a projective space:

τ : G(2, d)→ P(∧2Cd).

This embedding satisfies certain simple quadratic polynomials and is called the Grassmann-
Plücker relations (see e.g. p. A III.172 Eq. (84-(J,H)) in [2], Prop 11-32 in [9], and [5]). This
implies the Grassmannian embeds as an algebraic variety of P(∧2Cd).

3 Bosonic Universal Entanglers

3.1 Existence and Prevalence
Recall that a bosonic state in ∨2Cd is a product state if it can be written as |α〉 ⊗ |α〉 for
some |α〉. A quantum gate acting on ∨2Cd is said to be a bosonic universal entangler (BUE)
if it will map every product state to some entangled state.

Note that the set of product states of a bosonic system can also be characterized by
a set of polynomials. Indeed, let Λ = {|α〉 ⊗ |α〉 : |α〉 ∈ Cd}, this is a precisely the
Veronese variety [7]. Furthermore, Λ is isomorphic to Cd. For any |ψ〉 ∈ ∨2C2, let us denote
rank|ψ〉 ≡ min{r : |ψ〉 =

r∑
i=1
|ai〉|ai〉}.

I Theorem 1. There is a BUE acting on ∨2Cd if and only if d ≥ 3. Furthermore, when
d ≥ 3, almost every quantum gate acting on ∨2Cd is a BUE.

Proof. For d ≤ 2, we have

dimU(Λ) + dim Λ = 2 dim Λ = 2(d− 1) ≥
(
d+ 1

2

)
− 1 = dimP(∨2Cd). (2)

This implies there is no BUE for ∨2Cd. This assertion follows from the dimension counting
theorem which states that the intersection of any two projective varieties A and B ⊆ Pm is
nonempty if dimA+ dimB ≥ m. More specifically, we have U(Λ)

⋂
Λ 6= ∅.
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On the other hand, consider the set of quantum gates acting on a system of two indistin-
guishable bosons. Any quantum gate acting on this system should be a symmetric gate, i.e.,
SUS = U , where S is the swap operator. Equivalently, U is a quantum gate acting on ∨2Cd.

Let X = {Φ|Φ ∈ U(∨2Cd),Φ(Λ) ∩ Λ 6= ∅}. Our aim is to show that X is a proper subset
of U(∨2Cd). If this is so, then the existence of BUEs will be automatically guaranteed.

Let’s consider the Zariski topology on the projective space. In this setting, the unitary
group U(∨2Cd) is Zariski dense in the general linear group GL(∨2Cd) [18]. We further define
X ′ = {Φ|Φ ∈ GL(∨2Cd),Φ(Λ) ∩ Λ 6= ∅}. It is easy to see that X ⊆ X ′.

The dimension of its Zariski closure dimX ′ is bounded by
(
d+1

2
)2− (

(
d+1

2
)
− 1) + 2(d− 1).

See Lemma 3 in Appendix C for details.
Now we prove the existence of a BUE as follows. If U is not a BUE, U(∨2Cd) ⊂ X ′,

then GL(∨2Cd) = U(∨2Cd) ⊂ X ′. However, dim(X ′) ≤
(
d+1

2
)2 − (

(
d+1

2
)
− 1) + 2(d − 1) <(

d+1
2
)2 = dimGL(∨2Cd). This is a contradiction. So U(∨2Cd) 6⊂ X ′, i.e. a unitary operator

Φ ∈ U(∨2Cd) with universal entangling power exists.
We will now show that X is not only a proper subset, but also a negligible subset of

U(∨2Cd).
U(∨2Cd) is a locally compact Lie group of dimension

(
d+1

2
)2. Recall that dim(X ′) is at

most
(
d+1

2
)2 − (

(
d+1

2
)
− 1) + 2(d− 1) <

(
d+1

2
)2 = dim(U(∨2Cd)).

We have shown dim(X ′) <
(
d+1

2
)2 = dim(U(∨2Cd)). X ′ is Noetherian (i.e. any descending

sequence of its closed subvarieties is stationary), then X ′ is a union of finitely many smooth
subvarieties of GL(∨2Cd) with lower dimensions. Hence X ′ ∩ U(∨2Cd) (which contains
X ′∩U(∨2Cd), the set of our main interest) is a union of finite many submanifolds of U(∨2Cd)
with lower dimensions. Therefore, X ′ ∩ U(∨2Cd) is measure zero in U(∨2Cd) which implies
that a random unitary operator U is almost surely a BUE.

J

3.2 Explicit Construction
As we have shown in Theorem 1, a random unitary acting on ∨2Cd will almost surely be
a BUE. Hence we can pick an arbitrary unitary acting on ∨2Cd and verify whether it will
map some product state to another product state. Recall that the set of product states in a
bosonic system is isomorphic to Cd. This will make it easier to verify whether a unitary is a
BUE. Here we provide verifications of two different classes of BUEs.

3.2.1 Householder-type Bosonic Universal Entanglers
For d ≥ 5 and any subspace S ⊂ ∨2Cd, let’s consider the following gate U = I∨2Cd − 2PS
where PS is a projection to some subspace S. These gates are known as Householder matrices
in linear algebra [10] and they are widely used to perform QR decomposition.

A gate U constructed in this way will be a BUE if the subspace S is chosen properly to
satisfy the following two constraints:
1. There is no product state in S⊥.
2. rank|ψ〉 ≥ 3 for any |ψ〉 ∈ S.

This claim can be proved by contradiction. Assume there are two product states |ψ〉|ψ〉
and |φ〉|φ〉 such that (I∨2Cd − 2PS)|ψ〉|ψ〉 = |φ〉|φ〉, we have 2PS |ψ〉|ψ〉 = |ψ〉|ψ〉 − |φ〉|φ〉.
PS |ψ〉|ψ〉 6= 0 since there is no product state in S⊥. On the other hand, PS |ψ〉|ψ〉 is a vector
in S which is a subspace completely void of states with rank no more than 2. This contradicts
our assumption.
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In this subsection, we will construct a subspace S to satisfy the above two constraints for
any d ≥ 5. A family of BUEs will follow immediately.

Let S be the span of the following vectors.

|11〉+ |23〉+ |32〉,
|22〉+ |34〉+ |43〉,

· · · ,
|d− 2, d− 2〉+ |d− 1, d〉+ |d, d− 1〉,
|d− 1, d− 1〉+ |d, 1〉+ |1, d〉,
|d, d〉+ |12〉+ |21〉.

We first show there is no product state in S⊥. Assume |ψ〉|ψ〉 ⊥ S where |ψ〉 =
d∑
i=1

ai|i〉.

The orthogonality implies the following equations.

(E1)


a2

1 + 2a2a3 = 0,
a2

2 + 2a3a4 = 0,
...

a2
d + 2a1a2 = 0.

The only common solution to the above equations is (a1, a2, · · · , ad) = (0, 0, · · · , 0) when
d ≥ 3. See Appendix A for details.

Hence, there is no product state in S⊥.
Next, we will verify that rank|ψ〉 ≥ 3 for any |ψ〉 ∈ S.
Assume there is some state |ψ〉 ∈ S with rank no more than 2. Let’s say

c1(|11〉+ |23〉+ |32〉), (3)
+ c2(|22〉+ |34〉+ |43〉), (4)
+ · · · , (5)
+ cd(|d, d〉+ |12〉+ |21〉), (6)
= (x1|1〉+ x2|2〉+ · · ·+ xd|d〉)(x1|1〉+ x2|2〉+ · · ·+ xd|d〉), (7)
+ (y1|1〉+ y2|2〉+ · · ·+ yd|d〉)(y1|1〉+ y2|2〉+ · · ·+ yd|d〉). (8)

Then we have the following equations.

(E2)



x2
1 + y2

1 = c1,

x2
2 + y2

2 = c2,
...

x2
d + y2

d = cd,

x1x2 + y1y2 = cd,

x2x3 + y2y3 = c1,
...

xdx1 + ydy1 = cd−1,

xixj + yiyj = 0∀|i− j| ≥ 2.

(9)

There is no nonzero (c0, c2, · · · , cd) satisfying the above equations when d ≥ 5. See
Appendix B for details. Hence rank|ψ〉 ≥ 3 for any |ψ〉 ∈ S.

This implies that U = I − 2PS is a bosonic universal entangler for any d ≥ 5.
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3.2.2 Permutation Universal Entanglers

Any product state can be written as the following.

|φ〉|φ〉 = (
d∑
i=1

ai|i〉)(
d∑
j=1

aj |j〉) (10)

=
d∑

i,j=1
aiaj |ij〉 (11)

=
d∑
i=1

a2
i |ii〉+

∑
1≤i<j≤d

√
2aiaj(

|ij〉+ |ji〉√
2

). (12)

Any bosonic state |ψ〉 ∈ ∨2Cd can be denoted as a
(
d+1

2
)
-dimensional vector

(x11, x22, · · · , xdd, x12, · · · , x1d, x21, · · · , xd−1d)

since we can always write |ψ〉 as a linear combination of bosonic basis states

x11|11〉+ x22|22〉+ · · ·+ xdd|dd〉+ x12
|12〉+ |21〉√

2
+ x13

|13〉+ |31〉√
2

+

· · ·+ xd−1,d
|d− 1, d〉+ |d, d− 1〉√

2
.

|ψ〉 is a product state if and only if there exists some nonzero vector (a1, a2, · · · , ad) such
that

(x11, · · · , xdd, x12, x13, · · · , x1d, x23, · · · , xd−1d) (13)
= (a2

1, · · · , a2
d,
√

2a1a2,
√

2a1a3, · · · ,
√

2a1ad,
√

2a2a3, · · · ,
√

2ad−1ad). (14)

A permutation matrix U acting on the
(
d+1

2
)
-dimensional vector space is certainly a

bosonic quantum gate.
For any d ≥ 3, let’s define a permutation matrix U as the following:

U =
d∑
i=1

( |i, i+ 1〉+ |i+ 1, i〉√
2

)〈ii|+
d∑
i=1
|ii〉( 〈i, i+ 1|+ 〈i+ 1, i|√

2
)

+
∑

1≤i<i+1<j≤d

(|ij〉+ |ji〉)(〈ij|+ 〈ji|)
2 .

Here the addition and subtraction are all modulo d, but the results range from 1 to d.
U is a unitary matrix since it is simply a rotation of the

(
d+1

2
)
-dimensional vector space.

Let’s assume U will map some (bosonic) product state to another (bosonic) product state.
Without loss of generality, let’s assume

U(
d∑
i=1

a2
i |ii〉+

∑
1≤i<j≤d

√
2aiaj(

|ij〉+ |ji〉√
2

)) =
d∑
i=1

b2
i |ii〉+

∑
1≤i<j≤d

√
2bibj(

|ij〉+ |ji〉√
2

).
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It follows that

a2
1 =

√
2b1b2,

a2
2 =

√
2b2b3,

... ,

a2
d =

√
2bdb1,√

2a1a2 = b2
1,√

2a2a3 = b2
2,

... ,
√

2ada1 = b2
d.

Hence we have
d∏
i=1

a2
i = (

√
2)d

d∏
i=1

bibi+1 =
√

2d
d∏
i=1

b2
i . Similarly,

d∏
i=1

b2
i =
√

2d
d∏
i=1

a2
i . The

above two equations imply that there exists some 1 ≤ t ≤ d such that at = 0.
The equation b2

t =
√

2atat+1 implies bt = 0. Then a2
t−1 =

√
2bt−1bt = 0 will implies

at−1 = 0. By repeating the above procedure, we will eventually have ai = 0 for any 1 ≤ i ≤ d.
This contradicts our assumption that U will map some (bosonic) product state to another
(bosonic) product state. Hence U is a bosonic universal entangler.

4 Fermionic Universal Entanglers

Given a bipartite system of indisitinguishable fermions ∧2Cd, a 2-vector in ∧2Cd is said
to be decomposable if it can be written as an exterior product of individual vectors from
Cd. Decomposable 2-vectors are also considered to be unentangled states in this fermionic
system.

We say a quantum gate U is a fermionic universal entangler (FUE) if U will transform
every product state to some entangled state.

I Theorem 2. There is some FUE acting on a bipartite system of indisitinguishable fermions
∧2Cd if and only if d ≥ 8. Furthermore, almost every quantum gate acting on ∧2Cdis an
FUE when d ≥ 8.

Proof. Let Γd = {|φ〉 ∈ ∧2Cd : |φ〉 = |ψ1〉 ∧ |ψ2〉 for some |ψ1〉, |ψ2〉 ∈ Cd}. A quantum
gate U is an FUE if and only if

U(Γd)
⋂

Γd = ∅. (15)

Observe that decomposable 2-vectors in ∧2Cd correspond to weighted 2-dimensional linear
subspaces of Cd. If we ignore the phase factor, decomposable 2-vectors can be characterized by
the Grassmannian of 2-dimensional subspaces of Cd, an algebraic subvariety of the projective
space P(∧2Cd)[8]. We will denote the Grassmannian of r-dimensional subspaces of Cd as
G(r, d).

First, we examine the necessary condition.
According to the intersection theorem, if dimU(Γd) + dim Γd ≥ dimP(∧2Cd), or equival-

ently, 2× 2(d− 2) = 2 dimG(2, d) ≥
(
d
2
)
− 1, then for any U , U(Γd)

⋂
Γd 6= ∅. This inequality

holds only for 2 ≤ d ≤ 7 which implies the fermionic universal entangling device does not
exist for d ≤ 7.

Now, let’s look into the sufficient condition.
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The set of quantum gates acting on a bipartite system of indisitinguishable fermions
∧2Cd is the unitary group acting on ∧2Cd, denoted as U(∧2Cd).

Similarly, let Y = {Φ|Φ ∈ U(∧2Cd),Φ(Γd) ∩ Γd 6= ∅}. We will show that Y is a proper
subset in U(∧2Cd).

Again, let’s consider the Zariski topology on the projective space. In this setting, the
unitary group U(∧2Cd) is Zariski dense in the general linear group GL(∧2Cd)[18]. We further
define Y ′ = {Φ|Φ ∈ GL(∧2Cd),Φ(Γd) ∩ Γd 6= ∅}. It is easy to see X ⊆ Y ′.

Similar to the proof of Lemma 3 in Appendix C, the dimension of Y ′’s Zariski closure
dimY ′ is bounded by

(
d
2
)2 − (

(
d
2
)
− 1) + 2× 2(d− 2).

Now we prove the existence of an FUE U as follows. If it does not exist, U(∧2Cd) ⊂ Y ′,
then GL(∧2Cd) = U(∧2Cd) ⊂ Y ′. However, dim(Y ′) ≤

(
d
2
)2 − (

(
d
2
)
− 1) + 4(d− 2) <

(
d
2
)2 =

dimGL(∧2Cd). This is a contradiction. So U(∧2Cd) 6⊂ Y ′, i.e. an FUE Φ ∈ U(∧2Cd) exists.
Following the lines of the proof of Theorem 1, we can prove that Y is not only a proper

subset, but also a neglectable subset in U(∧2Cd). J

5 Summary and Discussion

Employing properties of algebraic geometry, we have shown that for bipartite systems of
indistinguishable bosons with a Hilbert space that is the symmetric subspace of Cd ⊗ Cd,
bosonic universal entanglers (BUEs) exist if and only if d ≥ 3. Similarly, we have shown
that for bipartite systems of indistinguishable fermions with a Hilbert space that is the
antisymmetric subspace of Cd ⊗ Cd, fermionic universal entanglers (FUEs) exist if and only
if d ≥ 8. These two results are in contrast to previous results regarding bipartite systems
of distinguishable particles with a Hilbert space Cd1 ⊗ Cd2 , for which universal entanglers
exist if and only if min (d1, d2) ≥ 3 and (d1, d2) 6= (3, 3). This illustrates some of the
important differences between the entanglement of systems of indistinguishable particles to
the entanglement of systems of distinguishable particles.

In contrast, we have illustrated one feature which holds for both systems of distinguishable
and indistinguishable particles. Previous work has shown that, for systems of distinguishable
particles, if a universal entangler exists for some Hilbert space, then almost all unitaries
operating on that space are universal entanglers. We have shown that this result also holds
for systems of indistinguishable bosons and fermions. However to verify whether or not a
given bipartite unitary is a universal entangler is in general an intractable problem for both
distinguishable particle systems and fermionic systems. This intractability arises from the
fact that solving a system of quadratic equations is, in general, NP-hard.

Bosonic systems turn out to be special though. Because the set of all product states is
isomorphic to a linear vector space, it is possible to use elementary methods to verify bosonic
universal entanglers. We have given explicit constructions of two types of BUE, one is of the
Householder type which is valid for d ≥ 5 and the other is of a permutation type which is
valid for d ≥ 3. Both are very simple constructions.

It is our hope that our success in finding explicit constructions of BUEs will help inform the
search for explicit constructions of both FUEs and UEs, problems which remain intractable in
general. We can not rule out the possibiliy that there might be some other structure, beyond
just the corresponding general algebraic varieties, which would provide some special family
of explicitly verifiable UEs or FUEs. In fact, the explicit construction for the (3, 4) system
from an order 12 Hadamard matrix demonstrated in [4] provides a hint of the possibility of
such families.

Another natural direction of inquiry is to explore the entangling power of these BUEs
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and FUEs. As demonstrated in [4], a random unitary is not only almost surely a UE, but it
also almost surely maps the set of product states to another set which contains nothing but
nearly maximally entangled states, with respect to almost any kind of entanglement measure.
One would expect similar properties for BUEs and FUEs. However to go further in that
direction one would need to first establish reasonable entanglement measures for bosonic and
fermionic systems (see, e.g. entanglement measures discussed in [5]).

Finally, it would be useful to generalize these results to multipartite bosonic and fermionc
systems. Our guess is that the bosonic systems might remain easy to solve since they retain
the nice property that the set of all product states is isomorphic to a linear vector space.
The fermionic case is expected to be much more complicated given that in the multipartite
case even the Grassmann-Plücker relations themselves are harder to describe [2, 9, 5]. We
would leave these cases for future investigation.
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A There Is No Nonzero Solution For Polynomial System (E1)

Here we will show there is no nonzero solution (a1, · · · , ad) satisfying the following equations.

(E1)


a2

1 + 2a2a3 = 0,
a2

2 + 2a3a4 = 0,
...

a2
d + 2a1a2 = 0.

Assume ai 6= 0, then ai+1, ai+2 are nonzero. This follows all ai’s are nonzero.

d

Π
i=1

a2
i =

d

Π
i=1

(−2ai+1ai+2) = (−2)d
d

Π
i=1

a2
i . (16)

This implies
d

Π
i=1

a2
i = 0. Hence it is a contradiction.

Therefore, the only solution to this polynomial system is (a1, · · · , ad) = (0, · · · , 0).

B There Is No Nonzero Solution For Polynomial System (E2)

Here we will show there is no nonzero solution (c0, c1, · · · , cd) satisfying the following
equations.

(E2)



x2
1 + y2

1 = c1,

x2
2 + y2

2 = c2,
...

x2
d + y2

d = cd,

x1x2 + y1y2 = cd,

x2x3 + y2y3 = c1,
...

xdx1 + ydy1 = cd−1,

xixj + yiyj = 0∀|i− j| ≥ 2.

(17)

For d ≥ 5, let’s assume there is some 1 ≤ i ≤ d such that xi = 0 and yi 6= 0.
It follows from xixj + yiyj = 0 for any |j − i| ≥ 2 that yj = 0 for any |j − i| ≥ 2. So,

yi+2 = yi+3 = 0.
Then, 0 6= x2

i + y2
i = xi+1xi+2 + yi+1yi+2 = xi+1xi+2. This implies xi+1, xi+2 6= 0.

From xi+1xi+3 + yi+1yi+3 = 0, we have xi+3 = 0. So, 0 6= x2
i+2 + y2

i+2 = xi+3xi+4 +
yi+3yi+4 = 0. This is a contradiction.

So, for any 1 ≤ i ≤ d, we have xi = yi = 0 or xiyi 6= 0.
Let’s look into the various situations.
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1. There is some i such that xi = yi = 0. Then we have x2
i−1 + y2

i−1 = 0. If xi−1 = yi−1 = 0,
we consider x2

i−2 + y2
i−2 = 0. By repeating this procedure, if all xj ’s,yj ’s are not all zero,

we will find some i′ such that yi′ = ixi′ or yi′ = −ixi′ and xi′+1 = yi′+1 = 0. We will
further have yi′+k = ±xi′+k for any k = 2, · · · , d− 1. This implies that (c1, · · · , cd) = 0.

2. All xi’s, yi’s are nonzero. For any fixed i, yj

xj
= −xi

yi
for any j = i+ 2, · · · , i+ d− 2. This

implies yk

xk
is a constant i or −i. This also implies (c1, · · · , cd) = 0.

C Proof of Lemma 3

I Lemma 3. dim(X ′) ≤
(
d+1

2
)2 − (

(
d+1

2
)
− 1) + 2(d− 1), where X ′ is the Zariski closure of

X ′.

The following technical lemmas will be needed.

I Lemma 4 ([20]). If Z1 and Z2 are both irreducible varieties over C, and φ : Z1 → Z2 is a
dominant morphism, then dim(Z2) ≤ dim(Z1). Here, dominant means Φ(Z1) is dense in Z2.

I Lemma 5 ([20]). If Z1 and Z2 are both varieties over C, and φ : Z1 → Z2 is a morphism,
then dim(Z1) ≤ dim(Z2) + max

z∈Z2
dim(φ−1(z)).

Lemma 4 and Lemma 5 establish a connection between the dimensions of domain and
codomain of a variety morphism.

Proof. We have a morphism F : GL(∨2Cd) × P(d+1
2 )−1 → P(d+1

2 )−1 which is just the left
action of GL(∨2Cd) on P(d+1

2 )−1, defined by F (g, [w]) = [g · w].
We let y0 = (1, 0, · · · , 0) be a row vector with

(
d+1

2
)
entries, and for any given y1,

y2 ∈ P(d+1
2 )−1, we choose proper g1 and g2 ∈ GL(∨2Cd), such that [g1 · y0] = [y1] and

[g2 · y0] = [y2]. Then we have

[g · y2] = [y1] ⇐⇒ [gg2 · y0] = [gg1 · y0] ⇐⇒ [g−1
1 gg2 · y0] = [y0]. (18)

From the above observations, F has the following property: for any y1, y2 ∈ P(d+1
2 )−1,

F−1(y2) ∩ {GL(∨2Cd) × {y1}} ∼= {
(
z1 α

0 g′

)
: z1 ∈ C\{0}, g′ ∈ GL(

(
d+1

2
)
− 1), α ∈

C(d+1
2 )−1 is a row vector.}. Hence dim(F−1(y2)∩GL(∨2Cd)× {y1}) =

(
d+1

2
)2− (

(
d+1

2
)
− 1).

Let P1, P2 be projections of GL(∨2Cd)× P(d+1
2 )−1 to GL(∨2Cd), P(d+1

2 )−1 respectively.
Now we only look at GL(∨2Cd)× Λ ⊆ GL(∨2Cd)× P(d+1

2 )−1, to get F : GL(∨2Cd)× Λ→
P(d+1

2 )−1. Then we have a characterization of X ′: X ′ = P1F
−1(Λ). In fact

g ∈ X ′

⇐⇒ g(Λ) ∩ Λ 6= ∅
⇐⇒ ∃z1, z2 ∈ Λ, s.t.g(z1) = z2

⇐⇒ ∃z1, z2 ∈ Λ, s.t.(g, z1) ∈ F−1(z2)
⇐⇒ ∃z2 ∈ Λ, s.t.g ∈ P1F

−1(z2)
⇐⇒ g ∈ P1F

−1(Λ).

So X ′ ⊆ GL(∨2Cd) is the Zariski closure of X ′, which is also an algebraic variety.
Next, we assert that P1 : F−1(Λ)→ X ′ is a dominant morphism.
Furthermore, consider Ψ : F−1(Λ)→ Λ× Λ given by Ψ(g, [z]) = ([z], [g · z]).
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For ∀z1 ∈ Λ, z2 ∈ Λ, we have Ψ−1(z1, z2) = (g2Tg
−1
1 , z1), where T = {

(
z0 α

0 g′

)
:

z0 ∈ C\{0}, g′ ∈ GL(
(
d+1

2
)
− 1), α ∈ C(d+1

2 )−1 is a row vector}, and g1, g2 ∈ GL(∨2Cd), s.t.
g1(y0) = z1, g2(y0) = z2. So this is a dominant morphism. Then we obtain

dim(F−1(Λ)) ≤dim(T ) + dim(Λ× Λ)

=
(
d+ 1

2

)2
− (
(
d+ 1

2

)
− 1) + dim(Λ) + dim(Λ).

It is required in Lemma 4 that varieties Z1 and Z2 be irreducible. Actually, this condition
can be weakened. Lemma 4 is still true for the more general case that Z1 and Z2 are closed
subsets of irreducible varieties[8]. Through this approach, we can fill out the gap and apply
this lemma without danger of confusion. Indeed, the irreduciblity of Z1 and Z2 really holds,
but verification of this is not easy.

Then from Lemma 4 and Lemma 5, we will have

dim(X ′) ≤dim(F−1(Λ))

≤
(
d+ 1

2

)2
− (
(
d+ 1

2

)
− 1) + dim(Λ) + dim(Λ)

=
(
d+ 1

2

)2
− (
(
d+ 1

2

)
− 1) + 2(d− 1).

J

TQC’13



Easy and Hard Functions for the Boolean Hidden
Shift Problem
Andrew M. Childs1, Robin Kothari2, Maris Ozols3(1,4), and
Martin Roetteler4

1 Department of Combinatorics & Optimization and
Institute for Quantum Computing, University of Waterloo
200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
amchilds@uwaterloo.ca

2 David R. Cheriton School of Computer Science and
Institute for Quantum Computing, University of Waterloo
200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
rkothari@uwaterloo.ca

3 IBM TJ Watson Research Center
1101 Kitchawan Road, Yorktown Heights, NY 10598, USA
marozols@yahoo.com

4 NEC Laboratories America
4 Independence Way, Suite 200, Princeton, NJ 08540, USA
mroetteler@nec-labs.com

Abstract
We study the quantum query complexity of the Boolean hidden shift problem. Given oracle
access to f(x + s) for a known Boolean function f , the task is to determine the n-bit string s.
The quantum query complexity of this problem depends strongly on f . We demonstrate that the
easiest instances of this problem correspond to bent functions, in the sense that an exact one-
query algorithm exists if and only if the function is bent. We partially characterize the hardest
instances, which include delta functions. Moreover, we show that the problem is easy for random
functions, since two queries suffice. Our algorithm for random functions is based on performing
the pretty good measurement on several copies of a certain state; its analysis relies on the Fourier
transform. We also use this approach to improve the quantum rejection sampling approach to
the Boolean hidden shift problem.
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1 Introduction

Many computational problems for which quantum algorithms can achieve superpolynomial
speedup over the best known classical algorithms are related to the hidden subgroup problem
(see for example [1]).

I Problem 1 (Hidden subgroup problem). For any finite group G, say that a function
f : G → X hides a subgroup H of G if it is constant on cosets of H in G and distinct on
different cosets. Given oracle access to such an f , find a generating set for H.
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Two early examples of algorithms for hidden subgroup problems are the Deutsch–Jozsa
algorithm [2] and Simon’s algorithm [3]. Inspired by the latter, Shor discovered efficient
quantum algorithms for factoring integers and computing discrete logarithms [4]. Kitaev
subsequently introduced the Abelian stabilizer problem and derived an efficient quantum
algorithm for it that includes Shor’s factoring and discrete logarithm algorithms as special
cases [5]. Eventually it was observed that all of the above algorithms solve special instances
of the hidden subgroup problem [6, 7, 8].

This early success created significant interest in studying various instances of the hidden
subgroup problem and led to discovery of many other quantum algorithms. For example,
period finding over the reals was used by Hallgren to construct an efficient quantum algorithm
for solving Pell’s equation [9]. Moreover, the hidden subgroup problem over symmetric and
dihedral groups are related to the graph isomorphism problem [10, 11, 12, 13, 14] and certain
lattice problems [15], respectively. The possibility of efficient quantum algorithms for these
problems remains a major open question. Kuperberg has provided a subexponential-time
quantum algorithm for the dihedral subgroup problem [16, 17, 18], which has been used to
construct elliptic curve isogenies in quantum subexponential time [19].

The hidden shift problem (also known as the hidden translation problem) is a natural
variant of the hidden subgroup problem.

I Problem 2 (Hidden shift problem). Let G be a finite group. Given oracle access to functions
f0, f1 : G→ X with the promise that f0(x) = f1(x · s) for some s ∈ G, determine s.

If G is Abelian and f0 is injective, this problem is equivalent to the hidden subgroup
problem in the semidirect product group Go Z2, where the group operation is defined by
(x1, b1) · (x2, b2) :=

(
x1 · x(−1)b1

2 , b1 + b2
)
and the hiding function f : Go Z2 → X is defined

as f [(x, b)] := fb(x). One can check that f is constant on cosets of H := 〈(s, 1)〉 and that
injectivity of f0 implies that f is distinct on different cosets. Thus, f hides the subgroup H
in Go Z2.

Notice that if G = Zd then G o Z2 is the dihedral group. Ettinger and Høyer [20]
showed that the dihedral hidden subgroup problem reduces to the special case of a subgroup
〈(s, 1)〉. Thus the hidden shift problem in Zd (with f0 injective) is equivalent to the dihedral
hidden subgroup problem, motivating further study of the hidden shift problem for various
groups [21, 22, 23, 24, 25, 26].

While the case where f0 is injective is simply related to the hidden subgroup problem,
one can also consider the hidden shift problem without this promise. For example, van Dam,
Hallgren, and Ip [21] gave an efficient quantum algorithm to solve the shifted Legendre symbol
problem, a non-injective hidden shift problem. Their result breaks a proposed pseudorandom
function [27], showing the potential for cryptographic applications of hidden shift problems.
Work on hidden shift problems can also inspire new algorithmic techniques, such as quantum
rejection sampling [28]. Moreover, negative results could have applications to designing
classical cryptosystems that are secure against quantum attacks [15].

For the rest of the paper we restrict our attention to the Boolean hidden shift problem,
in which the hiding function has the form f0 : Zn2 → Z2 for some integer n ≥ 1. For this
problem (with n > 1), f0 is necessarily non-injective. This problem has previously been
studied in [29, 30, 31, 28, 32].

Notice that to determine the hidden shift of an injective function f0, it suffices to find x0
and x1 such that f0(x0) = f1(x1). However, this does not hold in the non-injective case, so
it is nontrivial to verify a candidate hidden shift (see [28, Appendix B]). In fact, sometimes
the hidden shift cannot be uniquely determined in principle (see Sect. D.1). On the other
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hand, by considering functions with codomain Z2, we have more structure than in the hidden
subgroup problem or the injective hidden shift problem, where the codomain is arbitrary.
We exploit this structure by encoding the values of the function as phases and using the
Fourier transform.

More precisely, the main problem studied in this paper, sometimes denoted BHSPf , is
as follows.

I Problem 3 (Boolean hidden shift problem). Given a complete description of a function
f : Zn2 → Z2 and access to an oracle for the shifted function fs(x) := f(x+ s), determine the
hidden shift s ∈ Zn2 .

Note that in degenerate cases, when the oracle does not contain enough information to
completely recover the hidden shift, no algorithm can succeed with certainty.

Let us highlight the main differences between the above problem and other types of
hidden shift problem. In the Boolean hidden shift problem,

the function f is not injective, and
we are given a complete description of the unshifted function f instead of having only
oracle access to f .

Moreover, we are interested only in the query complexity of the problem and do not consider
its time complexity. This means that we can pre-process the description of f (which may be
exponentially large) at no cost before we start querying the oracle.

This problem has been considered previously, e.g., by [28]. Note that some prior work
does not give complete description of f but only oracle access to it [29, 30, 31, 32] (and in
some cases [30] also gives oracle access also to f̃ , the dual bent function of f).

To address this problem on a quantum computer, we use an oracle that computes the
shifted function in the phase. Such an oracle can be implemented using only one query to an
oracle that computes the function in a register.

I Definition 1. The quantum phase oracle is Ofs
: |x〉 7→ (−1)f(x+s)|x〉.

More generally, one can use a controlled phase oracle Ōfs
: |b, x〉 7→ (−1)bf(x+s)|b, x〉 for

b ∈ {0, 1}, which is equivalent to an oracle that computes the function in the first register up
to a Hadamard transform. Some of our algorithms do not make use of this freedom, although
our lower bounds always take it into account.

Ultimately, we would like to characterize the classical and quantum query complexities
of the hidden shift problem for any Boolean function (or more generally, for any function
f : Znd → Zd). While we do not resolve this question completely, we make progress by
providing a new quantum query algorithm (see Sect. 4) and improving an existing one (see
Sect. 5). However, it remains an open problem to better understand both the classical and
quantum query complexities of the BHSP for general functions.

While general functions are difficult to handle, the quantum query complexity of the
hidden shift problem is known for two extreme classes of Boolean functions:

If f is a bent function, i.e., it has a “flat” Fourier spectrum (see Sect. 3.1), then one
quantum query suffices to solve the problem exactly [30].
If f is a delta function, i.e., f(x) := δx,x0 for some x0 ∈ Zn2 , then the hidden shift problem
for f is equivalent to unstructured search—finding x0 + s among the 2n elements of
Zn2—so the quantum query complexity is Θ(

√
2n) [33, 34].

Intuitively, other Boolean functions should lie somewhere between these two extreme cases.
In this paper, we give formal evidence for this: we show that the problem can be solved
exactly with one query only if f is bent, and we show that it can be solved for any function
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with O(
√

2n) queries, with a lower bound of Ω(
√

2n) only if the truth table of f has
Hamming weight Θ(1) or Θ(2n). This is similar to the weighing matrix problem considered
by van Dam [35], which also interpolates between two extreme cases: the Bernstein-Vazirani
problem [36] and Grover search [33].

Aside from delta and bent functions, the Boolean hidden shift problem has previously
been considered for several other families of functions. Boolean functions that are quadratic
forms or are close to being quadratic are studied in [29]. Random Boolean functions have
been considered in [31, 32]. Finally, [28] uses quantum rejection sampling to solve the BHSP
for any function, although its performance in general is not well understood.

Apart from algorithms designed specifically for the BHSP, there are generic classical and
quantum algorithms for the BHSP derived from learning theory. In particular, the BHSP
can be viewed as an instantiation of the problem of exact learning through membership
queries. The resulting algorithms are optimal for classical and quantum query complexity up
to polynomial factors in n. More precisely, for any learning problem, Servedio and Gortler
define a combinatorial parameter γ [37]. For the problem BHSPf , we denote the parameter
as γf . From their results it follows that the classical query complexity of BHSPf is lower
bounded by Ω(n) and Ω(1/γf ) and upper bounded by O(n/γf ). For quantum algorithms,
they show a lower bound of Ω(1/√γf ). Atıcı and Servedio [38] later showed an upper bound
of O(n logn/√γf ) queries.

The rest of this paper is organized as follows. In Sect. 2 we briefly review some basic
Fourier analysis to establish notation. Next, in Sect. 3 we explore the extreme cases of the
BHSP. In Sect. 4 we introduce a new approach to the BHSP based on the pretty good
measurement. We analyze its performance for delta, bent, and random Boolean functions in
Sect. 4.3. In Sect. 5 we propose an alternative method for boosting the success probability of
the quantum rejection sampling algorithm from [28]. Finally, Sect. 6 presents conclusions
and open questions.

This paper has several appendices. In Appendix A we show that the easy instances of
the BHSP correspond to bent functions. In Appendix B, we show that with one quantum
query we can succeed on a constant fraction of all functions, whereas in Appendix C we
prove that two quantum queries suffice to solve the BHSP for random functions. Finally, in
Appendix D we analyze the structure of zero Fourier coefficients of Boolean functions.

2 Fourier analysis

Our main tool is Fourier analysis of Boolean functions [39]. Here we state the basic definitions
and properties of the Fourier transform and convolution. Readers who are familiar with the
topic might skip this section, except for Definition 6.

I Definition 2. The Hadamard gate is H := 1√
2

( 1 1
1 −1

)
.

I Definition 3. The Fourier transform of a function F : Zn2 → R is a function F̂ : Zn2 → R
defined as F̂ (w) := 〈w|H⊗n|F 〉 where |F 〉 :=

∑
x∈Zn

2
F (x)|x〉. Here F̂ (w) is called the

Fourier coefficient of F at w ∈ Zn2 . Explicitly, F̂ (w) = 1√
2n

∑
x∈Zn

2
(−1)w·xF (x) where

x · y :=
∑n
i=1 xiyi. The set {F̂ (w) : w ∈ Zn2} is called the Fourier spectrum of F .

To define the Fourier transform of a Boolean function f : Zn2 → Z2, we identify f with a
real-valued function F : Zn2 → R in a canonical way: F (x) := (−1)f(x)/

√
2n. Note that F is

normalized:
∑
x∈Zn

2
|F (x)|2 = 1. Now we can abuse Definition 3 as follows:

I Definition 4. The Fourier transform of f : Zn2 → Z2 is F̂ (w) = 1
2n

∑
x∈Zn

2
(−1)w·x+f(x).
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To avoid confusion, we use lower case letters for Z2-valued functions and capital letters for
R-valued functions.

I Definition 5. The convolution of functions F,G : Zn2 → R is a function (F ∗G) : Zn2 → R
defined as (F ∗ G)(x) :=

∑
y∈Zn

2
F (y)G(x − y). The t-fold convolution of F : Zn2 → R is a

function F ∗t : Zn2 → R defined as

F ∗t(w) := (F ∗ · · · ∗ F︸ ︷︷ ︸
t

)(w) =
∑

y1,...,yt−1∈Zn
2

F (y1) · · ·F (yt−1)F
(
w − (y1 + · · ·+ yt−1)

)
. (1)

I Fact. Let F,G,H : Zn2 → R denote arbitrary functions. The Fourier transform and
convolution have the following basic properties:
1. The Fourier transform is linear: F̂ +G = F̂ + Ĝ.
2. The Fourier transform is self-inverse: ˆ̂

F = F .
3. Since H⊗n is unitary, the Plancherel identity

∑
w∈Zn

2
|F̂ (w)|2 =

∑
x∈Zn

2
|F (x)|2 holds.

4. Convolution is commutative (F ∗G = G ∗F ) and associative ((F ∗G) ∗H = F ∗ (G ∗H)).
5. The Fourier transform and convolution are related through the following identities:

(F̂ ∗ Ĝ)/
√

2n = F̂G and (F̂ ∗G)/
√

2n = F̂ Ĝ, where FG : Zn2 → C is the entry-wise
product of functions F and G: (FG)(x) := F (x)G(x).

6. By induction, the t-fold convolution satisfies the identity
[
F̂ /
√

2n
]∗t = F̂ t/

√
2n.

The following t-fold generalization of the Fourier spectrum plays a key role:

I Definition 6. For t ≥ 1, the t-fold Fourier coefficient of f : Zn2 → Z2 at w ∈ Zn2 is
F t(w) :=

√[
F̂ 2
]∗t(w). In particular, for t = 1 we have F1(w) = |F̂ (w)|.

We can express F t(w) in many equivalent ways using the identities listed above:

[
F t(w)

]2 =
[
F̂ 2]∗t(w) =

[
1√
2n
(
F̂ ∗ F

)]∗t
(w) = 1√

2n
̂(F ∗ F )t (w). (2)

3 Characterization of extreme cases

In this section we explore the set of functions for which the quantum query complexity of the
BHSP is extreme. Recall that the BHSP can be solved with one query for bent functions
and with Θ(

√
2n) queries for delta functions. Here we prove that BHSPf can be solved

exactly with one query only if f is bent, and with O(
√

2n) queries (with bounded error) for
any f .

3.1 Easy functions are bent
In general, the quantum query complexity of the BHSP for an arbitrary function is unknown.
However, the problem becomes particularly easy for bent functions, where a single query
suffices to solve the problem exactly [30]. In fact, bent functions are the only functions with
this property, as we show here.

Bent functions can be characterized in many equivalent ways [40, 41]. The standard
definition is that bent functions have a “flat” Fourier spectrum:

I Definition 7. A Boolean function f : Zn2 → Z2 is bent if all its Fourier coefficients F̂ (w)
(see Definition 4) have the same absolute value: |F̂ (w)| = 1/

√
2n for all w ∈ Zn2 .
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While many examples of bent functions have been constructed (e.g., see [42, 43, 44]),
no complete classification is known. As an example, the inner product of two n-bit strings
(modulo two) is a bent function [41, 42]: IPn(x1, . . . , xn, y1, . . . , yn) :=

∑n
i=1 xiyi.

We make a few simple observations about bent functions. Recall from Sect. 2 that the
Fourier spectrum of f is normalized as

∑
w∈Zn

2
|F̂ (w)|2 = 1, so the spectrum is “flat” only

when |F̂ (w)| = 1/
√

2n for all w ∈ Zn2 . Recall from Definition 4 that F̂ (w) is always an integer
multiple of 1/2n. Thus an n-variable function can only be bent if n is even [43, 42]. Moreover,
from |F̂ (0)| = 1/

√
2n we get that |

∑
w∈Zn

2
(−1)f(x)| =

√
2n, so a bent function f is close

to being balanced: |f | = (2n ±
√

2n)/2 where |f | := |{x ∈ Zn2 : f(x) = 1}| is the Hamming
weight of f .

Our main result regarding bent functions is as follows.

I Theorem 8. Let f : Zn2 → Z2 be a Boolean function with n ≥ 2. A quantum algorithm can
solve BHSPf exactly with a single query to Ofs

if and only if f is bent.

The proof is based on a characterization of an exact one-query quantum algorithm using
a system of linear equations. This system can be analyzed in terms of the autocorrelation of
f , which in turn characterizes whether f is bent. The proof appears in Appendix A.

3.2 Hard functions
In this section we study hard instances of the BHSP. First, we observe that the quantum
query complexity of solving BHSPf for any function f is O(

√
2n).

I Theorem 9. For any f : Zn2 → Z2, the bounded-error quantum query complexity of BHSPf

is O(
√

2n).

If we view f as a 2n-bit string indexed by x ∈ Zn2 , this is a special case of the oracle
identification problem considered by Ambainis et al. [45, Theorem 3], who show the following.

I Theorem 10 (Oracle Identification Problem). Given oracle access to an unknown N-bit
string with the promise that it is one of N known strings, the bounded-error quantum query
complexity of identifying the unknown string is O(

√
N).

In the BHSP, we have N := 2n. By Theorem 9, the hardest functions are those with
query complexity Ω(

√
N). We know that delta functions have this query complexity, but

are there any other functions that are as hard? The delta functions have |f | = 1 (recall
that |f | denotes the Hamming weight of f). Next we show that as |f | increases, the query
complexity strictly decreases at first, until |f | = Θ(

√
N). For example, functions with |f | = 2

have strictly smaller query complexity than the delta functions. However, as we approach
|f | = Ω(N), our upper bound is Θ(

√
N) again. Without loss of generality, we assume that

|f | ≤ N/2; otherwise we can simply negate the function to obtain a function with |f | ≤ N/2
that has exactly the same query complexity. Formally, we show the following refinement of
Theorem 9.

I Theorem 11. For any f : Zn2 → Z2 with 1 ≤ |f | ≤ N/2, the bounded-error quantum query
complexity of BHSPf is at most π

4
√
N/|f |+O(

√
|f |).

Proof. The algorithm has two parts. First we look for a “1” in the bit string contained in
the oracle, i.e., an x such that f(x) = 1. This can be done by a variant of Grover’s algorithm
that finds a “1” in a string of length N using at most π

4
√
N/|f | queries [46]. Now we have

an x such that fs(x) = 1 for some unknown s. Note that there can be at most |f | shifts s
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with this property, because each corresponds to a distinct solution to f(x+ s) = 1 and there
are only |f | solutions to this equation.

We are now left with |f | candidates for the black-box function. Viewing this as an oracle
identification problem, we have oracle access to an N -bit string that could be one of |f |
possible candidates. Although the string has length N , there are only |f | potential candidates,
so intuitively it seems like we should be able to restrict the strings to length |f | and apply
Theorem 10 to obtain the desired result.

Formally, it can be shown that given k ≥ 2 distinct Boolean strings of length N , there
is a subset of indices, S, of size at most k − 1, such that all the strings are distinct when
restricted to S. We show this by induction. The base case is easy: we can choose any index
that differentiates the two distinct strings. Now say we have m distinct strings y1, y2, . . . , ym
and a subset of indices S of size at most m− 1, such that the m strings are distinct on S.
We want to add another string ym+1 and increase the size of S by at most 1. If ym+1 differs
with y1, y2, . . . , ym on S, then we do not need to add any more indices to S and we are done.
If ym+1 agrees with one of y1, y2, . . . , ym on all of S, first note that it can only agree with
one such string; to differentiate between these two, we add any index at which they differ to
S, which must exist since they are distinct. J

This shows that a function can be hard—i.e., can have query complexity Θ(
√
N)—only if

|f | is O(1) or Θ(N).
Note that there do exist hard functions with |f | = Θ(N). For example, consider the

following function: f(x) = 1 if the first bit of x is 1 or if x is the all-zero string. This
essentially embeds a delta function on the last n− 1 bits, and thus requires Θ(

√
N) queries.

This function has |f | = N/2 + 1. However, there are also easy functions with |f | = Θ(N),
namely the bent functions. Thus the Hamming weight does not completely characterize the
hardness of the BHSP at high Hamming weight. However, it precisely characterizes the
quantum query complexity at low Hamming weight:

I Theorem 12. For any f : Zn2 → Z2 with no undetectable shifts, the bounded-error quantum
query complexity of BHSPf is Ω(

√
N/|f |).

This follows from a simple application of the quantum adversary argument, with the
adversary matrix taken to be the all ones matrix with zeroes on the diagonal. It also follows
from Theorem 4 of [45].

4 The PGM approach

We now present an approach to the Boolean hidden shift problem based on the pretty good
measurement (PGM) [47]. In particular, this approach shows that the Boolean hidden shift
problem for random functions has small query complexity (see Sect. 4.3.3).

The main idea of the PGM approach is as follows. We apply the oracle on the uniform
superposition and prepare t independent copies of the resulting state (see Sect. 4.1). Then
we use knowledge of the function f to perform the PGM in order to extract the hidden
shift s (see Sect. 4.2). A similar strategy was used to efficiently solve the hidden subgroup
problem for certain semidirect product groups, including the Heisenberg group [48], and was
subsequently applied to a hidden polynomial problem [49].

4.1 Performing t queries in parallel
In this section we describe a quantum circuit that prepares a state with w · s encoded in the
phase, where s is the hidden shift and w is the label of the corresponding standard basis
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t

1st stage 2nd stage

|0〉⊗n

|0〉⊗n

|0〉⊗n

|0〉⊗n

H⊗n H⊗n

H⊗n H⊗n

H⊗n H⊗n

H⊗n H⊗n

...
...

...

Ofs

Ofs

Ofs

Ofs

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . .
. . .

Figure 1 Quantum algorithm for preparing the t-fold Fourier sate |Φt(s)〉 in Eq. (8). The state
on any register at the end of the first stage is given in Eq. (4).

vector. We use this circuit t times in parallel, followed by a sequence of CNOTs, to prepare
a certain state |Φt(s)〉. In the next section we perform a PGM on these states for different
values of s.

4.1.1 Circuit

The circuit for preparing |Φt(s)〉 appears in Fig. 1. It consists of two stages. The first stage
prepares t identical copies of the same state by using one oracle call between two quantum
Fourier transforms on each register independently. Recall from Definition 1 that the oracle
acts on n qubits and encodes the function in the phase: Ofs

: |x〉 7→ (−1)f(x+s)|x〉. The
second stage entangles the states by applying a sequence of transversal controlled-NOT gates
acting as |x〉|y〉 7→ |x〉|y + x〉 for x, y ∈ Zn2 .

Note that all unitary post-processing after the oracle queries can be omitted since it does
not affect the distinguishability of the states. We include it only to simplify the analysis.

4.1.2 Analysis

During the first stage of the circuit, the first register evolves under H⊗nOfsH
⊗n (see Fig. 1):

|0〉⊗n 7→ 1√
2n

∑
x∈Zn

2

|x〉 7→ 1√
2n

∑
x∈Zn

2

(−1)f(x+s)|x〉 7→ 1
2n

∑
x,y∈Zn

2

(−1)f(x+s)+x·y|y〉. (3)

We can rewrite the resulting state as follows:

∑
y∈Zn

2

(−1)s·y
(

1
2n

∑
x∈Zn

2

(−1)f(x)+x·y

)
|y〉 =

∑
y∈Zn

2

(−1)s·yF̂ (y)|y〉. (4)

The overall state after the first stage is just the t-fold tensor product of the above state:

∑
y1,...,yt∈Zn

2

(−1)s·(y1+···+yt)
t⊗
i=1

F̂ (yi)|yi〉. (5)
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In the second stage of the algorithm, the controlled-NOT gates transform this state into

∑
y1,...,yt∈Zn

2

(−1)s·(y1+···+yt)

[
t−1⊗
i=1

F̂ (yi)|yi〉
]
F̂ (yt)|y1 + · · ·+ yt〉 (6)

=
∑

y1,...,yt∈Zn
2

(−1)s·yt

[
t−1⊗
i=1

F̂ (yi)|yi〉
]
F̂
(
yt − (y1 + · · ·+ yt−1)

)
|yt〉. (7)

We can rewrite this state as

|Φt(s)〉 :=
∑
w∈Zn

2

(−1)s·w|F tw〉|w〉, (8)

where the non-normalized state |F tw〉 on (t− 1)n qubits is given by

|F tw〉 :=
∑

y1,...,yt−1∈Zn
2

F̂ (y1) · · · F̂ (yt−1)F̂
(
w − (y1 + · · ·+ yt−1)

)
|y1〉 · · · |yt−1〉. (9)

Its norm is just the t-fold Fourier coefficient: ‖|F tw〉‖ = F t(w) (see Definition 6).

4.2 The pretty good measurement
Let {ρ(t)

s : s ∈ Zn2} be a set of mixed states where ρ(t)
s is given with probability ps. The pretty

good measurement (PGM) [47] for discriminating these states is a POVM with operators
{Es : s ∈ Zn2} ∪ {E∗} where

Es := E−1/2 psρ
(t)
s E−1/2, E :=

∑
s∈Zn

2

psρ
(t)
s , E∗ := I −

∑
s∈Zn

2

Es. (10)

In our case, ρ(t)
s := |Φt(s)〉〈Φt(s)| and ps := 1/2n where |Φt(s)〉 is defined in Eq. (8).

To find the operators Es, we compute

E =
∑
s∈Zn

2

1
2n

∑
w,w′∈Zn

2

(−1)(w+w′)·s|F tw〉〈F tw′ | ⊗ |w〉〈w′| (11)

=
∑
w∈Zn

2

‖|F tw〉‖
2 · |F

t
w〉〈F tw|
‖|F tw〉‖

2 ⊗ |w〉〈w|. (12)

From now on we use the convention that terms with ‖|F tw〉‖ = 0 are omitted from all sums.
As E is a sum of mutually orthogonal rank-1 operators with eigenvalues ‖|F tw〉‖

2, we find

E−1/2 =
∑
w∈Zn

2

1
‖|F tw〉‖

· |F
t
w〉〈F tw|
‖|F tw〉‖

2 ⊗ |w〉〈w|. (13)

Note that Es = |Es〉〈Es| where |Es〉 := E−1/2√ps|Φt(s)〉. We can express |Es〉 as follows:

|Es〉 =
(∑
w∈Zn

2

|F tw〉〈F tw|
‖|F tw〉‖

3 ⊗ |w〉〈w|

)
1√
2n

(∑
w∈Zn

2

(−1)w·s|F tw〉|w〉
)

(14)

= 1√
2n

∑
w∈Zn

2

(−1)w·s |F
t
w〉

‖|F tw〉‖
⊗ |w〉. (15)
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Notice that the vectors |Es〉 are orthonormal, so the PGM is just an orthogonal measurement
in this basis (with another outcome corresponding to the orthogonal complement). Therefore
the measurement is unambiguous: if it outputs a value of s (rather than the inconclusive
outcome ∗) then it is definitely correct. The corresponding zero-error algorithm can be
summarized as follows:

PGM(f, t)
1. Prepare |Φt(s)〉 using the circuit shown in Fig. 1.
2. Recover s by performing an orthogonal measurement

with projectors {|Es〉〈Es| : s ∈ Zn2} ∪ {E∗}.

I Lemma 13. The t-query algorithm PGM(f, t) solves BHSPf with success probability

pf (t) :=
(

1√
2n

∑
w∈Zn

2

F t(w)
)2

, (16)

where F t(w) = ‖|F tw〉‖ denotes the t-fold Fourier spectrum of f : Zn2 → Z2 (see Definition 6).

Proof. Recall that the PGM for discriminating the states |Φt(s)〉 =
∑
w∈Zn

2
(−1)s·w|F tw〉|w〉

from Eq. (8) is an orthogonal measurement on |Es〉 (defined in Eq. (15)) and the orthogonal
complement. Thus, given the state |Φt(s)〉, the success probability to recover the hidden
shift s correctly is

∣∣〈Es|Φt(s)〉
∣∣2. This is equal to the expression in Eq. (16). Moreover, it

does not depend on s, so pf (t) is the success probability even if s is chosen adversarially as
in the definition of BHSPf (Problem 3). Note that the convention of omitting terms with
‖|F tw〉‖ = 0 is consistent since such terms do not appear in Eq. (16). J

We can use Eq. (2) to write the success probability as

pf (t) = 1
2n

(∑
w∈Zn

2

√
1√
2n

̂(F ∗ F )t (w)
)2

. (17)

Recall from Sect. 2 that F1(w) = |F̂ (w)|, so for t = 1 we have

pf (1) = 1
2n

(∑
w∈Zn

2

|F̂ (w)|
)2

. (18)

4.3 Performance analysis
In this section we analyze the performance of the PGM algorithm described above on several
different classes of Boolean functions. For delta functions our algorithm performs worse than
Grover’s algorithm. On the other hand, for bent and random functions it needs only one
and two queries, respectively.

4.3.1 Delta functions
Let us check how our algorithm performs when f is a delta function, i.e., f(x) = δx,x0 for
some x0 ∈ Zn2 . A simple calculation using the Fourier spectrum of a delta function shows
that the success probability of PGM(f, t) is

pf (t) = 1
22n

(2n − 1)

√
1−

(
2n − 4

2n

)t
+

√
1 + (2n − 1)

(
2n − 4

2n

)t2

. (19)
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Unfortunately, if we choose t =
√

2n, then the success probability goes to 0 as n→∞. In
fact, the same happens even if t = cn for any c < 2. Only if we take t = 2n does the success
probability approach a positive constant 1− 1/e4 ≈ 0.98 as n→∞. This means that the
PGM algorithm does not give us the quadratic speedup of Grover’s algorithm. (Indeed, this
follows from the more general fact that quantum speedup for unstructured search cannot be
parallelized [50].) Thus the PGM algorithm is not optimal in general.

4.3.2 Bent functions
Let f be a Bent function. Recall from Sect. 3.1 that its Fourier spectrum is “flat”, i.e.,
|F̂ (w)| = 1/

√
2n for all w ∈ Zn2 . In this case, Eq. (18) gives pf (1) = 1, so we can find the

hidden shift with certainty by measuring |Φ1(s)〉 with the pretty good measurement (recall
that preparing |Φ1(s)〉 requires only one query to Ofs), reproducing a result of Rötteler.

I Theorem 14 ([30]). If f is a bent function then a quantum algorithm can solve BHSPf

exactly using a single query to Ofs .

4.3.3 Random functions
For random Boolean functions, our algorithm performs almost as well as for bent functions.
For random f , we are only able to show that the expected success probability of the one-query
algorithm PGM(f, 1) is at least 2/π+o(1) for large n (see Theorem 19 in Appendix B), so the
algorithm only succeeds with constant probability, which cannot easily be boosted. However,
the expected success probability of the two-query algorithm PGM(f, 2) is exponentially
close to 1.

I Theorem 15. Let f be an n-argument Boolean function chosen uniformly at random and
suppose that a hidden shift for f is chosen adversarially. Then PGM(f, 2) solves BHSPf

with expected success probability p̄ ≥ 1− 3
64 · 2

−n.

The proof uses the second moment method to lower bound the expected success probability.
We compute the variance of the 2-fold Fourier spectrum by relating it to the combinatorics
of pairings. The proof appears in Appendix C.

Theorem 15 implies that our algorithm can determine the hidden shift with near certainty
as n→∞. This is surprising since some functions, such as delta functions (see Sect. 3.2),
require Ω(

√
2n) queries. Furthermore, a randomly chosen function could have an undetectable

shift (see Sect. D.1), in which case it is not possible in principle to completely determine an
adversarially chosen shift with success probability more than 1/2.

At first glance, Theorem 15 may appear to be a strengthening of the main result of
[31], which shows that O(n) queries suffice to solve a version of the Boolean hidden shift
problem for a random function. However, while our approach uses dramatically fewer queries,
the results are not directly comparable: Ref. [31] considers a weaker model in which the
unshifted function is given by an oracle rather than being known explicitly. In particular,
while the result of [31] gives an average-case exponential separation between classical and
quantum query complexity, such a result is not possible in the model where the function is
known explicitly. In this model, there cannot be a super-polynomial speedup for quantum
computation. This follows from general results from learning theory discussed at the end of
Sect. 1. In particular, it follows that if the quantum query complexity of the problem for
a function f is Q, then the deterministic classical query complexity of the problem for the
same function is at most O(nQ2) [37].
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5 Quantum rejection sampling with parallel queries

In this section we explain a hybrid approach that combines the Quantum Rejection Sampling
(QRS) algorithm for the BHSP [28] with the PGM approach. The resulting algorithm does
not require an extra amplification step for boosting the success probability, unlike the original
QRS algorithm.

5.1 Original quantum rejection sampling approach
I Theorem 16 ([28]). For a given Boolean function f : Zn2 → Z2, define unit vectors
π,σ ∈ R2n as πw := |F̂ (w)| and σw := 1/

√
2n for w ∈ Zn2 . Moreover, let

pmin := (σT · π)2 = 1
2n

(∑
w∈Zn

2

|F̂ (w)|
)2
, pmax :=

∑
k : πk>0

σ2
k = 1

2n |{w
: F̂ (w) 6= 0}|. (20)

For any desired success probability p ∈ [pmin, pmax], the quantum rejection sampling algorithm
solves BHSPf with O(1/‖εpπ→σ‖) queries, where the “water-filling” vector εpπ→σ ∈ R2n is
defined in [28].

In particular, if pmax = 1 then the QRS algorithm can achieve any success probability
arbitrarily close to 1 with O

(
1/(
√

2nF̂min)
)
queries, where F̂min := minw|F̂ (w)|. However, if

F̂ (w) = 0 for some w, then from Eq. (20) we see that pmax < 1. In this case one needs an
additional amplification step to boost the success probability (a method based on SWAP
test was proposed in [28]). We show that this step can be avoided by using t parallel queries
in the original QRS algorithm for some t ≤ n.

5.2 Non-degenerate functions with almost vanishing spectrum
Before explaining our hybrid approach, let us verify that there exist non-trivial functions
with a large fraction of their Fourier spectrum equal to zero, so the issue discussed above
applies.

It is easy to construct degenerate functions with the desired property. For example, if a
function is shift-invariant, i.e., f(x + s) = f(x) for some s ∈ Zn2 , then at least half of the
Fourier spectrum of f is guaranteed to be zero. The same also happens if f(x+ s) = f(x) + 1
(see Lemma 24 in Sect. D.1). However, such examples are not interesting, since a shift-
invariant n-argument Boolean function is equivalent to an (n−1)-argument Boolean function
(see Sect. D.1 for more details).

Instead, we consider Boolean functions defined using decision trees. A decision tree is a
binary tree whose vertices are labeled by arguments of f and whose leaves contain the values
of f . An example of such tree and the rules for evaluating the corresponding function are
given in Fig. 2.

Without loss of generality, we can consider only decision trees where on each path from
the root to a leaf no argument appears more than once (otherwise some parts of the tree
would not be reachable). The length of a longest path from the root to a leaf is the height of
the tree. If a Boolean function is defined by a decision tree of height h, then all its Fourier
coefficients with Hamming weight larger than h are zero (see Lemma 25 in Sect. D.2). This
observation can be used to construct non-degenerate Boolean functions with almost vanishing
Fourier spectrum.

I Example. The 10-argument Boolean function f10 whose decision tree is shown in Fig. 2
has no shift invariance, yet 928 (out of 210 = 1024) of its Fourier coefficients are zero.
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Figure 2 Decision tree for a 10-argument Boolean function f10. To compute the value of the
function for given input x1, . . . , x10 ∈ Zn

2 , proceed down the tree starting from the root; move left
if the corresponding argument is equal to 0 or right if it is equal to 1. Once a leaf is reached, its
label is the value of the function for the given input. For example, f10(x1, . . . , x10) evaluates to zero
when x2 = x1 = x5 = x4 = x10 = 0, since the leftmost leaf has label zero. This tree has height five.

5.3 The t-fold Fourier spectrum as t increases
Let us now show how to deal with the zero Fourier coefficients. The main idea stems from
the following observation: if St := {w ∈ Zn2 : F t(w) 6= 0} then St+1 = St + S1 (see Prop. 26
in Sect. D.3). If S1 spans Zn2 , we can apply this recursively and eliminate all zeroes from
the t-fold Fourier spectrum F t. In particular, it suffices to take t ≤ n (see Lemma 27 in
Sect. D.3). For example, for f10 the fraction of non-zero values of F t for t = 1, 2, 3, 4 is 0.09,
0.61, 0.94, 1, respectively. In particular, F4 is non-zero everywhere.

5.4 Quantum rejection sampling with t-fold queries
We can use quantum rejection sampling with t queries in parallel to solve the BHSP. Suppose
we transform the t-fold Fourier state |Φt(s)〉 from Eq. (8) into the PGM basis vector |Es〉
defined in Eq. (15) using QRS. This corresponds to setting πw = F t(w) and σw = 1/

√
2n.

Since the circuit from Fig. 1 can be used to prepare |Φt(s)〉 with t queries, Theorem 16
still holds if |F̂ (w)| is replaced by F t(w) and the query complexity is multiplied by t. This
observation together with Lemma 27 implies that as long as f is not shift invariant, we
can recover the hidden shift s with success probability arbitrarily close to 1 using quantum
rejection sampling with some t ≤ n.

I Theorem 17. Let f : Zn2 → Z2 be a Boolean function and let p be sufficiently large.
Then BHSPf can be solved with success probability p using O(t/‖εpπ→σ‖) queries for some
t ∈ {1, . . . , n} where πw := F t(w), σw := 1/

√
2n, and the “water-filling” vector εpπ→σ ∈ R2n

is defined in [28].

6 Conclusions

A comparison of quantum query complexity bounds for solving the BHSP for different
classes of functions is given in Table 1. If the QRS algorithm works for random functions
with O(1) queries, then it is optimal up to constant factors in all three cases listed in the
table. However, from Sect. 5.1 we know that the basic QRS algorithm without amplification
performs poorly when f has many zero Fourier coefficients (which is the case, e.g., for the
decision trees considered in Sect. D.2). This suggests that the basic (unamplified) QRS
algorithm is likely not optimal in general.
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Table 1 Summary of quantum query complexity upper and lower bounds for BHSP. We do not
know the query complexity of the QRS algorithm for random functions.

Approach Functions Comments
delta bent random

PGM O(2n) 1 2 zero error
QRS [28] O(

√
2n) 1 ?

“Simon” [31] O(n
√

2n) O(n) O(n) zero error, black-box f okay
Learning theory [38] O(n log n

√
2n) O(n log n) O(n log n) optimal up to log factors ∀ f

Lower bounds: Ω(
√

2n) 1 1

The “Simon”-type approach due to [31] always has an overhead of a factor O(n), reflecting
the fact that at least n linearly independent equations are needed to solve a linear system
in n variables. (Note that this approach works in the weaker model where the unshifted
function is given by an oracle, so it still provides an upper bound when the function is known
explicitly.) The learning theory approach [38] also has logarithmic overhead. Finally, the
PGM approach performs very well in the easy cases, the bent and random functions, but
fails to provide any speedup for delta functions. As mentioned in Sect. 4.3.1, this can be
attributed to the fact that Grover’s algorithm is intrinsically sequential.

In summary, none of the algorithms listed in Table 1 is optimal. However, by combining
these algorithms and possibly adding some new ideas, one might obtain an algorithm that
is optimal for all Boolean functions. In particular, the QRS approach with t-fold queries
appears promising.

We conclude by mentioning some open questions regarding the Boolean hidden shift
problem:
1. Find a query-optimal quantum algorithm for general functions (recall that the learning

theory algorithm is only optimal up to logarithmic factors [37, 38]).
2. Identify natural classes of Boolean functions lying between the two extreme cases of bent

and delta functions (say, the decision trees considered in Sect. D.2) and characterize the
quantum query complexity of the BHSP for these functions.

3. Determine the number of queries required by the QRS algorithm for random functions.
4. What is the query complexity of verifying a given shift? (A quantum procedure with

one-sided error, based on the swap test, was given in [28].)
5. What is the quantum query complexity of extracting one bit of information about the

hidden shift?
6. What is the classical query complexity of the Boolean hidden shift problem?
7. Can we say anything non-trivial about the time complexity of the Boolean hidden shift

problem, either classically or quantumly?
8. Can the BHSP for random functions be solved with a single query? Our approach

based on the PGM only gives a lower bound on the expected success probability that
approaches 2/π for large n (see Theorem 19), whereas we require a success probability
that approaches 1 as n→∞. It might be fruitful to consider querying the oracle with
non-uniform amplitudes.

Finally, it might be interesting to consider the generalization of the Boolean hidden shift
problem to the case of functions f : Znd → Zd.
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A Converse for bent functions

The goal of this appendix is to prove Theorem 8. First we need an alternative characterization
of bent functions.

I Proposition 18. A Boolean function f is bent if and only if (F ∗ F )(x) = δx,0.

Proof. If (F ∗ F )(x) = δx,0, then using identities from Sect. 2, we find

F̂ 2(w) = 1√
2n

(F̂ ∗ F )(w) = 1
2n

∑
x∈Zn

2

(−1)w·x(F ∗ F )(x) = 1
2n (21)

so f is bent. Conversely, if f is bent then

(F ∗ F )(w) =
√

2n ̂̂F 2(w) =
∑
x∈Zn

2

(−1)w·xF̂ 2(x) =
∑
x∈Zn

2

(−1)w·x 1
2n = δw,0 (22)

and the result follows. J

I Theorem 8. Let f : Zn2 → Z2 be a Boolean function with n ≥ 2. A quantum algorithm can
solve BHSPf exactly with a single query to Ofs

if and only if f is bent.

Proof. The most general one-query algorithm for solving BHSPf using a controlled phase
oracle (or equivalently, an oracle that computes the function in a register) performs a query
on some superposition of all binary strings x ∈ Zn2 and an extra symbol “∅” that allows for
the possibility of not querying the oracle. Without loss of generality, the initial state is

α∅|∅〉+
∑
x∈Zn

2

αx|x〉 (23)

for some amplitudes α∅ ∈ C and αx ∈ C for x ∈ Zn2 such that |α∅|2 +
∑
x∈Zn

2
|αx|2 = 1. The

oracle acts trivially on |∅〉, so the state after the query is

|φs〉 := α∅|∅〉+
∑
x∈Zn

2

αx(−1)f(x+s)|x〉 (24)
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where s ∈ Zn2 is the hidden shift. For an exact algorithm, we must have

∀ s 6= s′ : 0 = 〈φs|φs′〉 = |α∅|2 +
∑
x∈Zn

2

|αx|2(−1)f(x+s)+f(x+s′). (25)

We can describe Eq. (25) as a linear system of equations. Define p∅ := |α∅|2 and let
p be a sub-normalized probability distribution on Zn2 defined by px := |αx|2. Let M be a
rectangular matrix with rows labeled by elements of A := {(s, s′) ∈ Zn2 × Zn2 : s 6= s′} and
columns labeled by x ∈ Zn2 , with entries

Mss′,x := (−1)f(x+s)+f(x+s′). (26)

Then Eq. (25) is equivalent to

Mp = −p∅u (27)

where u is the all-ones vector indexed by elements of A. In other words, there exists an exact
one-query quantum algorithm for solving BHSPf if and only if Eq. (27) holds for some p∅
and p that together form a probability distribution on {∅} ∪ Zn2 .

If f is bent, there is an exact one-query quantum algorithm corresponding to p∅ = 0 and
p = µ, the uniform distribution (i.e., µx := 1/2n for all x ∈ Zn2 ). Notice that the entries of
the vector Mµ are

(Mµ)ss′ = 1
2n

∑
x∈Zn

2

Mss′,x (28)

= 1
2n

∑
x∈Zn

2

(−1)f(x+s)+f(x+s′) (29)

= 1
2n

∑
x∈Zn

2

(−1)f(x)+f(x+s+s′) (30)

= (F ∗ F )(s+ s′). (31)

Prop. 18 implies that (F ∗ F )(x) = δx,0, so (Mp)ss′ = 0 for all s 6= s′. Since p∅ = 0, Eq. (27)
holds and the algorithm is exact.

To prove the converse, assume there is an exact one-query quantum algorithm that solves
BHSPf . Then Eq. (27) holds for some p∅ and p that form a probability distribution on
{∅} ∪ Zn2 .

First, we claim that without loss of generality, the probabilities px can be set equal for
all x ∈ Zn2 . More precisely, we set p̄ := (1 − p∅)µ and show that Eq. (27) still holds if we
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replace p by p̄. Note that 1− p∅ =
∑
y∈Zn

2
px+y for any x ∈ Zn2 , so

(Mp̄)ss′ = 1
2n

∑
x∈Zn

2

Mss′,x (1− p∅) (32)

= 1
2n

∑
x∈Zn

2

(−1)f(x+s)+f(x+s′)
∑
y∈Zn

2

px+y (33)

= 1
2n
∑
y∈Zn

2

∑
x∈Zn

2

(−1)f(x+y+s)+f(x+y+s′)px (34)

= 1
2n
∑
y∈Zn

2

∑
x∈Zn

2

M(y+s,y+s′),x px (35)

= 1
2n
∑
y∈Zn

2

(Mp)(y+s,y+s′) (36)

= −p∅ (37)

where the last equality follows since p is a solution of Eq. (27). We conclude that p̄ is also a
solution of Eq. (27), i.e.,

(1− p∅)Mµ = −p∅u. (38)

Recall from Eqs. (28) to (31) that (Mµ)ss′ = (F ∗F )(s+s′), which together with Eq. (38)
implies that (1− p∅)(F ∗ F )(s+ s′) = −p∅ for all s 6= s′. Clearly, there is no solution with
p∅ = 1. Thus we have

(F ∗ F )(w) = − p∅
1− p∅

≤ 0 (39)

for any w 6= 0. Observe that (F ∗ F )(w) =
∑
x∈Zn

2

1
2n (−1)f(x)+f(x+w) is an integer multiple

of 1/2n and (F ∗ F )(0) = 1 for any f . Thus, we can rewrite Eq. (39) as

(F ∗ F )(w) =
{

1 if w = 0,
−k/2n otherwise

(40)

for some integer k ≥ 0. Therefore∑
w∈Zn

2

(F ∗ F )(w) = 1− 2n − 1
2n k. (41)

On the other hand,∑
w∈Zn

2

(F ∗ F )(w) =
∑
w∈Zn

2

∑
x∈Zn

2

1
2n (−1)f(x)+f(x+w) (42)

=
[

1√
2n

∑
x∈Zn

2

(−1)f(x)
]2

(43)

= 1
2n

[ ∑
x∈Zn

2

(
1− 2f(x)

)]2
(44)

= 1
2n
(
2n − 2|f |

)2
. (45)
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Putting this together with Eq. (41) gives(
2n − 2|f |

)2 = 2n − (2n − 1)k. (46)

This equation has no solutions for k ≥ 2 since the right-hand side is negative (for n ≥ 2).
Similarly, there are no solutions for k = 1 since the left-hand side is even and the right-hand
side is odd. Therefore k = 0 (and hence p∅ = 0), which implies that f is bent by Eq. (40)
and Prop. 18. J

Note that there is a solution to Eq. (46) with k = 2 and n = 1, provided |f | = 1. This
trivial case involves the one-argument Boolean functions f(x) = x and f(x) = NOT(x). For
these functions we can choose p∅ = 1/2 and p0 = p1 = 1/4 to determine the hidden shift
exactly with one query. A deterministic classical algorithm can also solve BHSPf with one
query for these functions.

B Success probability of one-query PGM for random functions

In this appendix, we show that for one query, the expected success probability of PGM(f, 1)
approaches a constant less than 1 for large n. This suggests that one query might not be
enough to solve the problem with success probability arbitrarily close to 1. However, we do
not know if the PGM algorithm has optimal success probability in the one-query case.

I Theorem 19. Let f be an n-argument Boolean function chosen uniformly at random and
suppose that a hidden shift for f is chosen adversarially. Then PGM(f, 1) solves BHSPf

with one query to Ofs and expected success probability p̄ ≥ 1/2 over the choice of f . Indeed,
p̄ ≥ 2/π − o(1) as n→∞.

Proof. Recall from Eq. (16) in Lemma 13 that PGM(f, t) recovers the hidden shift of f
correctly after t queries with success probability pf (t). If the function f is chosen uniformly
at random, then the expected success probability after t queries is

p̄(t) := 1
22n

∑
f

pf (t) = 1
22n

∑
f

1
2n

(∑
w∈Zn

2

F t(w)
)2

. (47)

We can obtain a lower bound on p̄(t) using the Cauchy-Schwarz inequality:

p̄(t) ≥ 1
2n

1
(22n)2

(∑
f

∑
w∈Zn

2

F t(w)
)2

= 2n
(

1
2n

∑
w∈Zn

2

1
22n

∑
f

F t(w)
)2

=: p̃(t). (48)

Taking t = 1, this gives

p̄ ≥ 1
2n

1
(22n)2

(∑
f

∑
w∈Zn

2

|F̂ (w)|
)2

(49)

= 1
2n

(
1

22n

∑
w∈Zn

2

∑
f

∣∣∣∣ 1
2n

∑
x∈Zn

2

(−1)w·x+f(x)
∣∣∣∣
)2

. (50)

For each w we can define f ′(x) := w · x + f(x) and change the order of summation by
summing over f ′ instead of f . The value of this sum does not depend on w, so we get

p̄ ≥ 1
2n

 1
22n

∑
f

∣∣∣∣∣∑
x∈Zn

2

(−1)f(x)

∣∣∣∣∣
2

= L(2n)2

2n (51)
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where

L(N) := 1
2N

∑
z∈{1,−1}N

∣∣∣∣∣
N∑
i=1

zi

∣∣∣∣∣ (52)

is the expected distance traveled by N steps of a random walk on a line (where each step is
of size one and is to the left or the right with equal probability). It remains to lower bound
L(N).

Let N = 2m for some integer m ≥ 1. Using standard identities for sums of binomial
coefficients, we compute

L(2m) = 1
22m · 2

m∑
k=0

(2m− 2k)
(

2m
k

)
(53)

= 1
22m · 2m

(
2m
m

)
. (54)

Since the central binomial coefficient satisfies [51, p. 48](
2m
m

)
≥ 4m√

4m
, (55)

we find

L(2m) ≥
√
m. (56)

For N = 2n this gives L(2n) ≥
√

2n/2. We plug this in Eq. (51) and get p̄ ≥ 1/2.
In fact, according to Stirling’s formula

(2m
m

)
∼ 4m/

√
πm as m → ∞. This means that

L(N) ∼
√

2N/π as N →∞ and our lower bound on p̄ approaches 2/π as n→∞. J

C Two queries suffice for random functions

In this appendix we prove the following:

I Theorem 15. Let f be an n-argument Boolean function chosen uniformly at random and
suppose that a hidden shift for f is chosen adversarially. Then PGM(f, 2) solves BHSPf

with expected success probability p̄ ≥ 1− 3
64 · 2

−n.

C.1 Strategy
Our goal is lower bound p̃(t), as defined in Eq. (48). Let us define a random variable X over
Boolean functions f : Zn2 → Z2 and binary strings w ∈ Zn2 , whose value is

X :=
[
F t(w)

]2 =
[
F̂ 2]∗t(w), (57)

where f and w are chosen uniformly at random. Notice from Eq. (48) that

p̃(t) = 2n
(
E[
√
X]
)2
. (58)

Clearly, for any x ≥ 0 we have

E[
√
X] ≥

√
x Pr(X ≥ x). (59)

Our strategy is to use a one-sided version of Chebyshev’s inequality, known as Cantelli’s
inequality, to lower-bound Pr(X ≥ x), and then choose a value of x that maximizes our lower
bound on p̃(t).
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I Fact (Cantelli’s inequality). Let µ := E[X] and σ2 := E[X2]−µ2 be the mean and variance
of X, respectively. Then Pr(X − µ ≥ kσ) ≥ 1

1+k2 .

Alternatively, if we substitute X by −X and reverse the inequality then

Pr(X ≥ µ− kσ) ≥ k2

1 + k2 . (60)

If we substitute x := µ− kσ in Eq. (59), then according to the above inequality,

E[
√
X] ≥

√
µ− kσ k2

1 + k2 . (61)

Using Eq. (48), Eq. (58), and Eq. (61) gives

p̄(t) ≥ p̃(t) = 2n
(
E[
√
X]
)2 ≥ 2n(µ− kσ)

(
1 + 1

k2

)−2
. (62)

It remains to lower bound µ (Sect. C.2), upper bound σ (Sect. C.3), and make a reasonable
choice of the deviation parameter k (Sect. C.4).

C.2 Computing the mean
Let us compute the mean

µ = E[X] = 1
22n

∑
f

1
2n

∑
w∈Zn

2

[
F̂ 2]∗t(w) (63)

for any integer t ≥ 1. Notice that∑
w∈Zn

2

[
F̂ 2]∗t(w) =

∑
w,y1,...,yt−1∈Zn

2

F̂ (y1)2 · · · F̂ (yt−1)2F̂
(
w − (y1 + · · ·+ yt−1)

)2 (64)

=
∑

y1,...,yt∈Zn
2

F̂ (y1)2 · · · F̂ (yt−1)2F̂ (yt)2 (65)

=
(∑
y∈Zn

2

F̂ (y)2

)t
(66)

= 1 (67)

by unitarity of the Fourier transform (see Plancherel’s identity in Sect. 2). We conclude that

µ = 1
2n (68)

independent of t.

C.3 Computing the variance
Next we compute the variance

E[X2] = 1
22n

∑
f

1
2n

∑
w∈Zn

2

([
F̂ 2]∗t(w)

)2
. (69)
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Note that from Eq. (2) and Plancherel identity we have

∑
w∈Zn

2

([
F̂ 2]∗t(w)

)2
=
∑
w∈Zn

2

(
1√
2n

̂(F ∗ F )t (w)
)2

= 1
2n

∑
w∈Zn

2

(F ∗ F )2t(w). (70)

We substitute this in Eq. (69) and get

E[X2] = 1
22n

∑
f

1
2n

(
1
2n

∑
w∈Zn

2

(F ∗ F )2t(w)
)

(71)

= 1
22n

∑
w∈Zn

2

1
22n

∑
f

(
1
2n

∑
x∈Zn

2

(−1)f(x)+f(w+x)

)2t

. (72)

C.3.1 Counting pairings
Let us introduce some combinatorial ideas that will help us to evaluate the sum in Eq. (72).

I Definition 20. Let S be a finite set and let l ≥ 1 be an integer. We say that a1, a2, . . . , a2l ∈
S are paired if there exists a permutation π of {1, 2, . . . , 2l} such that aπ(2i−1) = aπ(2i) for
all i ∈ {1, 2, . . . , l}. Define ∆: S2l → Z2 as

∆(a1, a2, . . . , a2l) :=
{

1 if a1, a2, . . . , a2l are paired,
0 otherwise.

(73)

Notice that for l = 2 we have ∆(a, b, c, d) = δa,bδc,d + δa,cδb,d + δa,dδb,c − 2δa,b,c,d, so the
number of ways to pair four elements of S is∑

a,b,c,d∈S

∆(a, b, c, d) = 3
∑

a,b,c,d∈S

δa,bδc,d − 2
∑

a,b,c,d∈S

δa,b,c,d = 3|S|2 − 2|S|. (74)

I Proposition 21. Let S = {0, 1}n. Then for any a1, a2, . . . , a2l ∈ S,
1

22n

∑
f

(−1)f(a1)+f(a2)+···+f(a2l) = ∆(a1, a2, . . . , a2l) (75)

where the sum is over all Boolean functions f : Zn2 → Z2.

Proof. Clearly, if a1, a2, . . . , a2l are paired, then the exponent of −1 is even and the sum is
1. Otherwise, we can omit the paired arguments, and all remaining ai are distinct. Since we
are averaging over all f and the values that f takes at distinct points are independent, the
sum vanishes. J

We can use this observation to rewrite Eq. (72) as follows:

E[X2] = 1
22(t+1)n

∑
w∈Zn

2

∑
a1,...,a2t∈Zn

2

∆(a1, a1 + w, a2, a2 + w, . . . , a2l, a2l + w). (76)

C.3.2 Evaluating the variance at t = 2
In general, the variance depends on t. However, we are interested only in the t = 2 case, so
from now on we will assume that t = 2 and do not write the dependence on t explicitly. For
t = 2, Eq. (76) reads

E[X2] = 1
26n

∑
w∈Zn

2

∑
a,b,c,d∈Zn

2

∆(a, a+ w, b, b+ w, c, c+ w, d, d+ w). (77)
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We consider two cases. First, when w = 0, the eight arguments of ∆ are always paired,
so the inner sum in Eq. (77) evaluates to∑

a,b,c,d∈Zn
2

∆(a, a, b, b, c, c, d, d) = 24n. (78)

Now suppose w 6= 0. Then wi = 1 for some i ∈ {1, . . . , n} and thus either ai = 0 or
ai + wi = 0 (and similarly for b, c, and d). In total there are 24 = 16 cases. Since ∆ is
invariant under permutations of arguments, we can substitute a by a+ w, which effectively
swaps the arguments a and a+ w. By performing a similar operation for b, c, and d, we can
ensure that ai = bi = ci = di = 0. Among the eight arguments of ∆ in Eq. (77), arguments
a, b, c, and d can be paired only among themselves since wi = 1. Moreover, once a and b
are paired, then so are a+ w and b+ w. Thus, we can restrict the ith bit of w to be 1 and
ignore the four extra arguments of ∆. Then the inner sum in Eq. (77) becomes

16
∑

a,b,c,d∈Zn−1
2

∆(a, b, c, d) = 16 ·
(
3 · 22n−2 − 2 · 2n−1) = 12 · 22n − 16 · 2n, (79)

where the first equality follows from Eq. (74) with S = Zn−1
2 .

By combining Eq. (78) and Eq. (79), we can rewrite Eq. (77) as

E[X2] = 1
26n

(
24n + (2n − 1) · (12 · 22n − 16 · 2n)

)
(80)

= 1
22n + 12

23n −
28
24n + 16

25n . (81)

Using the value of µ from Eq. (68), we see that for n ≥ 1 the variance is

σ2 = E[X2]− µ2 = 12
23n −

28
24n + 16

25n ≥
1

23n . (82)

C.4 Choosing the deviation
To complete the lower bound on the success probability, recall from Eq. (62) that

p̄ ≥ 2n(µ− kσ)
(

1 + 1
k2

)−2
. (83)

Substituting the bounds on µ and σ from Eq. (68) and Eq. (82), respectively, gives

p̄ ≥
(

1− k√
2n

)(
1 + 1

k2

)−2
. (84)

Notice that
(
1 + 1

k2

)−2 ≥ 1− 2
k2 for any k, so

p̄ ≥
(

1− k√
2n

)(
1− 2

k2

)
≥ 1− k√

2n
− 2
k2 . (85)

It remains to make a good choice for k. Let α =
√

2n and k = αc for some c > 0. Then

p̄ ≥ 1− αc−1 − 2α−2c. (86)

Choosing c = 1/3 (i.e., k = 2n/6) gives

p̄ ≥ 1− 3
64 · 2

−n. (87)

This concludes the proof of Theorem 15.
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D Zeroes in the Fourier spectrum

D.1 Undetectable shifts and anti-shifts
In some cases the Boolean hidden shift problem cannot be solved exactly in principle. For
example, if the function f is invariant under some shift, then the hidden shift cannot be
uniquely determined, as the oracle does not contain enough information (an extreme case of
this is a constant function which is invariant under all shifts). In this section we consider
such degenerate functions and analyze their Fourier spectra.

I Definition 22. Let b ∈ Z2. We say that s is a b-shift for a function f : Zn2 → Z2 if f has
the following property: ∀x ∈ Zn2 : f(x+ s) = f(x) + b. We refer to 0-shifts as undetectable
shifts since they cannot be distinguished from the trivial shift s = 0. We also refer to 1-shifts
as anti-shifts since they negate the truth table of f .

The following result provides an alternative characterization of b-shifts. It relates the
maximal and minimal autocorrelation value of F to undetectable shifts and anti-shifts of f ,
respectively (see Definition 5 for the definition of convolution).

I Proposition 23. The string s ∈ Zn2 is a b-shift for function f : Zn2 → Z2 if and only if
(F ∗ F )(s) = (−1)b, where F (x) := (−1)f(x)/

√
2n for all x ∈ Zn2 .

Proof. Let s be a b-shift of f . Then

(F ∗ F )(s) =
∑
x∈Zn

2

F (x)F (x+ s) (88)

= 1
2n

∑
x∈Zn

2

(−1)f(x)(−1)f(x)+b (89)

= 1
2n

∑
x∈Zn

2

(−1)b (90)

= (−1)b. (91)

For the converse, note that all terms on the right-hand side of Eq. (88) have absolute value
equal to 1/2n. In total there are 2n terms, so |(F ∗ F )(s)| ≤ 1. If this bound is saturated,
then all terms in Eq. (88) must have the same phase. Thus, s is a b-shift for some b ∈ Z2. J

If s′ and s′′ are undetectable shifts of f then so is s′+s′′, since f(x+s′+s′′) = f(x+s′) =
f(x) for any x. Hence the set of all undetectable shifts forms a linear subspace of Zn2 . Also,
if a′ and a′′ are anti-shifts, then a′ + a′′ is an undetectable shift. In particular, a Boolean
function with no undetectable shifts can have at most one anti-shift.

If we want to solve the hidden shift problem for a function f that has an undetectable
shift s, we can apply an invertible linear transformation A on the input variables such that
A · 0 . . . 01 = s. Thus we simulate the oracle for the function f ′(x) := f(A · x) such that
f ′(x + 0 . . . 01) = f ′(x). Notice that f ′ is effectively an (n − 1)-argument function, since
it does not depend on the last argument. Similarly, if f has a k-dimensional subspace of
undetectable shifts, it is effectively an (n− k)-argument function. Solving the hidden shift
problem for such a function is equivalent to solving it for the reduced (n − k)-argument
function f ′ and picking arbitrary values for the remaining k arguments. In this sense, Boolean
functions with undetectable shifts are degenerate and we can consider only functions with no
undetectable shifts without loss of generality.
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Similarly, if f has an anti-shift, we can use the same construction to show that it is
equivalent to a function f ′ such that f ′(x1, . . . , xn−1, xn) = f ′′(x1, . . . , xn−1)⊕ xn where f ′′
is an (n− 1)-argument function. To solve the hidden shift problem for f ′, we first solve it for
f ′′ and then learn the value of the remaining argument xn via a single query. In this sense,
Boolean functions with anti-shifts are also degenerate. Thus, without loss of generality we
can consider the hidden shift problem only for non-degenerate functions, i.e., ones that have
no b-shifts for any b ∈ Z2.

Finally, let us show that Boolean functions with b-shifts have at least half of their Fourier
coefficients equal to zero. Let S be an (n− 1)-dimensional subspace of Zn2 , and let us denote
the two cosets of S in Zn2 by Sb := S + br, where b ∈ Z2 and r ∈ Zn2 \ S is any representative
of the coset for b = 1. The following result relates the property of having a b-shift to the
property of having zero Fourier coefficients with special structure.

I Lemma 24. A function f : Zn2 → Z2 has a non-zero b-shift if and only if there is an
(n− 1)-dimensional subspace S ⊂ Zn2 such that F̂ (w) = 0 when w /∈ Sb.

Proof. Assume that s is a b-shift of f . Then

F̂ (w) = 1
2n

∑
x∈Zn

2

(−1)w·x+f(x) (92)

= 1
2n

∑
x∈Zn

2

(−1)w·(x+s)+f(x+s) (93)

= 1
2n

∑
x∈Zn

2

(−1)w·(x+s)+f(x)+b (94)

= (−1)w·s+b 1
2n

∑
x∈Zn

2

(−1)w·x+f(x) (95)

= (−1)w·s+bF̂ (w). (96)

Thus, F̂ (w) = 0 when w · s 6= b. Let S be the (n− 1)-dimensional subspace of Zn2 orthogonal
to s. Then w ∈ Sb ⇔ w · s = b and thus F̂ (w) = 0 when w /∈ Sb.

For the converse, assume that S is an (n− 1)-dimensional subspace of Zn2 and F̂ (w) = 0
when w /∈ Sb. Let s ∈ Zn2 be the unique non-zero vector orthogonal to S. Then Sb =
{w : w · s = b} and we have

F (x+ s) = ˆ̂
F (x+ s) (97)

= 1√
2n

∑
w∈Zn

2

(−1)(x+s)·wF̂ (w) (98)

= 1√
2n

∑
w∈Sb

(−1)(x+s)·wF̂ (w) (99)

= (−1)b 1√
2n

∑
w∈Sb

(−1)x·wF̂ (w) (100)

= (−1)bF (x). (101)

Hence f(x+ s) = f(x) + b and thus s is a b-shift of f . J

D.2 Decision trees
In the previous section we discussed degenerate cases of Boolean functions that have many
zero Fourier coefficients. In this section we explain how to construct non-degenerate examples.
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I Lemma 25. If f is a Boolean function defined by a decision tree of height h then F̂ (w) = 0
when |w| > h.

Proof. Since the Boolean function f is given by a decision tree, let {P1, . . . , Pm} be the set
of all paths that start at the root of this tree and end at a parent of a leaf labeled by 1.
For example, P1 = {x2, x1, x5, x4, x10} and P2 = {x2, x7, x1} are two such paths for the tree
shown in Fig. 2. We can write the disjunctive normal form of f as

f(x) =
m∨
i=1

∧
j∈Pi

(
b

(i)
j ⊕ xj

)
(102)

where “∨” and “∧” represent logical OR and AND functions, respectively, and b
(i)
j ∈ Z2

is equal to 1 if and only if variable xj has to be negated on path Pi. For example, x10 is
negated on P1, and x2 and x7 are negated on P2.

To prove the desired result about the Fourier coefficients of f , we switch from Boolean
functions to (±1)-valued functions with (±1)-valued variables. In particular, we replace
f : Zn2 → Z2 by a function F̃ : {1,−1}n → {1,−1} in variables Xi ∈ {1,−1} such that

F̃
(
(−1)x

)
= (−1)f(x) (103)

for all x ∈ Zn2 .
Notice that the (±1)-valued versions of logical NOT, AND, and OR functions are given

by the following polynomials:

NOT(X) := −X, (104)

AND(X1, . . . , Xk) := 1− 2
k∏
i=1

1−Xi

2 , (105)

OR(X1, . . . , Xk) := −1− 2
k∏
i=1

1 +Xi

2 . (106)

We can use these polynomials and Eq. (102) to write F̃ as

F̃ (X) = ORm
i=1 ANDj∈Pi

(−1)b
(i)
j Xj , (107)

where ORm
i=1 Xi stands for OR(X1, . . . , Xm) and a similar convention is used for AND.

When we determine the value of f using a decision tree, each input x ∈ Zn2 leads to
a unique leaf of the tree. Thus, when f(x) = 1, there is a unique value of i in Eq. (102)
for which the corresponding term in the disjunction is satisfied. With this promise we can
simplify Eq. (106) to

OR(X1, . . . , Xk) :=
k∑
i=1

(Xi − 1) + 1. (108)

If we use this in Eq. (107), we get

F̃ (X) =
m∑
i=1

(
ANDj∈Pi(−1)b

(i)
j Xj − 1

)
+ 1, (109)

= 1− 2
m∑
i=1

∏
j∈Pi

1− (−1)b
(i)
j Xj

2 . (110)
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Notice that this polynomial has degree at most maxi|Pi| ≤ h, the height of the tree. On the
other hand, the Fourier transform is self-inverse (see Sect. 2), so

(−1)f(x) =
√

2nF (x) =
√

2n ˆ̂
F (x) =

∑
w∈Zn

2

(−1)x·wF̂ (w). (111)

The (±1)-valued equivalent of this equation is

F̃ (X) =
∑
w∈Zn

2

F̂ (w)
∏

i : wi=1
Xi. (112)

By comparing this with Eq. (110) we conclude that F̂ (w) = 0 when |w| > h. J

According to this lemma, we can use the following strategy to construct Boolean functions
with a large fraction of their Fourier coefficients equal to zero. We pick a random decision
tree with many variables but small height, i.e., large n and small h (notice that n ≤ 2h − 1).
Then we are guaranteed that the fraction of non-zero Fourier coefficients does not exceed

1
2n

h∑
k=0

(
n

k

)
≤ 2H( h

n )n

2n =
(

1
2n

)1−H( h
n )

(113)

where H(p) := −p log2 p− (1− p) log2(1− p) is the binary entropy function. In particular, if
h ∼ log2 n then this fraction vanishes as n goes to infinity, i.e., F̂ is zero almost everywhere.

However, notice that when the number of zero Fourier coefficients is large, it is also
more likely to pick a degenerate Boolean function (i.e., one that has a b-shift for some
b ∈ Z2); we would like to avoid this. Recall from Lemma 24 that f has a b-shift only if all its
non-zero Fourier coefficients lie in a coset Sb of some (n− 1)-dimensional subspace S ⊂ Zn2 .
Unfortunately, we do not know the probability that a random decision tree with n variables
and height log2 n corresponds to a Boolean function with this property.

D.3 Zeroes in the t-fold Fourier spectrum
In this section we study the fraction of zeroes in the t-fold Fourier spectrum F t of f as
a function of t. The main observation is Lemma 27, which shows that unless f has an
undetectable shift, F t becomes non-zero everywhere when t is sufficiently large. This means
that even for functions with a high density of zeroes in the Fourier spectrum, one can
boost the success probability of the basic quantum rejection sampling approach discussed in
Sect. 5.1 by using the t-fold generalization from Sect. 5.4.

I Proposition 26. Let St := {w ∈ Zn2 : F t(w) 6= 0} be the set of strings for which F t is
non-zero. Then St+1 = St + S1 where A+B := {a+ b : a ∈ A, b ∈ B}.

Proof. Note that
[
F t+1]2 =

[
F t
]2∗ [F1]2 from Definition 6. Also, F t(w) ≥ 0 for any t ≥ 1

and w ∈ Zn2 . Assume that w0 ∈ St and w1 ∈ S1. Then F t(w0) > 0 and F1(w1) > 0, so[
F t+1]2(w0 + w1) =

∑
x∈Zn

2

[
F t
]2(x) ·

[
F1]2(w0 + w1 − x) (114)

≥
[
F t
]2(w0) ·

[
F1]2(w0 + w1 − w0) > 0. (115)

Thus w0 + w1 ∈ St+1 and hence St + S1 ⊆ St+1. Conversely, if w cannot be written in the
form w0 +w1 for some w0 ∈ St and w1 ∈ S1 then F t+1(w) = 0, since all terms of the sum in
Eq. (114) vanish. J



A. M. Childs, R. Kothari, M. Ozols, and M. Roetteler 79

I Lemma 27. If f : Zn2 → Z2 does not have an undetectable shift, then there exists t ∈
{1, . . . , n} such that F t is non-zero everywhere.

Proof. If S1 spans the whole space Zn2 , we can inductively apply Prop. 26 to conclude that
St = Zn2 for some sufficiently large t. In particular, it suffices to take t ≤ n (say, if S1 is the
standard basis). On the other hand, if S1 spans only a proper subspace of Zn2 , then it is
contained in some (n− 1)-dimensional subspace S0. Since F1 = |F̂ | vanishes outside of S0,
we conclude by Lemma 24 that f has an undetectable shift. J
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Abstract
Quantum formulas, defined by Yao [FOCS’93], are the quantum analogs of classical formulas,
i.e., classical circuits in which all gates have fanout one. We show that any read-once quantum
formula over a gate set that contains all single-qubit gates is equivalent to a read-once classical
formula of the same size and depth over an analogous classical gate set. For example, any read-
once quantum formula over Toffoli and single-qubit gates is equivalent to a read-once classical
formula over Toffoli and not gates. We then show that the equivalence does not hold if the
read-once restriction is removed. To show the power of quantum formulas without the read-once
restriction, we define a new model of computation called the one-qubit model and show that it
can compute all boolean functions. This model may also be of independent interest.
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1 Introduction

It is widely believed that quantum computers can outperform classical computers for cer-
tain problems. Two prominent examples of such problems are factoring, solved by Shor’s
algorithm [18], and simulation of quantum systems [7, 13, 2]. Many restricted versions of
quantum computers also outperform classical models. Studying the power of restricted quan-
tum models can help identify the “quantum” features that are required for computational
speedups.

Some restricted models are also practically motivated, and could be available before
we are able to build unrestricted quantum computers. The “one clean qubit” model [12],
for example, can solve some problems that are not known to have efficient classical algo-
rithms [19]. Similarly, log-depth quantum circuits can implement Shor’s algorithm with the
aid of a classical computer [5].

On the other hand, if enough restrictions are placed on a quantum model, it may be
efficiently simulable by a classical model. In analogy with derandomization, we call this
dequantization. For example, the simulation of a polynomial-time quantum computer by an
exponential-time classical computer is an example of dequantization, albeit a very weak one.
On the other hand, if the quantum model is equivalent to a classical model, we call this strong
dequantization. For example, if it were shown that a polynomial-time quantum computer
can be simulated by a polynomial-time classical computer, this would be an example of
strong dequantization. In this paper, we strongly dequantize read-once quantum formulas
by showing that they are equivalent to classical read-once formulas.

Several past results can be viewed as dequantizing quantum models of computation.
For example, Valiant introduced and dequantized a restricted model of quantum compu-
tation [21] that was later shown to be equivalent to a classical model [22]. Additionally,
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quantum circuits containing only Clifford gates are equivalent to classical circuits of cnot
and not gates [8, 4]. Other examples of dequantization appear in [6, 20].

Classical formulas are a well-studied restriction of circuits in which gates have a single
output wire and each gate is a function from k ≥ 1 bits to one bit. Compared to general cir-
cuits, the power of formulas is much better understood and several lower bound techniques
are known for explicit functions [23, 11]. The study of formulas has lead to a better under-
standing of the difficulty of proving lower bounds for general circuits. Similarly, studying
quantum formulas may lead to a better understanding of the power of quantum circuits.

Indeed, little is known about quantum formulas. They were defined and examined by
Yao [25] in 1993. But, other than additional results by Roychowdhury and Vatan [16], they
are largely unstudied.

In this paper, we ask whether it is possible to dequantize quantum formulas. Informally,
the question is whether, for a quantum gate set G, there exists a classical gate set Ĝ of
roughly equivalent power, such that any quantum formula over G can be written as a
classical formula over Ĝ. We discuss this question in Section 3 and define an appropriate
classical gate set Ĝ (Definition 1) corresponding to any quantum gate set G. Our main
results (Theorem 2 and Theorem 3) essentially resolve this question for read-once quantum
formulas by showing that read-once quantum formulas over a gate set that includes all
single-qubit gates can always be dequantized.

One utility of our classical gate set Ĝ is that, in some cases of interest, it corresponds to
the gate set that one would naturally expect. For the set of all k-qubit channels (for some
constant k), which is the gate set used in previous papers on quantum formulas [25, 16],
Ĝ is the set of all k-bit gates. The set of arbitrary fanin Toffoli gates and all single-qubit
gates is a commonly used gate set in quantum circuit complexity (see, e.g., [9]). We show in
Theorem 4 that, for this gate set, Ĝ is the set of classical arbitrary fanin Toffoli gates and
the not gate.

It is natural to ask whether the read-once constraint is required for dequantization to
hold. In Section 4 we show that Theorem 2 and Theorem 3 are false if the read-once
constraint is dropped. In particular, we show that there exist quantum formulas over a
gate set G that cannot be simulated by classical formulas over Ĝ. To show this we define
a model of computation that we call the one-qubit model. Our model is similar to the
“one clean qubit” model of Knill and Laflamme [12], but we do not have any mixed states in
addition to the one clean qubit. We show that this model can compute any boolean function
(Theorem 5). However, the one-qubit model is contained in quantum formulas over a gate
set G for which Ĝ contains only the not gate and the parity gate. Even classical circuits
of arbitrary size over not and parity cannot compute, for example, the and function on
two bits. Thus our dequantization theorems are false without the read-once constraint.

2 Preliminaries

We start with an introduction to classical formulas and then extend the definition to quan-
tum formulas. We refer the reader to textbooks on circuit complexity [23, 11] or quantum
computing [15] for further information.

A gate set F is a set of functions from k ≥ 1 bits to one bit. A classical formula over a
gate set F is a circuit composed of gates from F in which the output of each gate is connected
to the input of at most one other gate—i.e., gates have fanout one. Note, however, that
input bits may have arbitrary fanout, i.e., more than one gate can use the same bit xi as an
input. The formula outputs a single bit and is said to exactly compute a boolean function
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x1
x2

x3
x4

g1

g2

g3 f(x)

(a)

x1
x2
x3
x4
x5

g1

g2

g3 f(x)

(b)

|x1〉
Φ1|x2〉

Φ3|x3〉
Φ2

|f(x)〉
|x4〉
|x5〉
(c)

Figure 1 (a) A classical (read-many) formula may use input bits multiple times to compute a
function f(x). Here the input x2 is used twice and the formula is over the gate set Ĝ = {g1, g2, g3}.
(b) A classical read-once formula may use each input bit only once. (c) A quantum read-once
formula has the same structure as a classical read-once formula, but may contain quantum channels
with single qubit outputs. Here the quantum formula is over the gate set G = {Φ1, Φ2, Φ3}.

f if the output of the formula is f(x) on input x. The restriction that each gate has fanout
one makes the circuit look like a tree in which the output gate is the root, non-output gates
are internal nodes, and leaves are labeled by input bits. A read-once formula is one in which
each input bit appears at most once.

Yao defined a quantum formula as a single-output quantum circuit composed of unitary
gates in which the path connecting any input to the output is unique. Equivalently, a
quantum circuit is a quantum formula if every gate has at most one output that is used as
an input to a subsequent gate. The other outputs of a gate are never used again and can
be discarded (traced out). We can regard the unitary and discard step as one operation
and call that a quantum gate. This makes the analogy with classical formulas clearer. In
this paper we use the phrases “quantum channel” and “quantum gate” interchangeably; a
quantum gate need not be unitary. We will sometimes talk about a formula over a set of
unitaries, which may have multiple output qubits. In this case, the formula may use any
single-output channel obtained by applying one of the unitaries in the set and then tracing
out all but one of the output qubits.

We define a quantum gate set to be a set G of quantum channels from k ≥ 1 qubits
to one qubit. A quantum channel is a completely-positive trace-preserving map. In the
case that k = 1 we call the channel a single-qubit channel, otherwise we call the channel a
k-qubit channel. Note that a quantum formula may read input bits multiple times, just like
a classical formula. A read-once quantum formula is one in which each input bit appears at
most once. Figure 1 shows an example of a classical formula, a read-once classical formula
and a read-once quantum formula. Similar to the classical case, one gate is designated as
the output gate. A quantum formula is said to exactly compute a boolean function f if the
output of the formula is |f(x)〉 on input x. In Section 3.2 we discuss how to extend this
definition to bounded-error quantum formulas.

The size of a formula is defined as the number of gates, excluding single-bit or single-
qubit gates, following standard convention in classical circuit complexity. The depth of a
formula is the maximum number of multi-bit or multi-qubit gates on any path from the
output to an input. We say that a formula accepts a language L ⊆ {0, 1}∗ if on input x it
outputs 1 if and only if x ∈ L.

We now state previously known results about quantum formulas. Yao first showed that
the majority function needs super-linear sized bounded-error quantum formulas over the set
of all three-qubit unitaries [25]. Later, Roychowdhury and Vatan [16] showed that a classical
formula-size lower bound technique due to Nechiporuk [23, 11] also extends to bounded-error
quantum formulas over the set of all k-qubit unitary matrices, for any constant k.
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Roychowdhury and Vatan also showed that any function computed by a bounded-error
quantum formula over k-qubit unitaries can be computed by a classical circuit of slightly
larger size and depth. Our result applies to a wider range of gate sets and dequantizes to
the more limited model of classical read-once formulas.

3 Dequantization of read-once formulas

Our main objective is to determine the conditions under which it is possible to dequantize
quantum formulas. More precisely, for a quantum gate set G we seek a classical gate set Ĝ
for which a language L is accepted by a quantum formula over G if and only if it is accepted
by a classical formula over Ĝ.

Note that we want the two classes to be exactly equal in power, thus proving a strong
dequantization result. If we only require that all functions computed by quantum formulas
over G can be computed by classical formulas, then the result is trivial since we could just
allow Ĝ to be the set of all boolean functions.

In this section, we show that read-once quantum formulas, for gate sets which include
all single-qubit gates, can be strongly dequantized to classical formulas of the same size and
depth. We then explicitly construct the classical gates sets corresponding to some particular
quantum gate sets of interest. For example, any read-once quantum formula over all k-qubit
channels is equivalent to a classical read-once formula over all k-bit functions. Similarly,
read-once quantum formulas over Toffoli gates and all single-qubit gates can be dequantized
to classical read-once formulas over Toffoli and not.

3.1 Dequantization of exact read-once formulas
We first prove the claim for exact read-once formulas. The proof is simpler in the exact case,
and contains all of the essential ideas. Extension to bounded-error is discussed in Section 3.2.

Before attempting to prove the theorem, let us discuss the correspondence between the
quantum gate set G and its classical counterpart Ĝ. Call a quantum channel classical if the
output is classical whenever the input is classical. If G contains a classical channel, it is
clear that Ĝ should contain a gate that performs the same classical operation.

Some gates in G may be non-classical, but may be composed with other gates in a
quantum formula to form a classical gate. Consider, for example, the depth-one quantum
formula in Figure 2. Given a classical input, this formula outputs a classical bit and therefore
computes a classical function f . For strong dequantization, we require that Ĝ admit a depth-
one classical formula that computes f .

We therefore define Ĝ to contain only those gates that can be obtained by depth-one
quantum formulas over G. Informally, this is the smallest gate set that would suffice to
prove a strong dequantization result.

{|0〉, |1〉} Ψ1

Φ...

{|0〉, |1〉} Ψm Ψ0 {|0〉, |1〉}

_ _ _ _ _ _ _ _�
�
�
�
�
�

�
�
�
�
�
�_ _ _ _ _ _ _ _

Figure 2 A depth-one quantum formula computes a classical function if on classical inputs it
outputs a classical bit.
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I Definition 1. Let G be a set of quantum channels. Define Ĝ to be the set of all classical
gates that are computable by a depth-one quantum formula over G.

We will also need the following fact about density matrices and quantum channels.
I Fact 1. Let Φ be a single-qubit channel and ρ, σ be 2 × 2 density matrices. If ||Φ(ρ) −
Φ(σ)||1 = 2 then ρ and σ are pure and orthogonal.

Proof. We use the fact that the trace distance is monotone non-increasing under the action
of quantum channels [24, (9.72)] to conclude that ||ρ − σ||1 ≥ 2. Thus ||ρ − σ||1 = 2, since
the trace distance of two qubits cannot be larger than two [24, (9.11)]. Furthermore, the
trace distance is maximum only when ρ and σ have support on orthogonal subspaces [24,
(9.12)]. Since these are 2 × 2 matrices which act on a two-dimensional vector space, their
supports can be at most one-dimensional if the supports are orthogonal. Thus they can be
written in the form ρ = |ψ〉〈ψ|, σ = |φ〉〈φ|. Finally, since they have support on orthogonal
subspaces, 〈ψ|φ〉 = 0, as claimed. J

We are now ready to state the main theorem.

I Theorem 2. Let G be a set of quantum channels that includes all single-qubit channels.
Then a language L is accepted by an exact read-once quantum formula of depth d and size
s over G if and only if L is accepted by a read-once classical formula of depth d and size s
over Ĝ, where Ĝ is given by Definition 1.

Proof. One direction of the “if and only if” is obvious; we only prove the other direction.
The proof is by induction on the depth of the quantum formula. The claim is clearly true
for depth-one since Ĝ contains all classical functions computable by depth-one quantum
formulas over G.

R

ρ

Φ
σ ...

Ψ {|0〉, |1〉}




Figure 3 The final gates Φ
and Ψ of a quantum formula.

Consider the final multi-qubit gate Φ ∈ G of a depth-d
quantum formula that accepts language L. Φ may be followed
by a single-qubit channel Ψ, the output of which is a classical
state. Let m be the number of inputs to Φ.

Each input qubit to Φ is the output of a quantum sub-
formula of depth at most d − 1 on a distinct subset of the
original input bits. We cannot invoke the induction hypothesis
directly on the depth-(d − 1) sub-formulas, however, because
the outputs may be quantum states. We will show that each
sub-formula can be replaced with different sub-formula of the same size and depth that
outputs a classical bit.

Without loss of generality, let the first input of Φ depend on the input bits {x1, . . . , xl}
for some 1 ≤ l ≤ n. Let the state of the first input qubit, which is a function of {x1, . . . , xl},
be called ρ. Let σ be the state of the remaining input qubits. Thus σ is a function of the
remaining inputs {xl+1, . . . , xn}.

Let P be the set of all distinct states ρ obtained by enumerating over all inputs {x1, . . . , xl}.
Our goal is to show that either P contains exactly two orthogonal pure states or the output
Φ is independent of the first input qubit. If P contains exactly two orthogonal pure states,
then there is a unitary channel Ψ1 such that Ψ1(ρ) ∈ {|0〉〈0|, |1〉〈1|} for all ρ ∈ P . By
composing Ψ1 and Φ we may construct a new channel that accepts a classical bit as its first
input. On the other hand, if the output is independent of the first input, we can consider a
channel Ψ1 that always outputs a fixed state independent of its input.

First, we look for two density matrices in P , which we will call ρ1 and ρ2, and a bit
string xl+1 . . . xn such that the induced state σ satisfies Φ(ρ1 ⊗ σ) 6= Φ(ρ2 ⊗ σ). Since the



A. Cosentino, R. Kothari, and A. Paetznick 85
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Figure 4 Single qubit channels are prepended to input qubits. If the input qubit depends on
the input to the formula then both the channel and its adjoint are prepended. Otherwise, the input
qubit is fixed and is replaced by a single channel. The channel Φ is then replaced by a classical gate
R ∈ Ĝ.

formula is read-once, bits {x1, . . . , xl} are independent of bits {xl+1, . . . , xn}. Thus if there
are no ρ1, ρ2 and σ that satisfy the above condition, then the output of Φ is independent of
{x1, . . . , xl} and we may replace ρ by a channel Ψ1 that on any input (and classical inputs
in particular) outputs some fixed element of P . Note that this is the only place in the proof
in which the read-once condition is required.

Assume that such a ρ1, ρ2 and σ exist. For this fixed σ, define Φ′(ρ) := Ψ(Φ(ρ ⊗ σ)).
The output of Φ′ is a classical state and therefore ρ1 and ρ2 induce orthogonal classical
outputs. Thus ||Φ′(ρ1)−Φ′(ρ2)||1 = 2 and by Fact 1, we know that ρ1 and ρ2 are pure and
orthogonal. Let Ψ1 be a unitary channel such that Ψ1(ρ1) = |0〉〈0| and Ψ1(ρ2) = |1〉〈1|.

We now show that |P | = 2. That is, ρ1 and ρ2 are the only states in P . Assume that
|P | > 2, and let ρ3 ∈ P be distinct from ρ1, ρ2 and such that Φ′(ρ3) 6= Φ′(ρ1). Since Φ′(ρ) is
classical for any ρ ∈ P , using Fact 1 we again have that ρ1 and ρ3 are pure and orthogonal.
But since ρ2 is the unique state orthogonal to ρ1, we conclude that ρ3 = ρ2, a contradiction.
Assuming that Φ′(ρ3) 6= Φ′(ρ2) similarly leads to a contradiction.

A similar argument applies for the set of possible states on the remaining input qubits
of Φ. For each qubit k there are two possible (pure) states ρ0 and ρ1 and a unitary channel
Ψk such that Ψk(ρ0) = |0〉〈0| and Ψk(ρ1) = |1〉〈1|, or the action of Φ is independent of qubit
k and we may replace it with an input-independent channel Ψk. We now add the gates
Ψk before gate Ψ on input qubit k. If Ψk was an input-independent channel, we have not
changed the output of the circuit. If Ψk was a unitary channel that changes basis, we now
need to add Ψ†k before it to ensure that the output is unchanged. The channel formed by
the Ψks, Φ and the output gate Ψ′m is now classical and has the same action as a classical
gate R ∈ Ĝ as shown in Figure 4.

The inputs to R are quantum sub-formulas of depth at most d−1, each of which outputs
a classical bit. By induction, each sub-formula may be replaced by a classical formula of the
same depth over Ĝ. The resulting circuit is a depth-d classical formula over Ĝ that accepts
language L. J

3.2 Extension to the bounded-error case
We now extend the main result to the bounded-error setting. The proof is essentially the
same as that of Theorem 2, but does not require that the formula outputs be orthogonal
states. This section can be safely skipped without loss on continuity.

There are several natural definitions of bounded-error quantum formulas. For example,
we could say that a quantum formula over a gate set G computes a function f with error ε,
if on input x, the output of the formula is ε-close to |f(x)〉 in trace distance. However, for
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bounded-error, most reasonable definitions will be equivalent (up to constant factors). So
we use the following definition which is more convenient for our proofs: A quantum formula
over G computes f with error δ if all the output states corresponding to f(x) = 0 are at
least 2− δ away in trace distance from all the output states corresponding to f(x) = 1.

This definition is equivalent to the previous one, up to constants, by noting that if one
state is close to |0〉 and the other is close to |1〉, then they must necessarily by far apart,
which can be proved using the triangle inequality. In the other direction, using a result
of Gutoski and Watrous [10], it can be shown that two sets of states with a lower bound
on the minimum pairwise distance can be distinguished with high probability. Note that
when δ = ε = 0, the definitions coincide, except that the second definition only requires the
output states to be orthogonal, not necessarily |0〉 and |1〉. Since our gate sets contain all
single-qubit gates, this distinction is not important. The definition of Ĝ will also have to be
similarly modified to incorporate bounded-error quantum formulas over G.

In the exact case, the output of a formula is always either |0〉 or |1〉. Furthermore, we
showed that even the output of sub-formulas is classical, up to a change of basis. We now
want to prove a similar claim for bounded-error sub-formulas. We wish to show that if the
function depends on the output of a sub-formula, then the set of output states of the sub-
formula can be partitioned into two non-empty sets, S0 and S1, such that the trace distance
between any pair of states in S0 and S1 is at least 2− δ.

Now we can state the bounded-error analog of Theorem 2. Note that the definition of
Ĝ used in this theorem is different from that in Theorem 2, since it allows functions to be
computed with bounded error.

I Theorem 3. Let G be a set of quantum channels that includes all single-qubit channels. If
a language is accepted by a bounded-error read-once quantum formula over G then it is also
accepted by an exact read-once classical formula over Ĝ, of the same size and depth, where Ĝ
is defined as the set of all classical gates that can be computed by a depth-one bounded-error
read-once quantum formula.

Proof. The proof proceeds like the proof of Theorem 2. We use the same notation as in the
other proof. As before, we consider the first input of the last multi-qubit gate, and assume
it depends on the input bits {x1, x2, . . . , xl}, and let P denote the set of all states obtained
by enumerating over the the input bits {x1, x2, . . . , xl}. Denote the state on the rest of the
inputs to the last gate as σ.

First we look for two states in P , ρ and ρ′, and a bit string xl+1 . . . xn which induces
a state σ on the other inputs such that ρ ⊗ σ and ρ′ ⊗ σ lead to different outputs of the
formula. If no such ρ, ρ′ and σ exist, then the output of the last gate is independent of
{x1, . . . , xl} and we may replace the first input qubit by a channel that on any input (and
classical inputs in particular) outputs some fixed element of P .

Assume that such a ρ, ρ′ and σ exist. As before, for this fixed σ, define Φ′(ρ) :=
Ψ(Φ(ρ ⊗ σ)). Without loss of generality, assume that ρ leads to output 0 and ρ′ leads to
output 1. Let Sb := {ρ ∈ P : ρ leads to output b}. Then for any states ρ0 ∈ S0 and ρ1 ∈ S1
we must have ||Φ′(ρ0) − Φ′(ρ1)||1 ≥ 2 − δ. Using the monotonicity of trace distance under
quantum channels [24, (9.72)], this implies ||ρ0 − ρ1||1 ≥ 2 − δ, which means all the states
in S0 are far from all the states in S1. Thus the first sub-formula satisfies the definition of
a bounded-error quantum formula. By the induction hypothesis, there is a classical formula
over Ĝ of the same size and depth that outputs 0 when the quantum sub-formula would
have output some state in S0 and outputs 1 when it would have output some state in S1.

Now we wish to show that all the states in Sb are equivalent from the perspective of the
last gate. More precisely, let ρ0 and ρ′0 be two different states in S0, and let σ be some
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valid state induced by xl+1, . . . xn. Let us also partition the output states of the last gate
into two sets T0 and T1, for which the trace distance between any pair of states in the two
sets is at least 2 − δ. We wish to show that if the output corresponding to ρ0 ⊗ σ is in Tb,
then so is the output corresponding to ρ′0 ⊗ σ. States ρ0 ⊗ σ and ρ′0 ⊗ σ arise due to valid
input strings x and x′, respectively. Thus the corresponding outputs must be in T0 or T1.
Since the output of ρ0 ⊗ σ is in Tb, and since ρ0 cannot be too far from ρ′0, the output of
ρ′0 ⊗ σ is also in Tb. More precisely, since both ρ0 and ρ′0 are at least 2− δ away from some
state ρ1 ∈ S1, we know that they can be at most 2δ distance apart. Thus, by monotonicity
of trace distance under quantum channels, their corresponding outputs cannot be too far
apart.

Now we know that all the states in Sb are equivalent from the perspective of the last
gate. We also know that there is a classical formula over Ĝ of the same size and depth that
outputs 0 when the quantum sub-formula would have output some state in S0 and outputs
1 when it would have output some state in S1. We can just add a single-qubit gate to the
output of this sub-formula, which on input |0〉 outputs some fixed state ρ0 from S0 and on
input |1〉 outputs a fixed state ρ1 from S0. This formula also computes the same function
f(x), as shown in the previous paragraph.

Continuing this on all the inputs to the last gate, we obtain a depth-one quantum formula
which accepts as inputs the outputs of a classical depth d− 1 formula. Using the definition
of Ĝ, there is a classical gate that computes the same function, which gives us a classical
depth-d formula for the entire function. J

3.3 Application to concrete gate sets
A simple corollary of Theorem 2 is that L is accepted by a read-once quantum formula
over the set of all k-qubit channels (for some constant k) if and only if it is accepted by a
read-once classical formula over the set of all k-bit functions. This is the gate set used in
the previous studies of quantum formulas [25, 16].

Another gate set of interest is the set of arbitrary fanin Toffoli gates and all single-qubit
gates. This gate set is commonly used in the study of quantum circuits [9]. We now explicitly
construct Ĝ for this gate set and show that it only contains classical arbitrary fanin Toffoli
gates and the not gate.

Let us define ΦTof
m to be the quantum channel obtained from a Toffoli gate with m ≥ 2

qubits by tracing out all the m − 1 control qubits. We can assume that all Toffoli gates
that appear in the formula always output the target qubit and trace out the control qubits
because by conjugating the target qubit and a control qubit with the Hadamard matrix, H,
it is possible to exchange the roles of the target and that control qubit.

To compute Ĝ for the set of all single-qubit gates and ΦTof
m for m ≥ 2 it suffices to list all

possible classical gates that can be obtained from ΦTof
m by placing single-qubit channels before

and after it. The classical m-bit Toffoli gate computes the function f(x1, x2, . . . , xm) =
(x1 ∧ x2 ∧ . . .∧ xm−1)⊕ xm. Let FTof

m be the set of all functions obtained from the classical
m-bit Toffoli by placing single-bit gates before and after it. The only single-bit gates are
not gates, and channels that output a constant bit.

I Theorem 4. Let f be any function on x ∈ {0, 1}m that can be obtained by placing single-
qubit gates before and after ΦTof

m . Then f ∈ FTof
m .

Proof. Let the classical function f be defined by single-qubit channels Ψ1, . . . ,Ψm on the
inputs followed by ΦTof

m and a single-qubit quantum channel Ψ′m on the output qubit.
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x1 Ψ1

ρ1
•

x2 Ψ2

ρ2
•

...
...

xm Ψm

ρm ρ′m
Ψ′

m {0, 1}

Figure 5 A depth-one quantum formula over single-qubit gates and an m-bit Toffoli gate.

Let {ρ1, . . . , ρm} be the inputs to ΦTof
m (i.e., the outputs of Ψ1, . . . ,Ψm) induced by

a particular choice of x, and ρ′m be the output of the channel (i.e., the input to Ψ′m).
See Figure 5.

First let us handle the trivial cases. If Ψm is a channel which always outputs an eigenstate
of X, i.e., XρmX = ρm for xm = 0 and xm = 1, then the Toffoli gate leaves it unaffected.
Thus the output ρ′m is only a function of xm, and since the output of the gate is classical,
it is some classical one-bit function of xm, all of which are contained in FTof

m . We may now
assume this is not the case. Let us also assume that f outputs 0 on some input and 1 on
some input, otherwise it is a constant function.

For any x, x′ ∈ {0, 1}m−1, define α(x, x′) =
∏m−1

i=1 ρi(xi, x
′
i). Furthermore, let 0 ≤ a ≤ 1

be defined as a = α(11 . . . 1, 11 . . . 1). Then the input to ΦTof
m is ρ1 ⊗ ρ2 ⊗ . . . ⊗ ρm =∑

x,x′ αxx′ |x〉〈x′| ⊗ ρm. The output of ΦTof
m is given by

ρ′m = Tr1,...,m−1

∑
x,x′

αxx′ |x〉〈x′| ⊗Xand(x)ρmX
and(x′)


=

∑
x

αxxX
and(x)ρmX

and(x)

=
[

m−1∏
i=1

ρi(1, 1)
]
XρmX +

 ∑
x 6=1...1

m−1∏
i=1

ρi(xi, xi)

 ρm

= aXρmX + (1− a)ρm. (1)

By assumption, Ψ′m(ρ′m) is classical and both outputs 0 and 1 are possible, thus by
Fact 1, ρ′m must always be pure. Since we have also assumed that XρmX 6= ρm, (1) implies
that ρ′m can be pure only if a = 0 or a = 1. But a takes values 0 or 1 on all inputs, so
the following short argument implies that each ρi must be classical (i.e., ρi(0, 0) = 0 or
ρi(0, 0) = 1) for every input x. Toward a contradiction, assume this is not the case. Thus,
for some i, there exists an input xi so that ρi is not classical and, in particular, ρi(1, 1) 6= 0
and ρi(1, 1) 6= 1. On this input x,

∏m−1
i=1 ρi(1, 1) cannot be 0 or 1. But this quantity is a,

which could only be 0 or 1. Thus we have reached a contradiction, and all the ρi must be
classical for every input xi. But this means every channel Ψi is a classical one-bit function
of xi. Thus the inputs to ΦTof

m are always classical and so ΦTof
m can be replaced with its

classical equivalent, which completes the proof. J

This theorem shows that the only classical gates obtainable from ΦTof
m by placing single-

qubit channels before and after it are the classical Toffoli gate of size m and gates derived
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xi1 xi2 xik

|0〉 U0 X U1 X · · · X Uk f(x)

Figure 6 A one-qubit program of length k.

from it using single-bit gates. In particular, this means that if the gate set G contains all
single-qubit channels and the cnot gate, which is the Toffoli gate form = 2, then Ĝ contains
only the cnot gate and the not gate. We use this result in Section 4.

4 One-qubit model

Informally, Theorem 2 and Theorem 3 show that read-once quantum formulas are equivalent
to classical read-once formulas. We now show that the claim is no longer true if we drop the
read-once constraint. To this end, we introduce a new model, which we call the one-qubit
model. This model is independent of the previous sections, and may be of interest outside
of the context of quantum formulas.

The one-qubit model consists of a single qubit initialized to |0〉 followed by an alternating
sequence of single-qubit unitaries and cnot (controlled-X) gates. The control of each cnot
is a bit xi of the input x. The output is determined by a measurement in the standard
basis. See Figure 6. We call an algorithm of this kind a one-qubit program. We say that a
one-qubit program exactly computes a function f if the output of the measurement is f(x)
with probability one on input x.

The length of a one-qubit program is defined as the total number of cnot gates. For
instance, the program in Figure 6 has length k. Notice that the model is unchanged if,
instead of cnot, we choose any controlled-V gate such that UV U† = X for some single-
qubit unitary U . Note also that input bits may be re-used as many times as desired.

We prove that the one-qubit model is universal, that is, it can compute all boolean
functions. Specifically, if a boolean function has a depth-d circuit over fanin-2 and and or,
and not gates, then it has a one-qubit program of length 4d. Here, the depth of a circuit
is defined as the maximum number of and or or gates on any path from the output to
an input. Note that all boolean functions can be expressed as circuits of polynomial depth,
thus one-qubit programs of exponential length can compute all boolean functions. Moreover,
one-qubit programs with polynomial length can exactly compute any function in NC1, the
set of functions computed by log-depth poly-size bounded-fanin circuits over and, or and
not. Our proof resembles the original proof of Barrington’s theorem [3], a surprising result
in complexity theory, which showed that bounded-width branching programs can compute
any function in NC1.

I Theorem 5. The one-qubit model can compute all boolean functions. More precisely, any
function that has a depth-d circuit over fanin-2 and and or, and not gates can be computed
exactly by a one-qubit program of length 4d.

Proof. Use the notation Xx to denote a cnot gate that is controlled by the variable x. Let
C be a circuit of depth d that computes a function C(x). Starting from the circuit C, we
construct a one-qubit program F of length 4d that computes the same function. That is,
F = XC(x) so that F |0〉 = |C(x)〉.

We prove the claim by induction on the structure of the circuit. Circuit C can be seen as
a binary tree with the input variables as the leaves of the tree and the gates as the internal
nodes. Given a gate at the root of the circuit (and or not), we assume that the induction
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hypothesis holds for the subcircuits that produce the inputs of the gate and we prove the
claim for the entire circuit.

Let us start with the base case. If C is a single variable xi, the corresponding one-qubit
program is a single cnot gate controlled by xi, i.e., F = Xxi .

The induction step consists of two cases. Suppose that C is composed of a not gate and
a subcircuit C ′, and let F ′ be the one-qubit program of length 4d that simulates C ′. Then
we can append a Pauli-X gate to F ′ and obtain the program F of the same length 4d that
computes C, i.e., F = XXC′(x) = XC̄′(x) = XC(x). Note that the depth of circuits C and
C ′ is the same, since not gates do not contribute to the depth. Also note that single-qubit
unitaries do not contribute to the length of the program, and thus the length is unchanged.

Now suppose C is composed of an and gate that connects two subcircuits C ′ and C ′′

and let F ′ and F ′′ be the programs of length 4d−1 that compute C ′ and C ′′, respectively.
Then consider the following program F described as an equation:

F = V XC′(x)HC′′(x)XC′(x)HC′′(x)V = V (iY )C′(x)∧C′′(x)V = iXC(x), (2)

where V = 1√
2 (X + Y ) is the unitary that satisfies V 2 = 1, V Y V = X and V XV = Y .

This program effectively computes the and of two sub-programs. It starts with a V gate,
followed by the subprogram F ′, which is equivalent to XC′(x). Then we need a subprogram
that performsHC′′(x). By the induction hypothesis, we have a subprogram F ′′ that performs
XC′′(x). Since the Hadamard matrix and Pauli X gate are unitarily equivalent, there is a
unitary matrix R such that RXR = H and RHR = X. Conjugating XC′′(x) with R gives
us RXC′′(x)R, which is the same as (RXR)C′′(x), which is HC′′(x). The other gates in F

are constructed similarly.
Thus the program F requires some single qubit gates, two copies of the program for F ′

and two copies of the program for F ′′. Since F ′ and F ′′ have length at most 4d−1 and single
qubit unitaries do not count towards the length, we get a program F of length 4d, which
performs XC(x) up to an irrelevant global phase.

These two cases suffice to prove the theorem since we can replace the or gates in the
circuit by and and not gates, without increasing its size or depth. J

In the case of NC1, the depth of the circuit is at most O(logn), therefore the length of the
resulting one-qubit program is polynomial.

I Corollary 6. Any function in NC1 can be computed exactly by a one-qubit program of
polynomial length.

Now that we have shown that the one-qubit model can compute all boolean functions,
it remains to show that our dequantization claim is false without the read-once constraint.
First observe that the one-qubit model is a restricted model of quantum formulas over the
gate set G consisting of all single-qubit gates and the cnot gate.

We know from Theorem 4 (case m = 2) that, in this case, the classical gate set Ĝ consists
of only the not gate and parity gate. But no formula and, indeed, no circuit of any size
over Ĝ can compute the and of two bits, since not and parity do not form a complete
basis. In particular, circuits over Ĝ can only compute functions expressible as degree-one
polynomials over F2. Thus we conclude that Theorem 2 and Theorem 3 are false if the
read-once constraint is dropped.

Readers familiar with quantum branching programs [14, 17, 1] may notice that the one-
qubit model is contained in exact width-two quantum branching programs. However, in
our model the only input-dependent gate is a Pauli-X, whereas in quantum branching pro-
grams, we can apply arbitrary input-controlled unitaries. By conjugating the X gate with
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arbitrary single qubit gates the one-qubit model can obtain any unitary matrix with the
same eigenvalues as X, but not an arbitrary unitary matrix. Thus it is not clear that results
about width-two quantum branching programs can be ported over to our model.

5 Conclusions and open problems

We have shown that read-once quantum formulas over any gate set are only as powerful as
read-once classical formulas over a related gate set. As a concrete example, we showed that
read-once quantum formulas over Toffoli and single-qubit gates dequantize to the natural
analog, read-once classical formulas over Toffoli and not gates. Perhaps our results may be
extended to constant-depth quantum circuit classes, many of which are defined over Toffoli
and single-qubit gates, e.g., [9]. Our proof technique fails when the formula restriction is
lifted, but for constant-depth it may be possible to reuse some of the same ideas.

Another obvious open problem is to dequantize all quantum formulas, not just read-once
formulas. Although we show that our classical gate set is insufficient to do so, there might
be another classical gate set that works.

Finally, our dequantization result implies that lower bounds on read-once quantum for-
mulas may be obtained from analogous classical lower bounds. For related models, including
general (i.e., not read-once) quantum formulas and constant-depth quantum circuits, the
problem of finding non-trivial lower bounds remains.
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Abstract
We investigate the problem of constructing unextendible product bases in the qubit case – that
is, when each local dimension equals 2. The cardinality of the smallest unextendible product
basis is known in all qubit cases except when the number of parties is a multiple of 4 greater
than 4 itself. We construct small unextendible product bases in all of the remaining open cases,
and we use graph theory techniques to produce a computer-assisted proof that our constructions
are indeed the smallest possible.
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1 Introduction

Unextendible product bases play a rather diverse and important role in quantum information
theory [7]. While their original motivation was for the construction of bound entangled
states [5, 12, 13], they have also been used to build indecomposible positive maps [14], to
demonstrate Bell inequalities without a quantum violation [3], and demonstrate the existence
of nonlocality without entanglement [4].

Furthermore, in the qubit case (i.e., the case where each local space has dimension 2),
it has been shown that unextendible product bases can be used to construct tight Bell
inequalities with no quantum violation [2] and subspaces of small dimension that are locally
indistinguishable [8]. It is the qubit case that we focus on in the present paper. In particular,
we consider the question of how small a qubit unextendible product basis can be.

The minimum cardinality of a qubit unextendible product basis on p qubits is well-known
to equal p + 1 when p is odd [1]. When p is even, however, the problem is more difficult. It
was shown in [9] that the minimum cardinality equals p + 2 when p = 4 or p ≡ 2 (mod 4).
Our contribution is to solve the remaining cases (i.e., when p ≥ 8 and p ≡ 0 (mod 4) – more
specifically, we show that the minimum cardinality is p + 3 when p = 8 and p + 4 in all other
cases.

Our approach is as follows: we formally introduce the mathematical preliminaries and
graph theory techniques that we make use of in Section 2. We construct unextendible product
bases of the claimed cardinality in Section 3. Finally, Section 4 is devoted to the proof that
there does not exist a smaller unextendible product basis in these cases.

2 Unextendible Product Bases and Orthogonality Graphs

A pure quantum state is represented by a unit vector |v〉 ∈ Cd1 ⊗ · · · ⊗ Cdp (and in our
setting, d1 = · · · = dp = 2 always). We say that |v〉 is a product state if we can write it in
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94 The Minimum Size of Qubit Unextendible Product Bases

the form

|v〉 = |v1〉 ⊗ · · · ⊗ |vp〉 with |vj〉 ∈ C2 ∀ j.

An unextendible product basis (UPB) is an orthonormal set S ⊆ (C2)⊗p of product
states such that there is no product state orthogonal to every member of S. It is clear that
every UPB in (C2)⊗p contains at least p + 1 states – if it contained only p product states
|v0〉, . . . , |vp−1〉 then we could construct another product state that is, for each 0 ≤ j < p,
orthogonal to |vj〉 on the (j + 1)-th party and thus violate unextendibility.

It turns out that the trivial lower bound of p + 1 states can be attained when p is odd,
and can almost be attained when p is even, as indicated by our main result:

I Theorem 1. Let f(p) be the smallest possible number of states in a UPB in (C2)⊗p.
Then:
(a) if p is odd then f(p) = p + 1;
(b) if p = 4 or p ≡ 2 (mod 4) then f(p) = p + 2;
(c) if p = 8 then f(p) = p + 3;
(d) otherwise, f(p) = p + 4.

Case (a) of Theorem 1 is demonstrated by the “GenShifts” UPB constructed in [7].
Case (b) of Theorem 1 was proved in [9], and in general our techniques and presentation
are similar to those of that paper. Our contribution is to prove cases (c) and (d) and hence
complete the characterization. It is worth pointing out that cases (c) and (d) of Theorem 1
are the first known cases (qubit or otherwise) where the minimum cardinality of a UPB
exceeds the trivial lower bound 1 +

∑
j(dj − 1) by more than 1 (see [6, 9] for several examples

where the trivial lower bound is exceeded by exactly 1).
Orthogonality graphs provide a very useful tool when dealing with unextendible product

bases, particularly in the qubit case. Given a set of product states S = {|v0〉, . . . , |vs−1〉} ⊆
(C2)⊗p with |S| = s, we say that the orthogonality graph of S is the graph on s vertices
V := {v0, . . . , vs−1} such that there is an edge (vi, vj) of color ` if and only if |vi〉 and |vj〉
are orthogonal to each other on party `. Rather than actually using p colors to color the
edges of the orthogonality graph, for ease of visualization we instead draw p different graphs
on the same set of vertices – one for each party (see Figure 1).

The requirement that S is an orthonormal set is equivalent to requiring that every
edge is present on at least one party in its orthogonality graph. In order to help us
visualize the unextendibility requirement, we make a few more observations. In particular,
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v6
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v2

v3 v4
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Figure 1 The orthogonality graph of a set of 7 product states in (C2)⊗3. This set of states is a
product basis, since every edge is present in at least one of the three graphs, but it is extendible,
since we can find a product state that is orthogonal to the states associated with v3, v4, v5, v6 on the
first subsystem, v0, v2 on the second subsystem, and v1 on the third subsystem.
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if |w0〉, |w1〉, |w2〉 ∈ C2 are such that 〈w0|w1〉 = 〈w0|w2〉 = 0, then it is necessarily the case
that |w1〉 = |w2〉 (up to irrelevant complex phase). It follows that the orthogonality graph
associated with any qubit in a product basis is the disjoint union of complete bipartite graphs.
For example, in Figure 1 the left graph is K3,4, the center graph is the disjoint union of K1,2
and K2,2, and the right graph is the disjoint union of K1,2 and two copies of K1,1.

Furthermore, not only does every set of product states have an orthogonality graph that
can be decomposed into the disjoint union of complete bipartite graphs, but the converse
is also true: every graph that is built from complete bipartite graphs in this way is the
orthogonality graph of some set of product states. To see this, on each party assign to each
complete bipartite graph a distinct basis of C2 in the obvious way. For example, one set of
product states giving rise to the orthogonality graph depicted in Figure 1 is as follows:

|v0〉 := |0〉 ⊗ |0〉 ⊗ |0〉, |v1〉 := |0〉 ⊗ |1〉 ⊗ |+〉, |v2〉 := |0〉 ⊗ |0〉 ⊗ |1〉,
|v3〉 := |1〉 ⊗ |+〉 ⊗ |−〉, |v4〉 := |1〉 ⊗ |+〉 ⊗ |+〉, |v5〉 := |1〉 ⊗ |−〉 ⊗ |b〉,
|v6〉 := |1〉 ⊗ |−〉 ⊗ |b⊥〉,

where |+〉 := 1√
2 (|0〉+ |1〉), |−〉 := 1√

2 (|0〉 − |1〉), and {|b〉, |b⊥〉} is any orthonormal basis of
C2 not equal to {|0〉, |1〉} or {|+〉, |−〉}.

It is often useful to draw orthogonality graphs of sets of qubit product states in a form
that makes their decomposition in terms of complete bipartite graphs more transparent – we
draw shaded regions indicating which vertices are equal to each other (up to complex phase)
on the given party, and lines between shaded regions indicate that all states in one of the
regions are orthogonal to all states in the other region on that party (see Figure 2).

It now becomes straightforward to see whether or not a product basis is unextendible
just by looking at its orthogonality graph. A set of product states is unextendible if and
only if there is no way to choose one shaded region on each party such that every vertex
v0, v1, . . . , vs−1 is contained within at least one of the shaded regions. For example, the set of
product states described by Figure 2 is extendible because we can choose the shaded region
containing v3, v4, v5, v6 on the first subsystem, v0, v2 on the second subsystem, and v1, v4 on
the third subsystem.

The following simple lemma shows that, in an orthogonality graph of a UPB, every shaded
region must be connected to exactly one other shaded region via an edge.
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Figure 2 A representation of the same orthogonality graph as that of Figure 1. Vertices within
the same shaded region represent states that are equal to each other on that party. Lines between
shaded regions indicate that every state within one of the regions is orthogonal to every state within
the other region.
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I Lemma 2. If S ⊆ (C2)⊗p is a UPB, then for all |v〉 ∈ S and all integers 1 ≤ j ≤ p there
is another product state |w〉 ∈ S such that |v〉 and |w〉 are orthogonal on the j-th subsystem.

Proof. Suppose that there exists 1 ≤ j ≤ p and |v〉 := |v(1)〉 ⊗ · · · ⊗ |v(p)〉 ∈ S such
that |v〉 is not orthogonal to any other member of S on the j-th subsystem. Because
S is a product basis, |v〉 must be orthogonal to every member of S on the remaining
p − 1 subsystems. It follows that if |v⊥(j)〉 is orthogonal to |v(j)〉 then the product state
|v(1)〉 ⊗ · · · |v(j−1)〉 ⊗ |v⊥(j)〉 ⊗ |v(j+1)〉 ⊗ · · · ⊗ |v(p)〉 is orthogonal to every element of S, which
shows that S is extendible. J

An obvious corollary of Lemma 2 is that, in the orthogonality graph of a UPB, every
party must have an even number of distinct shaded regions – a fact that will be very useful
in Section 4.

3 Construction of Small UPBs

Recall that our goal is to show that the smallest UPB in (C2)⊗8 consists of 11 states and
the smallest UPB in (C2)⊗4k consists of 4k + 4 states when k ≥ 3. Our first step toward this
goal is to construct a UPB of the desired size in these cases.

I Lemma 3. There exists a UPB in (C2)⊗8 consisting of 11 states.

Proof. The result follows simply from demonstrating an orthogonality graph on 11 vertices
that satisfies the product basis and unextendibility requirements described in Section 2. Such
an orthogonality graph is provided in Figure 3.

Indeed, it is straightforward (albeit tedious) to check that the 8 graphs depicted in
Figure 3 contain all 55 possible edges between 11 vertices, so the corresponding product
states are mutually orthogonal. Unextendibility follows from the (also straightforward but
tedious) fact that there is no way to choose a shaded region containing 2 vertices on 3
different parties without at least 2 of them containing the same vertex. J

We note that the UPB of Lemma 3 was found by a combination of computer search and
tweaking by hand, and it does not seem to generalize to other values of p in any natural way.
On the other hand, the UPBs that we now construct of cardinality 4k + 4 are much “tidier”.

Figure 3 Orthogonality graphs demonstrating that there exists an 11-state UPB in (C2)⊗8.
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Figure 4 The graphs B0,2 (left), B1,2 (center), and B2,2 (right), used in the construction of a
UPB of size 12 in (C2)⊗8.

I Lemma 4. If k ≥ 2 then there exists a UPB in (C2)⊗4k consisting of 4k + 4 states.

Proof. We begin by defining a family of k + 1 graphs Bj,k := (V, Ej) for 0 ≤ j ≤ k, each on
the same set of 4k + 4 vertices V := {vi, wi, xi, yi, : 0 ≤ i ≤ k}. The set of edges Ej in the
graph Bj,k is defined as follows:

Ej :=
{

(vi, x(i+j)(mod (k+1))), (vi, y(i+j)(mod (k+1))),
(wi, x(i+j)(mod (k+1))), (wi, y(i+j)(mod (k+1))) : 0 ≤ i ≤ k

}
.

The three graphs B0,2, B1,2, and B2,2 in the k = 2 case are depicted in Figure 4. It is
clear that the graph obtained by taking the union of all edges in all sets Bj,k for 0 ≤ j ≤ k

is K2k+2,2k+2, the complete bipartite graph on two sets of 2k + 2 vertices.
We now define three sets of states S(j) = {|v(j)

i 〉, |w
(j)
i 〉, |x

(j)
i 〉, |y

(j)
i 〉 : 0 ≤ i ≤ k} ⊆ C2 that

have orthogonality graphs Bj,k for 0 ≤ j ≤ 2 respectively. To this end, let {|bi〉, |b⊥i 〉}
2k+1
i=0 be

distinct orthonormal bases of C2 (i.e., 〈bi|b⊥i 〉 = 0 for all i, but |〈bi|bj〉|, |〈bi|b⊥j 〉|, |〈b⊥i |b⊥j 〉| /∈
{0, 1} whenever i 6= j). Then let

|v(j)
i 〉 := |w(j)

i 〉 := |bi〉 and |x(j)
i 〉 := |y(j)

i 〉 := |b⊥(i−j)(mod (k+1))〉,

for 0 ≤ j ≤ 2, which clearly results in the desired orthogonality graphs. Furthermore, each
set S(j) has the property that any state |z〉 ∈ C2 can be orthogonal to at most two elements
of S(j) – a fact that we will use later when discussing unextendibility.

For each of the remaining k − 2 graphs Bj,k (3 ≤ j ≤ k), we construct sets of product
states S(2j−3,2j−2) = {|v(2j−3,2j−2)

i 〉, |w(2j−3,2j−2)
i 〉, |x(2j−3,2j−2)

i 〉, |y(2j−3,2j−2)
i 〉 : 0 ≤ i ≤

k} ⊆ C2 ⊗ C2 that have orthogonality graphs Bj,k for 3 ≤ j ≤ k. To this end, define

|v(2j−3,2j−2)
i 〉 := |bi〉 ⊗ |bi〉

|w(2j−3,2j−2)
i 〉 := |bi+(k+1)〉 ⊗ |bi+(k+1)〉

|x(2j−3,2j−2)
i 〉 := |b⊥(i−j)(mod (k+1))〉 ⊗ |b

⊥
(i−j)(mod (k+1))+(k+1)〉

|y(2j−3,2j−2)
i 〉 := |b⊥(i−j)(mod (k+1))+(k+1)〉 ⊗ |b

⊥
(i−j)(mod (k+1))〉,

which results in the desired orthogonality graphs.
We now turn our attention to the complement graph of K2k+2,2k+2, which is simply the

disjoint union of two disjoint copies of K2k+2, the complete graph on 2k + 2 vertices. We

TQC’13



98 The Minimum Size of Qubit Unextendible Product Bases
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Figure 5 The graph K2
6 that is the disjoint union of two copies of K6.

denote this graph by K2
2k+2, and it is depicted in the k = 2 case in Figure 5. The graph

K2
2k+2 will be the orthogonality graph of the remaining 4k− (3 + 2(k− 2)) = 2k + 1 parties.
Our goal now is to define sets of states S(j) = {|v(j)

i 〉, |w
(j)
i 〉, |x

(j)
i 〉, |y

(j)
i 〉 : 0 ≤ i ≤ k} ⊆ C2

for 2k − 1 ≤ j ≤ 4k − 1 such that their orthogonality graphs, when taken together, contain
all edges of K2

2k+2. To this end, we recall that it is well-known that K2k+2 always has
a 1-factorization [10, Theorem 9.1], so K2

2k+2 clearly has a 1-factorization as well (see
Figure 6). This 1-factorization decomposes K2

2k+2 into 2k + 1 distinct 1-regular spanning
subgraphs, and any such graph is clearly the orthogonality graph of the set of states
{|b0〉, |b⊥0 〉, . . . , |b2k+1〉, |b⊥2k+1〉} ⊂ C2 (under an appropriate labelling of the vertices).
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Figure 6 A 1-factorization of K2
6 , which is useful for constructing a UPB of size 12 in (C2)⊗8.
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Since the union of the sets of edges present in all of the graphs considered so far is the
complete graph K4k+4, we know that the states in the set

S :=


4k⊗

j=1
|v(j)

i 〉,
4k⊗

j=1
|w(j)

i 〉,
4k⊗

j=1
|x(j)

i 〉,
4k⊗

j=1
|y(j)

i 〉 : 0 ≤ i ≤ k


are mutually orthogonal. To see why this set is unextendible, recall that any non-zero product
state can be orthogonal to at most 2 states on each of the first 3 subsystems, and at most
1 state on each of the remaining 4k − 3 subsystems. It follows that any nonzero product
state can be orthogonal to at most 2 · 3 + 1 · (4k − 3) = 4k + 3 of these product states. Since
no nonzero product state can be orthogonal to all 4k + 4 members of S, it is unextendible,
which completes the proof. J

4 Proof of Minimality

We now turn our attention to the problem of proving that the UPBs constructed in Section 3
are the smallest possible. Because the main result of [1] tells us that the minimum cardinality
of a UPB in (C2)⊗4k is at least 4k + 2, we only have to prove that there is no UPB of
cardinality 4k + 2 when k ≥ 2 and no UPB of cardinality 4k + 3 when k ≥ 3. While the proof
that there is no UPB of cardinality 4k + 2 is relatively straightforward, the proof that there
is no UPB of cardinality 4k + 3 is more involved and consists of many cases and sub-cases.
We make use of a C script to solve some of the messier cases, while we solve the simpler
cases by hand.

For the entirety of this section, we make use of partial orthogonality graphs, which are
the same as orthogonality graphs, except perhaps with some conditions unspecified. For
example, in Figure 7 the lack of lines indicating orthogonality between shaded regions does
not signify that there are no regions orthogonal to each other, but rather that we just don’t
care which regions are orthogonal to each other. Similarly, in Figure 8 there are vertices that
are drawn outside of any shaded region. This is intended to mean that we don’t care what
the shaded region involving that vertex looks like. In general, we only specify the pieces of
the orthogonality graphs that are relevant for our proofs.

It will be convenient for us to let P1, . . . , P4k denote the 4k different parties. We also let
Mj denote the maximum number of vertices contained within a single shaded region on party
Pj (which is equal to the maximum number of states in the UPB that are equal to each other
on party Pj), and let Cn,j denote the number of distinct shaded regions containing exactly n

vertices on party j (i.e., Cn,j is the number of distinct group of exactly n states in the UPB
that are equal to each other on party Pj). For example, in Figure 2, if the graphs correspond
to parties P1, P2 and P3, then M1 = 4, M2 = M3 = 2, C3,1 = 1, C4,1 = 1, C1,2 = 1, C2,2 = 3,
C1,3 = 5, and C2,3 = 1.

I Lemma 5. There is no UPB in (C2)⊗4k of cardinality 4k + 2 when k ≥ 2.

Proof. Suppose for a contradiction that there exists a UPB of cardinality 4k + 2 in (C2)⊗4k.
If it were the case that Mj ≥ 3 for some j, then we could find a product state that is
orthogonal to the 3 corresponding states on that party and to any 1 of the product states on
each of the remaining 4k − 1 parties, for a total of all 4k + 2 elements of the UPB, which
violates unextendibility. Hence Mj ≤ 2 for all 1 ≤ j ≤ 4k. We now split into two cases.
Case 1: There is at most one party Pj with Mj = 2.

Between the 4k parties, there must be a total of (4k + 2)(4k + 1)/2 = 8k2 + 6k + 1 edges
in the union of their orthogonality graphs. The 4k − 1 parties other than Pj must be the
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Figure 7 Partial orthogonality graphs of three parties that each have two sets of two equal states,
used in the proof of case 2 of Lemma 5. There is no way to add another pair of equal states on any
party without violating unextendibility.

disjoint union of 2k + 1 copies of K1,1, for a total of at most (4k − 1)(2k + 1) = 8k2 + 2k − 1
edges. The remaining party Pj then needs at least (8k2 + 6k + 1)− (8k2 + 2k − 1) = 4k + 2
edges. It is easily seen, however, that the largest number of edges that the orthogonality
graph of party Pj can have is obtained when it is the disjoint union of k copies of K2,2 and
one copy of K1,1, which results in only 4k + 1 edges, which gives the desired contradiction.
Case 2: There are two (or more) parties Pi 6= Pj with Mi = Mj = 2.

It is not difficult to see that C2,` ∈ {0, 2} for all ` or else either Lemma 2 or unextendibility
is violated. Furthermore, it is not difficult to see that the unique (up to repositioning vertices
and parties) way to have C2,` = 2 for 3 distinct values of ` is given in Figure 7, and there is no
way to have C2,` for a fourth value of ` without violating unextendibility. A simple calculation
reveals that the maximum number of edges that can be obtained from the orthogonality
graphs of these 3 parties is (2k + 3) + 2(2k + 2) = 6k + 7. The orthogonality graphs of the
remaining 4k − 3 parties are the disjoint union of 2k + 1 copies of K1,1, so they each have
2k + 1 edges. Thus the total number of edges among the orthogonality graphs of all 4k

parties is at most (6k + 7) + (4k − 3)(2k + 1) = 8k2 + 4k + 4. This quantity is smaller than
the 8k2 + 6k + 1 required edges when k ≥ 2, which gives the desired contradiction.

J

Note that the hypothesis of Lemma 5 that k ≥ 2 really is required, since we have
8k2 + 4k + 4 ≥ 8k2 + 6k + 1 in case 2 of the proof of the lemma when k = 1, so it may be
possible to fit all of the required edges into the orthogonality graphs. Indeed, it was shown
in [9] that a UPB consisting of 4k + 2 states in (C2)⊗4k exists in the k = 1 case.

We now turn our attention to proving that there is no UPB of cardinality 4k + 3 when
k ≥ 3. The idea and techniques used in the proof of this statement are quite similar to the
4k + 2 case, but there are more cases to consider.

I Lemma 6. There is no UPB in (C2)⊗4k of cardinality 4k + 3 when k ≥ 3.

Proof. Suppose for a contradiction that there exists a UPB of cardinality 4k + 3 in (C2)⊗4k.
If there exists 1 ≤ j ≤ p such that Mj ≥ 4, then we can find a product state that is orthogonal
to at least 4 corresponding states on party Pj and to 1 of the product states on each of
the remaining 4k − 1 parties, for a total of 4k + 3 elements of the UPB, which violates
unextendibility. Hence Mj ≤ 3 for all j. Furthermore, this same argument shows that if
there exists i ≥ 1 such that we can choose a single shaded region on each of i parties so that
together they contain at least i + 3 vertices, then unextendibility will be violated. Finally,
note that since 4k + 3 is odd, Lemma 2 implies that Mj ≥ 2 for all j.

We now split into 4 cases, depending on the value of maxj{C3,j} (i.e., the maximum
number of sets of 3 equal states on any party).
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Case 1: maxj{C3,j} ≥ 3.
Because Mj ≥ 2 for all j, it easily follows that we can find shaded regions on two parties

that contain 3 + 2 = 5 distinct vertices, which contradicts unextendibility.
Case 2: maxj{C3,j} = 2.

Suppose without loss of generality that party P1 is such that C3,1 = 2. Unextendibility
immediately implies that C3,j = 0 for j ≥ 2. Since there are 4k − 3 left over vertices on
party P1, which is odd, there must be a copy of K2,1 on this party, as in Figure 8. Since v1
is connected to only one other state on party P1, it must be connected to 2 states on each
of 2 other parties. These sets of 2 vertices must be disjoint and must each contain one of
v2, v3, v4 and one of v5, v6, v7. Thus parties P2 and P3, without loss of generality, are as in
Figure 8, which clearly implies extendibility and rules out this case.
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Figure 8 The (essentially unique) partial orthogonality graphs of parties P1 (left), P2 (center)
and P3 (right) in case 2 of Lemma 6. Such a product basis is necessarily extendible, as we can find
a product state that is orthogonal to the states corresponding to v1 and v8 on party P1, v4 and v5

on party P2, v2 and v7 on party P3, and one of the 4k − 3 remaining states on each of the remaining
4k − 3 parties.

Case 3: maxj{C3,j} = 0.
Since Mj = 2 for all j, simple parity arguments show that C2,j ∈ {1, 3, 5, . . .} for every j.

We now split into two sub-cases, depending on the value of maxj{C2,j} (i.e., the maximum
number of sets of 2 equal states on any party).
Case 3(a): maxj{C2,j} ≥ 5.

Suppose that party P1 has C2,1 ≥ 5. We first argue that there must be at least one other
party P2 with C2,2 ≥ 3. To see this, suppose the contrary – suppose that C2,j = 1 for all
j ≥ 2. Then each of these 4k−1 parties contributes at most 2k + 2 edges to the orthogonality
graph, for a total of (4k − 1)(2k + 2) = 8k2 + 6k − 2 edges. The party P1 contributes no
more than 4k + 2 edges, for a total of 8k2 + 10k edges among all 4k parties. However, the
complete graph on 4k + 3 vertices has (4k + 3)(4k + 2)/2 = 8k2 + 10k + 3 edges, so there are
at least 3 pairs of non-orthogonal product states in our set, which contradicts the assumption
that we are working with a UPB.

We now pick an arbitrary party P3 6= P1, P2. Because C2,3 ≥ 1, we are now able to
choose one shaded region on each of parties P1, P2, P3 such that 6 vertices are contained
within these regions, which shows that unextendibility is violated. To this end, we choose
any shaded region on party P3 that contains two vertices, then we pick any shaded region on
party P2 that is disjoint from the two vertices we chose on party P3, and finally we choose
any shaded region on party P1 that is disjoint from all four of the previously-chosen vertices
(see Figure 9).
Case 3(b): maxj{C2,j} ≤ 3.

We begin by noting that the brute-force computer search shows that there can be no more
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Figure 9 An example of a partial orthogonality graph in case 3(a) of Lemma 6. Such a product
basis is necessarily extendible, as we can choose the shaded region containing v0 and v9 on party P3,
the disjoint shaded region (i.e., the one containing v5 and v6) on party P2, and the disjoint shaded
region (i.e., the one containing v2 and v3) on party P1, for a total of 6 vertices on 3 parties.

than 4 distinct parties Pj for which C2,j ≥ 3 [11]. Each of these four parties has at most 2k+4
edges in its orthogonality graph, and each of the remaining 4k− 4 parties has at most 2k + 2
edges on its orthogonality graph, for a total of at most 4(2k+4)+(4k−4)(2k+2) = 8k2+8k+8
edges. The complete graph on 4k + 3 vertices has (4k + 3)(4k + 2)/2 = 8k2 + 10k + 3 edges,
so when k ≥ 3 there are not enough edges in the orthogonality graph, so the set of states
does not form a product basis, which contradicts our assumption that we are working with a
UPB. Note that this is the case in which the UPB of Lemma 3 arises if k = 2, so the fact
that we require k ≥ 3 here is not surprising.
Case 4: maxj{C3,j} = 1.

By parity arguments, we see that every party Pj with C3,j = 1 must also have C2,j ∈
{1, 3, 5, . . . }. Furthermore, if there exist two (or more) parties P1, P2 such that M1 = M2 = 3,
then unextendibility is violated unless C2,j = 1 whenever Mj = 3.
Case 4(a): There exist three (or more) parties P1, P2, P3 such that M1 = M2 = M3 = 3.

Because there must exist a shaded region containing exactly 2 vertices on each party P1,
P2, P3, it is easily verified that the only possible configuration of shaded regions on those
parties (up to repositioning vertices and parties) that doesn’t break unextendibility is the
one depicted in Figure 10.

The parties P1, P2, P3 can have no more than (2k + 5) + 2(2k + 3) = 6k + 11 distinct edges
among them (since there will be a lot of overlap at the left edge of the graphs if we make each
group of 3 equal states orthogonal to the group of 2 equal states). It is straightforward to see
that none of the remaining 4k − 3 parties Pj can have Mj ≥ 3 or C2,j ≥ 2 without breaking
unextendiblity. Thus those 4k − 3 parties can produce no more than 2k + 2 edges each, for a
total of 6k+11+(4k−3)(2k+2) = 8k2 +8k+5 edges. Since 8k2 +8k+5 < 8k2 +10k+3 when

Figure 10 The (essentially unique) partial orthogonality graph that does not violate unextendib-
ility in case 4(a).
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Figure 11 An example of a partial orthogonality graph in case 4(b).

k ≥ 2, there are some edges missing from the orthogonality graphs, which is a contradiction.
Case 4(b): There exists a party P1 such that M1 = 3, but Mj ≤ 2 for j ≥ 2.

Party P1 contributes at most 2k + 5 edges to the orthogonality graph, and the unex-
tendibility requirement implies that C2,j ≤ 3 for j ≥ 2. Suppose that there are m indices
2 ≤ j1, j2, . . . , jm ≤ 4k such that C2,ji

= 3 for 1 ≤ i ≤ m and C2,j = 1 for all other values of
j. Then there are at most (2k + 5) + m(2k + 4) + (4k −m− 1)(2k + 2) = 8k2 + 8k + 2m + 3
total edges between all 4k parties. As in the previous cases, we need a total of 8k2 + 10k + 3
edges, which implies that m ≥ k. We already saw via brute-force search in case 3(b) that we
can’t have m ≥ 5, so we only need to rule out the 3 ≤ k ≤ 4 cases.

If the group of 3 identical states on party P1 is represented by vertices v3, v4, and v5 (see
Figure 11), then each one of the 3 groups of 2 identical states on the other parties must
contain exactly one of v3, v4, or v5. By refining our brute-force computer search to take this
restriction into account, we find that there is no configuration of shaded regions that does
not violate unextendibility when m ≥ 3 [11], so no such UPB exists when k ≥ 3.
Case 4(c): There exist two parties P1, P2 such that M1 = M2 = 3, but Mj ≤ 2 for j ≥ 3.

In this case, there are (up to relabelling vertices and parties) only two possible configura-
tions of parties P1 and P2, which are depicted in Figures 12 and 13. Notice that in Figure 12,
the shaded region on party P1 that contains exactly two vertices does not share any common
vertices with the shaded region on party P2 that contains exactly two vertices, while in
Figure 13 those two regions contain the common vertex v1.

Suppose for now that parties P1 and P2 have a total of at most 4k + 8 distinct edges on
their orthogonality graphs. If there are m parties Pj (j ≥ 3) for which C2,j = 3, then we
have a total of at most (4k + 8) + m(2k + 4) + (4k −m− 2)(2k + 2) = 8k2 + 8k + 2m + 4
edges. In all of these m parties, we require that one of the shaded regions contains v2 and v3
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Figure 12 One of two possible partial orthogonality graphs of parties P1, P2, and P3 that does
not violate unextendibility in case 4(c).
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Figure 13 The other possible partial orthogonality graph of parties P1, P2 that does not violate
unextendibility in case 4(c).

and the other shaded regions containing two vertices each contain one of v4 or v5. Thus, the
brute-force search described in case 4(b) applies here as well and shows that m ≤ 2. However,
when m = 2 we have 8k2 + 8k + 2m + 4 = 8k2 + 8k + 8 < 8k2 + 10k + 3 when k ≥ 3, which
shows that there can not possibly be enough edges on the orthogonality graphs in this case.

The only remaining possibility is that the parties P1 and P2 have a total of at least 4k + 9
distinct edges (and hence exactly 4k + 9 distinct edges). In this case, parties P1 and P2 must
be as in Figure 12, and on both of the parties P1 and P2 the set of 3 equal states must be
orthogonal to the set of 2 equal states. Furthermore, it is not difficult to show that in this
case, any party Pj with C2,j = 3 can have at most 2k + 4 edges, but if it has 2k + 4 edges
then at least one of those edges must already be present on either party P1 or P2. It follows
that each party Pj (j ≥ 3) can introduce at most 2k + 3 new edges that have not already
been counted. Thus, if there are m parties Pj (j ≥ 3) for which C2,j = 3, we have a total of
at most (4k + 9) + m(2k + 3) + (4k−m− 2)(2k + 2) = 8k2 + 8k + m + 5 edges. Since m ≤ 2
(as before) and k ≥ 3, it follows that 8k2 + 8k + m + 5 < 8k2 + 10k + 3, which again shows
that there can not possibly be enough edges on the orthogonality graphs in this case. J
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Abstract
In this work we combine two distinct machine learning methodologies, sequential Monte Carlo
and Bayesian experimental design, and apply them to the problem of inferring the dynamical
parameters of a quantum system. The algorithm can be implemented online (during experi-
mental data collection), avoiding the need for storage and post-processing. Most importantly,
our algorithm is capable of learning Hamiltonian parameters even when the parameters change
from experiment-to-experiment, and also when additional noise processes are present and un-
known. The algorithm also numerically estimates the Cramer-Rao lower bound, certifying its
own performance. We further illustrate the practicality of our algorithm by applying it to two
test problems: (1) learning an unknown frequency and the decoherence time for a single–qubit
quantum system and (2) learning couplings in a many–qubit Ising model Hamiltonian with no
external magnetic field.

1998 ACM Subject Classification G.3 Probability and Statistics

Keywords and phrases Quantum information, sequential Monte Carlo, Bayesian, experiment
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1 Introduction

The problem of characterizing quantum systems is of fundamental importance to quantum
information science. Without an accurate understanding, for example, of the noise processes
that a quantum computer experiences, error correction may be quite difficult; furthermore,
certification of quantum dynamics is essential for determining whether the predictions made
by a quantum simulator can be trusted. This latter problem is especially timely since
quantum simulation experiments are approaching a complexity where classical computers
are unable to simulate their evolution [1, 2, 3]. Natural solutions to this problem, such as
tomographic methods [4, 5, 6, 7, 8, 9, 10], are often impractical for learning parameters
for large quantum systems, as well as for learning parameters such as T2. This prompts
the question of whether there exists a practical error robust technique that can be used to
characterize quantum systems with unknown decoherence processes.
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We make this learning process tractable by utilizing information about a system, rather
than starting from worst-case assumptions such as those made in traditional quantum pro-
cess and state tomography. In practice, we often have knowledge about the dynamical
model that describes a system of interest, and wish to improve that knowledge by estimat-
ing specific model parameters. Thus, practical Hamiltonian finding can often be achieved
via a suitable parameterization of the Hamiltonian, H(x1, . . . , xd), reducing the problem to
estimating the vector of parameters x = (x1, . . . , xd). The task we consider is the design
of experiments for the purpose of deducing these parameters in the smallest number of ex-
periments possible. Our algorithm also provides a region estimation for the Hamiltonian
parameters that encloses some fixed volume of parameter space in which the mean or the
variance of the Hamiltonian parameters are expected to be found with high–probability. We
also generalize this concept to allow the algorithm to learn hyperparameters, which describe
the distribution of the Hamiltonian parameters in cases where the parameters randomly
drift between experiments. Pseudocode for all of our algorithms is given in Appendix B.

Our algorithm achieves this by combining sequential Monte Carlo methods [11] with
Bayesian experiment design [12] to choose experiments that maximize the expected reduction
in the uncertainty in the unknown parameters based on the results of prior experiments. We
call such derived strategies adaptive or online. This approach not only reduces the number
of experiments needed to learn the unknown parameters within a fixed error tolerance, but it
also makes the learning process more robust. In addition to robustness, Bayesian updating
provides a natural estimate of the uncertainty in the unknown parameters in the form of the
width of the prior distribution. In contrast, it can be difficult to quantify the uncertainty in
the estimated Hamiltonian using traditional methods based on inversion or tomography.

It is worth noting that approaches that are similar to our own have been considered very
recently in a wide variety of classical contexts [13, 14, 15, 16, 17], and also for measurement
adaptive quantum state tomography [18]. Other machine learning ideas have also been
generalized to the quantum domain [19, 20, 21, 22, 23, 24, 25]; however, to the best of our
knowledge, no method based on ideas from machine learning has been proposed for learning
unknown Hamiltonian parameters that is as broadly applicable or as robust to noise as our
method.

This paper is organized as follows. In section 2, we review the formalism of Bayesian
experimental design. Section 3 introduces the sequential Monte Carlo algorithm. In section
4, we discuss the application of our algorithm to region estimation and hyperparameter
estimation. We then explore the implications of the numerical benchmarking results in
sections 5 and 6 before concluding.

2 Experimental Design Formalism

The essence of our experimental design process is that we choose experiments not according
to a pre–determined sequence, but rather our algorithm adaptively chooses experiments that
are expected to be very informative (given the current state of knowledge of the unknown
parameters). We model a sequence of experiments as a sequence of experimental controls
{c1, . . . , cN} and a corresponding sequence of acquired data {d1, . . . , dN}. Bayesian updating
is then used to formalize how the acquired data impacts our current state of knowledge about
the unknown Hamiltonian, where we connect to the theory of parameter estimation by using
the predictions of quantum mechanics as a probabilistic model, called a likelihood function.

To clarify, suppose we have performed an experiment with control settings c1. We are
then ultimately interested in the posterior distribution Pr(x|d1; c1), the probability distri-
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bution of the model parameters x given this data. By Bayes’ rule and the conditional
independence of each datum, the posterior distribution is given by

Pr(x|d1; c1) = Pr(d1|x; c1)
Pr(d1|c1) Pr(x),

where Pr(x) is the prior, which encodes any a priori knowledge of the model parameters.
Pr(d1|x; c1) is the likelihood, which can be computed using Born’s rule. The total likelihood
Pr(d1|c1) can simply be thought as a normalization factor. Subsequent experiments update
the prior according to the following iterative rule

Pr(x|dj+1, . . . ; cj+1, . . . ) = Pr(dj+1|x; cj+1)
Pr(dj+1|cj+1) Pr(x|dj , . . . ; cj , . . . ).

The idea of adaptive experiment design can be formalized in various ways, the most
natural for our purposes being called Bayesian experimental design [12]. For this, we conceive
of possible future data dN+1 obtained from a, possibly different, set of experimental controls
cN+1. The probability of obtaining this data can be computed from the distributions at
hand via marginalizing over model parameters

Pr(dj+1|dj , . . . ; cj+1) =
∫

Pr(dj+1|x; cj+1) Pr(x|dj , . . . ; cj , . . . ) dx.

Note, in the remainder of this work, we will use the following abbreviated notation for
expectation values:

Pr(dj+1|dj , . . . ; cj+1, . . . ) = Ex|dj+1,...;cj+1,...[Pr(dj+1|x; cj+1)], (1)

where the subscript on E denotes the variable for the expectation to be taken over.
The expectation value in (1) can be used to inform the algorithm about the choices of

experimental parameters that are more useful than others. This usefulness is quantified, for
a given choice of a utility function U(dj+1, cj+1), by the expected utility of an experiment

U(cj+1) = Edj+1|dj ,...;cj+1,...[U(dj+1, |cj+1)],

where U(dj+1, cj+1) is the utility we would derive if experiment cj+1 yielded result dj+1. The
choice of the utility function is motivated by the figure of merit that we want to optimize,
and will be considered in Appendix A.

3 Sequential Monte Carlo Algorithm

A major drawback of using Bayesian inference for Hamiltonian learning stems from the fact
that the parameter space is continuous. This means that the prior will have in general
support over an infinite number of possible Hamiltonians, which in turn makes applying
Bayes’ rule and sampling from the resultant posterior intractable. We address this problem
by using sequential Monte Carlo (SMC) methods, such as those described in the recent
tutorial by Doucet and Johansen [11].

At each step of the SMC algorithm, the current distribution is approximated by a
weighted sum of Dirac-delta functions, so that Pr(x|D) ≈

∑n
k=1 wk(D)δ(x − xk), where

wk(D) is a weight that describes the relative plausibility of the hypothesis xk, having ob-
served the data record D. Each term in this sum is referred to as a particle.

Since the Bayes update rule for many observations {d1, d2, . . . , dN} can be processed
sequentially by updating the weights: wk(dj+1 ∪ D) = Pr(dj+1|xk)wk(dj)/N , where N is
found by the normalization constraint that

∑
k wk(D) = 1.
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The particle approximation can be made arbitrarily accurate by increasing the number
of particles, and will be a good approximation at every update provided we feed in, at
the initial stage, the appropriate weights {wk} and support points {xk}. Since both the
weights and support points of the particles carry information about distributions over the
model parameters x, we can without loss of generality choose the initial weights to be
uniform, wk = 1/n for all k, and the initial support points to be samples from the correct
prior Pr(x). Having made the particle approximation, we perform Bayes updates using the
algorithm below.

Sequential Monte Carlo techniques require careful effort to avoid introducing errors due to
limited numerical precision. The first problem any SMC algorithm runs into is zero weights.
This is doubly painful since we are effectively operating with fewer particles but using the
same amount of computational resources. Since the support of our approximate distribution
is a measure-zero set according to the correct distribution, all the weights will eventually be
zero; we cannot avoid this but it can be postponed by using resampling techniques.

Generally, the idea behind resampling is to adaptively change the location of the particles
to those which are most likely. This works because a particle approximation to a probability
distribution can be equally well approximated using constant weight particles with variable
density, or variable weight particles with constant density. Hence, we can “resample” the
distribution by using constant weight particles to approximate to the prior distribution to
alleviate problems caused by the weights of the particles becoming small enough to impact
the numerical stability of the methods. The simplest of these types of algorithm chooses n
particles (the original number), with replacement, according to the distribution of weights
then reset the weights of all particles to 1/n. Thus, zero weight particles are “moved” to
higher weight locations. To determine when to resample, we shall compare the effective
sample size ness = 1/

∑
i w

2
i to a threshold resample_threshold, which is the effective

ratio of the original number of particles n. We use resample_threshold = 0.5, as suggested
by [26].

The resampling algorithm we use was first proposed in [26] and is given explicitly in
Algorithm 2. The idea behind the algorithm conforms to the intuition given above but it
incorporates randomness to search larger volumes of the parameter space. This randomness
is inserted in the resampling algorithm by applying a random perturbation to the location
of each particle that is introduced during the resampling process. Thus, the new particles
are randomly spread around the previous locations of the old. More formally, we model this
by randomly choosing a particle location xi, then perturbing it by a normally distributed
vector ε ∼ N (0,Σ) (we will come back to how to choose the mean and covariance). The
new particles are thus samples of the convolved distribution

p(x′) =
∑
i

wi
1√

(2π)k|Σ|
exp

(
−1

2(x′ − µi)
TΣ−1(x′ − µi)

)
, (2)

where k is the number of model parameters. A distribution of this form is known as amixture
distribution, and can be efficiently sampled by first choosing a particle, then choosing a
perturbation vector.

To choose the mean µi of each term in the resampling mixture distribution, we choose
a vector that is a convex combination of the original particle location xi and the expected
model µ = E[x], so that µi = axi + (1 − a)µ, where a is a tunable parameter of the
resampling algorithm. We will use a = 0.98, as suggested by [26]. The covariance of each
perturbation is then given by Σ = (1− a2) Cov[x]. Our resampling algorithm then involves
drawing n new particles from the distribution given by (2) and setting the weight of each
new particle to 1/n.
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We combine these prior algorithms to obtain Algorithm 4, which is our complete al-
gorithm for adaptively designing experiments using the SMC approximation. Note that
we have left unspecified here the choice of local optimizer; in practice, this will be chosen
depending on what works for a given experimental model. Due to the simulation cost of opti-
mization, Algorithms 3 and 4 allow for the setting of an additional parameter, approx_ratio,
that controls the quality with which the utility function is calculated.

4 Region and Hyperparameter Estimation

In addition to providing an accurate estimate of the true model parameters for the system,
it is important to be able to quantify the uncertainty in the estimated model parameters.
This task can be achieved by finding a region X̂ of the space of models such that Pr(x0 ∈ X̂)
is maximized and such that the volume Vol(X̂) is minimized.

We make the problem of region estimate amenable to analysis by SMC by reducing it to a
problem of estimating an expectation value. In particular, the probability of the true model
being within a region can be expressed as Pr(x0 ∈ X̂) = E[1X̂ ], where 1X̂ is the indicator
function for X̂. The expectation value of this indicator function can then be computed using
SMC as E[1X̂ ] ≈

∑
i wi1X̂(xi) =

∑
i,xi∈X̂ wi.

Thus, by construction, any region containing particles of total weight at least r will have
an approximate probability mass of at least r. We formalize this intuition by introducing
a probability mass function m(R) on regions R such that m(R) = E[1R]. Similarly, let
m̃(R) =

∑
i, i∈R wi be an approximation of m(R) using the SMC algorithm.

We thus seek a region X̂ such that Vol(X̂) is small, m(X̂) is large and such that X̂
is an efficiently computable property of the current SMC state. We achieve the latter two
properties by choosing some appropriate geometric function of a set of particles Xr whose
weight is above some threshold weight r; for example, the convex hull or the minimum-
volume enclosing ellipse of Xr both satisfy m̃(Xr) ≥ r and may be computed using well-
known classical algorithms [27, 28].

In practice, the covariance matrix of the posterior distribution will often suffice as a region
estimate because the posterior distribution will often be approximately normally distributed.
This assumption holds when the Fisher information is non–singular. More generally, under
the assumption of a normally distributed posterior, the error ellipse of points x satisfying

(x− µ)TΣ−1(x− µ) ≤ Z2 (3)

for some Z > 0 will contain a ratio (cdfN (Z)− cdfN (−Z))d = erf
[
Z√

2

]d
of the particle

weight, where cdfN (Z) is the cumulative distribution function for the normal distribution,
evaluated at Z. Thus, if the assumption of a normal posterior is a good approximation, then
the covariance matrix of the posterior distribution as approximated by SMC can be used as
a region estimator.

We can generalize further by considering the fact that quantum systems seldom have
consistent Hamiltonians from experiment to experiment, due to experimental errors. Thus,
we would like to form a region estimate for such Hamiltonians that encompasses experiment-
to-experiment variation, but that expands that region as little as possible. Hyperparameters
allow us to address this by switching from the problem of estimating Hamiltonian parameters
to one that involves learning the parameters that describe the distribution of Hamiltonian
parameters.

We denote the hyperparameters for a model Hamiltonian as y to avoid subtle conceptual
differences between the hyperparameters and the distributions on x that they describe. The
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probability distribution for x can then be written as Pr(x|y). Despite interpretational
differences, the hyperparameters can also be learned using Algorithm 4 in exactly the same
way that x is learned. The region estimates yielded by the algorithm are region estimations
for y and, as we will show shortly, can easily be converted into region estimates for x.

The drawback to this approach is that computations of the likelihood function can be-
come much more expensive because it typically will have to be computed by sampling from
the parameterized distribution. In some important special cases, this drawback can be
avoided by analytically performing the marginalization over x,

Pr(D|y) =
∫

dxPr(D|x) Pr(x|y).

In Section 5, we discuss a particular case where the marginalization is analytically tractable.
The resulting means and covariance matrices for y can be readily converted to the

corresponding quantities for x by using the chain rule for expectation values,

Ex,y[x] = Ey[Ex|y[x]]. (4)

This expectation value can be computed using the posterior distribution Pr(y|D) and the
intermediate model distribution Pr(x|y), which will typically be easy to compute from the
definition of the hyperparameters. The covariance matrix for x is slightly more complicated.
It is straightforward to verify that

Covx,y(x) = Ey

[
Covx|y(x)

]
+ Covy

(
Ex|y[x]

)
. (5)

For the special case that x is a single parameter, the covariance can be replaced with the
variance to obtain that

Varx,y(x) = Ey

[
Varx|y(x)

]
+ Vary

(
Ex|y[x]

)
. (6)

Using the covariance ellipse region estimate given by (3) to estimate a hyperparameter
region thus translates to a region estimator for the model parameters x, if the distribution
over hyperparameters y is approximately Gaussian near its peak. In the limit of many
experiments, we find that this is a good assumption, as is discussed in Section 5.3.

5 Single-Qubit Test Case

We will now proceed to apply our techniques to learning unknown parameters in a single
qubit system. Our model has a qubit that evolves under an internal Hamiltonian of the
form H(ω) = ω

2 σz. Here ω is an unknown parameter whose value we want to estimate. An
experiment consists of preparing a single known input state ψin = |+〉, the +1 eigenstate of
σx, evolving under H for time t and performing a measurement in the σx basis.

We will slightly generalize this model by allowing noise sources which lead to a decay in
the information extractable from any measurement. This can manifest from, for example, a
T2 dephasing process which leads to the following likelihood function:

Pr(0|ω; t) = e−
t
T2 cos2

(ω
2 t
)

+ 1− e−
t
T2

2 , (7)

where ω is the unknown parameter to be estimated, t is the controllable parameter and
T2 is a known constant. This model was studied in references [29, 30, 31] where analytical
solutions based on Fisher information and the Cramer-Rao bound were given.
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We consider the seemingly simple generalization of this model where both ω and T2 are
unknown. Even for such a simple generalization as this, the methods discussed in [29, 30, 31]
are not adequate for this more general problem. In particular, the Fisher matrix of any one
measurement is singular and hence the standard Cramer-Rao bound does not hold – nor is
it possible to utilize standard asymptotic approximations to normal distributions.

This generalization is closely related to the case in which T2 is infinite, but where the
“true” precession frequency ω is itself distributed according to a Gaussian distribution of
mean µ and variance σ2. In this case, following the discussion of Section 4, the probability
of data conditioned on the hyperparameters y = (µ, σ) can be found by marginalizing over
the intermediate random variable ω, so that

Pr(d|µ, σ; t) =
∫

Pr(d|ω) Pr(ω|µ, σ)dω. (8)

For the specific example of the Gaussian distribution,

Pr(0|µ, σ; t) = 1
σ
√

2π

∫
cos2

(
ωt

2

)
e−

(ω−µ)2

σ2 dω = 1
2

(
1 + e−2σ2t2 cos(2µt)

)
. (9)

At this point, we have entirely removed ω from the problem, leaving a two-parameter model,
where we wish to estimate the mean and variance of an unknown normal distribution.

As another example, instead of marginalizing against a Gaussian distribution, we consider
the case that the intermediate model parameter ω is drawn from a Lorentz distribution. A
Lorentz distribution is completely determined by its location and scale parameters ω0 and
γ, respectively, and so we use these hyperparameters to derive a new model,

Pr(0|ω0, γ; t) =
∫

cos2(ωt/2) 1
πγ
(

(ω−ω0)2

γ2 + 1
)dω = 1

2
(
1 + e−tγ cos (tω0)

)
. (10)

Note that if we identify γ = T−1
2 , then the Lorentz hyperparameter model is the identical

to that of Equation (7). This illustrates the relationship between decoherence processes and
the lack of knowledge formalized by a hyperparameter model. In a similar fashion, (9) is also
model of decoherence. Due to the t2 dependence of the Gaussian-hyperparameter model,
(9) represents a decoherence process that cannot be written in Lindblad form [32] because
it cannot be drawn from a quantum dynamical semigroup.

5.1 Results for Unknown T2

Here we report on the performance of our algorithm for the comparatively challenging task of
learning Hamiltonian parameters without a precise estimate of T2. These calculations were
performed using the true distributions ω ∼ N (0.5, 0.0025) and 1/T2 ∼ N (0.001, 0.000252),
and with the scale matrix Q = diag(1, 0.0025/0.000252) = diag(1, 100).

The guess heuristic that we focus on chooses times randomly from an exponential dis-
tribution with mean 1 000, corresponding to the mean value of T2 according to the initial
prior. This choice of guess function is motivated by the fact that the most informative
experiments (as measured by Fisher information) tend to occur at t ≈ T2 [31]. A secondary
benefit is that the guess function is certainly not optimal for the problem, and will allow us
to illustrate that a sub–optimal guess function can be used in concert with local optimization
(in our case Newton conjugate gradient optimization (NCG) is used) to find near optimal
experiments given the current state of knowledge about the unknown Hamiltonian.

We examine the variation of the MSE with the number of guesses used in Figure 1. The
figure shows that, in the absence of local optimization of experiment times, the MSE for both
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Figure 1 Benchmarking of the “unknown-T2”model using n = 5 000 particles and random initial
guesses without local optimization. Data indicated dashed lines correspond to trials where a single
initial guess was used for each experiment, while data indicated by solid lines were collected using
30 guesses per experiment. Errors in estimating performance are indicated by red shaded regions
about each curve.

ω and 1/T2 is significantly improved by using an increased number of guesses. In particular,
we find that if 30 guesses are used, then only 50 experiments are required on average to learn
ω within a 0.9% error, even without a well characterized T2. The improvement is much more
substantial for ω than it is for 1/T2 because the contrast on T2 is much less significant.

Figure 1 examines the effect of increasing the number of guesses for strategies that use
NCG. The most significant qualitative difference between the data collected using NCG
and that of Figure 1 is that the MSE for ω shows no evidence of saturating and instead
continues to shrink as the number of experiments are increased (as seen most clearly in
Figure 2). This implies that our randomized guess heuristic is unlikely to randomly guess
very informative experiments after a fixed number of experiments, but the landscape is
sufficiently devoid of local optima that NCG optimization finds informative experiments in
the vicinity of our uninformed guesses. We also observe that NCG does not substantially
improve the MSE if 1 guess is used. This suggests that the landscape is not sufficiently
convex that local optimization about an individual guess is likely to find experiments that
are substantially more informative. We therefore conclude that increasing number of guesses
used and using NCG substantially improves the MSE for ω and has a much more subtle
effect on the knowledge of T2 if local optimization is used.

It is useful to benchmark the performance of our algorithm against the Bayesian Cramer-
Rao bound (BCRB—see appendix), which gives a lower bound on the MSE. Figure 3 provides
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Figure 2 Benchmarking of the “unknown-T2”model using n = 5 000 particles and 30 random
initial guesses. Data indicated dashed lines correspond to trials where a each initial guess was
used without local optimization, while data indicated by solid lines were collected using NCG
optimization for each guess. The unoptimized data is averaged over 1,109 trials while the optimized
data is averaged over 930 trials. Errors in estimating performance are indicated by red shaded
regions about each curve.

a comparison of the MSE, the estimate of the MSE given by the variance of the posterior
and the BCRB for ω, T−1

2 and Tr(Σ ·Q). We see that the expected posterior variance is
typically within statistical error of the MSE for all three of these quantities, suggesting that
the posterior variance can be used as a very good estimate of the MSE for this model. We
also note that the MSE is very close to the MSE for the T−1

2 data and Tr(Σ ·Q). The MSE
for ω is within a constant multiple of the BCRB. We do not, in fact, expect that the MSE
in ω should approach the BCRB because the algorithm chooses experiments to optimize
Tr(Σ ·Q) rather than the error for either ω or T−1

2 individually.

5.2 Region Estimation
One of the most substantial contributions of our algorithm is its ability to provide region
estimates for the location of the true Hamiltonian, which allow us to quantify our uncer-
tainty in the true model parameters. We compare the probability mass enclosed by the
covariance region estimator described in Section 4. A simplifying assumption is made in our
analysis: we assume that the posterior distribution is approximately Gaussian. Although
difficult to justify theoretically, we have find for the examples that we consider that the
posterior appears Gaussian locally around our estimate after a sufficiently large number of
experiments. We expect this behavior to be generic, although region estimators such as the
convex hull or the minimum-volume enclosing ellipse may be used even if the posterior is
not approximately normal.

Under the Gaussian model of the posterior distribution, we expect the true model pa-
rameters to be within an ellipse described by the covariance matrix whose volume is then
described by the Z–score used. For example, in the one–dimensional case approximately
95% of the probability mass is located within 2–standard deviations, which corresponds to
Z = 2. We choose Z = 3 standard deviations from the mean for these examples which cor-
respond to probability masses of m̃(Cov(x̂)−1/Z2) ≈ 0.9973 and m̃(Cov(x̂)−1/Z2) ≈ 0.9946
for the one– and two–parameter cases respectively.

We show in Figure 4, and [33], that the approximate probability mass m̃ approaches
the probability mass we would expect for a normal distribution for the known-T2 model in
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Figure 3 The actual and estimated performance, as a function of the number of measurements
N , of the sequential Monte Carlo algorithm for n = 5 000 particles. The model is that of equation
(7) with unknown T2 (which is estimated as Γ = 1/T2 for numerical precision considerations). The
dotted curve is the posterior variance of the particles; dashed is the actual mean squared error
and solid is numerically calculated Bayesian Cramer-Rao lower bound. In the upper subfigures,
the MSE and variances are those of the individual parameters ω and T−1

2 , respectively, while the
lower subfigure shows the actual and estimated quadratic losses scaled using Q = diag(1, σ2

ω/σ
2
T−1

2
),

where σ2
ω and σ2

T−1
2

are the variances in ω and T−1
2 according to the initial prior π.

the limit of large N , providing evidence in favor of our use of the covariance ellipse as a
region estimator on the posterior. In particular, we note that the value of m̃ approaches
0.9973, such that the quality of the Gaussian approximation improves as we collect data.
The transient behavior for small experiment numbers occurs because insufficient experiments
have been considered for the posterior to approach a Gaussian. In this specific example, the
average differences in enclosed probability mass after each experiment are on the order of
0.01%, and thus may not be of practical significance.

5.3 Hyperparameter Region Estimation Performance

Having demonstrated the effectiveness of our region estimation algorithm, it remains to show
that the generalization to hyperparameter regions works as described in Section 4. The
objective here is to analyze the robustness of our algorithm in the presence of fluctuating
“true” parameters of the Hamiltonian. We do so by using the Gaussian hyperparameter
model as discussed in Section 5, then comparing the model parameter region volume and
probability mass for the region estimated from Equation (5) to the volume and probability
mass of the corresponding “true” model parameter region. We benchmark this model by
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Figure 4 Benchmarking region estimators for Gaussian hyperparameter model using n = 2 000
particles, ω ∼ N (µ, σ2) where µ ∼ N (0.5, 0.0012) and σ2 ∼ N (0.0025, 0.00252).

choosing “true” hyperparameters µ and σ2 for ω according to the normal distribution

µ, σ2 ∼ N
[
(µµ, µσ2),diag(σ2

µ, σ
2
σ2)
]
. (11)

Recall that the unknown frequency is distributed as ω ∼ N (µ, σ2). In particular, this true
distribution does not admit any correlation between the mean and variance hyperparameters.
We then use the true distribution as our prior distribution.

In Figure 4, we find that the probability mass contained within our estimated region for
the Hamiltonian agrees well with our theoretical expectations. In particular, we assume a
Gaussian posterior and use a Z-score of 3 which implies that we should anticipate that 99.7%
of the probability mass will lie within the region estimation of E[ω̂] ± 3

√
Var(ω̂). We find

very good agreement with this assumption, and find that at worst 99.4% of the probability
mass for the hyperparameters lies within the estimated region. The data also suggests that
these small differences vanish for the optimized data sets, which appear to approach the
ideal enclosed probability mass of 99.7% in the limit of large N .

Hyperparameters are not typically a quantity of interest by themselves. They usually are
of relevance because they parameterize a distribution of the unknown parameter. Following
Equation (6), we calculate Var(ω̂) as Var(ω̂) = Var(µ̂) +E[σ̂2]. We find that, as the number
of experiments grows, our region estimator for ω slightly overestimates the “true” variance
of ω (on average). This bias vanishes as the number of experiments increases. We can
therefore conclude that we can use the method of hyperparameters to robustly estimate the
distribution of an unknown frequency, even in the presence of noise.

5.4 Computational Cost
Another way that we can assess the cost of inferring the Hamiltonian of a system is in terms
of the classical computing time needed to learn the Hamiltonian parameters to within a
fixed error tolerance (as measured by the number of likelihood calls made). Our previous
discussion found that the experimental time (measured by the number of experiments) can
be minimized by choosing measurements that minimize the risk, and showed that increas-
ingly sophisticated heuristics for generating these guesses tended to reduce the experimental
time. This suggests that a trade-off may be present between the experimental time and the
classical processing time needed to learn the parameter. This tradeoff will become increas-
ingly relevant as the size of the quantum system grows, since existing quantum simulation
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Figure 5 This figure compares the mean–square error as a function of the computational time for
the known T2 model with T2 = 100, 5 000 particles, approx_ratio = 1 and guessed experimental
times chosen randomly from an exponential distribution with mean T2. The expected loss incurred
by each optimization strategy is shown in the left figure and the figure on the right shows the 84th

percentile Q0.84 of the loss, such that no more than 16% of trials incur loss greater than the shown
percentile.

techniques do not scale efficiently with the number of particles in the system and thus the
cost of performing a likelihood call may asymptotically become much more expensive than
performing an experiment.

If computational time is of primary importance (rather than experimental time), then
the relative merits of the experimental design heuristics changes. In total, our data sets
in Figure 5 required (on average) a number of likelihood calls that fell within the range
[1.05 × 107, 1.5 × 109]. A likelihood call required the evaluation of exp(−t/T2) cos2 (ω

2 t
)

+
(1− exp(−t/T2))/2, which required time on the order of 10−7 seconds on our computers
and lead to total computational times that were on the order of a second to a minute. If the
rate at which experiments can be performed were much faster than 200 Hz then the utility
of our algorithm as a means to speed up data collection may be lost. If the two rates are
approximately comparable, then interesting trade-offs appear between the computational
time needed and the total experimental time.

These trade-offs become apparent by plotting the scaling of the MSE as a function of the
computational time for the randomized guess heuristic in Figure 5. The first feature that is
obvious from the plot is that the strategies which yielded the lowest MSE per experiment
tend to yield the highest MSE per likelihood call; although several of these strategies cause
the expected loss (mean–square error) to saturate after a finite number of experiments.
In particular, this causes the strategy with 30 guesses and no optimization as well as the
strategy with 30 guesses, NCG optimization and approx_ratio = 0.1 to intersect the curve
for the cases with NCG optimization and approx_ratio = 1. Here the approximation ratio
is the ratio of the particles that are used in the updating (see Algorithm 3). On the surface,
this seems to indicate that the more expensive heuristics may have an advantage if small
loss is desired; but this is misleading and to get a complete picture we need to look at more
than just the expected performance of the strategies.

We can get a better understanding of this saturation by looking at the plot of the 84th

percentile of the loss in Figure 5, which shows that all of these strategies continue to provide
improved estimates of ω even into this regime of saturation for at least 84% of the trials
considered. This shows that there were a few trials where very poor guesses were chosen and
the algorithm became stuck at a large MSE. The data also suggests that the use of NCG and
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a large value of the approximation ratio can mitigate these problems, causing the learning
algorithm to become more stable at the price of requiring more computational time.

6 Multi–Qubit Test Case

We will now focus on an example that shows the viability of our algorithm in cases where
the Hamiltonian acts on many qubits rather than just one. The model that we consider is
the Ising Model with no external magnetic field with a complete graph of interactions on n
qubits:

H =
∑
i>j

xi,jσ
z
i σ

z
j , (12)

where xi,j are real valued coefficients. In these examples, we choose these coefficients ran-
domly from the interval [0, 1] (the absence of frustrations does not affect the difficulty of
the learning problem). The goal of the learning problem is to learn each xi,j . We represent
these parameters for the Hamiltonian Hk using the vector xk.

In direct analogy to the single qubit examples, an experiment involves setting the initial
state to be |+〉⊗n, evolving the state under the Hamiltonian in (12) for some evolution time t
and finally applying the Hadamard transform to each qubit and measuring the result in the
computational basis. The evolution time is the only control parameter in these experiments.

We also use a different guess heuristic to choose t for this problem than the exponential
random guess heuristic that was used in previous experiments since, most notably, we are
not considering decoherence processes. We choose the times by drawing two Hamiltonians
Hj and Hj′ from the current prior Pr(Hk|dn, . . . ; cn, . . .) and then choose t = 1/|xj −xj′ |2,
rather than choosing the times randomly and using NCG to find a locally optimal experiment
near that guess. We call this strategy the “particle guess heuristic.” Although it may
not seem it, this strategy is adaptive. In particular, the particle guess heuristic will tend
to choose experiments that have short evolution times when the posterior distribution is
broad, and longer evolution times when the distribution is narrow. Long evolution times are
needed to distinguish dynamics of nearby Hamiltonians, thus the heuristic adaptively chooses
experiments that will be informative based on the current uncertainty in the unknown
parameters. We pick this strategy because it outperforms the exponential guessing strategy
for such problems, especially in absentia of local optimization.

We avoid local optimization in these numerical experiments because the effects of incor-
porating local optimization have been well discussed in previous examples and the improve-
ments brought about by using local optimization in these cases is qualitatively similar to the
single qubit case. Furthermore, the cost of computing the likelihood in these cases is sub-
stantially higher so including local optimization would only restrict the range of numerical
examples that we could provide.

We examine the scaling of the quadratic loss that occurs when using SMC to learn
Hamiltonian parameters for (12), using Q = 1, in Figure 6. It is clear that our algorithm is
capable of learning parameters of many–qubit Hamiltonians. The scaling of the quadratic
loss is, similar to the single qubit case, exponential in the number of experiments taken. The
slower rate of learning for the n = 5 and n = 6 cases is due largely to the fact that these cases
have 10 and 15 unknown parameters that must be learned, in contrast to the 6 that must be
learned in the n = 4 case. This shows that our algorithm is capable of learning Hamiltonian
parameters in not just single qubit cases, but also in multi–parameter estimation problems
that are relevant in real world applications such as characterizing superconducting quantum
devices or certifying an analog quantum simulator.
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Figure 6 This figure compares the quadratic loss as a function of the computational time for
the Ising model with 20 000 particles, approx_ratio = 1 and guessed experimental times chosen
using the particle guess heuristic. The dashed lines represent the 25th and 75th percentile of the
quadratic loss, whereas the solid lines represent the median.

7 Conclusions

Our work provides a simple algorithm that applies Bayesian inference to learn a Hamiltonian
in an online fashion; that is to say, that our algorithm learns the Hamiltonian parameters as
the experiment proceeds rather than collecting data and inferring the Hamiltonian through
post–processing. This eliminates the need to store and process gigabytes of data that are
recovered from even relatively short experiments. Our work has several advantages over
existing approaches to learning Hamiltonian parameters. First, it can be used to estimate
the optimal parameterization of the dynamics of an arbitrary quantum system within a
space of model Hamiltonians. Second, it can be used to provide a region estimatate of the
Hamiltonian parameters. The importance of this is obvious: it allows us to not only learn
the unknown parameters but also quantify our uncertainty in them. Third, our analysis of
the algorithm shows a clear trade off between the experimental time and the computational
time needed to parameterize the Hamiltonian.

We note a natural extension of our algorithm to include classical simulators which do not
deterministically compute the likelihood function but generate random samples according
to it [34]. The distinction between strong and weak simulation has been a topic of recent
interest in computational complexity [35, 36]. The present work and that of [34] add to the
discussion of this distinction by clarifying the relationship between simulating a physical
model classically and estimating the parameters in it.

An extension of our work would be to consider more advanced optimization heuristics
than conjugate gradient searches (such as particle swarm optimization algorithms). Simi-
larly, more advanced resampling techniques may lead to substantial reductions in the number
of particles which in turn would reduce the computational cost of the algorithm. Finally,
estimates of how the number of experiments required to achieve a specific mean–square er-
ror scales with the number of unknown parameters would be an important extension of this
work since it would assess the viability of these techniques for controlling and characterizing
larger quantum systems.
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A Utility Functions and the Cramer-Rao Lower Bound

Given a set of observed outcomes, the choice of subsequent experimental parameters that
informs us most about the model parameters is given by the utility function. We test our
method with a utility function that minimizes the expected variance in Pr(x|dN+1, D; cN+1, C).
We show that this choice is optimal for minimizing the the mean squared error of the pro-
tocol.

An estimator is a function x̂ that takes a set of observed data D collected from a set
of experiments with controls C and produces an estimate for the unknown parameters x.
Here, we evaluate the quality of an estimator x̂ by using a generalization of the squared
error loss called the quadratic loss as our figure of merit. The quadratic loss is defined for
a vector of parameters x, data D and experiment designs C, as

LQ(x, x̂(D,C)) = (x− x̂(D,C))TQ (x− x̂(D,C)) , (13)

where Q is a positive definite matrix on the space of unknown parameters that defines the
relative scale between the various parameters of interest. The quadratic loss function is
useful to us in that it is computationally inexpensive to calculate and may be analyzed
by well-known statistical techniques. In particular, the Cramer-Rao bound can be used to
lower-bound the mean quadratic loss incurred by an estimator, under the hypothesis of a
given true model x [38].

Following a decision theoretic methodology [39], the risk of an estimator given a set of
experiment designs C is its expected performance over all possible outcomes D with respect
to the loss function:

R(x, x̂; C) = ED|x;C [L(x, x̂(D;C))].

The Bayes risk is the average of this quantity with respect to a prior distribution on x
(denoted π) and is given explicitly by

r(π;C) = Ex[R(x, x̂; C)] =
∫
π(x)R(x, x̂; C)dx.

where x̂ is assumed to be a Bayes estimator, which means it is the one which minimizes the
Bayes risk. When the loss function is taken to be squared error (in the single parameter
case) or the quadratic loss (in the multi-parameter case), the Bayes risk is more familiarly
known as mean squared error (MSE).

For quadratic loss (and many others [40]) the unique Bayes estimator is the mean of
the posterior distribution x̂(D;C) = Ex|D;C [x]. Minimizing the Bayes risk of a choice of
parameters is equivalent to maximizing the negative Bayes risk for that set; therefore, it is
reasonable to choose the negative Bayes risk as our utility function. It also has theoretical
benefits in that it is easy to compare the performance of algorithms that take U(cN+1) =
−r(π; cN+1, C).

The question of how well can we estimator x becomes the question of how low can we
make the Bayes risk r(π;C). We lower bound the achievable risk via the Bayesian variant
of the Cramer-Rao bound [41]. Both require finding the Fisher information:

I(x;C) = ED|x;C

[
∇x log (Pr(D|x;C)) ·∇T

x log (Pr(D|x;C))
]
.

The Fisher information does not depend at all on the prior distribution, and thus is calculated
in the same way regardless of how many experiments have already been performed.
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The standard Cramer-Rao bound is then given by Cov(x̂) ≥ I(x;C)−1, where X ≥ Y
means that X − Y is positive semi-definite. If we choose the matrix Q associated with the
quadratic loss to be Q = 1, then R(x, x̂;C) = Tr(Cov(x̂)) ≥ Tr(I(x;C)−1). Clearly, this
statement of the multivariate Cramer-Rao bound assumes that I is non-singular. Singular
Fisher information matrices arise when there are experiments that provide no information
about at least one of the experimental parameters. Unfortunately, that assumption is not
met in general. We avoid this problem by considering the Bayesian information matrix
J(π;C) = Ex[I(x;C)]. Then, the Bayesian Cramer-Rao bound (BCRB) is given by [41]

r(π;C) ≥ J(π;C)−1.

Lower bounds can be found for specific values of C using numerical integration. In practice,
we calculate the BCRB using an iterative method, similar to [42].
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B Pseudo–Code for Algorithms

Algorithm 1 Sequential Monte Carlo update algorithm.
Input: Particle weights wi(D), i ∈ {1, . . . , n}, Particle locations xi, i ∈ {1, . . . , n}, New
datum dj+1, obtained from an experiment with control cj+1.

Output: Updated weights wi(D ∪ dj+1).
function Update({wi(D)}, {xi}, dj+1, cj+1)

for i ∈ 1→ n do
w̃i ← wi(D) Pr(dj+1|xi, cj+1)

end for
return {w̃j/

∑
i w̃i} . We must normalize the updated weights before returning.

end function

Algorithm 2 Sequential Monte Carlo resampling algorithm.
Input: Particle weights wi, i ∈ {1, . . . , n}, Particle locations xi, i ∈ {1, . . . , n}, Resampling
parameter a ∈ [0, 1].

Output: Updated weights w′i and locations x′i.
function Resample({wi}, {xi}, a)
µ← Mean({wi}, {xi}), Σ← h2 Cov({wi}, {xi})
h←

√
1− a2

for i ∈ 1→ n do
draw j with probability wj . Choose a particle j to perturb.
µi ← axj + (1− a)µ . Find the mean for the new particle location.
draw x′i from N (µi,Σ) . Draw a perturbed particle location.
w′i ← 1/n . Reset the weights to uniform.

end for
return {w′i}, {x′i}

end function

Algorithm 3 Reduced particle approximation for Sequential Monte Carlo utility functions.
Input: Particle weights wi, i ∈ {1, . . . , n}, Particle locations xi, i ∈ {1, . . . , n}, Ratio

approx_ratio of the particles to keep in the reduced approximation.
Output: Reduced sets of particle weights {w̃i} and locations {x̃i}.

function Reapprox({wi}, {xi}, approx_ratio)
ñ← bn · approx_ratioc
draw π uniformly at random from Sym(n), the symmetric group acting on n elements
{w̃i} ← {wπ(i)} . Permute the elements to avoid patterns when sorting the weights.
{x̃i} ← {xπ(i)}
{sk} ← Sort({w̃i}) . Get a list of indices si such that w̃si ≥ w̃sj for all i, j.
return {w̃i} ← {w̃si : i ∈ 1→ ñ}, {x̃i} ← {x̃si : i ∈ 1→ ñ}

end function
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Algorithm 4 Complete adaptive Bayesian experiment design algorithm, using sequential
Monte Carlo approximations.
Input: A number of particles n to be used, A prior distribution π over models, A num-
ber of experiments N to perform, A resampling parameter a ∈ [0, 1], A threshold
resample_threshold ∈ [0, 1] specifying how often to resample, An approximation ratio
approx_ratio, An local optimization algorithm LocalOptimize, A heuristic GuessEx-
periment for choosing experiment controls, and a number nguesses of potential experi-
ments to consider in each iteration.

Output: An estimate x̂ of the true model x0.

function EstimateAdaptive(n, π, N , a, resample_threshold, approx_ratio, Opti-
mize, nguesses, GuessExperiment)

wi ← 1/n . Start by initializing the SMC variables.
draw each xi independently from π

for iexp ∈ 1→ N do . We now iterate through each experiment.
. If we are using a reduced particle set, populate that first.
if approx_ratio 6= 1 then
{w̃i}, {x̃i} ← Reapprox({wi}, {xi}, approx_ratio)

else
{w̃i}, {x̃i} ← {wi}, {xi}

end if

. Heuristicly choose potential experiments, and optimize each independently.
for iguess ∈ 1→ nguesses do

ciguess ← GuessExperiment(iexp)
ĉiguess , Uiguess ← LocalOptimize(Utility, ciguess , {w̃i}, {x̃i})

end for

ibest ← argmaxiguess Uiguess . Pick the controls that maximize the optimized utility.
ĉ← ĉibest

diexp ← the result of performing Ĉ . Perform the best experiment.
{wi}, {xi} ← Update({wi}, {xi}, D, C) . Find the new posterior distribution.

if
∑
i w

2
i < N · resample_threshold then . Resample if ness is too small.

{wi}, {xi} ← Resample({wi}, {xi}, a)
end if

end for

. After all experiments have been performed, return the mean as an estimate.
return x̂←Mean({wi}, {xi})

end function
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Abstract
While efficient algorithms are known for solving many important problems related to groups, no
efficient algorithm is known for determining whether two arbitrary groups are isomorphic. The
particular case of 2-nilpotent groups, a special type of central extension, is widely believed to
contain the essential hard cases. However, looking specifically at central extensions, the natural
formulation of being “the same” is not isomorphism but rather “equivalence,” which requires an
isomorphism to preserves the structure of the extension. In this paper, we show that equivalence
of central extensions can be computed efficiently on a classical computer when the groups are
small enough to be given by their multiplication tables. However, in the model of black box groups,
which allows the groups to be much larger, we show that equivalence can be computed efficiently
on a quantum computer but not a classical one (under common complexity assumptions). Our
quantum algorithm demonstrates a new application of the hidden subgroup problem for general
abelian groups.
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1 Introduction

Finding an efficient algorithm for group isomorphism is one of the most notable open problems
in computational group theory. While the problem is easily solved for abelian groups, the
problem remains unsolved even for some very simple generalizations to non-abelian groups.
In particular, the 2-nilpotent groups, which are central extensions of an abelian group by
another abelian group, are widely believed to contain the essential hard cases (see e.g. [1]).
Hence, the computational issues surrounding this type of group extension merit further study.

While isomorphism is the natural notion of what it means to be the same group, the
natural notion of being the same extension is slightly different. Indeed, the theory of group
extensions1, whose study began near the start of the 20th century, defines two extensions to
be the same or “equivalent” if there exists an isomorphism that preserves the structure of
the extension. (We will define this precisely in the next section.)

Thus, it is interesting to consider whether there exists an efficient algorithm for testing
equivalence of those extensions for which isomorphism appears difficult. In this paper, we
will see that there is indeed an efficient algorithm.
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Group isomorphism has drawn particular interest from the quantum computing community
due to its placement in the hierarchy of complexity classes. In particular, due to the work
of [3], we know that the isomorphism problem for solvable groups is almost in the class
NP ∩ coNP. This is the class that includes factoring and other problems for which quantum
computers appear to give super-polynomial speedups. Hence, there is strong interest in
determining whether the same is true of solvable group isomorphism. To date, however, no
such quantum speedup is known even for the smaller class of 2-nilpotent groups.

Given the relationship between the conjectured hard cases of group isomorphism (2-
nilpotent groups) and the problem of extension equivalence, it is natural to wonder whether
the latter problem also could lead to a super-polynomial speedup of quantum algorithms over
classical ones. As noted above, there is an efficient classical algorithm for testing equivalence.
However, its efficiency depends on the fact that the given groups are small, in particular,
small enough to write down their complete multiplication tables.

The usual setting for the group isomorphism problem has the input groups given by their
multiplication tables. If one cannot solve the problem in this model, then other models are
out of the question. However, it would be both interesting and useful to be able to test
equivalence of larger groups, for which this model is inappropriate. In particular, for groups of
matrices over finite fields (which includes, for example, simple groups of Lie type), individual
matrices are small enough to multiply and invert efficiently, but writing out a multiplication
table between all matrices in the group would often be infeasible. Yet, computational group
theorists would still like to answer questions about such groups.

Matrix groups are often studied in the “black box group” model. (Indeed, this was the
original motivation for the model.) Hence, it is natural for us to consider whether there
exists an efficient algorithms for testing equivalence of group extensions in this model.

One case we will consider is extending a group given by a multiplication table by a black
box group. In practical terms, this means extensions of a small group by a large one. Such
extensions can already introduce substantial complexity. For example, the dihedral group
D2N is an extension of the tiny group Z2 by a potentially large cyclic group ZN . Considering
that the hidden subgroup problem can be solved in quantum polynomial time for ZN but not
(currently) for D2N , we can see that extensions of even constant-sized groups can introduce
substantial computational difficulty.

In this paper, we show that there is an efficient quantum algorithm for testing equivalence
of extensions of a small group by large abelian group or extensions of one large abelian group
by another large abelian group. Furthermore, we will show that the existence of an efficient
classical algorithm for either of these cases would break an existing cryptosystem.2 Hence,
under the hardness assumption of that cryptosystem, no efficient classical algorithm exists.

The quantum algorithm we present depends crucially on the ability to solve the hidden
subgroup problem (HSP) for arbitrary abelian groups. (This is the essential quantum
subroutine in our algorithm.) Interestingly, while some other problems in computational
group theory that can be solved efficiently on a quantum computer can also be solved
classically assuming the existence of oracles for factoring and/or discrete logarithm, our
construction does not easily translate to that setting because there is no apparent way to solve
abelian HSP classically, even with the help of such oracles. Hence, our work demonstrates a
new and interesting application of efficient quantum algorithms for abelian HSP.

2 Note that this cryptosystem depends on the hardness of factoring, so it is already known that quantum
computers could break it. What was not known is the relationship of this to testing equivalence of
extensions.
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Related Work While we are aware of no prior work on the complexity of determining
extension equivalence in these models, our motivation for this problem comes from the status
of the group isomorphism problem for simple group extensions, and there, it is known that
isomorphism can be determined efficiently on a quantum computer in certain special cases
[4]. Interestingly, the groups to which this result applies have trivial equivalence classes3, so
the extension equivalence problem is trivial for such groups. (The answer is always “yes”.)
The fact that the one class of nonabelian solvable groups for which we have made progress on
group isomorphism is one for which equivalence is trivial suggests that studying the extension
equivalence problem may teach us something about the hard cases of group isomorphism.

2 Background

2.1 Computational Group Theory

The study of algorithms and complexity for problems in group theory is called computational
group theory. In order to discuss these issues, we must first specify how the group will be
given as input. Multiple approaches have been defined (see [5] for a nice review). We will
need to use three of these in our later discussion.

The first approach is to describe a group G by its multiplication table (sometimes called
the “Cayley table”). Multiplication of group elements can be performed by table lookup,
inverses can be computed by scanning one row of the table, and so on. This is perhaps the
most natural model. However, in order to use this approach, the group must be small enough
that it is reasonable to write down a |G| × |G| table. This turns out to be too limiting for
many computations that practitioners want to perform.

Another approach is the “black box group” model of Babai and Szemerédi [6]. In this
model, group elements are identified by opaque strings (which need not be unique) and an
oracle is provided that can perform the following group operations:
1. Given g, h ∈ G, compute gh.
2. Given g ∈ G, compute g−1.
3. Given g ∈ G, determine whether g = e, the group identity 4.
Finally, we have to specify how the algorithm obtains the strings for some group elements in
the first place. It is usual to assume that the input to algorithm will be a list of generators
of the group (i.e., a list of strings identifying the generators).

While the black box model is restricted in terms of how it can work with the group, it is
even more restricted in terms of what is considered efficient. Since a multiplication table
has size Õ(|G|2),5 any running time of poly(|G|) is efficient in the first model. On the other
hand, a non-redundant6 list of generators only has length O(log |G|),7 so the input has size
O(log2 |G|). Hence, an algorithm is efficient in the second model only if it has running time
poly(log |G|), which is exponentially faster.

3 This follows from the fact that the second cohomology groups (defined below) are trivial for semi-direct
products.

4 This also allows us to determine whether g = h since this is equivalent to checking gh−1 = e.
5 As is usual, Õ(.) is the same as O(.) but with suppressed terms that are logarithmically smaller than
those included.

6 This simply means that no proper subset of the generators still generates the group.
7 This follows from the fact that each additional generator increase the size of the generated group by a

factor equal to the index of the old group in the new one, and this index (an integer), since it is not 1,
must be at least 2.
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It should not be surprising then to find a large difference between which problems can
be solved in the two models. In the first model, almost every natural group problem can
be solved efficiently, the notable exception being the group isomorphism problem. In the
second model, on the other hand, very few problems can be solved, at least classically. The
main example of a problem that can be solved in this model is computing a derived series
for a solvable group (that is, generators for each group in the series) or a central series for a
nilpotent group.

Interestingly, it is known that quantum algorithms can do more in the black box model.
In particular, for abelian or even solvable groups [7], a large number of problems can be
solved, the most important example being computing the size of the group, |G|. We will
show later on that the extension equivalence problem is another example.

The other approaches for specifying groups use representations of particular types.
The most common of these, the third model we will need below, is to use a permutation
representation. Specifically, we assume that the group is explicitly a subgroup of the
symmetric group, G ≤ Sn. The input is a set of generators of G, each of which is a
permutation of the set [n] , {1, . . . , n}.

As in the black box model, G can be specified by at most O(log |G|) generators. Each gen-
erator in the input has size O(n logn), so the input as a whole will have size O(n logn log |G|).
For an algorithm to be efficient then, its running time must be polynomial both in n and
log |G|. Furthermore, for this model to be useful, the size n of the set, called the “degree” of
the representation, must be small. The fact that many groups have small-degree represen-
tations is one factor leading to the great success of this third approach. The other factor
leading to its success is that many problems can be solved efficiently in this model. In fact,
nearly all of the problems that are solvable with multiplication tables are efficiently solvable
here as well. (See [5] for a long list of these problems.)

2.2 Group Extensions
A group E is said to be an extension of G by A if A C E and E/A ∼= G. This is called a
central extension if A ≤ Z(E). In particular, this means that A is abelian.

Central extensions are in some ways similar to semidirect products in that the elements can
be thought of as pairs (a, x) ∈ A×G with a strange multiplication. Whereas multiplication in a
semidirect product depends on a group homomorphism G→ AutA, multiplication in a central
extension depends on a function f : G×G→ A, where we have (a, x)(b, y) = (abf(x, y), xy).
The function f is called a “factor set.” We will describe some of its properties below. In
particular, we will show how to find f for a given extension E.

Central extensions are in some sense the other natural way to combine groups, aside from
semidirect products. In particular, any group extension of G by A, where A is abelian but
not necessarily central, is essentially a combination of a semidirect product and a central
extension.8 Hence, these two types represent the two extremes of extensions of abelian
groups.

Finally, we can define the problem we are trying to solve. Two extensions, E1 and E2, of
G by A are said to be equivalent if there exists an isomorphism γ : E1 → E2 such that γ is
the identity on A, γ|A = id, and gives rise to the identity on G, that is, π2 ◦ γ = π1, where
πi : Ei → G is the canonical projection. This is the natural sense in which two extensions
should be considered “the same”.

8 Any extension is identified, up to isomorphism, by a homomorphism from G to Aut A (the semi-direct
product part) and a factor set (the central extension part). See [2] for details.
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1-cochains C1(G, A) = {s : G→ A | s(e) = e}
2-cochains C2(G, A) = {f : G×G→ A | f normalized}
cocycles Z2(G, A) = {f : G×G→ A | f normalized, cocycle condition} ⊂ C2(G, A)
∂ : C1 → C2 homomorphism taking s ∈ C1(G, A) to ∂s ∈ Z2(G, A)
coboundaries B2(G, A) = Im ∂ ⊂ Z2(G, A)

Figure 1 The main objects in group cohomology.

On the other hand, it is possible for E1 and E2 to be isomorphic even if they are not
equivalent extensions. (Indeed, this is not even a simple matter of dealing with isomorphisms
of A andG: it is apparently possible for extensions of non-isomorphic groups to be isomorphic.)
For this reason, equivalence is a more natural question to consider when looking specifically
at group extensions: an equivalence is an isomorphism that respects the structure of the
group extension.

2.3 Low Degree Group Cohomology
Cohomology groups are often defined in an abstract manner (via Ext functors, projective
resolutions, etc.). However, in the case of group cohomology, the low degree cohomology
groups also have concrete definitions that are equivalent but more useful for us.9 (See [2] for
a more detailed discussion.)

In this section, we will consider cohomology only of central extensions. Cohomology can
be defined more generally, but this simpler case is all that we will need in later sections.

The key group for us is the second cohomology group, H2(G,A). In order to define this,
however, we first need to define cocycles and coboundaries.

The 1-cocycles, Z1(G,A), are functions f : G→ A that satisfy the identity f(x) + f(y)−
f(xy) = 0, for all x, y ∈ G. These are simply group homomorphisms. (Note that we are using
additive notation since A is abelian.) The 2-cocycles, Z2(G,A), are functions f : G×G→ A

that satisfy the (admittedly odd-looking) identity f(y, z)− f(xy, z) + f(x, yz)− f(x, y) = 0,
for all x, y, z ∈ G, and have f(x, e) = f(y, e) = e, for all x, y ∈ G.10 These are precisely the
factor sets mentioned earlier.

The 2-coboundaries, B2(G,A), are functions G×G→ A that arise by taking a function
s : G → A only satisfying s(e) = e (called a 1-cochain) by defining ∂s ∈ B2(G,A) by
∂s(x, y) = s(x) + s(y)− s(xy). Note that, since s is not necessarily a homomorphism, we
need not have ∂s 6≡ 0. It is not hard to show that any function defined in such manner is
also a 2-cocycle. In other words, we have B2(G,A) ≤ Z2(G,A). Furthermore, the function ∂
is in fact a (surjective) homomorphism C1(G,A)→ B2(G,A), where C1(G,A) denotes the
space of all cochains.

These definitions are summarized in Figure 1.
The sets Z2(G,A) and B2(G,A) are themselves groups with the group operation per-

formed pointwise (i.e., (f + g)(x, y) = f(x, y) + g(x, y)). In fact, they are abelian groups
since A is abelian. Hence, B2(G,A) is a normal subgroup of Z2(G,A), so we can consider
the quotient group H2(G,A) , Z2(G,A)/B2(G,A). This is the second cohomology group.

9 Historically, these were developed in the opposite order. The concrete definitions came first and the
abstract later.

10 Sometimes cocycles are defined only by the first condition. Then those that satisfy the second are called
“normalized”. We will assume throughout this paper that all cocycles, coboundaries, and cochains are
properly normalized.



K.C. Zatloukal 131

The most important fact for us is the relationship between H2(G,A) and group extensions.

I Lemma 1. Elements of H2(G,A) are in 1-to-1 correspondence with equivalence classes of
central extensions of G by A.

Proof Sketch. While we need not go through this proof in detail (see [2] for full details),
we do need describe how the correspondence works since our aim is to work in the group
H2(G,A), using the elements corresponding to the two given extensions.

For an extension E of G by A, choose a representative of each coset of A in E (i.e.,
each element of G ∼= E/A), where we require e to represent A itself. Encode these choices
into a function s : G → E. Then we can define a function f : G × G → A by f(x, y) ,
s(x)s(y)s(xy)−1. It is not hard to show that f(x, y) ∈ A and that f is a factor set, i.e.,
f ∈ Z2(G,A).

This construction depends on the choice of representatives. Choosing a different set of
representatives, we could get a different factor set g : G×G→ A. However, if we do this, it
will turn out f − g is a 2-coboundary. Furthermore, the only other factor sets differing from
f by a coboundary arise from other choices of representatives for the same extension. Hence,
f +B2(G,A) uniquely represents this extension. J

3 Results

3.1 General Approach
With this background, the basic idea for computing equivalence of central extensions is
simple. Given E1 and E2, two central extensions of G by A, we can compute the factor sets
f1, f2 ∈ Z2(G,A) for these two extensions using any set of representatives. As described in
Lemma 1, the factor sets correspond to the same extension iff f1 − f2 ∈ B2(G,A). Thus, the
general approach is to reduce extension equivalence to testing membership in B2(G,A).

To make this concrete, we must specify what approach we use for representing groups.
Below, we present two algorithms, one classical and one quantum, for implementing the
outline just described. These algorithms differ in the approach used to specify the input
groups, with the quantum algorithm using the more general approach of black box groups
for A and E. Specifically, we have the following results.

I Theorem 2. There exists a (classical) Monte Carlo algorithm for testing the equivalence
of E1 and E2, two extensions of G by A, when all groups specified by multiplication tables,
running in time Õ(|G|6 |A|3).

I Theorem 3. There exists a quantum algorithm for testing the equivalence of E1 and E2,
two extensions of G by A, where A, E1, and E2 are given as black box groups and G is given
by a multiplication table, running in time O(|G|6 log6 |A|).

I Theorem 4. There exists a quantum algorithm for testing the equivalence of E1 and E2,
two extensions of G by A, where G is abelian and all groups are presented as black box groups
running in time poly log |G|poly log |A|.

For simplicity, we first prove the first two theorems, in subsections 3.2 and 3.3, respectively,
assuming that E1 and E2 are central extensions. We discuss how to extend these two
algorithms to non-central extensions in subsection 3.4. Theorem 4 is more complex and is
treated in the appendix, in section A

In subsection 3.5, we show that the problem solved by the quantum algorithms are
classically hard under the assumption of the Goldwasser–Micali cryptosystem [8] (that
quadratic residuosity is classically hard).
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I Theorem 5. There exists a randomized polynomial time reduction from quadratic residuosity
to testing equivalence of central extensions of G by A, where A is given as a black box group
and either G is given as a multiplication table or G is abelian and given as a black box group.
Hence, under the assumption that there is no efficient (classical) Monte Carlo algorithm
for testing quadratic residuosity, there is no efficient Monte Carlo algorithm for testing
equivalence of extensions of G by A in this model.

Finally, in subsection 4, we use the machinery developed for these algorithms to show
that we can also efficiently count the number of inequivalent extensions in the two models.
Specifically, we have the following:

I Theorem 6. There exists an efficient (classical) Monte Carlo algorithm for counting
the number of equivalence classes of extensions of G by A when both groups are given by
multiplication tables.

I Theorem 7. There exists an efficient quantum algorithm for counting the number of
equivalence classes of extensions of G by A when A is given as a black box group and G is
given by a multiplication table.

3.2 Classical Algorithm
For the classical algorithm, we take the inputs A, G, and E1 and E2 as multiplication
tables. This is the usual setup for the group isomorphism problem, and it is natural to
consider extension equivalence in the same manner. However, we must also require that the
isomorphism Ei/A ∼= G be provided explicitly so that we are not required to solve a group
isomorphism problem in order to understand the relationship between Ei and G. This will
be specified as a table of pairs (x, g), where each x ∈ Ei appears exactly once along with the
g ∈ G such that x+A

∼−→ g.

Proof of Theorem 2. As described above, we will reduce to membership testing in B2(G,A).
Since the group B2(G,A) has size ∼ |A||G|, we cannot reduce to a membership test using
a multiplication table because the time to write such a table is exponentially large in the
input size. We also cannot reduce to a membership test using a black box model simply
because there is no efficient classical algorithm known for membership testing in this model.
Fortunately, we will see that we can reduce to a membership test using the third approach, a
permutation representation. We can then perform the membership testing efficiently using
the algorithm from [9].

First, note that we can represent A using the regular representation, that is, each a ∈ A
is represented as a permutation σ(a) of the set A itself. The degree of this representation is
|A|, which is small. And it is easy to see that this representation of A is faithful. (This is
Cayley’s theorem.)

Define C2(G,A) to be all maps G×G→ A. These are simply vectors of |G|2 elements of A.
(Since B2(G,A) ≤ Z2(G,A) ≤ C2(G,A), we can think of elements of B2(G,A) and Z2(G,A)
in the same way.) Put another way, C2(G,A) is a direct sum of |G|2 copies of A. Hence,
we can represent f ∈ C2(G,A) as the direct sum (as vector spaces) of σ(f(g, h)) for each
g, h ∈ G. It is again clear that this representation is faithful: σ(f) is the identity iff σ(f(g, h))
is identity for each g, h ∈ G iff f(g, h) = e for each g, h ∈ G (since our representation of A is
faithful) iff f is the identity in C2(G,A) (by definition).

In other words, our representation space is the set {ag,h | a ∈ A, g, h ∈ G} — elements
of A labelled by pairs (g, h) ∈ G×G. We can see that the degree of this representation is
n , |A| |G|2.
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It is possible that A may have a permutation representation with smaller degree in special
cases, but in the worst case, it must be |A|. In particular, any simple cyclic group requires
this degree. It is also easy to see that any faithful representation of C2(G,A) must contain
all |G|2 copies of this representation. Hence, our degree of |A| |G|2 cannot in general be
improved.

In order to invoke a membership test for B2(G,A), we also need to provide a generating set.
The easiest way to do this is to take a generating set for C1(G,A) and then push it forward
to B2(G,A) by applying ∂. Any f ∈ B2(G,A) satisfies f = ∂s for some s ∈ C1(G,A). So if
s1, . . . , sk is a generating set for C1(G,A), then we have s = sj1

1 . . . sjk

k for some {ji} ⊂ Z+.
And since ∂ is a homomorphism, we have f = ∂(sj1

1 . . . sjk

k ) = ∂(s1)j1 . . . ∂(sk)jk . Thus,
∂s1, . . . , ∂sk is a generating set for B2(G,A).11

It is easy to find a minimal generating set for C1(G,A). Since this group is simply a direct
sum of |G| copies of A, a minimal generating set for C1(G,A) is given by |G| copies of a
minimal generating set for A. We can find a generating set for A with high probability simply
by choosing O(log |A|) random elements [5]. And it is easy to see that we can choose random
elements from A since we have an explicit list of its elements. Hence, we can construct a
generating set for C1(G,A) of size O(|G| log |A|).

Finally, note that, since we have a simple formula for ∂, taking constant time to evaluate
for each (g, h) ∈ G×G, we can construct the generating set for B2(G,A) in O(|G|2) time
for each element in the set. Since this set contains O(|G| log |A|) elements, we can construct
the generating set in O(|G|3 log |A|) time.

The other input to the membership test is the element f1 − f2 ∈ Z2(G,A). We can
compute this easily in linear time once we construct a factor set fi for each extension. To do
this, we simply need to choose (arbitrarily) a representative si(g) ∈ Ei for each g ∈ G, which
we can do in one pass over the table providing the isomorphism Ei/A ∼= G. (Also note that
we must choose e ∈ E to represent e ∈ G.) This takes O(|E|) = O(|A| |G|) time. Next, we
compute fi for each g, h ∈ G by fi(g, y) = s(g) + s(h) − s(gh). Finally, we subtract them
pointwise to compute f1 − f2. All of the above can be done in O(|A| |G|+ |G|2) time.

It remains to invoke a membership test for a permutation group. The fastest algorithms
[5] apply to so-called “small-base groups”, but unfortunately, this representation is not one.12
For the general case, the fastest known algorithm is from [9] and runs in time Õ(n3).

All of the membership test algorithms for permutation groups work by first computing
what is called a strong generating set. As noted in [9], Gaussian elimination is a special case
of this construction, so the running time of Õ(n3) is in fact optimal for all algorithms that
work in this manner.

We note that the time to run this membership test dominates the time required to prepare
its inputs, so the overall running time will be Õ(n3) = Õ(|A|3 |G|6). J

3.3 Quantum Algorithms
For classical algorithms, we excluded the possibility of using a membership test for black
box groups because no efficient algorithm is known to exist. However, in the quantum case,
we have such an algorithm [10]. As a result, it is natural to consider whether extension
equivalence can also be solved in the black box model.

11 Since ∂ is not an isomorphism, this generating set may be redundant. However, since its kernel is very
small compared to

∣∣C1(G, A)
∣∣, this increases the size of the generating set by a 1− o(1) factor.

12The group B2(G, A) would be small-base if log
∣∣B2(G, A)

∣∣ = O(poly log n) = O(poly(log |G|+ log |A|)),
but we can see that B2(G, A) is much bigger than this.
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Our quantum algorithm will take the inputs A and E as black box groups. That is, we
are given a generating set for each and an oracle for performing the three operations listed
earlier in the group E.13

For the group G, on the other hand, we first consider the case when G is given by a
multiplication table. In this case, we can efficiently work with the group B2(G,A) since it
has a generating set of size O(|G|2 log |A|) and we only need a running time polynomial in |G|
in this model. Practically speaking, this means that we will be able to compute equivalence
of extensions of a small group G by a large group A using this algorithm. Such extensions
can still be quite complicated groups.

Finally, the isomorphism Ei/A ∼= G will be provided as an oracle since we cannot
reasonably take a table with |E| rows as input. Given an element x ∈ Ei, the oracle return
the g ∈ G corresponds to x+A ∈ Ei/A.

Proof of Theorem 3. As in the classical algorithm, we will apply the correspondence in
Lemma 1 and reduce to a membership test in B2(G,A).

In order to use a membership test for B2(G,A), we must show how to construct an
oracle for this group or a larger group containing it. We will work with C2(G,A). Since
each element of C2(G,A) is a vector (or direct sum) of |G|2 elements of A, we can identify
elements of this group by strings containing |G|2 strings for elements of A. We can perform
multiplication and inverses pointwise, each using |G|2 calls to the oracle for A. Similarly, the
identity in C2(G,A) is simply |G|2 copies of the identity in A, so we can also check for the
identity with |G|2 calls to the oracle for A.

One input to the membership test is a generating set for B2(G,A). We saw in the
previous section that this can be constructed simply by making |G|2 labelled copies of a
generating set for A. In this case, we are given a generating set for A as input, and we can
turn this into |G|2 labelled copies in O(|G|2 log |A|) time.14

The other input to the membership test is the element f1 − f2. As before, in order to
compute these factor sets, we need to be able to choose a representative of each coset of A in
E. However, note that our classical algorithm ran in O(|E|) time, which is no longer efficient
in this model. So we will need a slightly different approach.

Instead of enumerating E, we will select random elements from E and invoke the oracle
we are given to find the projection in G. If x ∈ E projects onto g ∈ G, then this gives us
our representative s(g) = x for g. We continue to select random elements until we have a
representative for each g ∈ G (aside from e ∈ G, which we set to s(e) = e).

Now, since we are only given a generating set for E, it is not possible to select uniformly
random elements. However, we can compute nearly uniformly random elements as described
in [11] in time linear in the size of the generating set for E (plus an Õ(log5 |A|) additive term).
The generated elements are nearly uniform in the sense that the probability of generating
x ∈ E is off by a 1− o(1) factor, which we can choose to be arbitrarily small.

With this, the probability of producing any particular g ∈ G will be (1±ε)/ |G|. Hence, by
standard calculations, we will produce a representative for each g ∈ G with high probability
after O(|G| log |G|) random choices. The overall time to compute these representatives if
Õ(|G| log |A|+ log5 |A|).

13This also works for A since A ≤ E.
14This is assuming that we are given a generating set for A of size O(log |A|). We can easily reduce to a

generating set of this size, if this is not what we are given, by using random subproducts as described in
[5].
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With choices of representatives si for each Ei, we can compute the factor sets fi and their
difference f1 − f2 in the same manner as in the classical algorithm. This takes time O(|G|2).

To perform the membership test, we apply the algorithm from [10], which can be used
to compute the size of a subgroup. We call this once with the generating set for B2(G,A)
and once with this generating set plus f1 − f2. If the latter subgroup is larger, then
f1 − f2 /∈ B2(G,A), and the extensions are not equivalent. Otherwise, they are equivalent.

As described in [12], the running time of the algorithm for computing group size depends
on the size of the generating set, k, and the maximum order of any element in the group,
q. As mentioned above, we have k = O(|G|2 log |A|) for the first. For the second, the best
bound we have in general is q = |A|.

The algorithm first performs O(k log q) group operations. Each of these translates into
|G|2 calls to the oracle for A. Thus, all together, it will perform O(|G|4 log2 |A|) calls to the
oracle for A. The algorithm also performs O(k3 log2 q) = O(|G|6 log5 |A|) other elementary
operations as part of its post-processing, which dominates the running time.

There are a few other details about the running time of this algorithm that need to be
considered. However, to keep this presentation simpler, we discuss those in the appendix, in
section B. Here, it suffices here to say that the other necessary processing adds at most a
log |A| factor to the running time, giving us a running time of O(|G|6 log6 |A|). J

As in the classical case, it turns out that the quantum algorithm needs to perform
something like Gaussian elimination on a matrix.15 This occurs within the post-processing
steps of the algorithm for computing the size of the subgroup. The matrix in question has
rows and columns indexed by generators, and since we have O(|G|2 log |A|) generators, we
get an O(|G|6) factor in the running time of the algorithm.

The dependence on |A|, on the other hand, is exponentially improved compared to
the classical algorithm. Hence, if the group G is fairly small (i.e., |G| = O(log |A|)) then
the quantum algorithm is exponentially faster overall. As we will see in the next section,
extensions of small groups (even constant sized) are complicated and interesting objects.

For the case where G is also presented as a black box group, the above approach does not
work since we cannot efficiently write down a generating set for B2(G,A) or even a factor
set f ∈ Z2(G,A). However, it is still possible to test equivalence provided that G is abelian.
As this requires substantially more work, which is specific to this special case, we leave the
proof of Theorem 4 to the appendix, in section A.

3.4 Algorithms for Non-Central Extensions
It is not hard to extend our algorithms to general extensions, i.e., without the assumption
that A is central in E1 and E2.

The core fact needed by both algorithms is the correspondence between equivalence
classes of extensions and elements of H2(G,A) given in Lemma 1. This relationship indeed
holds for general extensions (i.e., under the assumption that A is abelian but not necessarily
central). However, in the general setting, the definition of H2(G,A) is more complex.

If E is an extension of G by A and t ∈ E is a representative of g ∈ G, then it does not
hold that t−1at = a for all a ∈ A if A is not central. It is easy to check that t−1at ∈ A,
however, and that any two representatives of g ∈ G define the same action a 7→ at , t−1at.
In fact, this defines a homomorphism ϕ : G→ AutA, as occurs in a semi-direct product.

15 Specifically, computing the Smith normal form of a matrix. See [10] for details.
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In the general case, extensions are identified not only by the groups G and A but also
by ϕ : G → AutA. Two extensions of G by A with action ϕ are equivalent if there exists
a structure preserving isomorphism, as before. Lemma 1 then holds using a definition of
H2(G,A) that changes the formula for ∂ to include ϕ.

In our algorithms, the only change is that we must use the new formula when constructing
a generating set for B2(G,A). This new formula is (∂f)(x, y) , f(x)y + f(y)− f(xy), where
the action ay of G on A is given by ϕ. Since this action is just conjugation by a representative
and we have a representative for each y ∈ G, it is clear that we can compute this formula
just as well. Hence, we can efficiently test equivalence of non-central group extensions of G
by A, in both models, with the same running times.

3.5 Impossibility for Classical Algorithms in the Black Box Model

In this subsection, we show that the problem solved by our quantum algorithm is classically
hard under the assumption of the Goldwasser–Micali cryptosystem that quadratic residuosity
is classically hard. Our proof is a reduction from quadratic residuosity to testing equivalence
of central extensions. Hence, this argues that the problem for black box groups is hard even
for the simpler case of central extensions.

Proof of Theorem 5. The inputs to quadratic residuosity are a large number N and a
y ∈ Z∗N , the group of multiplicative units modulo N . (We are also assured that the Jacobi
symbol of y is +1, though that will play no part in the construction.) Both of these inputs
are encoded in O(logN) bits, so an algorithm is only efficient if it runs in O(poly logN)
time.

The objective for this problem is to determine whether y has a square root in Z∗N , that is,
whether there exists an x ∈ Z∗N such that y = x2 (mod N). If such an x exists, y is called a
“quadratic residue”. Our reduction will construct two central extensions of Z2 by Z∗N that are
equivalent iff y is a quadratic residue. Since Z2 is both small and abelian, this is a special
case of both models we considered for quantum algorithms. Hence, this one reduction will
show that both problems are as hard as quadratic residuosity.

As mentioned above, we can create a group extension from any factor set f : Z2 ×
Z2 → Z∗N . If we know the values of this function, then we can perform multiplication by
(x, a)(y, b) = (xyf(a, b), a+b).16 It is well-known that we can perform group operations in Z∗N
in O(poly logN) time, and group operations in Z2 take constant time, so this computation
can be performed efficiently. Likewise, the inverse of (x, a), given by (x−1f(a,−a)−1,−a),
can also be computed efficiently. Finally, we can easily check for the identity element, which
is (1, 0). This shows that we can efficiently provide an oracle for these extensions, once we
have chosen their factor sets.

Each factor set provides only four outputs since |Z2 × Z2| = 4. Furthermore, as noted in
the definition, any factor set must also satisfy f(a, e) = f(e, b) = e for all a, b ∈ G. In this
case, that means that f(0, 0) = f(0, 1) = f(1, 0) = 1. Thus, each factor set is defined by the
single value f(1, 1). We will choose one extension to have f(1, 1) = 1 and the other to have
f(1, 1) = y. Since y is provided in the input, it is clear that we can efficiently compute the
value f(a, b) for either of these extensions.

16Note that the group operation in Z∗
N , while abelian, is usually written as multiplication, while that of

Z2 is written as addition. We will follow those conventions in this section. Note, however, that we used
the opposite conventions for A and G in earlier sections.
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We should also note that, for an f so defined to be a 2-cocycle, it must satisfy the
additional (odd-looking) condition provided in the definition. This condition ranges over
three variables a, b, c ∈ G, and since |G| = 2 in this case, this provides 8 equations that must
be satisfied. It is a simple matter to write these out for the two factor sets described above
and verify that these always hold, regardless of the value of f(1, 1), so we have the freedom
to choose f(1, 1) = y as above.

In addition to the oracle just described, our extension equivalence test requires descriptions
of the groups A, G, and E. For G = Z2, we can be compute a multiplication table in constant
time (for the first quantum model) or we can easily construct an oracle that computes group
operations in Z2 in constant time (for the second quantum model). For A = Z∗N , we can
produce a generating set (with high probability) by choosing O(logN) random elements.
To do this, we simply choose random elements of ZN and then check that they are in Z∗N
by computing the GCD with N . It is well-known that this can be done efficiently, and
since there is only a o(1) chance that this test fails, we can produce a generating set in
O(poly logN) time. Finally, for the group E, we can again choose O(logN) random elements
(since |E| = 2 |A|), and since E as a set is simply Z∗N ×Z2, we can choose a uniformly random
element of E by choosing x ∈ Z∗N and a ∈ Z2 uniformly, then forming (x, a).

The last input we must provide for extension equivalence is the isomorphism Ei/Z∗N ∼= Z2.
This is simply the function that maps (x, a) 7→ a. Obviously, this can be performed efficiently.

Let E1 be the extension with factor set f1 having f1(1, 1) = y and E2 be the extension
with f2 having f2(1, 1) = 1. Then we can see that f1f

−1
2 = f1. Thus, these extensions

are equivalent iff there exists a cochain s : Z2 → Z∗N such that ∂s = f . By construction,
any s will ensure that ∂s(0, 0) = ∂s(0, 1) = ∂s(1, 0) = 1 (otherwise, they would not
be valid factor sets), so we only need ∂s(1, 1) = f1(1, 1) = y. Let x = s(1).17 Then
∂s(1, 1) = s(1)s(1)s(1 + 1)−1 = x · x · 1−1 = x2. Thus, we can see that the extensions are
equivalent iff there exists an x ∈ Z∗N such that x2 = y, i.e., iff y is a quadratic residue. J

Note that this example shows that extending even a constant-sized group (in this case,
|G| = 2) by a large group can introduce substantial difficulty.

4 Counting Equivalence Classes of Extensions

In this section, we show that it is possible to compute
∣∣H2(G,A)

∣∣, the number of inequivalent
extensions of G by A, using the machinery developed earlier for testing equivalence. The
size

∣∣H2(G,A)
∣∣ is another quantity that is sometimes computed by hand for extensions of

small groups and would be interesting to compute for larger groups.
We start first with the quantum algorithm, which takes A as a black box group and G

given by a multiplication table.

Proof of Theorem 7. Since H2(G,A) ∼= Z2(G,A)/B2(G,A), we can compute the size of
the former group from the sizes of the latter two. In fact, we computed

∣∣B2(G,A)
∣∣ as part

of our quantum algorithm for testing equivalence, so we know how this can be done.
To compute

∣∣Z2(G,A)
∣∣, we use the fact that Z2(G,A) = Ker ∂2, where ∂2 : C2(G,A)→

B3(G,A) is similar to the map ∂ (= ∂1) we used above. This map is a surjection, so the
first isomorphism theorem tells us that B3(G,A) ∼= C2(G,A)/Z2(G,A), which means that∣∣Z2(G,A)

∣∣ =
∣∣C2(G,A)

∣∣ / ∣∣B3(G,A)
∣∣. From the definition, we have

∣∣C2(G,A)
∣∣ = |A||G|

2
.

17 Any (normalized) 1-cochain s must have s(0) = 1, so 1-cochains in this case are in 1-to-1 correspondence
with the element of Z∗

N by the mapping s 7→ s(1).
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To compute
∣∣B3(G,A)

∣∣, we can use the same approach as for B2(G,A): we take a
generating set for C2(G,A), which is simply |G|2 copies of the generating set for A and has
size O(|G|2 log |A|); push this forward into B3(G,A) by applying the map ∂2, which has a
simple formula; and then invoke the algorithm for computing the size of an abelian black
box group. With

∣∣B3(G,A)
∣∣ in hand, we can compute

∣∣Z2(G,A)
∣∣ and then

∣∣H2(G,A)
∣∣ by

arithmetic. All of these steps can be done in O(poly |G|poly log |A|) time, so this gives an
efficient algorithm. J

Finally, we have a classical algorithm when A and G are given by multiplication tables.

Proof of Theorem 6. We repeat the same approach as just described for the quantum
algorithm of computing

∣∣B2(G,A)
∣∣ and ∣∣B3(G,A)

∣∣. Now, our classical algorithm for testing
equivalence did not compute

∣∣B2(G,A)
∣∣ as part of its operation. However, we did show how

to efficiently construct a permutation representation for B2(G,A), and it is well-known that
we can compute the size of a permutation group efficiently [5], so we can compute the size of
this group classically as well.

We can also efficiently construct a generating set for B3(G,A), just as we did above,
by taking a generating set for C3(G,A) (in the same manner as we did for C2(G,A) in
the classical case) and pushing it forward using ∂2. We can compute the size of this group
efficiently as well, using the algorithm mentioned above, and then perform the same arithmetic
as above. J

5 Conclusion

In this paper, we considered the problem of testing whether two extensions of a group G
by an abelian group A are the same or “equivalent.” If both |A| and |G| are small, then we
showed that there exists an efficient (classical) Monte Carlo algorithm for testing equivalence.
On the other hand, if |A| is so large that A can only be provided as a black box and either
|G| is small or |G| is large and abelian, then there is still an efficient quantum algorithm for
testing equivalence, whereas no efficient classical algorithm exists, under the assumption that
there is no efficient classical algorithm for testing quadratic residuosity.

As mentioned in the introduction, one of the motivations for studying this problem is its
relationship to the group isomorphism problem, an important open problem in computer
science. Hence, it is worth considering what light these results shed on the group isomorphism
problem.

While the isomorphism problem applies to arbitrary groups, it is widely believed that the
case of 2-nilpotent groups contains the essential hard cases. Any such groups are central
extensions, and hence, we can apply our classical algorithm above to test their equivalence.
If the two extensions are equivalent, then they are isomorphic. However, the opposite does
not hold.

We can conclude from this that, if it is the case that testing isomorphism of 2-nilpotent
groups is hard, then the hardness must come from extensions that are isomorphic but
inequivalent. Hence, it behooves us to understand further the computational complexity of
distinguishing such extensions.
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A Quantum Algorithm for Large, Abelian G

As mentioned in subsection 3.3, when G is a black box group, we have little hope of working
with the group B2(G,A) since we cannot efficiently write down a generating set. Worse,
we cannot even write down an f ∈ Z2(G,A) corresponding to our extension because this
requires |G| numbers in the general case. Hence, it is clear that we will need to put some
restrictions on the form of f if we are to work with it efficiently. Below, we will see that this
can be done without loss of generality in the case where G is abelian.

By the structure theorem for abelian groups, we know that G ∼= Zd1 × · · · ×Zdm for some
integers d1 | d2 | · · · | dm, which means m = O(log |G|). We can use the algorithm of [10]
to efficiently decompose G into a product of this form on a quantum computer, so we can
assume that we have G in this form.

As usual, we will have f = ∂s for some s : G → E. In particular, for {xi ∈ Zdi
}i∈[m],

we will choose s(x1, . . . , xm) = sx1
1 . . . sxm

m for some {si ∈ E} such that si is a representative
of ei , (0, . . . , 0, 1, 0, . . . , 0) ∈ G (where the 1 is in the i-th place). We can check that this
s is a valid set of representatives for G. Since π : E → G is a homomorphism, we can see
that π(s(x1, . . . , xm)) = (πs1)x1 . . . (πsm)xm = ex1

1 . . . exm
m = (x1, 0, . . . , 0) . . . (0, . . . , 0, xm) =

(x1, . . . , xm).
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Most importantly, it is clear that we can write down the numbers s1, . . . , sm efficiently in
terms of our generators for A, so this gives us an efficient way to represent s and f = ∂s.

Let us define F(G,E) to be the set of functions G→ E of the above form, i.e., s ∈ F(G,E)
iff s(x1, . . . , xm) = sx1

1 · · · sxm
m for some s1, . . . , sm ∈ E. Note that we have s(0, . . . , 0) =

0, so these functions are normalized. Since s(x1, . . . , xm) is always a representative of
(x1, . . . , xm) ∈ G, as we saw in the proof of Lemma 1, we then always have ∂s ∈ Z2(G,A),
that is, ∂F(G,E) ⊂ Z2(G,A). Likewise, if we consider the functions F(G,A) (with codomain
A rather than E), we see that these are a subset of C1(G,A) — every s ∈ F(G,A) is a
1-cochain, but not every 1-cochain is in this concise form (defined in terms of some s1, . . . , sm)
— so we define B2

F (G,A) , ∂F(G,A) ⊂ ∂C1(G,A) = B2(G,A). (It may be helpful to refer
back to Figure 1 for the definitions of C2, B2, Z2, etc.)

The following lemma shows that it will be sufficient to work with B2
F (G,A).

I Lemma 8. Suppose that f ∈ ∂F(G,E1) and g ∈ ∂F(G,E2), then f − g ∈ B2(G,A) iff
f − g ∈ B2

F (G,A).

Proof. Since B2
F (G,A) ⊂ B2(G,A), the reverse direction is immediate.

For the forward direction, suppose that f − g ∈ B2(G,A). We know that f = ∂s for some
s ∈ F(G,E1). Since g differs from f by a coboundary, E1 and E2 are equivalent extensions.
This means, in particular, that there exists an isomorphism τ : E2 → E1 respecting A and G.
Now, let u ∈ F(G,E2) be such that g = ∂u. Then we can see that

τ(g(x, y)) = τ(∂u(x, y)) = τ(u(x)u(y)u(x+ y)−1) = τu(x)τu(y)(τu(x+ y))−1.

Since g(x, y) ∈ A and τ restricts to identity on A, we see that g(x, y) = τg(x, y) = (∂τu)(x, y).
Thus, g can be realized as ∂t for some t : G → E1, namely, t = τu. Futhermore, since u
is of the form u(x1, . . . , xm) = ux1

1 . . . uxm
m , we see that t(x1, . . . , xm) = τu(x1, . . . , xm) =

(τu1)x1 . . . (τum)xm , which shows that t ∈ F(G,E1) with ti , τui the representative of ei
for each i ∈ [m].

The above shows that we can restrict our attention to considering f − g = ∂s− ∂t, where
s, t ∈ F(G,E1). In this case, we can compute

f(x)− g(y) = s(x)s(y)s(x+ y)−1(t(x)t(y)t(x+ y)−1)−1

= s(x)s(y)s(x+ y)−1t(x+ y)t(y)−1t(x)−1.

Now, note that s(x+ y)−1t(x+ y) ∈ A since

π(s(x+ y)−1t(x+ y)) = (πs(x+ y))−1πt(x+ y) = −(x+ y) + (x+ y) = 0

in G. Since A is central in E, we can move s(x + y)−1t(x + y) to the end. This leaves
s(y)t(y)−1 adjacent. Since this is in A for the same reason, we can rearrange this as well.
Thus, we have f(x)− g(y) = s(x)t(x)−1s(y)t(y)−1s(x+ y)−1t(x+ y). This is close, but not
identical, to

∂(st−1)(x, y) = s(x)t(x)−1s(y)t(y)−1(s(x+ y)t(x+ y)−1)−1,

the only difference being the order of the last two factors.
We can show, however, that these two terms commute. In particular, let x = (x1, . . . , xm).

Then we have s(x1, . . . , xm) = sx1
1 . . . sxm

m and t(x1, . . . , xm) = tx1
1 . . . txm

m so that s(x)t(x)−1 =
sx1

1 . . . sxm
m t−xm

m . . . t−x1
1 . Since sm and tm are both representatives of em ∈ G, we know that

sxm
m t−xm

m ∈ A, which means we can move this term to the end. Repeating this as above,
we have s(x)t(x)−1 = sx1

1 t−x1
1 . . . sxm

m t−xm
m . Now, since sm and tm are both representatives



K.C. Zatloukal 141

of em, they must differ by a factor of some am ∈ A, so we have tm = smam, which means
that sxm

m t−xm
m = sxm

m s−xm
m a−xm

m , and more generally, s(x)t(x)−1 = a−x1
1 . . . a−xm

m . Now, if we
compute the product in the other order, we have t(x)−1s(x) = t−xm

m . . . t−x1
1 sx1

1 . . . sxm
m =

t−x1
1 sx1

1 . . . t−xm
m sxm

m by the same rearranging as before, and since t−x1
1 sx1

1 = s−x1
1 a−x1

1 sx1
1 =

a−x1
1 (using the fact that A is central in E1), we can see that t(x)−1s(x) = a−xm

m . . . a−x1
1 .

This is equal to what we computed for s(x)t(x)−1 since A is abelian, so we have shown that
f(x)− g(y) = ∂(st−1)(x, y).

If we let v : G → E1 be defined by v(x) = s(x)t(x)−1, then we have shown above that
f − g = ∂v. In particular, we showed v(x1, . . . , xm) = a−x1

1 . . . a−xm
m , which means that

v ∈ F(G,A) with vi = a−1
i . Thus, we have seen that f − g ∈ ∂F(G,A) = B2

F (G,A). J

The following two lemmas tell us more about what elements in these groups look like.

I Lemma 9. If h ∈ B2
F (G,A), then there exist α1, . . . , αm ∈ A such that h(x, y) =

∏m
i=1 α

δi
i ,

where δi = 1 if xi + yi ≥ di and 0 otherwise and αi = adi
i for some ai.

Proof. If h is as above, we know that h = ∂v for some v ∈ C1
F (G,A), where v is of the form

v(x1, . . . , xm) = ax1
1 . . . axm

m for some {ai ∈ A}. Since A is abelian, we can see that

h(x, y) = v(x1, . . . , xm)v(y1, . . . , ym)v(x1 +y1, . . . , xm+ym)−1 =
m∏
i=1

axi
i a

yi

i a
−(xi+yi) mod di

i

because xi + yi in G is computed mod di. If xi + yi < di, then the mod has no effect, and we
see that h(x, y) = e. On the other hand, if xi+yi ≥ di, then −(xi+yi) mod di = −xi−yi+di.
This means that axi

i a
yi

i a
−(xi+yi) mod di

i = adi
i , so we can see that h(x, y) =

∏m
i=1 a

diδi
i , where

each δi is defined as in the statement of the lemma. We get the form in the statement by
defining αi = adi

i . J

I Lemma 10. If f ∈ Z2
F (G,A), so that f = ∂s for some s ∈ F(G,E), then there exist

{αi ∈ A}1≤i≤m and {βi,j ∈ A}1≤i<j≤m such that f(x, y) =
∏

1≤i≤m α
δi
i

∏
1≤i<j≤m β

yixj

i,j ,
where δi is defined as in the previous lemma, αi = sdi

i , and bi,j = [si, s−1
j ].

Proof. By definition, we have

f(x, y) = s(x)s(y)s(x+ y)−1 = sx1
1 · · · sxm

m sy1
1 · · · sym

m s−(xm+ym) mod dm
m · · · s−(x1+y1) mod d1

1 .

As in the previous lemma, we can rewrite this as

f(x, y) = sx1
1 · · · sxm

m sy1
1 · · · sym

m s−xm−ym+dmδm
m · · · s−x1−y1+d1δ1

1 .

We can begin by using the fact that sdi
i ∈ A for each i. This follows because π(sdi

i ) =
π(s(ei)di) = (0, . . . , di, . . . , 0) = 0 since the i-th part of G is Zdi , meaning addition is modulo
di.

Thus, we can define αi , sdi
i . Since A is abelian, we can pull all of these factors to the

front. This puts f in the form

f(x, y) =
(

m∏
i=1

αδi
i

)
sx1

1 · · · sxm
m sy1

1 · · · sym
m s−xm−ym

m · · · s−x1−y1
1 .

In the middle of the latter product, we have sym−1
m−1 s

ym
m s−xm−ym

m s
−xm−1−ym−1
m−1 . We can

cancel sym
m and s−ym

m , leaving us with sym−1
m−1 s

−xm
m s

−xm−1−ym−1
m−1 . In order to cancel the sym−1

m−1 ,
we first have to move it past the s−xm

m . We can do this by introducing a commutator that
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compensates for the order change. This allows the sym

m−1 factor to cancel, leaving us with
[sym−1
m−1 , s

xm
m ]s−xm−1

m−1 .
More generally, we can consider [s(u), s(v)] for any u, v ∈ G. We can see that

π[s(u), s(v)] = π(s(u)s(v)s(u)−1s(v)−1) = πs(u)πs(v)πs(u)−1πs(v)−1 = u+v−u−v = 0,

which means that [s(u), s(v)] ∈ A. In particular, this means that we can move commutators
to the front.

Hence, we can simplify sx1
1 · · · sxm

m sy1
1 · · · sym

m s−xm−ym
m · · · s−x1−y1

1 by introducing commu-
tators to move each factor of s−xj

j in front of each remaining factor of syi

i . In the example
above, we saw that there was no moving required for i = m, while i = m− 1 only need to
move past j = m. In general, will need to swap each pair of this form with i < j. Each such
swap introduces a commutator, but since these are all in A, we can immediately move them
to the front and continue swapping these factors and canceling the matching factors until
nothing remains.

Finally, note that a swap of syi

i and s−xj

j can be thought of as a number of swaps between
si’s and s−1

j ’s. Since each of the yi copies of the first must move past each of the xj copies
of the second, we see that there are yixj swaps overall. Thus, we can write the commutator
as [si, s−1

j ]yixj , giving us the form in the statement of the lemma. J

The following is the main result needed for our algorithm.

I Lemma 11. Let f, f ′ ∈ Z2
F (G,A). Write these in the form of the previous lemma with

{αi}, {βi,j} for f and {α′i} and {β′i,j} for f ′. Then f − f ′ ∈ B2
F (G,A) iff βi,j = β′i,j for all

1 ≤ i < j ≤ m and (αi)−1α′i has a di-th root in A.

Proof. We begin with the reverse direction. Let ai ∈ A be a di-th root of (αi)−1α′i.
Recall that αi = sdi

i . Replacing si with siai gives another valid set of representatives and,
hence, an extension equivalent to f ′. Defining f ′′ using this set of representatives gives an
α′′i = sdi

i a
di
i = αi(αi)−1α′i = α′i. Since f and f ′ agree on the βi,j ’s and since including extra

factors from A does not change the βi,j ’s (as A is central and βi,j is a commutator), we see
that f ′′ and f ′ agree on both the αi’s and βi,j ’s, so f ′′ = f ′. Next, since f and f ′′ arise by
choosing different representatives for the same extension, we know that f − f ′′ ∈ B2(G,A).
However, since f, f ′′ ∈ Z2

F (G,A), we have f − f ′′ ∈ B2
F (G,A) by Lemma 8. Thus, we can

see that f − f ′ = (f − f ′′) + (f ′′ − f ′) = f − f ′′ ∈ B2
F (G,A).

For the forward direction, we will separately prove the two implications, that f − f ′ ∈
B2
F (G,A) implies the condition on the βi,j ’s and that it implies the condition on the αi’s.
For the condition on the βi,j ’s, we will prove the contrapositive. First, suppose that

βi,j 6= β′i,j for some i < j. From the formula in Lemma 9, we can see that h(ei, ej) = 0
for any h ∈ B2

F (G,A). On the other hand, from the formula in Lemma 10, we see that
f(ei, ej) = βi,j 6= β′i,j = f ′(ei, ej). Since every coboundary is 0 on this pair, we conclude that
f − f ′ 6∈ B2

F (G,A).
Now, we prove the condition on the αi’s. Suppose that h , f ′ − f ∈ B2

F (G,A). From
the formula in Lemma 9, writing the constants for h as α′′i , we can see that h(ei, (di −
1)ei) = α′′i = adi

i . From the formula in Lemma 10, we see that f(ei, (di − 1)ei) = αi and
f ′(ei, (di − 1)ei) = α′i. Taking f ′ − f = h at the pair (ei, (di − 1)ei) and writing with
multiplicative notation, we see that α′i(αi)−1 = α′′i = adi

i . Since (αi)−1α′i = α′i(αi)−1 (both
are in A), we see that the di-th root exists.

Thus, we have seen that, if the condition on the βi,j ’s and αi’s does not hold (so either
the βi,j condition does not hold or the αi condition does not hold), it is impossible to have
f − f ′ ∈ B2

F (G,A). J
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We now have the necessary tools required to prove the theorem in this case.

Proof of Theorem 4. Assuming that we can compute a factor set in Z2
F (G,A) for each

extension, we only need to compute the αi’s and βi,j ’s from Lemma 11 for each factor set
and check whether they satisfy the conditions of the last lemma.

We saw in the proof of the lemma that these constants can be found simply by evaluating
the factor set at particular points. There are only O(m2) = O(log2 |G|) constants to compute.
Given the simple form of each f ∈ Z2

F (G,A), it is clear that we can perform these evaluations
efficiently. Thus, we can efficiently determine the αi’s and βi,j ’s.

For the βi,j ’s, the conditions of Lemma 11 require us simply to check equality, which we
can do for each (i, j) with one call to the oracle for A. For the αi’s, on the other hand, we
need to determine whether the quotient of two αi’s is a di-th root.

Recalling that A is an abelian group, we can switch back to additive notation. Our goal
is to determine whether there exists an a ∈ A such that dia = α′i−αi. Since A is isomorphic
to a product Zn1 × · · · × Znk

, this splits into k independent equations. For each 1 ≤ j ≤ k,
we want to find an aj such that diaj = (α′i −αi)j (mod nk) or, equivalently, if there exist aj
and bj such that ajdi + bjnk = (α′i − αi)j . Let d be the greatest common denominator of di
and nk. We can solve this equation iff d divides (α′i − αi)j .

Thus, for the αi’s, the conditions of Lemma 11 require us to compute the αi’s, split
them into the parts of the direct product, and then check whether the difference in each
component is divisible by the greatest common denominator of di and nk. We get di by
decomposing G into a direct product of cyclic groups using the algorithm of [10]. We apply
the same algorithm to A to find nk and the (·)j components of a′i − αi needed above.18 We
then simply need to check divisibility for O(log |G|)-bit numbers, which we can do efficiently
on a classical computer. Since the quantum algorithm of [10] is efficient, we have seen that
there is an efficient quantum algorithm for testing whether the difference of two factor sets is
a coboundary.

It remains to describe how to compute each factor set or, more specifically, the represen-
tatives s1, . . . , sm for each of the direct factors (since we can efficiently evaluate a factor set
given these numbers). As in our earlier quantum algorithm, we can produce nearly uniformly
random elements from E and then apply the oracle to find the corresponding elements of G.
This process gives us nearly uniformly random elements of G. As we have seen before, we
need only O(log |G|) random elements to get a set that generates all of G. The key fact is
that we have not only a generating set for G but rather a generating set for G with each
generator coming from an element in E.

Since these generate G, we know that, for each i ∈ [m], there exists a product that gives
ei ∈ G. The corresponding product of elements of E is thus a representative of ei. To find
this product, we apply the algorithm of [10] to express G as a direct product of cyclic groups
and get the relations for converting from the generators we have to the standard generators
for the direct factors. These relations come in the form of an O(log |G|)×O(log |G|) matrix.
For each i ∈ [m], one column of this matrix gives the relation for generating ei as a product
of powers of O(log |G|) of our random elements. Since we can compute powers efficiently and
this matrix is small, we can efficiently compute this product to get ei. More importantly, we

18The algorithm of [10] computes not only generators for the factors of the direct product but also formulas
(the vectors yi) for converting from the original generators to the new ones. The map taking ei 7→ yi is
invertible, so we can efficiently compute the reverse direction (from new generators to the original ones)
as well.
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can compute the product of the elements of E corresponding to these generators to produce
a representative of ei. This is a valid choice for si.

In summary, we find a set of representatives {si} for each extension that allows us to
efficiently compute a factor set in Z2

F (G,A). Then, we can check whether their difference lies
in B2

F (G,A) by computing the αi’s and βi,j ’s for each extension and checking the conditions
of the lemma. As we saw above, both of these steps can be performed efficiently on a
quantum computer. J

B Quantum Algorithm for Computing Group Size

The quantum algorithm in subsection 3.3 requires a subroutine that computes the size of a
black box group. Earlier, we cited the algorithm and analysis of [10, 12] but skipped some of
the finer details of how the theorems from those papers translate into a running time for this
subroutine in our algorithm. In this section, we fill in those missing details.

The algorithm of [10] is not explicitly for computing the size of the group. Rather, it is
for decomposing the group into a direct product of cyclic groups. That is, it produces a set
of generators, one for each of the direct factors. However, it is easy to compute the size of
the group from this information.

In particular, the size of the group is simply the product of the sizes of the direct factors,
and since each of these is a cyclic group, the size of each direct factor is simply the order of
the generator. Hence, we can get the size of the group from the output of this algorithm by
invoking an order finding subroutine.

Finding order is a special case of the algorithm for computing the period of a function,
which is also described and analyzed in [12]. In our case, the function whose period we want
to find is the map n 7→ gn, where g ∈ A is the generator whose order we are computing.
Since the order of g is bounded by |A|, the method of repeated squaring allows us to compute
this map with O(log |A|) calls to the oracle for A.

The quantum period finding algorithm makes only one call to the function just described,
taking O(log |A|) time. However, it must also perform O(log2 |A|) post-processing, which
dominates the running time.

To compute the size of our group, we need to find the order of all O(|G|2 log |A|) generators,
which we can see takes O(|G|2 log3 |A|) time. This is adds only a lower order term to the
overall running time.

That completes the discussion of our own post-processing to compute the size of the
group. However, we will also need to perform some pre-processing.

The algorithm described in [12] requires that all of the given generators have order
that is pk for some fixed prime p. This is done in order to reduce the amount of quantum
computation that is needed because separation into different p-groups can be done classically,
as we will now describe.

We start by finding the order of each generator. As noted above, this takes O(|G|2 log3 |A|)
time. Next, we factor the order using Shor’s algorithm [13], which takes O(log3 |A|) time.
Now, suppose that the order of g is r = pj1

1 . . . pjk

k . Then, if we let q` =
∏
i6=` p

ji

i , then we can
see that the order of gq` is pj`

` . Furthermore, we know from the Chinese remainder theorem
that any x ∈ Zr is uniquely determined by the values x mod pj`

` for each `. Hence, any power
of g can be written uniquely as a product of powers of gq1 , . . . , gqk .

We now have a generating set for which we know the prime power order of each element.
Thus, we can separately pass the generators for each p-subgroup (those whose order is a
power of p) to the algorithm from [10]. The structure theorem for finite abelian groups tells
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us that our group is a direct product of the p-subgroups, so we can simply multiply their
sizes to get the size of the whole group.

We can see that this pre-processing adds only a lower order term to the running time of
the algorithm. While our generating set for the whole group may have grown, each generator
adds at most a single generator to the set for each p-subgroup, so the running time of the
group decomposition algorithm that we analyzed before is unchanged. The one difference is
that we may need to invoke that algorithm as many as log |A| times, so this adds a factor of
log |A| to our bound on the running time.

Finally, we should note that the decomposition algorithm described in [12] also mentions
O(k2 log q) classical group multiplications (meaning multiplication in the group Z|A|). This
is dominated by the O(k3 log q) part of the post-processing, which works in the same group,
so it does not add to the overall running time.
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Faculty of Computing, University of Latvia
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Abstract
Non-local games are widely studied as a model to investigate the properties of quantum mechanics
as opposed to classical mechanics. In this paper, we consider a subset of non-local games:
symmetric XOR games of n players with 0-1 valued questions. For this class of games, each
player receives an input bit and responds with an output bit without communicating to the
other players. The winning condition only depends on XOR of output bits and is constant w.r.t.
permutation of players.

We prove that for almost any n-player symmetric XOR game the entangled value of the
game is Θ

(√
lnn
n1/4

)
adapting an old result by Salem and Zygmund on the asymptotics of random

trigonometric polynomials. Consequently, we show that the classical-quantum gap is Θ(
√

lnn)
for almost any symmetric XOR game.
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1 Introduction

Non-local games provide a simple way to test the difference between quantum mechanics
and the classical world. A prototypical example of a non-local game is the CHSH game
[6] (based on the CHSH inequality of [5]). In the CHSH game, we have two players who
cannot communicate between themselves but may share common random bits or a bipartite
quantum state (which has been exchanged before the beginning of the game). A referee sends
one uniformly random bit a ∈ {0, 1} to the 1st player and an independent uniformly random
bit b ∈ {0, 1} to the 2nd player. Players respond by sending one-bit answers x, y ∈ {0, 1}.
They win in the following 2 cases:

(a) If at least one of a, b is equal to 0, players win if they produce x, y such that x = y;
(b) If a = b = 1, players win if they produce x, y such that x 6= y;
Classically, CHSH game can be won with probability at most 0.75. In contrast, if players
use an entangled quantum state, they can win the game with probability 1

2 + 1
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2 = 0.85....
Other non-local games can be defined by changing the number of players, the number of

possible questions and answers and the winning condition. Many non-local games have been
studied and, in many cases, strategies that use an entangled quantum state outperform any
classical strategy.
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licensed under Creative Commons License CC-BY

8th Conference on Theory of Quantum Computation, Communication and Cryptography.
Editors: Simone Severini and Fernando Brandao; pp. 146–156

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TQC.2013.146
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


A. Ambainis and J. Iraids 147

Recently [1], it has been shown that, for a large class of non-local games, quantum
strategies are better than any classical strategy for almost all games in this class. Namely,
[1] considered 2-player games in which the questions a, b are taken from the set {1, 2, . . . , n}
and the winning condition is either x = y or x 6= y, depending on a, b. (Games with a
winning condition of such form are called XOR games.) [1] showed that, for 1−o(1) fraction
of all such games, the entangled value of the game is at least 1.2... times its classical value.

Then [2], it was discovered that a similar effect might hold for another class of games:
n-player symmetric XOR games with binary questions. Namely, [2] showed a gap between
entangled and classical values of order Ω(

√
logn) - assuming that a non-rigorous argument

about the entangled value is correct.
In this paper, we make this gap rigorous, by proving upper and lower bounds on the

entangled value of a random game in this class. We show that, with a high probability, the

entangled value is equal to Θ
(√

logn
n1/4

)
. The quantum-vs-classical gap of Θ(

√
logn) follows

by combining this with the fact that the classical value is of the order Θ( 1
n1/4 ) for almost any

random game (shown in [2]).
To prove this result, we use an expression for the entangled value of a symmetric n-

player XOR game with entangled answers from [3]. This expression reduces finding the
entangled value to maximizing the absolute value of a polynomial in one complex variable.
If conditions for the XOR game are chosen at random, this expression reduces to random
trigonometric polynomials studied in [7].

Although maxima of random trigonometric polynomials have been studied in [7], they
have been studied under different conditions. For this reason, we cannot apply the results
from [7] directly. Instead, we adapt the ideas from [7] to prove a bound on maxima of
random trigonometric polynomials that would be applicable in our setting.

2 Definitions

A non-local game with n players proceeds as follows:

1) Players are separated so that they cannot communicate – hence the name non-local,
2) The players receive inputs x1, x2, . . . , xn ∈ I where I is the set of possible inputs. i-th

player receives xi,
3) The players respond with outputs y1, y2, . . . , yn ∈ O where O is the set of possible

outputs.
4) The winning condition P (x1, . . . , xn, y1, . . . , yn) is consulted to determine whether the

players win or lose. The condition is known to everyone at the start of the game.

The players are informed of the rules of the game and they can agree upon a strategy and
exchange other information. In the classical case players may only use shared randomness.
In the quantum case they can use an entangled quantum state which is distributed to the
players before the start of the game.

We will restrict ourselves to the case when I = O = {0, 1} and the vector of inputs
(x1, . . . , xn) is chosen uniformly at random. In an XOR game, the winning condition
P (x1, . . . , xn, y1, . . . , yn) depends only on x1, . . . , xn and the parity of the output bits⊕nj=1yj .
A game is symmetric if the winning condition does not change if x1, . . . , xn are permuted.

The winning conditions of a symmetric XOR game can be described by a list of n+1 bits:
G = (G0, G1, . . . , Gn), where the players win if and only if Gi = ⊕nj=1yj when

∑n
j=1 xj = i.

The entangled value of the game ValQ(G) is the probability of winning minus the proba-
bility of losing in the conditions that the players can use a shared quantum-physical system.
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In this paper, we study the value of symmetric XOR games when the winning condition G is
chosen randomly from the uniform distribution of all (n+ 1)-bit lists. We use the following
lemma (which follows from a more general result by Werner and Wolf for non-symmetric
XOR games [9]):

I Lemma 1 (See [3]). The entangled value of a symmetric XOR game [3] is

ValQ(G) = max
|λ|=1

∣∣∣∣∣∣
n∑
j=0

(−1)Gjpjλj
∣∣∣∣∣∣ (1)

where pj is the probability that players are given an input vector (x1, . . . , xn) with j variables
xi = 1.

In our case, since (x1, . . . , xn) is uniformly random, we have pj = (nj)
2n .

In the following sections we introduce additional notation to keep the proofs more concise
as well as to keep in line with the original proofs in [7]:

The Rademacher system is a set of functions {ϕm(t)} for m = 1, . . . , n over 0 ≤ t ≤ 1
such that ϕm(t) = (−1)k, where k is the m-th digit after the binary point (in the fractional
part of t) of the binary expansion of t. Rademacher system will turn out to be a convenient
way to state that {Gj} are random variables that follow a uniform distribution: if t is chosen
randomly from a uniform distribution on 0 ≤ t ≤ 1, then {ϕm(t)}n+1

m=1 generates a uniformly
random element from {+1,−1}n+1. That in turn corresponds to coefficients (−1)Gj in eq.
(1) being picked randomly.

Furthermore, we define

rm =
(
n

m

)
(n will be clear from context),

Rn =
n∑

m=0
r2
m,

Tn =
n∑

m=0
r4
m,

Pn(x, t) =
n∑

m=0
rmϕm+1(t) cosmx,

Mn(t) = max
0≤x<2π

|Pn(x, t)|.

3 Main Result

By adapting the work of Salem and Zygmund [7] on the asymptotics of random trigonometric
polynomials, we show

I Theorem 2.

lim
n→∞

Pr[Mn(t) ≥ C1
√
Rn lnn] = 1.

I Theorem 3.

lim
n→∞

Pr[Mn(t) ≤ C2
√
Rn lnn] = 1.
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Our proof yields C1 = 1
4
√

3 and C2 = 2.
We will now show how these two theorems lead to an asymptotic bound for the entangled

value of a random game.

I Corollary 4. For almost all n-player symmetric XOR games the entangled value of the
game is Θ

(√
lnn
n1/4

)
.

Proof. From Lemma 1,

ValQ(G) ≥ max
|λ|=1

∣∣∣∣∣∣Re

 n∑
j=0

(−1)Gj
(
n
j

)
λj

2n

∣∣∣∣∣∣ = max
α∈[0;2π]

∣∣∣∣∣∣
n∑
j=0

(−1)Gj
(
n
j

)
cos jα

2n

∣∣∣∣∣∣,
and

ValQ(G) ≤ max
|λ|=1

∣∣∣∣∣∣Re

 n∑
j=0

(−1)Gj
(
n
j

)
λj

2n

∣∣∣∣∣∣+ max
|λ|=1

∣∣∣∣∣∣Im
 n∑
j=0

(−1)Gj
(
n
j

)
λj

2n

∣∣∣∣∣∣ =

= max
α∈[0;2π]

∣∣∣∣∣∣
n∑
j=0

(−1)Gj
(
n
j

)
cos jα

2n

∣∣∣∣∣∣+ max
α∈[0;2π]

∣∣∣∣∣∣
n∑
j=0

(−1)Gj
(
n
j

)
sin jα

2n

∣∣∣∣∣∣.
For a random game {(−1)Gj} follow the same distribution as {ϕj+1(t)} for t uniformly
distributed from interval [0; 1]. Therefore Theorem 2 and Theorem 3 apply. Note that
Theorem 3 is true for cosines as well as sines since we only use that cos2 x ≤ 1, and so

lim
n→∞

Pr
[
C1

√
Rn lnn

2n ≤ ValQ(G) ≤ 2C2

√
Rn lnn

2n

]
= 1. (2)

Finally,

√
Rn lnn

2n =

√(2n
n

)
lnn

2n ∼

√
4n√
πn

lnn

2n =

√
lnn√
πn

.

J

4 Proof of Upper and Lower Bounds

We now proceed to prove theorems 2 and 3. Our proof is based on an old result by Salem
and Zygmund [7], in which they prove bounds on the asymptotics of random trigonometric
polynomials in a different setting (in which the coefficients rm are not allowed to depend on
n).

Due to the difference in the two settings, we cannot immediately apply the results from
[7]. Instead, we prove corresponding theorems for our setting, re-using the parts of proof
from [7] which also work in our case and replacing other parts with different arguments.

I Lemma 5 (From [7]). Let fn(t) =
∑n
m=0 cmϕm+1(t), where {ϕm+1(t)} is the Rademacher

system and cm are real constants. Let Cn =
∑n
m=0 c

2
m, Dn =

∑n
m=0 c

4
m and let λ be any real

number. Then

e
1
2λ

2Cn−λ4Dn ≤
∫ 1

0
eλfn(t) dt ≤ e 1

2λ
2Cn .
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I Lemma 6 (From [7]). Let g(x, y), a ≤ x ≤ b, c ≤ y ≤ d, be a bounded real function.
Suppose that

|g(x, y)| ≤ A,
∫ d
c

∫ b
a
g2(x, y) dx dy

(b− a)(d− c) = B.

Then, for any positive number µ,∫ d
c

∫ b
a
eµg(x,y) dx dy

(b− a)(d− c) ≤ 1 + µ
√
B + B

A2 e
µA.

Furthermore, when
∫ d
c

∫ b
a
g(x, y) dx dy = 0,∫ d

c

∫ b
a
eµg(x,y) dx dy

(b− a)(d− c) ≤ 1 + B

A2 e
µA. (3)

I Lemma 7 (From [7]). Let x be real and P (x) =
∑n
m=0 αm cosmx+ βm sinmx be a tri-

gonometric polynomial of order n, with real or imaginary coefficients. Let M denote the
maximum of |P (x)| and let θ be a positive number less than 1. Then there exists an interval
of length not less than 1−θ

n in which |P (x)| ≥ θM .

I Lemma 8 (From [7]). Let ϕ(x) ≥ 0, and suppose that∫ 1

0
ϕ(x) dx ≥ A > 0,

∫ 1

0
ϕ2(x) dx ≤ B

(clearly, A2 ≤ B). Let 0 < δ < 1. Then

Pr [ϕ(x) ≥ δA | 0 ≤ x ≤ 1] ≥ (1− δ)2A
2

B
.

I Lemma 9.∑n
i=0
(
n
i

)4(∑n
i=0
(
n
i

)2
)2 ≤

4
3n
− 1

2

Proof. If n is even:∑n
i=0
(
n
i

)4(∑n
i=0
(
n
i

)2
)2 ≤

∑n
i=0
(
n
i

)2( n
n/2
)2(∑n

i=0
(
n
i

)2
)2 =

(
n
n/2
)2(2n

n

) ≤

≤

(
2n√
3n2 +1

)2

4n√
4n

≤
√

4n
3n2 + 1 ≤

4
3n
− 1

2

If n is odd:

∑n
i=0
(
n
i

)4(∑n
i=0
(
n
i

)2
)2 ≤

∑n
i=0
(
n
i

)2( n
bn/2c

)2(∑n
i=0
(
n
i

)2
)2 =

(
(n+1
n+1

2
)

2

)2

(2n
n

) ≤

≤

(
2n+1

2
√

3n+1
2 +1

)2

4n√
4n

≤
√

4n
3n+1

2 + 1
≤ 4

3n
− 1

2

J
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Proof of Theorem 2. Set In(t) = 1
2π
∫ 2π

0 eλPn(x,t) dx. We proceed to give an upper bound
for
∫ 1

0 In(t) dt and lower bound for
∫ 1

0 I
2
n(t) dt using Lemma 5. Then we will plug in these

bounds in Lemma 8 for ϕ = In.
First, the lower bound clause of Lemma 5 applied to In(t) gives for any real λ (we will

assign its value later, at our convenience),

∫ 1

0
In(t) dt =

∫ 1

0

(
1

2π

∫ 2π

0
eλPn(x,t) dx

)
dt = 1

2π

∫ 2π

0

∫ 1

0
eλPn(x,t) dt dx ≥

≥ 1
2π

∫ 2π

0
e

1
2λ

2
∑n

m=0
(rm cosmx)2−λ4

∑n

m=0
(rm cosmx)4

dx ≥

≥ 1
2π

∫ 2π

0
e

1
2λ

2
∑n

m=0
(rm cosmx)2−λ4Tn dx =

=
(
e

1
4λ

2Rn−λ4Tn
)
· 1

2π

∫ 2π

0
e

1
2λ

2
∑n

m=0
(rm cosmx)2− r

2
m
2 dx =

=
(
e

1
4λ

2Rn−λ4Tn
)
· 1

2π

∫ 2π

0
e

1
4λ

2
∑n

m=0
(r2
m cos 2mx) dx >

>
(
e

1
4λ

2Rn−λ4Tn
)
· 1

2π

∫ 2π

0

(
1 + 1

4λ
2

n∑
m=0

(r2
m cos 2mx)

)
dx ≥

≥
(
e

1
4λ

2Rn−λ4Tn
)

The second step is to establish an upper bound for
∫ 1

0 I
2
n(t) dt. We start out in a similar

fashion, by applying Lemma 5:∫ 1

0
I2
n(t) dt = 1

(2π)2

∫ 2π

0

∫ 2π

0

∫ 1

0
eλ(Pn(x,t)+Pn(y,t)) dt dx dy ≤

≤ 1
(2π)2

∫ 2π

0

∫ 2π

0
e

1
2λ

2
∑n

m=0
r2
m(cosmx+cosmy)2

dx dy =

= e
1
2λ

2(Rn+r2
0) · 1

(2π)2

∫ 2π

0

∫ 2π

0
e

1
2λ

2Sn(x,y) dx dy

where

Sn(x, y) =
n∑

m=1

(
1
2r

2
m cos 2mx+ 1

2r
2
m cos 2my + 2r2

m cosmx cosmy
)
.

One can verify that

a)

∫ 2π

0

∫ 2π

0
Sn(x, y) dx dy = 0,

b)

1
(2π)2

∫ 2π

0

∫ 2π

0
Sn(x, y)2 dx dy =
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= 1
2π

n∑
m=1

∫ 2π

0

(
1
2r

2
m cos 2mx

)2
dx+

+ 1
2π

n∑
m=1

∫ 2π

0

(
1
2r

2
m cos 2my

)2
dy+

+ 1
(2π)2

n∑
m=1

∫ 2π

0

∫ 2π

0

(
2r2
m cosmx cosmy

)2 dx dy =

= 5
4Tn,

c)

|Sn(x, y)| ≤ 3Rn.

We apply eq. 3 from Lemma 6 with function g = Sn, µ = 1
2λ

2, A = 3Rn and B = 5
4Tn. We

get

1
(2π)2

∫ 2π

0

∫ 2π

0
e

1
2λ

2Sn(x,y) dx dy ≤ 1 +
5
4Tn

9R2
n

e
3
2λ

2Rn ≤

≤ 1 + Tn
R2
n

e
3
2λ

2Rn .

And by Lemma 9,

1 + Tn
R2
n

e
3
2λ

2Rn ≤ 1 + 4
3n
− 1

2 e
3
2λ

2Rn .

So far we have established the two prerequisites for Lemma 8:

1) ∫ 1

0
In(t) dt > e

1
4λ

2Rn−λ4Tn ,

2) ∫ 1

0
I2
n(t) dt ≤ e 1

2λ
2(Rn+r2

0)
(

1 + 4
3n
− 1

2 e
3
2λ

2Rn

)
.

The third step is to apply Lemma 8 with ϕ = In, A = e
1
4λ

2Rn−λ4Tn , B = e
1
2λ

2(Rn+r2
0) ×

×
(

1 + 4
3n
− 1

2 e
3
2λ

2Rn
)
and δ = n−η. This results in

Pr[In(t) ≥ n−ηe 1
4λ

2Rn−λ4Tn ] ≥ (1− n−η)2 e
1
2λ

2Rn−2λ4Tn

e
1
2λ

2(Rn+r2
0)
(

1 + 4
3n
− 1

2 e
3
2λ

2Rn
) ≥

≥ (1− n−η)2e−2λ4Tn− 1
2λ

2r2
0

(
1− 4

3n
− 1

2 e
3
2λ

2Rn

)
.

Finally we show that for suitably chosen λ, θ and η the claim follows. Set λ = θ
√

lnn
Rn

having

θ such that 2√η < θ <
√

1
3 . We deal with the two claims separately:

I Lemma 10.

In(t) ≥ n−ηe 1
4λ

2Rn−λ4Tn =⇒ Mn(t) ≥ C1
√
Rn lnn.
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Proof. Note that

eλMn(t) ≥ In(t) ≥ e 1
4λ

2Rn−λ4Tn−η lnn.

Thus

Mn(t) ≥ 1
4λRn − λ

3Tn −
η

λ
lnn =

= θ

4
√
Rn lnn− θ3

√
Rn lnn lnn Tn

R2
n

− η

θ

√
Rn lnn =

=
√
Rn lnn

(
θ

4 − θ
3 4 lnn

3
√
n
− η

θ

)
→
√
Rn lnn

(
θ

4 −
η

θ

)
.

But θ
4 −

η
θ = constant > 0. We can choose θ arbitrarily close to

√
1
3 and η arbitrarily close

to 0 to obtain C1 = 1
4
√

3 . J

I Lemma 11.

lim
n→∞

(1− n−η)2e−2λ4Tn− 1
2λ

2r2
0

(
1− 4

3n
− 1

2 e
3
2λ

2Rn

)
= 1

Proof. Since η is positive, n−η → 0. Similarly,

e−2λ4Tn− 1
2λ

2r2
0 = e

−2θ4(lnn)2 Tn
R2
n
− 1

2 θ
2r2

0
lnn
Rn ≥ e−

8
3
√
n
θ4(lnn)2− 1

2 θ
2r2

0
lnn
Rn → e0 = 1,

and
4
3n
− 1

2 e
3
2λ

2Rn = 4
3n
− 1

2 e
3
2 θ

2 lnn = 4
3n

3θ2−1
2 → 0.

J

J

Proof of Theorem 3. We will examine
∫ 1

0
∫ 2π

0 eλ|Pn(x,t)| dx dt. By Lemma 7 there exists
0 < θ < 1 such that:∫ 1

0

∫ 2π

0
eλ|Pn(x,t)| dx dt ≥

≥
∫ 1

0

1− θ
n

eθλMn(t) dt.

On the other hand, by Lemma 5 we obtain:∫ 1

0

∫ 2π

0
eλ|Pn(x,t)| dx dt =

=
∫ 2π

0

∫ 1

0
eλ|Pn(x,t)| dt dx ≤

≤
∫ 2π

0

∫ 1

0
eλPn(x,t) + e−λPn(x,t) dt dx ≤

≤
∫ 2π

0

∫ 1

0
2e

1
2λ

2
∑n

m=0
r2
m cos2 mx dt dx ≤

≤
∫ 2π

0

∫ 1

0
2e 1

2λ
2Rn dt dx =

= 4πe 1
2λ

2Rn .
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Therefore,

∫ 1

0
eθλMn(t) dt ≤ 4π

1− θ e
1
2λ

2Rn+lnn.

Have λ = 2
√

lnn
Rn

and multiply both sides by n−4−η, where η > 0. Then

∫ 1

0
eθλMn(t)−(4+η) lnn dt ≤ 4π

1− θn
−(1+η).

The sum over all n converges:

∞∑
n=1

∫ 1

0
eθλMn(t)−(4+η) lnn dt ≤

∞∑
n=1

4π
1− θn

−(1+η) <∞.

Since the exponent function is non-negative and the whole sum converges, it is safe to
interchange sum and integral:

∫ 1

0

∞∑
n=1

eθλMn(t)−(4+η) lnn dt <∞.

Therefore, for almost all t

∞∑
n=1

eθλMn(t)−(4+η) lnn <∞.

Hence, for almost all t there exists n0 such that for all n ≥ n0

θλMn(t)− (4 + η) lnn < 0.

It follows that

lim
n→∞

Pr
[
Mn(t) < (4 + η)

2θ
√
Rn lnn

]
= 1.

J

5 Conclusion

We have proven that the entangled value of almost any n-player symmetric XOR game is
Θ
(√

lnn
n1/4

)
and therefore is by a factor of

√
lnn greater than its classical value.

In Fig. 1 we have plotted the sample mean value of the coefficient ValQ(n)√
Rn lnn

2n

over 105

random games for each n up to 100. We point out that the mean value of the coefficient is
approaching ≈ 0.85. It would be interesting to determine if C1 and 2C2 (see, eq. 2) can be
further improved and whether the coefficients in fact tend to a common limit near 0.85.
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Figure 1 ValQ(n)√
Rn ln n

2n

for a random sample of n player games.

In this paper we have dealt with a small portion of non-local games. In particular,
the case of random non-symmetric games is still open and there has been little progress in
multiplayer XOR games with m − ary input. The primary hurdle in the n-player m − ary
input setting is that at the moment it lacks a description in terms of algebraic and analytic
expressions.

Recently Briët and Vidick have shown large quantum-classical gaps for some 3-player
m − ary input XOR games [4]. Despite being able to establish quantum-classical gaps for
specific games, for a general 3-player m−ary input XOR game calculating its the entangled
value is difficult [8].
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Abstract
Known strategies for sending bits at the capacity rate over a general channel with classical input
and quantum output (a cq channel) require the decoder to implement impractically complicated
collective measurements. Here, we show that a fully collective strategy is not necessary in order to
recover all of the information bits. In fact, when coding for a large number N uses of a cq channel
W , N ·I(Wacc) of the bits can be recovered by a non-collective strategy which amounts to coherent
quantum processing of the results of product measurements, where I(Wacc) is the accessible
information of the channelW . In order to decode the other N(I(W )− I(Wacc)) bits, where I(W )
is the Holevo rate, our conclusion is that the receiver should employ collective measurements. We
also present two other results: 1) collective Fuchs-Caves measurements (quantum likelihood ratio
measurements) can be used at the receiver to achieve the Holevo rate and 2) we give an explicit
form of the Helstrom measurements used in small-size polar codes. The main approach used to
demonstrate these results is a quantum extension of Arikan’s polar codes.
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1 Introduction

One of the most impressive recent developments in coding theory is the theory of polar
codes [1]. These codes are provably capacity achieving, and their encoding and decoding
complexities are both O(N logN), where N is the number of channel uses. Polar codes
are based on the channel polarization effect, in which a recursive encoding induces a set
of N synthesized channels from N instances of the original channel, such that some of the
synthesized channels are nearly perfect and the others are nearly useless. The fraction of
synthesized channels that is nearly perfect is equal to the capacity of the channel, and thus
the coding scheme is simple: send the information bits through the synthesized channels that
are nearly perfect.

An essential component of the polar coding scheme is Arikan’s successive cancellation
decoding algorithm [1]. This algorithm is channel dependent and operates as its name suggests:
it decodes the information bits one after another, using previously decoded information to aid
in constructing a test for decoding each bit in succession. In particular, the test for decoding
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each information bit is a likelihood ratio test. Due to the structure in the polar encoder,
there is a great deal of structure in the decoding tests, so much so that each likelihood ratio
can be recursively computed. The upshot is that the complexity of the decoding algorithm is
O(N logN).

Recently, there has been some effort in extending the theory of polar coding to the problem
of transmission over quantum channels [23, 18, 26, 25]. In particular, these works developed
the theory of polar coding for transmitting classical data over an arbitrary quantum channel
[23], private classical data over an arbitrary quantum channel [25], quantum data over a
quantum Pauli or erasure channel [18], and quantum data over an arbitrary quantum channel
[26]. To prove that the polar coding schemes in Refs. [23, 26, 25] achieve communication
rates equal to well-known formulas from quantum information theory, the authors of these
works constructed a quantum successive cancellation decoder as a sequence of quantum
hypothesis tests (in the spirit of Arikan [1]) and employed Sen’s non-commutative union
bound [20] in the error analysis. The major question left open from this effort is whether
there exists an efficient implementation for a quantum successive cancellation decoder.1,2

In this paper, we detail our progress towards finding an efficient quantum successive
cancellation decoder. The decoder outlined here is useful for decoding classical informa-
tion transmitted over a channel with classical inputs and quantum outputs (known as a
“classical-quantum channel” or “cq channel” for short). Since the schemes for private clas-
sical communication [25] and quantum communication [26] rely on the quantum successive
cancellation decoder from Ref. [23], our results here have implications for these polar coding
schemes as well. Our main result can be stated succintly as follows:
Claim: In order to achieve the symmetric Holevo capacity I(W ) of an arbitrary cq channel
W , at most N(I(W )− I(Wacc)) of the bits require a fully collective strategy in order for
them to be decoded reliably, while the other N · I(Wacc) bits can be decoded efficiently and
reliably in time O(N2) on a quantum computer using a product strategy that amounts to
coherent quantum processing of the outcomes of product measurements.

Although the main result of this paper might be considered modest in light of reaching
the full goal stated above, it still represents non-trivial progress beyond prior research and
towards answering the efficient polar decoding question. Indeed, one might think that
collective measurements would be necessary in order to recover any of the bits of a message
when communicating at the Holevo capacity rate, as suggested by the original work of Holevo
[15], Schumacher, and Westmoreland [19] and follow-up efforts on the pure-loss bosonic
channel [6, 8]. Even the recent sequential decoding schemes suggest the same [7, 20] (see also
[24] for the pure-loss bosonic case). As a side note, these sequential decoding schemes require
a number of measurements exponential in the number of channel uses—thus, even though
the physical realization of a single one of these measurements may be within experimental
reach [17], the fact that these schemes require an exponential number of measurements

1 By efficient, we mean that the decoder should run in O(N2) time on a quantum computer (or even
better O(N logN)). In computational complexity theory, “efficient” is often regarded to mean that
an algorithm runs in time polynomial in the input length. However, for the demanding application of
channel coding where delay should be minimized, we will consider a decoding algorithm to be “efficient”
if it has a near-linear running time.

2 Note that the scheme from Ref. [18] does provide an efficient O(N logN) implementation of a quantum
successive cancellation decoder, essentially because sending classical states (encoded in some orthonormal
basis) through a Pauli or erasure channel induces an effectively classical channel at the output (such
that the resulting output states are commuting). One can then exploit a coherent version of Arikan’s
successive cancellation decoder to decode quantum information. Although this advance is useful, we
would like to have an efficient decoder for an arbitrary quantum channel.
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excludes them from ever being practical. The previous result in Ref. [23] suggests that only
a linear number of collective measurements are required to achieve the Holevo rate, and
our work here demonstrates that the number of collective measurements required is at most
N(I(W )− I(Wacc)).

This paper contains other results of interest. First, we prove that collective Fuchs-Caves
measurements (or quantum likelihood ratio measurements) [5] suffice for achieving the Holevo
information rate with a cq polar coding scheme. It was already known from Ref. [23] that a
sequence of Helstrom measurements suffices for achieving this rate, so this new result just
adds to the ways in which one can achieve the Holevo rate of communication. We also plot
the fraction of requisite collective measurements as a function of the mean photon number of
the signaling states for the case of the pure-loss bosonic channel, in order to have a sense
of the physical requirements necessary for high-rate communication over this channel. As
one would expect, the fraction of collective measurements needed increases as the mean
photon number of the signaling states decreases—we expect this to happen since the low
photon-number regime is more quantum due to the non-orthogonality of the signaling states.
Finally, we detail the explicit form of a polar decoder that uses Helstrom measurements—we
do this for some simple two-, four-, and eight-bit polar codes. This final result should give a
sense of how one can specify these tests for larger blocklength polar codes.

The paper is organized as follows. The next section reviews background material such
as cq channels, the Holevo quantity, quantum fidelity, the accessible information, and the
classical fidelity (Bhattacharya parameter). Section 3 reviews the Fuchs-Caves measurement
from Ref. [5] and provides a useful upper bound on the error probability of a hypothesis test
that employs this measurement as the decision rule. We review classical-quantum polar codes
in Section 4.1. Our first simple observation is that collective Fuchs-Caves measurements
suffice for achieving the Holevo rate of communication (Section 4.2). Our main result, a
justification for Claim 1, appears in Section 4.3. In Section 5, we discuss the implications
of Claim 1 for the pure-loss bosonic channel. Our last result on the explicit form of the
Helstrom decoder for two-, four-, and eight-bit polar codes appears in Section 6. Finally,
we conclude with a summary of our results and suggest that the Schur transform might be
helpful in obtaining a general solution to the problem discussed in this paper.

2 Preliminaries

A classical-quantum channel (cq channel) has a classical input and a quantum output. In
this work, we only consider cq channels with binary inputs, written as

W : x→ ρx, (1)

whereW labels the channel, the input x ∈ {0, 1}, and ρx is a density operator. The symmetric
Holevo information of this channel is

I(W ) ≡ H((ρ0 + ρ1)/2)− [H(ρ0) +H(ρ1)]/2, (2)

whereH(σ) ≡ −Tr{σ log2 σ} is the von Neumann entropy. The symmetric Holevo information
gives one way to characterize the quality of a cq channel for data transmission: it is equal
to one if ρ0 is orthogonal to ρ1 and equal to zero if ρ0 = ρ1. The quantum fidelity F (W ) is
another parameter that characterizes the quality of a cq channel:

F (W ) ≡ F (ρ0, ρ1) ≡ ‖√ρ0
√
ρ1‖1, (3)
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where the trace norm ‖A‖1 of an operator A is defined as ‖A‖1 ≡ Tr{
√
A†A} [22, 16].3 The

quantum fidelity F (W ) is equal to one if ρ0 = ρ1 and equal to zero if ρ0 is orthogonal to
ρ1. We have the following relationships between the symmetric Holevo information and the
quantum fidelity:

I(W ) ≈ 1⇔ F (W ) ≈ 0, (4)
I(W ) ≈ 0⇔ F (W ) ≈ 1, (5)

which are made precise in Proposition 1 of Ref. [23].
From any cq channel, it is possible to induce a purely classical channel pY |X(y|x) by

having the receiver perform a quantum measurement at its output:

pY |X(y|x) ≡ Tr{Λyρx}, (6)

where Λ ≡ {Λy} is a positive operator-valued measure (POVM), a set of operators satisfying
Λy ≥ 0 and

∑
y Λy = I. Letting X be a uniform Bernoulli random variable and letting Y be

the random variable corresponding to the outcome of the measurement, we can define the
symmetric mutual information of the induced channel as

I(W,Λ) ≡ I(X;Y ) ≡ H(X) +H(Y )−H(XY ), (7)

where H is the Shannon entropy of these random variables. The classical Bhattarcharya
parameter is the statistical overlap between the resulting distributions:

Z(W,Λ) ≡
∑
y

√
pY |X(y|0) pY |X(y|1). (8)

If one were to encode the conditional distribution pY |X(y|x) along the diagonal of a matrix
(so that it becomes a density operator), then it is clear that the symmetric Holevo information
and fidelity of the resulting “cq channel” are equal to the symmetric mutual information and
classical Bhattacharya parameter, respectively.

The symmetric accessible information is equal to the optimized symmetric mutual
information:

I(Wacc) ≡ max
{Λy}

I(W,Λ), (9)

where the optimization is with respect to all POVMs Λ = {Λy}. As a consequence of the
well-known Holevo bound, the symmetric Holevo information is an upper bound to the
symmetric accessible information [14]:

I(Wacc) ≤ I(W ). (10)

3 The Fuchs-Caves Measurement

Rather than choosing a measurement to optimize the symmetric mutual information, one
could also choose a measurement in such a way that it minimizes the statistical overlap

3 Note that the quantum fidelity sometimes is defined as
∥∥√

ρ0
√
ρ1
∥∥2

1 in order for it to have the
interpretation as a probability. We choose to remove the square in this work (as is often done)
in order for it to reduce to the classical Bhattacharya parameter when the states are just probability
distributions.
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between the resulting distributions pY |X(y|0) and pY |X(y|1) [5]. We call such a measurement
a “Fuchs-Caves” measurement since these authors proved that the minimum statistical
overlap is equal to the quantum fidelity:

min
{Λy}

Z(W,Λ) = F (W ). (11)

Furthermore, they gave an explicit form for the measurement that achieves the minimum
and interpreted it as a kind of “quantum likelihood ratio.” Indeed, the measurement that
achieves the minimum in (11) corresponds to a measurement in the eigenbasis of the following
Hermitian operator:

ρ0 # ρ−1
1 ≡ ρ−1/2

1

√
ρ

1/2
1 ρ0ρ

1/2
1 ρ

−1/2
1 . (12)

Diagonalizing ρ0 # ρ−1
1 as

ρ0 # ρ−1
1 =

∑
y

λy|y〉〈y|, (13)

Fuchs and Caves observed that the eigenvalues of ρ0 # ρ−1
1 take the following form:

λy =
(
〈y|ρ0|y〉
〈y|ρ1|y〉

)1/2

, (14)

furthermore suggesting that this measurement is a good quantum analog of a likelihood ratio.
In addition, Fuchs and Caves also observed that the operator

ρ1 # ρ−1
0 ≡ ρ−1/2

0

√
ρ

1/2
0 ρ1ρ

1/2
0 ρ

−1/2
0 (15)

commutes with and is the inverse of ρ0 # ρ−1
1 . Thus, the eigenvectors of ρ1 # ρ−1

0 are the
same as those of ρ0 # ρ−1

1 and its eigenvalues are the reciprocals of those of ρ0 # ρ−1
1 .

I Lemma 1. When using the Fuchs-Caves measurement to distinguish ρ0 from ρ1, we
have following upper bound on the probability of error pe(W ) in terms of the quantum
fidelity F (W ):

pe(W ) ≤ 1
2F (W ). (16)

Proof. After performing the measurement specified by (13), the decision rule is as follows:

decide ρ0 if λy ≥ 1, (17)
decide ρ1 if λy < 1, (18)

which corresponds to the projectors

Π0 ≡
∑

y : λy≥1
|y〉〈y|, (19)

Π1 =
∑

y : λy<1
|y〉〈y|. (20)
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It is then easy to prove the bound in (16):

2 pe(W ) = Tr{Π0ρ1}+ Tr{Π1ρ0} (21)

=
∑

y : λy≥1
〈y|ρ1|y〉+

∑
y : λy<1

〈y|ρ0|y〉 (22)

=
∑

y : λy≥1
〈y|ρ1|y〉1/2〈y|ρ1|y〉1/2 +

∑
y : λy<1

〈y|ρ0|y〉1/2〈y|ρ0|y〉1/2 (23)

≤
∑

y : λy≥1
〈y|ρ1|y〉1/2〈y|ρ0|y〉1/2 +

∑
y : λy<1

〈y|ρ0|y〉1/2〈y|ρ1|y〉1/2 (24)

=
∑
y

〈y|ρ1|y〉1/2〈y|ρ0|y〉1/2 (25)

= F (ρ0, ρ1) (26)

where the last equality follows from (11). J

4 Decoding Classical-Quantum Polar Codes

4.1 Review
Ref. [23] demonstrated how to construct synthesized versions of W , by channel combining
and splitting [1]. The synthesized channels W (i)

N are of the following form:

W
(i)
N : ui → ρ

Ui−1
1 BN

(i),ui , (27)

ρ
Ui−1

1 BN

(i),ui ≡
∑
ui−1

1

1
2i−1

∣∣ui−1
1
〉〈
ui−1

1
∣∣Ui−1

1 ⊗ ρB
N

ui1
, (28)

ρB
N

ui1
≡
∑
uN
i+1

1
2N−i ρ

BN

uNGN
, ρB

N

xN ≡ ρ
B1
x1
⊗ · · · ⊗ ρBNxN , (29)

where GN is Arikan’s encoding circuit matrix built from classical CNOT and permutation
gates. The registers labeled by U are classical registers containing the bits u1 through ui−1,
and the registers labeled by B contain the channel outputs. If the channel is classical, then
these states are diagonal in the computational basis, and the above states correspond to the
distributions for the synthesized channels [1]. The interpretation of W (i)

N is that it is the
channel “seen” by the input ui if the previous bits ui−1

1 are available and if the future bits
uNi+1 are randomized. This motivates the development of a quantum successive cancellation
decoder [23] that attempts to distinguish ui = 0 from ui = 1 by adaptively exploiting the
results of previous measurements and quantum hypothesis tests for each bit decision.

The synthesized channels W (i)
N polarize, in the sense that some become nearly perfect

for classical data transmission while others become nearly useless. To prove this result, one
can model the channel splitting and combining process as a random birth process [1, 23],
and then demonstrate that the induced random birth processes corresponding to the channel
parameters I(W (i)

N ) and F (W (i)
N ) are martingales that converge almost surely to zero-one

valued random variables in the limit of many recursions. The following theorem characterizes
the rate with which the channel polarization effect takes hold [2, 23], and it is useful in
proving statements about the performance of polar codes for cq channels:

I Theorem 2. Given a binary input cq channel W and any β < 1/2, it holds that

lim
n→∞

Pr
J
{F (W (J)

2n ) < 2−2nβ} = I(W ), (30)
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where n indicates the level of recursion for the encoding, W (J)
2n is a random variable charac-

terizing the J th split channel, and F (W (J)
2n ) is the fidelity of that channel.

Assuming knowledge of the identities of the good and bad channels, one can then construct
a coding scheme based on the channel polarization effect, by dividing the synthesized channels
according to the following polar coding rule:

GN (W,β) ≡
{
i ∈ [N ] : F (W (i)

N ) < 2−N
β}
, (31)

BN (W,β) ≡ [N ] \ GN (W,β), (32)

so that GN (W,β) is the set of “good” channels and BN (W,β) is the set of “bad” channels.
The sender then transmits the information bits through the good channels and “frozen” bits
through the bad ones. A helpful assumption for error analysis is that the frozen bits are
chosen uniformly at random and known to both the sender and receiver.

One of the important advances in Ref. [23] was to establish that a quantum successive
cancellation decoder performs well for polar coding over classical-quantum channels with
equiprobable inputs. Corresponding to the split channels W (i)

N in (27) are the following
projectors that attempt to decide whether the input of the ith split channel is zero or one:

ΠUi−1
1 BN

(i),0 ≡
{
ρ
Ui−1

1 BN

(i),0 − ρU
i−1
1 BN

(i),1 ≥ 0
}
, (33)

ΠUi−1
1 BN

(i),1 ≡ I −ΠUi−1
1 BN

(i),0 , (34)

where {B ≥ 0} denotes the projector onto the positive eigenspace of a Hermitian operator B.
After some calculations, one readily sees that

ΠUi−1
1 BN

(i),0 =
∑
ui−1

1

∣∣ui−1
1
〉〈
ui−1

1
∣∣Ui−1

1 ⊗ΠBN

(i),ui−1
1 0, (35)

where

ΠUi−1
1 BN

(i),1 = I −ΠUi−1
1 BN

(i),0 , (36)

ΠBN

(i),ui−1
1 0 ≡ {ρ

BN

ui−1
1 0 − ρ

BN

ui−1
1 1 ≥ 0}, (37)

ΠBN

(i),ui−1
1 1 ≡ I −ΠBN

(i),ui−1
1 0. (38)

The observations above lead to a decoding rule for a successive cancellation decoder similar
to Arikan’s [1]:

ûi =
{

ui if i ∈ Ac
h
(
ûi−1

1
)

if i ∈ A , (39)

where h
(
ûi−1

1
)
is the outcome of the ith collective measurement:

{ΠBN

(i),ûi−1
1 0, ΠBN

(i),ûi−1
1 1} (40)

on the codeword received at the channel output (after i − 1 measurements have already
been performed). The set A labels the information bits. The measurement device outputs
“0” if the outcome ΠBN

(i),ûi−1
1 0 occurs and it outputs “1” otherwise. (Note that we can set

ΠBN

(i),ûi−1
1 ui

= I if the bit ui is a frozen bit.) The above sequence of measurements for the
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whole bit stream uN corresponds to a positive operator-valued measure (POVM) {ΛuN }
where

ΛuN ≡ ΠBN

(1),u1
· · ·ΠBN

(i),ui−1
1 ui

· · ·ΠBN

(N),uN−1
1 uN

· · ·ΠBN

(i),ui−1
1 ui

· · ·ΠBN

(1),u1
, (41)

and
∑
uA

ΛuN = IB
N . The probability of error Pe(N,K,A, uAc) for code lengthN , numberK

of information bits, set A of information bits, and choice uAc for the frozen bits is

Pe(N,K,A, uAc) = 1− 1
2K
∑
uA

Tr{ΛuNρuN }, (42)

where we are assuming a particular choice of the bits uAc in the sequence of projectors
ΠBN

(N),uN−1
1 uN

· · · ΠBN

(i),ui−1
1 ui

· · · ΠBN

(1),u1
and setting ΠBN

(i),ui−1
1 ui

= I if ui is a frozen bit. The
formula also assumes that the sender transmits the information sequence uA with uniform
probability 2−K . The probability of error averaged over all choices of the frozen bits is then

Pe(N,K,A) = 1
2N−K

∑
uAc

Pe(N,K,A, uAc). (43)

The following proposition from Ref. [23] determines an upper bound on the average ensemble
performance of polar codes with a quantum successive cancellation decoder:
Proposition: For any classical-quantum channel W with binary inputs and quantum outputs
and any choice of (N,K,A), the following bound holds

Pe(N,K,A) ≤ 2
√∑
i∈A

1
2F (W (i)

N ). (44)

The proposition is proved by exploiting Sen’s non-commutative union bound [20] and
Lemma 3.2 of Ref. [11] (which upper bounds the probability of error in a binary quantum
hypothesis test by the fidelity between the test states). The bound in (44) applies provided the
sender chooses the information bits UA from a uniform distribution. Thus, by choosing the
channels over which the sender transmits the information bits to be in A and those over which
she transmits agreed-upon frozen bits to be in Ac, we obtain that the probability of decoding
error satisfies Pr{ÛA 6= UA} = o(2− 1

2N
β ), as long as the code rate obeys R = K/N < I(W ).

A final point that will be useful is that Ref. [23] also proved that measurements consisting
of the projections{√

ρ
Ui−1

1 BN

(i),0 −
√
ρ
Ui−1

1 BN

(i),1 ≥ 0
}
, (45)

rather than those in (33)-(34), also achieve the performance stated in Proposition 4.1.

4.2 Collective Fuchs-Caves Measurements Achieve the Holevo Rate
Our first observation is rather simple, just being that collective Fuchs-Caves measurements
can also achieve the performance stated in Proposition 4.1. This result follows from Lemma 1’s
bound on the error probability of a Fuchs-Caves measurement and by performing an error
analysis similar to that in the proof of Proposition 4 of Ref. [23] given in Section V of that
paper. The explicit form of a Fuchs-Caves quantum successive cancellation decoder is given
by projectors of the form in (35)-(38), with the Helstrom tests replaced by Fuchs-Caves
projectors as given in (19)-(20).
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This result also demonstrates that there are a variety of decoding measurements that
one can exploit for achieving the Holevo information rate. However, the quantum successive
cancellation decoder consisting of Helstrom measurements should outperform either the
measurements in (45) or the Fuchs-Caves measurements when considering finite blocklength
performance because the Helstrom measurement is the optimal test for distinguishing two
quantum states.

4.3 Main Result
Our main observation is a bit more subtle than the above, but it is still elementary. Nev-
ertheless, this observation has nontrivial consequences and represents a step beyond the
insights in prior work regarding decoding of classical information sent over quantum channels
[15, 19, 6, 8, 7, 20, 24, 23].

We begin by considering the “Fuchs-Caves” classical channel WFC induced from W by
performing the Fuchs-Caves measurement on every channel output:

WFC : x→ pY |X(y|x) = 〈y|ρx|y〉, (46)

where the orthonormal basis {|y〉} is the same as that in (13). The specification of the
polar code in the previous section specializes to this induced classical channel. The code
consists of a set of “good” synthesized channels GN (WFC, β) and “bad” synthesized channels
BN (WFC, β), where

GN (WFC, β) ≡
{
i ∈ [N ] : F (W (i)

FC,N ) = Z(W (i)
FC,N ) < 2−N

β}
, (47)

BN (WFC, β) ≡ [N ] \ GN (WFC, β), (48)

and the equality F (W (i)
FC,N ) = Z(W (i)

FC,N ) holds because the induced channels are classical.
Furthermore, by Theorem 2, the number of good channels in the limit that N becomes large
is as follows:

lim
N→∞

1
N
|GN (WFC, β)| = I(WFC). (49)

Finally, each bit of this classical polar code can be decoded in time O(N) using a recursive
calculation of likelihood ratios as given in (75)-(76) of Ref. [1].4

Now, our main observation is the following relationship between the good channels ofWFC
and the good channels of W :

GN (WFC, β) ⊆ GN (W,β). (50)

This relationship holds because of the Fuchs-Caves formula from (11). For all i, we have that

F (W (i)
N ) = min

{Λy}
Z(W (i)

N ,Λ) ≤ Z(W (i)
FC,N ), (51)

where the inequality follows because the tensor-product Fuchs-Caves measurement that
induces the synthesized channel W (i)

FC,N is a particular kind of measurement, and so its
classical statistical overlap can only be larger than that realized by the optimal measurement

4 Note that this is the “first decoding algorithm” of Arikan. A refinement implies that all of the bits can
be decoded in time O(N logN), but the first decoding algorithm is what we will use in this work.
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(which in general will be a collective measurement rather than a product measurement).
Now, for all i ∈ GN (WFC, β), we have that

Z(W (i)
FC,N ) < 2−N

β

. (52)

This in turn implies that F (W (i)
N ) < 2−Nβ by (51), and so for this i, we have that i ∈ GN (W,β)

and can conclude (50).
This observation has non-trivial implications for the structure of the polar decoder. For all

of the bits in GN (WFC, β), the receiver can decode them with what amounts to an effectively
“product” or “non-collective” strategy,5 while for the bits in GN (W,β) \ GN (WFC, β), we
still require collective measurements in order for the receiver to decode them with the error
probability guarantee given by (31). However, when decoding the bits in GN (WFC, β), the
receiver should be careful to decode them in the least destructive way possible so that Sen’s
non-commutative union bound is still applicable and we obtain the overall error bound
guaranteed by Proposition 4.1. In particular, the decoder should begin by performing an
isometric extension of the Fuchs-Caves measurement on each channel output:∑

y

|y〉〈y| ⊗ |λy〉, (53)

where the orthonormal basis {|y〉} is from the eigendecomposition in (13) and the basis {|λy〉}
encodes the eigenvalues to some finite precision. Such an operation coherently copies the
likelihood ratios λy of the Fuchs-Caves measurement into an ancillary register. The receiver
then performs a reversible implementation of Arikan’s decoding algorithm to process these
likelihood ratios according to (75)-(76) of Ref. [1]. Finally, the receiver coherently copies
the value of a single decision qubit with a CNOT gate to an ancillary register, measures the
decision qubit, and “uncomputes” these operations by performing the inverse of the Arikan
circuit and the inverse of the operations in (53). Figure 1 depicts these operations. The
effect of these operations is to implement a projection of the channel output onto a subspace
spanned by eigenvectors |yN 〉 = |y1〉 ⊗ · · · ⊗ |yN 〉 of the Fuchs-Caves measurements such that

W
(i)
FC,N

(
yN , ui−1

1 |0
)
≥W (i)

FC,N
(
yN , ui−1

1 |1
)
, (54)

or onto the complementary subspace spanned by eigenvectors |yN 〉 such that

W
(i)
FC,N

(
yN , ui−1

1 |0
)
< W

(i)
FC,N

(
yN , ui−1

1 |1
)
, (55)

where yN is the classical output of the Fuchs-Caves channel and ui−1
1 denotes the previously

decoded bits. Thus, the fidelity bound from (52) is applicable and Sen’s non-commutative
union bound guarantees that the overall contribution of the error in decoding bit i ∈
GN (WFC, β) is no larger than 2−Nβ . The time that it takes to process each bit i ∈ GN (WFC, β)
is O(N), which is clear from the structure of the circuit and Arikan’s “first decoding
algorithm.”

For all of the remaining bits i ∈ GN (W,β)\GN (WFC, β), we still do not know whether there
exists an efficient quantum algorithm for decoding them while having the error probability
from Proposition 4.1. Thus, for now, we simply suggest for the receiver to use collective
measurements to recover them.

5 If a decoding strategy amounts to coherent implementations of product measurements followed by
coherent processing of the outcomes, we still say that it is a product strategy rather than collective.



M. M. Wilde, O. Landon-Cardinal, and P. Hayden 167

W

W FC

FC

|0⟩

|0⟩
|0⟩
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Output

UArikan
-1

Decision

Bit

Figure 1 The circuit for recovering an information bit in the set GN (WFC, β). The encoder output
is fed into N instances of the channel W . The receiver acts with N of the unitaries in (53), labeled
as “FC” boxes which coherently copy the likelihood ratios λy1 , . . . , λyN into ancillary registers. The
receiver then acts with a reversible implementation of Arikan’s likelihood ratio computations, copies
the decision bit into an ancillary register, and measures the decision bit to decode the ith bit. The
receiver finally performs the inverse of these operations to “clean up,” i.e., to ensure that the next
measurement can be performed, whether it be to decode a bit in the set GN (WFC, β) or the set
GN (W,β) \ GN (WFC, β). The effect of this circuit is to perform the desired “gentle projection.”

It should be clear from Proposition 2 and (49) that the size of the set GN (W,β) \
GN (WFC, β) in the limit is equal to

lim
N→∞

1
N
|GN (W,β) \ GN (WFC, β)| = I(W )− I(WFC). (56)

This makes it clear that one does not require a collective strategy in order to recover all of
the information bits, but a collective strategy is only required in order to bridge the gap
between I(WFC) and I(W ).

Observe also that similar reasoning applies to any product measurement, not just the
Fuchs-Caves measurements (we focused on the Fuchs-Caves measurement due to its strong
analogy with a likelihood ratio and because Arikan’s decoding algorithm processes likelihood
ratios). With this in mind, we could simply choose the product measurement to be the one
that maximizes the accessible information, in order to maximize the number of bits that
can be processed efficiently. Let Wacc be the classical channel induced by performing the
measurement that maximizes the accessible information. One would then process the bits in
GN (Wacc, β) in a way very similar as described above. All of the observations above then
justify Claim 1.

The reasoning also leads to a generalization of Lemma 1 that applies when using Fuchs-
Caves measurements to distinguish a tensor-product state ρ⊗N0 from ρ⊗N1 . The test consists
of performing product measurements followed by classical post-processing. If one wishes to
perform this test in the most delicate way possible, one could perform it as in Figure 1.

I Lemma 3. When using product Fuchs-Caves measurements to distinguish ρ⊗N0 from ρ⊗N1 ,
the probability of error pe is bounded from above in terms of the quantum fidelity F (ρ0, ρ1):

pe ≤
1
2 [F (ρ0, ρ1)]N . (57)
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Figure 2 The fraction of collective measurements required for a polar decoder plotted as a
function of the mean photon number E at the receiving end, when using a BPSK coding strategy.

Proof. The proof is very similar to the proof of Lemma 1. The test, though, consists of
performing individual Fuchs-Caves measurements on the N systems, and these tests result
in likelihood ratios λy1 , . . . , λyN . The decision rule is then as follows:

decide ρ⊗N0 if λy1 × · · · × λyN ≥ 1, (58)
decide ρ⊗N1 if λy1 × · · · × λyN < 1. (59)

An analysis proceeding exactly as in (21)-(26) leads to the following bound:

2 pe(W ) ≤
∑

y1,...,yN

[
〈y1| · · · 〈yN |ρ⊗N1 |y1〉 · · · |yN 〉

]1/2 [〈y1| · · · 〈yN |ρ⊗N0 |y1〉 · · · |yN 〉
]1/2

=
∑

y1,...,yN

〈y1|ρ1|y1〉1/2 · · · 〈yN |ρ1|yN 〉1/2 〈y1|ρ0|y1〉1/2 · · · 〈yN |ρ0|yN 〉1/2 (60)

=
∑
y1

〈y1|ρ1|y1〉1/2〈y1|ρ0|y1〉1/2 · · ·
∑
yN

〈yN |ρ1|yN 〉1/2〈yN |ρ0|yN 〉1/2 (61)

= [F (ρ0, ρ1)]N . (62)

Furthermore, one can implement this test efficiently and non-destructively on a quantum
computer as described in Figure 1. The result is to project onto two different subspaces: the
one spanned by eigenvectors whose corresponding eigenvalues satisfy (58) and the other. J

5 Decoding the Pure-Loss Bosonic Channel

A channel of particular practical interest is the pure-loss bosonic channel. A simple physical
model for this channel is a beamsplitter of transmissivity η ∈ [0, 1], where the sender
has access to one input port, the environment injects the vacuum state into the other
input port, the receiver has access to one output port, and the environment obtains the
other output port. It is well known that the Holevo capacity of this channel is equal to
g(ηNS) ≡ (ηNS + 1) log(ηNS + 1)− ηNS log(ηNS) [6], where NS is the mean input photon
number. In the low-photon number regime, one can come very close to achieving the
capacity by employing a binary phase-shift keying (BPSK) strategy (using coherent states



M. M. Wilde, O. Landon-Cardinal, and P. Hayden 169

|α〉 and |−α〉 as the signaling states) [21]. The BPSK strategy induces a cq channel of
the following form: x→ |(−1)xα〉〈(−1)xα|. The symmetric Holevo rate for this channel is
equal to χ(E) ≡ h2

([
1 + e−2E]/2), where h2 is the binary entropy and E ≡ ηNS . If the

receiver performs a Helstrom measurement at every channel output, this induces a classical
channel with symmetric mutual information equal to IHel(E) ≡ 1− h2([1−

√
1− e−4E ]/2).

(See Ref. [9], for example, for explicit calculations.) Our results in the previous section
demonstrate that the fraction of information bits required to be decoded using a collective
strategy is equal to 1 − IHel(E)/χ(E). Figure 2 reveals that this fraction is rather small
for mean photon number (MPN) larger than one, but then it rises sharply as we enter a
quantum regime where the MPN is less than one. Even deep in the quantum regime at a
MPN of 10−8, however, roughly 10% of the bits do not require collective decoding.

6 Small Blocklength Polar Decoders

This section briefly discusses how the Helstrom measurements [12, 13] in the quantum
successive cancellation decoder from Ref. [23] decompose for very small size polar codes.

6.1 Two-Bit Polar Decoder
We begin by considering the simple two-bit polar code. The channel is of the form x→ ρx,
where x ∈ {0, 1} and ρx is some conditional density operator. The two-bit polar code
performs the simple transformation on the input bits u1 and u2:

(u1, u2)→ (u1 + u2, u2), (63)

where addition is modulo 2.
The first step of the successive cancellation decoder is to recover u1, assuming that bit u2

is chosen uniformly at random. The optimal measurement is a Helstrom measurement, and
in this case, it amounts to distinguishing between the following two states

1
2
∑
u2

ρu2 ⊗ ρu2 ,
1
2
∑
u2

ρu2+1 ⊗ ρu2 . (64)

The Helstrom measurement is given by the projector onto the positive eigenspace of the
difference of the two density operators above:{

1
2
∑
u2

ρu2 ⊗ ρu2 −
1
2
∑
u2

ρu2+1 ⊗ ρu2 ≥ 0
}

=
{∑

u2

(ρu2 − ρu2+1)⊗ ρu2 ≥ 0
}

(65)

=
{∑

u2

(−1)u2(ρ0 − ρ1)⊗ ρu2 ≥ 0
}

(66)

=
{

(ρ0 − ρ1)⊗
∑
u2

(−1)u2ρu2 ≥ 0
}

(67)

= {(ρ0 − ρ1)⊗ (ρ0 − ρ1) ≥ 0}. (68)

Thus, this test factorizes into the parity of the individual quantum hypothesis tests {(ρ0 − ρ1) ≥ 0}.
That is, supposing that Π+ ≡ {(ρ0 − ρ1) ≥ 0} and Π− ≡ {(ρ0 − ρ1) < 0}, one can write the
two-bit test as the product of two controlled gates

U1 ≡ IB1 ⊗ (Π+)B2 ⊗ IA + IB1 ⊗ (Π−)B2 ⊗ (σX)A, (69)
U2 ≡ (Π+)B1 ⊗ IB2 ⊗ IA + (Π−)B1 ⊗ IB2 ⊗ (σX)A, (70)
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where B1 is the first channel output, B2 is the second channel output, and A is an ancillary
system initialized to the state |0〉. The product of these two unitary gates is equal to

U1U2 = ((Π+)B1 ⊗ (Π+)B2 + (Π−)B1 ⊗ (Π−)B2)⊗ IA+
((Π−)B1 ⊗ (Π+)B2 + (Π+)B1 ⊗ (Π−)B2) ⊗ (σX)A. (71)

The receiver would then measure the ancillary system A in order to make a decision about u1.
Next, we determine the decoding of u2, given that u1 has already been decoded. By the

definition of the polar encoder transformation in (63), the goal is to distinguish between the
following two states:

ρu1 ⊗ ρ0, ρu1+1 ⊗ ρ1. (72)

The optimal quantum hypothesis test is given by the following projector:

{ρu1 ⊗ ρ0 − ρu1+1 ⊗ ρ1 ≥ 0}. (73)

This optimal quantum hypothesis test is not factorizable into smaller tests, and indeed, it
is necessary to perform a collective measurement in order to implement it. Nonetheless,
Lemma 3 provides a simple implementation of the Fuchs-Caves measurement for distinguishing
these two states.

6.2 Four-Bit Polar Decoder
We now consider the form of Helstrom measurements for a four-bit polar code. Recall that
the input transformation for the four-bit polar code is as follows:

(u1, u2, u3, u4)→ (u1 + u2 + u3 + u4, u3 + u4, u2 + u4, u4). (74)

It is straightforward to find the form of the four different tests for decoding u1 through u4.
(See the appendix for derivations.) The test for decoding u1 is again a parity test:{

(ρ0 − ρ1)⊗4 ≥ 0
}
. (75)

The test for decoding u2 given u1 is
∑

u′3

ρu1+u′3 ⊗ ρu′3

⊗(∑
u4

ρu4 ⊗ ρu4

)
−

∑
u′3

ρu1+1+u′3 ⊗ ρu′3

⊗(∑
u4

ρ1+u4 ⊗ ρu4

)
≥ 0

. (76)

It remains unclear to us if there is a simple way to decompose the above test any further
into non-collective actions (or even approximately using, e.g., the Fuchs-Caves measurement).
The test for decoding u3 given u2 and u1 is

{(ρu1+u2 ⊗ ρ0 − ρu1+u2+1 ⊗ ρ1)⊗ (ρu2 ⊗ ρ0 − ρu2+1 ⊗ ρ1) ≥ 0}. (77)

One could actually approximate this test “efficiently” by performing a product Fuchs-Caves
measurement of the first two systems, a product Fuchs-Caves measurement of the last two,
and then take the parity of the results of these two tests (of course implementing these tests
coherently). The final Helstrom test for decoding u4 given u3, u2, and u1 is

{ρu1+u2+u3 ⊗ ρu3 ⊗ ρu2 ⊗ ρ0 − ρu1+u2+u3+1 ⊗ ρu3+1 ⊗ ρu2+1 ⊗ ρ1 ≥ 0}. (78)

Clearly, it would be better to perform this last test by processing the likelihood ratios
resulting from individual Fuchs-Caves measurements, rather than performing the optimal
collective Helstrom measurement.
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6.3 Polar Decoder for Larger Blocklengths
One can continue in the above fashion to determine the form of a quantum successive
cancellation decoder that recovers each bit of an eight-bit polar code. We again try to
simplify each Helstrom measurement and provide an expression for each one in Appendix B.
A few tests simplify, in particular those used to recover the first bit u1 (Eq. (101)), the fifth
bit u5 (Eq. (108), the seventh bit u7 (Eq. (111)), and the last bit u8 (Eq. (113)). However,
for the other tests, it is unclear if they can be approximated by some combination of Helstrom
and Fuchs-Caves measurements, followed by coherent post-processing.

From considering the eight-bit polar decoder, we can make several observations. For any
blocklength, it is always possible to recover the first bit efficiently by calculating the parity of
individual Helstrom measurements (though, this bit is always the “worst” bit, so the receiver
would never actually be decoding it in practice). The receiver can always recover the last
bit by performing a Fuchs-Caves measurement (this is always the “best” bit, so this should
already be evident from the main observation in this paper). Furthermore, there are many
bits that can be recovered by first performing Fuchs-Caves measurements, followed by the
parity of these tests. Unfortunately, the fraction of these tests tends to zero in the limit of
large blocklength. Thus, there still remains much to understand regarding the structure of a
polar decoder.

7 Conclusion

The main result of this paper is an advance over previous schemes for decoding classical
information transmitted over channels with classical inputs and quantum outputs. In
particular, we have shown that N · I(Wacc) of the information bits can be decoded reliably
and efficiently on a quantum computer by a “non-collective” coherent decoding strategy,
while closing the gap to the Holevo information rate (decoding the other N(I(W )− I(Wacc))
bits) should require a collective strategy. For the pure-loss bosonic channel, this implies
that the majority of the bits transmitted can be decoded by a product strategy whenever
the mean photon number is larger than one, while the fraction of collective measurements
required increases sharply as the mean photon number decreases below one, marking the
beginning of the quantum regime. Remarkably, even at mean photon numbers as low as 10−8,
roughly 10% of the bits do not require collective decoding, however. As another contribution,
we have shown that a receiver can also employ collective Fuchs-Caves measurements when
decoding a classical-quantum polar code. Finally, we gave the explicit form of the Helstrom
measurements of a quantum successive cancellation decoder for two-, four-, and eight-bit
polar codes. This should be helpful in determining the explicit form of tests for larger
blocklength polar codes.

The main open question is still to determine whether all of the information bits can be
efficiently decoded on a quantum computer. To answer this question, one might consider
employing the Schur transform [3, 10, 4] and exploiting the structure inherent in polar codes.
Unfortunately, it is not clear to us that this approach will lead to a quantum successive
cancellation decoder with time complexity O(N logN) because the complexity of the Schur
transform is higher than this.
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acknowledges support from the Canada Research Chairs program, the Perimeter Institute,
CIFAR, FQRNT’s INTRIQ, NSERC, and ONR through grant N000140811249.
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A Derivations for the Four-Bit Polar Decoder Measurements

The four-bit polar encoder amounts to the following transformation:

(u1, u2, u3, u4)→ (u1 + u2 + u3 + u4, u3 + u4, u2 + u4, u4). (79)

A.1 Recovering u1

Let us first determine how the quantum successive cancellation decoder (QSCD) recovers
the bit u1, assuming that u2, u3, and u4 are chosen uniformly at random. The test aims to
distinguish between the following two states:

1
23

∑
u2,u3,u4

ρu2+u3+u4 ⊗ ρu3+u4 ⊗ ρu2+u4 ⊗ ρu4 , (80)

1
23

∑
u2,u3,u4

ρu2+u3+u4+1 ⊗ ρu3+u4 ⊗ ρu2+u4 ⊗ ρu4 , (81)

and it performs the following projection:{ ∑
u2,u3,u4

(ρu2+u3+u4 − ρu2+u3+u4+1)⊗ ρu3+u4 ⊗ ρu2+u4 ⊗ ρu4 ≥ 0
}

=
{ ∑
u2,u3,u4

(−1)u2+u3+u4(ρ0 − ρ1)⊗ ρu3+u4 ⊗ ρu2+u4 ⊗ ρu4 ≥ 0
}

(82)

=
{

(ρ0 − ρ1)⊗
∑

u2,u3,u4

(−1)u2+u3+u4ρu3+u4 ⊗ ρu2+u4 ⊗ ρu4 ≥ 0
}

(83)

=
{

(ρ0 − ρ1)⊗
∑

u2,u3,u4

(−1)u3+u4ρu3+u4 ⊗ (−1)u2+u4ρu2+u4 ⊗ (−1)u4ρu4 ≥ 0
}

(84)
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=

(ρ0 − ρ1)⊗
∑

u′2,u
′
3,u
′
4

(−1)u
′
2ρu′2 ⊗ (−1)u

′
3ρu′3 ⊗ (−1)u

′
4ρu′4 ≥ 0

 (85)

=

(ρ0 − ρ1)⊗
∑
u′2

(−1)u
′
2ρu′2 ⊗

∑
u′3

(−1)u
′
3ρu′3 ⊗

∑
u′4

(−1)u
′
4ρu′4 ≥ 0

 (86)

= {(ρ0 − ρ1)⊗ (ρ0 − ρ1)⊗ (ρ0 − ρ1)⊗ (ρ0 − ρ1) ≥ 0}. (87)

Thus, this first test nicely factors as the parity of the four individual tests {(ρ0 − ρ1) ≥ 0}.

A.2 Recovering u2 given u1

We now determine how the quantum successive cancellation decoder recovers u2 given u1,
while randomizing over u3 and u4. The aim is to distinguish between the following two
states:

1
22

∑
u3,u4

ρu1+u3+u4 ⊗ ρu3+u4 ⊗ ρu4 ⊗ ρu4 , (88)

1
22

∑
u3,u4

ρu1+1+u3+u4 ⊗ ρu3+u4 ⊗ ρ1+u4 ⊗ ρu4 , (89)

which translates to a projection of the following form:{∑
u3,u4

ρu1+u3+u4 ⊗ ρu3+u4 ⊗ ρu4 ⊗ ρu4 − ρu1+1+u3+u4 ⊗ ρu3+u4 ⊗ ρ1+u4 ⊗ ρu4 ≥ 0
}
. (90)

Define u′3 = u3 + u4 and the above becomes∑
u′3,u4

ρu1+u′3 ⊗ ρu′3 ⊗ ρu4 ⊗ ρu4 − ρu1+1+u′3 ⊗ ρu′3 ⊗ ρ1+u4 ⊗ ρu4 ≥ 0


=


∑

u′3

ρu1+u′3 ⊗ ρu′3

⊗(∑
u4

ρu4 ⊗ ρu4

)

−

∑
u′3

ρu1+1+u′3 ⊗ ρu′3

⊗(∑
u4

ρ1+u4 ⊗ ρu4

)
≥ 0

. (91)

A.3 Recovering u3 given u2 and u1

Let us determine how the QSCD recovers u3 given u2 and u1, while randomizing over u4.
The test distinguishes between the following two states:

1
2
∑
u4

ρu1+u2+u4 ⊗ ρu4 ⊗ ρu2+u4 ⊗ ρu4 , (92)

1
2
∑
u4

ρu1+u2+1+u4 ⊗ ρ1+u4 ⊗ ρu2+u4 ⊗ ρu4 , (93)
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and amounts to a projector of the following form:{∑
u4

ρu1+u2+u4 ⊗ ρu4 ⊗ ρu2+u4 ⊗ ρu4 −
∑
u4

ρu1+u2+1+u4 ⊗ ρ1+u4 ⊗ ρu2+u4 ⊗ ρu4 ≥ 0
}

=
{∑

u4

(ρu1+u2+u4 ⊗ ρu4 − ρu1+u2+1+u4 ⊗ ρ1+u4)⊗ ρu2+u4 ⊗ ρu4 ≥ 0
}

(94)

=
{∑

u4

(−1)u4(ρu1+u2 ⊗ ρ0 − ρu1+u2+1 ⊗ ρ1)⊗ ρu2+u4 ⊗ ρu4 ≥ 0
}

(95)

=
{

(ρu1+u2 ⊗ ρ0 − ρu1+u2+1 ⊗ ρ1)⊗
∑
u4

(−1)u4ρu2+u4 ⊗ ρu4 ≥ 0
}

(96)

= {(ρu1+u2 ⊗ ρ0 − ρu1+u2+1 ⊗ ρ1)⊗ (ρu2 ⊗ ρ0 − ρu2+1 ⊗ ρ1) ≥ 0}. (97)

Thus, this test nicely factorizes as the parity of two tests {(ρu1+u2 ⊗ ρ0 − ρu1+u2+1 ⊗ ρ1) ≥ 0}
and {(ρu2 ⊗ ρ0 − ρu2+1 ⊗ ρ1) ≥ 0}.

A.4 Recovering u4 given u3, u2, and u1

Finally, we determine how the QSCD recovers u4 given all of the previous bits. The test in
this case just aims to distinguish the following states:

ρu1+u2+u3 ⊗ ρu3 ⊗ ρu2 ⊗ ρ0, (98)
ρu1+u2+u3+1 ⊗ ρu3+1 ⊗ ρu2+1 ⊗ ρ1, (99)

and amounts to the following projection:

{ρu1+u2+u3 ⊗ ρu3 ⊗ ρu2 ⊗ ρ0 − ρu1+u2+u3+1 ⊗ ρu3+1 ⊗ ρu2+1 ⊗ ρ1 ≥ 0}. (100)

B Measurements for the Eight-Bit Polar Decoder

Here, we provide the form of a quantum successive cancellation decoder that recovers each
bit of an eight-bit polar code. Full derivations of the results in this section are available from
the authors upon request.

B.1 Recovering u1

The test to recover the first bit u1 is simply the parity of eight individual Helstrom measure-
ments:{

(ρ0 − ρ1)⊗8 ≥ 0
}
. (101)

B.2 Recovering u2 given u1

The test to recover bit u2 given u1 projects onto the positive eigenspace of the difference of ∑
u′3,u

′
4,u
′
5

ρu1+u′3+u′4+u′5 ⊗ ρu′3 ⊗ ρu′4 ⊗ ρu′5

⊗
 ∑
u′6,u

′
7,u
′
8

ρu′6+u′7+u′8 ⊗ ρu′6 ⊗ ρu′7 ⊗ ρu′8


(102)
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and ∑
u′3,u

′
4,u
′
5

ρu1+u′3+u′4+u′5 ⊗ ρu′3 ⊗ ρu′4 ⊗ ρu′5

⊗
 ∑
u′6,u

′
7,u
′
8

ρu′6+u′7+u′8 ⊗ ρu′6 ⊗ ρu′7 ⊗ ρu′8

.
(103)

As such, it is not clear to us how one could approximate this test as some combination of
Helstrom and Fuchs-Caves tests.

B.3 Recovering u3 given u2, and u1

The test to recover bit u3 given u1 and u2 is equal to the parity of the following two tests:
(∑

u′4
ρu1+u2+u′4 ⊗ ρu′4

)
⊗
(∑

u′5
ρu′5 ⊗ ρu′5

)
−
(∑

u′4
ρu1+u2+1+u′4 ⊗ ρu′4

)
⊗
(∑

u′5
ρ1+u′5 ⊗ ρu′5

)
≥ 0

, (104)


(∑

u′6
ρu2+u′6 ⊗ ρu′6

)
⊗
(∑

u′′8
ρu′′8 ⊗ ρu′′8

)
−
(∑

u′6
ρu2+u′6+1 ⊗ ρu′6

)
⊗
(∑

u′′8
ρ1+u′′8 ⊗ ρu′′8

)
≥ 0

. (105)

It is again unclear to us how to decompose this measurement further.

B.4 Recovering u4 given u3, u2, and u1

The test to recover bit u4 given u1, u2, and u3 projects onto the positive eigenspace of the
difference of∑

u′5

ρu1+u2+u3+u′5 ⊗ ρu′5

⊗
∑

u′6

ρu3+u′6 ⊗ ρu′6

⊗
∑

u′7

ρu2+u′7 ⊗ ρu′7

 ⊗
∑

u′8

ρu′8 ⊗ ρu′8

 (106)

and∑
u′5

ρu1+u2+u3+1+u′5 ⊗ ρu′5

⊗
∑

u′6

ρu3+1+u′6 ⊗ ρu′6

⊗
∑

u′7

ρu2+1+u′7 ⊗ ρu′7

 ⊗
∑

u′8

ρ1+u′8 ⊗ ρu′8

 (107)

Again, this one remains unclear how to decompose further.

B.5 Recovering u5 given u4, . . . , u1

The test to recover bit u5 given u1 through u4 is equal to{
(ρu1+u2+u3+u4 ⊗ ρ0 − ρu1+u2+u3+u4+1 ⊗ ρ1)⊗ (ρu3+u4 ⊗ ρ0 − ρu3+u4+1 ⊗ ρ1)

⊗(ρu2+u4 ⊗ ρ0 − ρu2+u4+1 ⊗ ρ1)⊗ (ρu4 ⊗ ρ0 − ρu4+1 ⊗ ρ1) ≥ 0

}
. (108)

It is easy to see that one could approximate this test by first performing four Fuchs-Caves
measurements on adjacent pairs of channel outputs and taking the parity of these tests.
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B.6 Recovering u6 given u5, . . . , u1

The test to recover bit u6 given u1 through u5 is a projection onto the positive eigenspace of
the difference of∑

u′7

ρu1+···+u5+u′7 ⊗ ρu5+u′7 ⊗ ρu3+u4+u′7 ⊗ ρu′7

⊗
∑

u′8

ρu2+u4+u′8 ⊗ ρu′8 ⊗ ρu4+u′8 ⊗ ρu′8

 (109)

and∑
u′7

ρu1+···+u5+1+u′7 ⊗ ρu5+1+u′7 ⊗ ρu3+u4+u′7 ⊗ ρu′7

⊗
∑

u′8

ρu2+u4+1+u′8 ⊗ ρ1+u′8 ⊗ ρu4+u′8 ⊗ ρu′8

. (110)

A simple decomposition of this test remains unclear.

B.7 Recovering u7 given u6, . . . , u1

The test for recovering bit u7 given the previous ones is{
(ρu1+···+u6 ⊗ ρu5+u6 ⊗ ρu3+u4 ⊗ ρ0 − ρu1+···+u6+1 ⊗ ρu5+u6+1 ⊗ ρu3+u4+1 ⊗ ρ1)⊗

(ρu2+u4+u6 ⊗ ρu6 ⊗ ρu4 ⊗ ρ0 − ρu2+u4+u6+1 ⊗ ρu6+1 ⊗ ρu4+1 ⊗ ρ1) ≥ 0

}
,

(111)

which is clearly implementable by performing a Fuchs-Caves measurement on the first four
qubits and the last four, and than taking the parity of these two tests.

B.8 Recovering u8 given u7, . . . , u1

The final test for recovering the last bit u8 given all others is a projection onto the positive
eigenspace of the difference of

ρu1+···+u7 ⊗ ρu5+u6+u7 ⊗ ρu3+u4+u7 ⊗ ρu7 ⊗ ρu2+u4+u6 ⊗ ρu6 ⊗ ρu4 ⊗ ρ0, (112)

and

ρu1+···+u7+1⊗ρu5+u6+u7+1⊗ρu3+u4+u7+1⊗ρu7+1⊗ρu2+u4+u6+1⊗ρu6+1⊗ρu4+1⊗ρ1. (113)

It is clear that we can approximate this test with a Fuchs-Caves measurement.
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Abstract
We investigate the problem of finding the minimum number of queries needed to perfectly identify
an unknown quantum gate within a finite set of alternatives, considering both deterministic
strategies. For unambiguous gate discrimination, where errors are not tolerated but inconclusive
outcomes are allowed, we prove that parallel strategies are sufficient to identify the unknown gate
with minimum number of queries and we use this fact to provide upper and lower bounds on the
query complexity. In addition, we introduce the notion of generalized t-designs, which includes
unitary t-designs and group representations as special cases. For gates forming a generalized
t-design we prove that there is no difference between perfect probabilistic and perfect determin-
istic gate discrimination. Hence, evaluating of the query complexity of perfect discrimination is
reduced to the easier problem of evaluating the query complexity of unambiguous discrimination.
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1 Introduction

Identifying an unknown unitary evolution is a fundamental problem in quantum theory
[1, 2, 3, 4, 5, 6, 7, 8, 9], with a wide range of applications in quantum information and
computation. In quantum computation, the problem is known as oracle identification [10,
11, 12, 13, 14] and is the core of paradigmatic quantum algorithms such as Grover’s [15] and
Bernstein-Vazirani’s [16]. In addition, identifying an unknown unitary gate has applications
in the alignment of reference frames via quantum communication [17, 18, 19, 20, 21, 22], in
the design of quantum communication protocols that work in the absence of shared reference
frames [23, 24, 25], and in the design of quantum machines that learn to execute a desired
operation from a training set of examples [26]. For all these applications, the crucial step is
to find efficient strategies that discriminate among a set of unknown gates with minimum
number of queries to the black box uses.

A striking feature of gate discrimination is that any two distinct unitaries can be perfectly
distinguished from one another in a finite number of queries, either using entanglement [1, 2]
or using a sequential strategy where different queries are called at different time steps [5].
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Clearly, this feature implies that an unknown gate in a finite set (Ux)x∈X can be perfectly
identified in a finite number of queries, e.g. by running |X| − 1 pairwise tests each of which
eliminates one wrong alternative. However, in terms of efficiency the pairwise approach
leaves large room for improvements: For example, when the unitaries (Ux)x∈X are mutually
orthogonal, one can identify the black box in a single query using an ancilla, following
the lines of the dense coding protocol [27]. In general, finding the minimum number of
queries needed for perfect discrimination is a hard problem: for example, solving it would
automatically give a general solution for query complexity of oracle identification. One
way to approach the problem is to consider the less demanding task of unambiguous gate
discrimination [3, 4, 6, 7, 28], where the unknown gate is identified without errors but one
allows for an inconclusive result. General conditions for unambiguous discrimination were
given in Refs. [4, 7, 28] under the assumption that the available queries are used in parallel.
However, the case of general strategies and the quantification of the resources required for
unambiguous gate discrimination have remained largely unaddressed up to now.

In this paper we prove that parallel strategies are sufficient for unambiguous gate dis-
crimination: if the unambiguous discrimination can be achieved in N queries, then it can
be achieved by calling the N queries in parallel (in general, using ancillas). Furthermore,
we show that for suitable sets of gates, called generalized t-designs, there is no difference
between the performances of deterministic strategies using the queries in parallel and the
performances of general probabilistic strategies allowing for inconclusive outcomes and se-
quential queries. Clearly, this implies that, if unambiguous discrimination is possible in N
queries, then also perfect discrimination must be possible in N queries. This result reduces
the query complexity of perfect discrimination to the query complexity of unambiguous
discrimination, which is simpler to evaluate. The reduction to unambiguous discrimination
has a fairly large range of applications, including in particular the case when the set of gates
is the representation of a finite group. Particular examples are the group of all Boolean
oracles [10], the groups of linear [16] and quadratic [29] Boolean functions, the group of
permutations [19], and the group of all oracles corresponding to functions from a given finite
set to another [7]. Based on the reductions to parallel strategies, we provide lower and upper
bounds on the query complexity of perfect/unambiguous discrimination and on the size of
the ancilla systems needed by the discrimination strategy. The bounds are general and can
often be improved in specific cases. Nevertheless, they suffice to show that unambiguous
discrimination of the gates (Ux)x∈X is always possible with no more than |X| − 1 queries.
Since |X| − 1 is the minimum number of queries that would be needed by the method of
pairwise elimination, our result shows that a joint discrimination strategy typically offers
an advantage over pairwise elimination. Finally, we discuss the extension of our result to
ancilla-unassisted discrimination strategies, where the prohibition to use ancillas implies an
overhead in the number of queries needed to achieve perfect/unambiguous discrimination.

2 Results

Unambiguous gate discrimination. We show that unambiguous gate discrimination can be
parallelized: if the gates in a given set can be distinguished unambiguously with N queries,
then they can be distinguished unambiguously by applying the queries in parallel, possibly
using ancillas. Denoting by Nmin the minimum number of queries needed to unambiguously
identify a gate in U := (Ux)x∈X, we prove the bounds

|U|
1

d2−1 − 1 ≤ Nmin ≤ |U| − dim(U) + 1, (1)
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where d is the dimension of the Hilbert space where the gates act and dim(U) is the number
of linearly independent operators in U.

In addition, we prove a basic fact about unambiguous state discrimination of pure states,
namely that the states in a generic set {|ψx〉}x∈X can be unambiguously discriminated using
N identical input copies whenever N satisfies

N >
log(|X| − 1)
log
(
F−

1
2

) F := max
x,y∈X,x 6=y

|〈ψx|ψy〉|2. (2)

Applying this result in the case of gate discrimination then gives the upper bound

Nmin ≤

 log(|U| − 1)
log
(
F
−1/2
U

)
+ 1, (3)

where FU is the minimax fidelity FU := min|Ψ〉∈H⊗H,||Ψ||=1 maxx,y∈X,x 6=y
∣∣〈Ψ|(U†xUy ⊗ I)|Ψ〉

∣∣2.
Of course, every upper bound on FU results in a corresponding upper bound for Nmin. All
the upper bounds in Eqs. (1) and (3) are achieved for particular sets of gates. However, in
specific cases they can often be improved.

Perfect gate discrimination. We introduce the notion of generalized unitary t-designs, which
enables a joint treatment of group representations and unitary t-designs [30, 31, 32, 33]. When
the unitary gates form a generalized t-design, we show that probabilistic strategies using
N ≤ t queres cannot improve the performances of discrimination of parallel deterministic
strategies. Precisely, the maximum probability of correct discrimination with N ≤ t queries
(conditional to the occurrence of conclusive outcomes) is given by

pN = dim UN
|U| UN := (U⊗Nx )x∈X (4)

and can be achieved by a deterministic strategy that uses the N queries in parallel. As a
corollary, for a generalized |U|-design U there is no difference between perfect and unambiguous
discrimination: whenever unambiguous discrimination is possible, the probability of the
inconclusive result can be reduced to zero. Thanks to this reduction, Eqs. (1) and (3) become
bounds on the query complexity of perfect gate discrimination.

3 General gate discrimination strategies

Let H ' Cd, d < ∞ be a finite dimensional Hilbert space, let Lin(H) be the set of linear
operators on H, and let U = (Ux)x∈X ⊂ Lin(H) be a finite set of unitary matrices. All
throughout the paper we will require that two unitaries Ux and Uy corresponding to distinct
labels x 6= y be statistically distinguishable, that is

∀x, y ∈ X, x 6= y ∃|ψ〉 ∈ H : Ux|ψ〉〈ψ|U†x 6= Uy|ψ〉〈ψ|U†y . (5)

I Definition 1. If Eq. (5) holds, we say that the mapping U : x ∈ X 7→ Ux ∈ Lin(H) is a
projectively faithful representation of the set X.

Suppose that we are given a black box implementing one of the unitaries in U. In order to
identify the action of the black box with N queries, we will consider without loss of generality
pure strategies: the most general pure strategy consists in
1. preparing a pure input state |Ψ〉 ∈ H ⊗HA, where A is a suitable ancillary system
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2. evolving it through a quantum circuit that uses N queries to the unknown gate Ux,
interspersed with known unitary gates (Un)Nn=1 ⊂ Lin(H⊗HA), thus obtaining the output
state

|Ψx〉 :=
[
N∏
n=1

Un(U ⊗ IA)
]
|Ψ〉 (6)

3. performing a measurement on the output state |Ψx〉 with measurement outcomes in the
set Y = X∪{?}. The outcome set Y includes an inconclusive outcome y =? corresponding
to the case when the experimenter abstains from producing a guess [3].

Denote by px the prior probability of Ux and by pN (y|x) the conditional probability of the
measurement outcome y given that the gate is Ux and that N queries are used. Conditionally
to the occurrence of conclusive outcomes, the probability of correct gate identification with
N queries is

pN :=
∑
x∈X pN (x|x) px∑
x,y∈X pN (y|x) px

. (7)

We will now spell out three different notions of perfect gate discrimination, in increasing
order of strength:

I Definition 2. Denote by pmaxN rhe maximum of pN over all probabilistic discrimination pro-
tocols using N queries (with no constraints on the probability of abstention). A discrimination
strategy achieves

perfect probabilistic discrimination iff pmaxN = 1
unambiguous discrimination iff pmaxN = 1 and p(x|x) > 0 for every x ∈ X such that px > 0
perfect deterministic discrimination iff pmaxN = 1 and p? :=

∑
x∈X p(?|x)px = 0.

Clearly, perfect deterministic discrimination implies unambiguous discrimination, which in
turn implies perfect probabilistic discrimination. The latter two types of discrimination can
be characterized in terms of linear independence:

I Theorem 3. The unitaries (Ux)x∈X can be discriminated in N queries
1. in a perfect probabilistic way if and only if there exists x0 ∈ X such that U⊗Nx0

6∈
Span(U⊗Nx )x∈X,x 6=x0

2. in an unambiguous way if and only if the unitaries (U⊗Nx )x∈X are linearly independent.

Proof. We first prove necessity. The condition for perfect probabilistic discrimination is
equivalent to the existence of at least one x0 ∈ X such that pN (x0|x) = 0 ∀x 6= x0,
which in turn is equivalent to the condition that the output state |Ψx0〉 in Eq. (6) is
linearly independent from the states (|Ψx〉)x∈X,x 6=x0 . Since the function U⊗Nx 7→ |Ψx〉
is linear, the condition U⊗Nx0

6∈ Span(U⊗Nx )x∈X,x 6=x0 is necessary for perfect probabilistic
discrimination. Similarly, the condition for unambiguous discrimination is equivalent to
requirement that pN (x0|x) = 0 ∀x, x0 ∈ X, x 6= x0, which in turn is equivalent to the
requirement that the output states {|Ψx〉}x∈X are linearly independent. Independence of the
states {|Ψx〉}x∈X implies independence of the unitaries (U⊗Nx )x∈X. Both conditions are also
sufficient, because the linear function U⊗Nx 7→ {|Φx〉⊗N}x∈X defined by |Φx〉 := (Ux ⊗ I)|Φ〉,
|Φ〉 :=

∑d
n=1 |n〉|n〉/

√
d is invertible, and therefore preserves linear independence. Note

that the states |Φx〉 can be obtained from a parallel strategy where N pairs of systems
are prepared in the state |Φ〉⊗N and the unitary Ux is applied on the first system of each
pair. J
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The equivalence between unambiguous gate discrimination and linear independence of
the unitaries was observed in Ref. [7] in the case of a single query (and hence of N parallel
queries, which can be treated as a single query to the product box U⊗Nx ). Theorem 3 extends
the existing characterization to arbitrary discrimination strategies, possibly consisting of
multiple time steps. As a consequence of this extension, unambiguous discrimination and
perfect probabilistic discrimination can be parallelized:

I Corollary 4. If the gates (Ux)x∈X can be distinguished unambiguously (respectively, in a
perfect probabilistic fashion) with N queries, then they can be distinguished unambiguously
(respectively, in a perfect probabilistic fashion) using the N queries in parallel.

We refer to the minimum number Nmin needed to unambiguously identify a gate
in (Ux)x∈X as the query complexity of unambiguous gate discrimination for the gate set
U := (Ux)x∈X. Corollary 4 allows us to conclude that the query complexity of perfect prob-
abilistic/unambiguous discrimination does not change if one restricts to parallel strategies.
However, general sequential strategies can help in reducing the probability of the inconclusive
result.

4 General bounds on the query complexity of unambiguous gate
discrimination

The possibility of parallelizing unambiguous gate discrimination, established by theorem
3, leads immediately to general lower and upper bounds on the query complexity. There
bounds do not assume any structure of the set of unitaries U, and can typically be improved
when more information about U is available.

4.1 Lower bound
I Theorem 5 (Dimensional bound). The gates in U = (Ux)x∈X can be unambiguously
discriminated using N queries only if

|U| ≤
(
d2 +N − 1
d2 − 1

)
, (8)

which implies Nmin > |U|
1

d2−1 − 1.

Proof. By theorem 3, unambiguous discrimination is possible only if dim(U⊗Nx )x∈X = |U|.
On the other hand, dim(U⊗Nx )x∈X ≤ dim AN,+, where AN,+ := Span

{
A⊗N | A ∈ Lin(H)

}
.

Since AN,+ is the symmetric subspace of the N -fold tensor product of Lin(H), and the

dimension of the latter is d2, the dimension of AN,+ is dim AN,+ =
(
d2 +N − 1
d2 − 1

)
. J

If we do not impose any structure on the set of unitaries U = (Ux)x∈X, then the bound of
Eq. (8) is the best we can hope for. Indeed, for any fixed Hilbert space dimension d and for
every number N we can always find a set of unitaries U such that the minimum number of
queries needed to unambiguously identify a gate in U is exactly N .

I Example 6. The bound of Eq. (8) can be saturated choosing (U⊗Nx )x∈X to be a basis
for AN,+. This is possible thanks to the Schur-Weyl duality [34], which implies that the
unitaries (U⊗N )U∈U(d) are a spanning set for AN,+.
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4.2 Upper bounds
An upper bound on the query complexity can be obtained by observing that the dimension
of Span(U⊗Nx )x∈X grows at least linearly with N , a fact that can be proved using an earlier
result by Chefles [35]:

I Theorem 7 (Linear bound). The query complexity of unambiguous discrimination of the
gates in U is upper bounded by

Nmin ≤ |U|+ 1− dim(U). (9)

Proof. Let S = (vx)x∈X be a finite set of vectors in a vector space V , with the property
that every two distinct vectors in S are linearly independent. Under this hypothesis, Chefles
proved that dim Span(v⊗N+1

x ) ≥ dim Span(v⊗Nx ) + 1 [35]. Applying the result to the set
UN := (U⊗Nx )x∈X gives dim(UN ) ≥ dim(U) + N − 1. Hence, for the unitaries in UN are
linearly independent for N = |U| − dim(U) + 1. J

In general, the bound of Eq. (9) can be achieved: for every fixed Hilbert space dimension
d and for every fixed cardinality |U| we can find a set of unitaries such that Nmin =
|U| − dim(U) + 1. This can be seen in the following

I Example 8. Consider the discrete phase shifts

Ux := ωx |1〉〈1|+ (I − |1〉〈1|) ω := e
2πi
|X| ,

with x = 1, . . . , |X|. In this case the number of linearly independent unitaries in (U⊗Nx )x∈X
is exactly equal to N + 1, as it can be seen from the fact that the unitaries (U⊗Nx )x∈X are
in bijective correspondence with the vectors of their eigenvalues, given by (vx)x∈X ⊂ CN+1

where vx := (1, ω, ω2, . . . , ωN )T . Since the number of linearly independent unitaries in
(U⊗Nx )x∈X is N + 1, the minimum number needed for unambiguous discrimination is exactly
Nmin = |X| − 1 = |U| − dim(U) + 1.

Another example where the bound of Eq. (7) gives the exact value is is the example of
the so-called “shift-and-multiply" gates:

I Example 9 (Shift-and-multiply gates). Theorem 7 provides a tight bound for the “shift-
and-multiply" representation of the group G = Zd × Zd, defined by

Upq = SpMq (p, q) ∈ Zd × Zd , (10)

where S =
∑d
k=1 |(k+ 1)mod d〉〈k| and M =

∑d
k=1 e

(2πik)/d|k〉〈k|. In this case, the unitaries
(Upq)(p,q)∈Zd×Zd are linearly independent, and therefore the bound gives Nmin = 1. Note
that, in fact, the unitaries are orthogonal in the Hilbert-Schmidt product, and, therefore,
an unknown unitary Upq can be identified perfectly and deterministically, as in the dense
coding protocol [27].

Theorem 7 provides an estimate of Nmin that is always better than the number of pair-
wise tests |U| − 1 that would be needed to identify a gate in (Ux)x∈X with the method of
pairwise eliminations outlined in [1, 2]. Note however that Eq. (9) only ensures unam-
biguous discrimination, while the pairwise elimination method ensures perfect deterministic
discrimination. In the next Section we will see that the distinction between unambiguous
and perfect discrimination disappears when the gates in U form a group representation, or,
more generally, a generalized t-design.
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Before adding more structure on the set U, we give here a second upper bound that often
yields a better estimate than Theorem 7. To state the bound we introduce the minimax
fidelity of the unitaries U, defined as

FU := min|Ψ〉∈H⊗H,||Ψ||=1 maxx,y∈X,x 6=y
∣∣〈Ψ|(U†xUy ⊗ I)|Ψ〉

∣∣ .
The minimax fidelity quantifies the distinguishability of the unitaries (Ux)x∈X when single-
shot ancilla-assisted strategies are used. Clearly, if FU = 0, the unitaries can be perfectly
distinguished in one shot using a suitable input state. Note also that, under the standing
assumption of this paper (projective faithfulness of the mapping x 7→ Ux), FU must be strictly
smaller than 1.

I Theorem 10 (Fidelity bound). The query complexity of unambiguous discrimination of the
gates in U is upper bounded as

Nmin ≤

 log(|U| − 1)

log
(
F
− 1

2
U

)
+ 1. (11)

The proof is based on a simple observation:

I Lemma 11. Let (|ψx〉)x∈X ∈ H be a set of unit vectors such that F := maxx,y∈X,x6=y |〈ψx|ψy〉|2
is strictly smaller than one. If FN/2 < 1/(|X| − 1), then the states (|ψx〉⊗N )x∈X are linearly
independent, and, therefore, unambiguously distinguishable.

Proof. Suppose that
∑
y∈X cy|ψy〉⊗N = 0. Multiplying by 〈ψx|⊗N , taking the modulus, and

summing over x we obtain∑
x∈X
|cx| =

∑
x∈X

∣∣∣∑y∈X,y 6=x cy〈ψx|ψy〉N
∣∣∣

≤
∑
x∈X

∑
y∈X,y 6=x |cy|FN/2

= (|X| − 1)FN/2
(∑

x∈X |cx|
)
.

Clearly, if (|X| − 1)FN/2S < 1, the only possible solution is cx = 0 ∀x ∈ X. Hence, the states
(|ψx〉⊗N )x∈X are linearly independent. J

Proof of theorem 10. Choose the input state |Ψ〉 ∈ H⊗H so that maxx,y∈X,x 6=y |〈Ψ|(U†xUy⊗
I)|Ψ〉|2 = FU. For FN/2U ≤ 1/(|U| − 1) the states (|Ψx〉⊗N )x∈X, |Ψx〉 := (Ux ⊗ I)|Ψ〉 are
linearly independent. Therefore, also the unitaries (U⊗Nx )x∈X are linearly independent, i.e.
unambiguously distinguishable. J

The fidelity bound gives good estimates when FU is close to zero. However, it tends
to produce large overheads when FU approaches 1. This phenomenon is illustrated in the
following example:

I Example 12 (Permutation gates). Consider the permutations matrices

Uπ =
d∑
k=1
|π(k)〉〈k|, (12)

where π is an element of the permutation group Sd. In this case it is clear that the unitary Uπ
can be perfectly identified with d queries (applying Uπ to all the d vectors in the computational
basis we can surely identify the permutation π ∈ Sd). One the other hand, applying the
unitary Uπ on a maximally entangled state gives the bound FU ≥

(
d−2
d

)2, which inserted in
the fidelity bound gives Nmin ≤ log(d!)/ log[d/(d− 2)] = O(d2 log d), which is off by a factor
d log d from the actual value.
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5 Discrimination of generalized unitary t-designs

Here we impose additional structure on the set of gates (Ux)x∈X. Our analysis includes the
case where the set X is a finite group and x 7→ Ux is a projective representation of X. Also,
it will include the case where the unitaries (Ux)x∈X from a unitary t-design [30, 31, 32, 33].
In order to treat these two cases in a unified way, we introduce the notion of generalized
unitary t-designs. For the discrimination of generalized unitary t-designs we will show the
following properties
1. among all possible discrimination strategies using N ≤ t queries, the deterministic

strategies using all queries in parallel maximize the probability of correct gate identification
2. for strategies using N ≤ t queries, there is no difference between perfect probabilistic,

unambiguous, and perfect deterministic discrimination.

5.1 Generalized unitary t-designs: definition and characterization
Let us start from the definition:

I Definition 13 (Generalized unitary t-designs). Let (Ux)x∈X be a set of unitaries, (px)x∈X
be a set of probabilities. We say that the set (Ux, px)x∈X is a generalized weighted unitary
t-design iff(

U⊗ty ⊗ U
⊗t
y

)(∑
x∈X

pxU
⊗t
x ⊗ U

⊗t
x

)
=
(∑
x∈X

pxU
⊗t
x ⊗ U

⊗t
x

)
∀y ∈ X. (13)

If px = 1/|X| ∀x ∈ X we say that (Ux)x∈X is a generalized unitary t-design (or shortly, a
generalized t-design).

Note that, by definition, every generalized weighted t-design is also a weighted generalized
(t− 1)-design.

I Example 14 (Unitary t-designs). A unitary t-design is a set of unitaries and probabilities
(Ux, px)x∈X such that∑

x∈X
pxU

⊗t
x ⊗ U

⊗t
x =

∫
dU U⊗t ⊗ Ū⊗t,

where the integral in the l.h.s. runs over the normalized Haar measure of the group U(d).
From the definition is clear that any unitary t-design is an example of generalized unitary
t-design.

Generalized t-designs can be characterized as follows:

I Proposition 15. A set of unitaries (Ux, px)x∈X is a weighted generalized t-design if and
only if there exists a compact group G such that X ⊆ G and∑

x∈X
px U

⊗t
x ⊗ U

⊗t
x =

∫
dg U⊗tg ⊗ U

⊗t
g , (14)

where
∫

dgf(g) denotes the integral of f with respect to the normalized Haar measure.

Proof. If the condition in proposition 15 is satisfied, clearly (Ux, px)x∈X is a weighted
generalized t-design. Conversely, if (Ux, px)x∈X is a generalized weighted t-design, define
G to be the closure of the group generated by the unitaries (Ux, )x∈X. Since we are in
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finite dimensions, G is a compact group. Clearly, (U⊗tg ⊗ U
⊗t
g )(

∑
x∈X px U

⊗t
x ⊗ U

⊗t
x ) =

(
∑
x∈X px U

⊗t
x ⊗ U

⊗t
x ) for every g ∈ G. Hence,

(
∑
x∈X

px U
⊗t
x ⊗ U

⊗t
x ) =

∫
dg(U⊗tg ⊗ U

⊗t
g )
(∑
x∈X

px U
⊗t
x ⊗ U

⊗t
x

)

=
∫

dg(U⊗tg ⊗ U
⊗t
g ).

J

Thanks to the above characterization, one can easily transfer properties of compact groups
to generalized t-designs. In the next sections we will use this trick to prove strong properties
of gate discrimination for generalized t-designs.

5.2 Basic group-theoretic facts
Since generalized t-designs have an underlying group-theoretic structure, it is useful to recall
here some basic facts about the representation of compact groups. Let G be a compact
group and let U : G→ Lin(H), g 7→ Ug be a a unitary projective representation (UPR) of G
with multiplier ω : G ×G → C [in short, this means that UgUh = ω(g, h)Ugh, ∀g, h ∈ G].
Unitary representations correspond to the special case UPRs where ω(g, h) = 1 ∀g, h ∈ G.

With a suitable choice of basis, the Hilbert space can be decomposed as a direct sum of
tensor product pairs

H =
⊕

µ∈Irr(U)

(Rµ ⊗Mµ) , (15)

where the sum runs over the set Irr(U) of all inequivalent irreducible representations (irreps)
contained in the decomposition of U (known as isotypic decomposition), Rµ is a representation
space of dimension dµ, carrying the irrep Uµ, andMµ is a multiplicity space of dimension
mµ, mµ being the multiplicity of the irrep Uµ in the decomposition of U . Eq. (15) implies
that the representation U can be written in the block diagonal form

U =
⊕

µ∈Irr(U)

(
Uµ ⊗ IMµ

)
, (16)

where IMµ denotes the identity matrix onMµ. Note that all the irreps Uµ ∈ Irr(U) must
have the same multiplier ω.

Using Eq. (16) and the orthogonality of matrix elements, one can prove that the set of
unitaries U := (Ug)g∈G satisfies

dim(U) =
∑

µ∈Irr(U)

d2
µ. (17)

Due to the importance of linear independence in the gate discrimination problem, this
equation will become very useful in the following section.

A representation that plays a key role in gate discrimination is the regular representation,
which for finite groups is a representation of G on the Hilbert space H = C|G|, equipped
with the orthonormal basis {|g〉 | g ∈ G}:

I Definition 16. The regular representation with multiplier ω is the projective representation
Ureg,ω : G→ Lin(C|G|) defined by

Ureg,ωg |h〉 = ω(g, h) |gh〉 , ∀g, h ∈ G (18)
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The regular decomposition is reducible and its isotypic decomposition is

Ureg,ωg =
⊕

µ∈Irr(G,ω)

(
Uµg ⊗ IMµ

)
Mµ ' Cdµ (19)

where Irr(G, ω) denotes the set of all the irreps of G with multiplier ω [in particular, Irr(G, 1)
is the set of all unitary irreps of G]. Note that every irrep appears with multiplicity mµ = dµ.
Choosing g = e (the identity element in the group) and taking the trace on both sides of Eq.
(19) one obtains

|G| =
∑

µ∈Irr(G,ω)

d2
µ , (20)

which holds for every possible multiplier ω. Finally, combining Eqs. (17) and (20), one gets
the following statement:

I Proposition 17. Let G be a finite group and let U : G→ Lin(H) be a UPR with multiplier ω.
Then, the unitaries (Ug)g∈G are linearly independent if and only if the isotypic decomposition
of U contains all the irreps in Irr(G, ω).

5.3 Optimal discrimination of generalized unitary t-designs
We start from general result about the maximum probability of correct identification,
maximized over over all probabilistic strategies consisting of N queries. Precisely, we show
that the maximum success probability can be always achieved with a deterministic parallel
strategy:

I Theorem 18 (Optimal probabilistic gate discrimination). Let (Ux)x∈X be a set of unitary
gates and let (px)x∈X the corresponding prior probabilities. Then, the maximum probability
of correct gate identification [defined in Eq. (7)] is

pmax
N = max

x∈X
px〈〈Ux|⊗N R−1

N |Ux〉〉⊗N , (21)

with |Ux〉〉 := (Ux ⊗ I)|I〉〉, |I〉〉 :=
∑d
n=1 |n〉|n〉, RN :=

∑
x∈X px (|Ux〉〉〈〈Ux|)⊗N , and R−1

N

denotes the Moore-Penrose inverse of RN . The maximum probability of correct identification
can be achieved applying the N queries in parallel on an entangled state.

Proof. Using the formalism of quantum combs [36, 37, 38], we express the probability
pN (y|x) as pN (y|x) = 〈〈Ux|⊗N Ty |Ux〉〉⊗N where (Ty)y∈Y is a collection of positive operators
satisfying suitable normalization conditions [38, 36] (the actual form of the conditions is
irrelevant here). The probability of correct identification can be bounded as

pN =

∑
x∈X px 〈〈Ux|⊗NR

− 1
2

N

(
R

1
2
NTxR

1
2
N

)
R
− 1

2
N |Ux〉〉⊗N∑

y∈X Tr[TyRN ]

≤
∑
x∈X

px Tr[ρx R
− 1

2
N (|Ux〉〉〈〈Ux|)⊗NR

− 1
2

N ] ρx := R
1
2
NTxR

1
2
N∑

y∈X Tr[R
1
2
NTyR

1
2
N ]

≤
∑
x∈X

px Tr[ρx] ‖R−
1
2

N (|Ux〉〉〈〈Ux|)⊗NR
− 1

2
N ‖∞

≤ max
x∈X

px 〈〈Ux|⊗N R−1
N |Ux〉〉⊗N ,
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the last inequality coming from the condition
∑
x∈X Tr[ρx] = 1. Defining

xmax := argmax px 〈〈Ux|⊗N R−1 |Ux〉〉⊗N ,

the bound can be saturated by applying the N queries of Ux in parallel on the maximally
entangled state |Φ〉⊗N ,|Φ〉 := |I〉〉/

√
d, and by performing the POVM (Py)y∈Y defined by

Pxmax = R−1(|Uxmax〉〉〈〈Uxmax |)⊗NR−1/〈〈Uxmax |)⊗NR−2|Uxmax〉〉, P? = I − Pxmax , Py = 0 for
every y 6= xmax. J

In the case of generalized weighted t-designs, the following strong property holds:

I Theorem 19 (Optimal gate discrimination for generalized N -designs). Let (Ux, px)x∈X be a
generalized weighted N -design. Then, the maximum of the probability of correct discrimination
over all probabilistic strategies consisting of N queries is

pmax
N = dim (UN ) max

x∈X
px UN := (U⊗Nx )x∈X. (22)

For uniform prior px = 1/|U|, the maximum probability pmax
N = dim(UN )/|U| can be achieved

by a deterministic strategy that uses the N queries in parallel.

Proof. Let G the compact group such that
∑
x∈X(Ux ⊗ Ux)⊗N =

∫
dg (Ug ⊗ Ug)⊗N , or

equivalently,
∑
x∈X U

⊗N
x AU†⊗Nx =

∫
dg U⊗Ng AU†⊗Ng for every operator A ∈ Lin(H⊗N ).

Exploiting the isotypic decomposition of U⊗N , one can write U⊗Nx =
⊕

µ∈Irr(U)
(
Uµx ⊗ IMµ

)
and, therefore, |Ux〉〉⊗N =

⊕
µ∈Irr(U⊗N ) |Uµx 〉〉|IMµ

〉〉. The operator RN in theorem 18 can be
directly computed as

RN =
∑
x∈X px (|Ux〉〉〈〈Ux|)⊗N

=
∫

dg (|Ug〉〉〈〈Ug|)⊗N

=
⊕

µ∈Irr(U⊗N )
mµ
dµ

(
IRµ ⊗ IRµ ⊗

|IMµ 〉〉〈〈IMµ |
mµ

)
,

so that, computing the inverse, one has 〈〈Ux|⊗N R−1
N |Ux〉〉⊗N =

∑
µ∈Irr(U⊗N ) d

2
µ = dim(U⊗N )

[cf. Eq. (17)]. Inserting this value in Eq. (21) proves Eq. (22). We now prove that for the
uniform prior the maximum success probability can be obtained with a deterministic strategy
that uses the N queries in parallel. To this purpose, consider the maximum likelihood input
state [39, 40]: this is the state in H⊗N ⊗HA given by

|ΦML〉 :=
⊕

µ∈Irr(U⊗N )

√
dµ

dim(U⊗N ) |IRµ〉〉,

where |IRµ〉〉 =
∑dµ
n=1 |αµn〉|βµn〉, (|αµn〉)

dµ
n=1 being an orthonormal basis for Rµ and (|βµn〉)

dµ
n=1

being an orthonormal set of vectors in Mµ ⊗HA [here the dimension of HA is chosen in
order to satisfy the relation dµ ≤ mµdA,∀µ ∈ Irr(U⊗N )]. Applying the N queries in parallel
one obtains the output states |ΦML,x〉 := (U⊗Nx ⊗ IA)|ΦML〉. Optimal discrimination can be
achieved deterministically using the square root measurement [41], which in this case has
POVM elements Px := dim(U⊗N )

|U| |ΦML,x〉〈ΦML,x|. J

The general result of theorem 19 is well illustrated by the case of discrete phase shifts:

I Example 20 (Discrete phase shifts). Consider the discrete phase shifts

Uk =
L−1∑
l=0

ωkl Pl ω = e
2πi
K , k ∈ {1, . . .K} (23)
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where {Pl}L−1
l=0 are orthogonal projectors summing up to the identity in H. The unitaries

{Uk | k = 1, . . . ,K} form a unitary representation of the Abelian group G = ZK . Now, the
unitary irreps of ZK are one-dimensional, and are given by Uµ : Zd → C, k 7→ ωµk, with
µ ∈ {0, . . . ,K−1}. From Eq. (23) it is then clear that Irr(U) = {0, 1, . . . L−1} and Eq. (22)
gives pmax

1 = L/K. Similarly, it is clear that Irr(U⊗N ) = {0, 1, . . . , N(L− 1)}, and therefore,
Eq. (22) gives

pmax
N = NL−N + 1

K
N ≤ K − 1

L− 1 . (24)

The minimum number of queries needed for perfect discrimination is then Nmin =
⌈
K−1
L−1

⌉
.

5.4 Perfect discrimination of generalized unitary t-designs

An immediate consequence of Theorem 19, all possible notions of perfect gate discrimination
coincide in the case of generalized unitary t-designs:

I Corollary 21. If the unitaries (Ux)x∈X form a generalized t-design, then the following are
equivalent:
1. perfect probabilistic discrimination is possible with N ≤ t queries
2. unambiguous discrimination is possible with N ≤ t queries
3. perfect deterministic discrimination is possible in N ≤ t queries.
In particular, for a generalized |U|-design there is no difference between the three types of
perfect discrimination.

For generalized t-designs the evaluation of the query complexity of perfect discrimination
is reduced to the simpler problem of evaluating the query complexity of unambiguous
discrimination. In particular, the bounds in Theorems 5, 7, and 10 become automatically
bounds on the query complexity of perfect discrimination.

6 Conclusions

We investigated the problem of identifying an unknown unitary gate in a finite set of
alternatives, using both deterministic and probabilistic discrimination strategies, and allowing
the unknown gate to be queried multiple times and to be be used in parallel or in series
in arbitrary quantum circuits. In this scenario, we provided upper and lower bounds on
the amount of resources needed to achieve unambiguous and perfect gate identification.
Specifically, we gave bounds on the query complexity and the minimum size of the ancillas
needed to achieve unambiguous/perfect identification. Most of our results stem from two
key observations. The first observation is that unambiguous gate discrimination can be
parallelized: if unambiguous discrimination is possible with N queries, then unambiguous
gate discrimination must also be possible by applying the N queries in parallel on a suitable
entangled state. The second key observation is based on the definition of generalized unitary
t-designs, a definition that includes unitary t-designs and group representations as special
cases. The remarkable feature of generalized t-designs is that for strategies using N ≤ t

queries there is no difference between unambiguous and perfect deterministic discrimination.
Using this fact, one can reduce the analysis of perfect gate discrimination to the simpler
analysis of unambiguous gate discrimination.
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1 Introduction

Coding theory is an important component of information theory having a long history
dating back to Shannon’s seminal 1948 paper that laid the ground for information theory
[21]. Coding theory is at the heart of reliable communication, where codes with symmetry,
especially cyclic codes, such as the Reed-Solomon codes, are among the most widely used
codes in practice [19].

In recent years, it has become evident that quantum communication and computation offer
the possibility of secure and high rate information transmission, fast computational solution
of certain important problems, and efficient physical simulation of quantum phenomena.
However, quantum information processing depends on the identification of suitable quantum
error-correcting codes (QECC) to make such processes and machines robust against faults
due to decoherence, ubiquitous in quantum systems. Quantum coding theory has hence been
extensively developed during the past 15 years [3, 9, 20].

Codeword stabilized (CWS) quantum codes are by far the most general construction of
QECC [6]. A CWS code Q can be represented by a stabilizer state (i. e. a self-dual additive
code) S and a classical code C, i. e. Q = (S, C). When C is a linear code, the corresponding
CWS code Q is actually a stabilizer code. Also, any CWS code is local Clifford equivalent to
a standard form (G, C), where G is a graph state [6].

The CWS construction encompasses stabilizer (additive) codes and all the known non-
additive codes with good parameters. It also leads to many new codes with good parameters,
or good algebraic/combinatorial properties, through both analytical and numerical methods.
Alternative perspectives of CWS codes have also been analyzed, including the union stabilizer
codes (USt) method [11, 12], and the codes based on graphs [18, 23]. Concatenated codes
and their generalizations using CWS codes have been developed [1], and decoding methods
for CWS codes have been studied as well [17].

Given all the evidence that the CWS framework is a powerful method to construct and
analyze QECC, it remains unclear to what extent the stabilizer state S and the classical
code C can represent the symmetry of the CWS code Q = (S, C) in general. Given the vital
importance that the code symmetry plays in coding theory, this understanding becomes
crucial since if such a correspondence exists, it can provide practical methods for constructing
CWS codes with desired symmetry from S and/or C with corresponding symmetry.

Unfortunately, there is no immediate clue what answer one can hope for. First of all, the
representation Q = (S, C) is not unique. So for a given CWS code Q, there might be some
stabilizer states S and/or classical codes C which are more symmetric than others. Perhaps
the best known example is the CWS representation for the five-qubit code Q5, where in the
ideal case S can be chosen as a graph state corresponding to the pentagon graph, and the
classical code C is chosen as the repetition code {00000, 11111}. In this case, both S and C
nicely represent the cyclic symmetry of the five-qubit code.

However, there are known ‘bad cases’, too. One example is the seven-qubit Steane code
Q7, where although the code itself is cyclic, one cannot find any S corresponding to a cyclic
graph, even if local Clifford operations are allowed [10]. Nonetheless, we know that the
stabilizer group for this code Q7 is invariant under cyclic shifts, and the logical Z operator
can be chosen as ZL = Z⊗7, therefore the logical |0〉L can be chosen as a cyclic stabilizer
code. This is to say, there exists a representation for Q7 = (S, C) such that S is cyclic. In
general it remains unclear under which conditions a representation for cyclic CWS code with
a cyclic stabilizer state S exists.

In this work, we address the symmetry properties of CWS codes. We are interested in
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the permutation symmetry of CWS codes, which includes the important category of cyclic
codes. Our main question is, to which extent can the representation (S, C) and the standard
form (G, C) reflect the symmetry of the corresponding CWS code Q. We show that for any
CWS code Q with permutation symmetry, one can always find a stabilizer state S with the
same permutation symmetry as Q such that Q = (S, C). As many good CWS codes are
found by starting from a chosen S, this ensures that when trying to find CWS codes with
certain permutation symmetry, the choice of S with the same symmetry will suffice. A key
step to reach this main result is to obtain a canonical representation for CWS codes, which
is in terms of a unique decomposition as union stabilizer codes.

We know that for the standard form of CWS codes using graph states, it is not always
possible to find a graph with the same permutation symmetry. This is partially due to the
fact that the local Clifford operations transforming the CWS code into the standard form
may break the permutation symmetry of the original code. Also, the graphs usually can
only represent the symmetry of the stabilizer generators of the stabilizer state, but not the
symmetry of the stabilizer state in general. We show that this is indeed the case for the toric
code on a two-dimensional square lattice with translational symmetry, even if its encoding
graph can be chosen to be translational invariant.

However, we show that the converse always holds, i. e., any graph G and classical code C
with certain permutation symmetry yields a CWS code Q = (G, C) with the same symmetry.

2 Preliminaries

The single-qudit (generalized) Pauli group is generated by the operators X and Z acting on
the qudit Hilbert space Cp, satisfying ZX = ωXZ, where ω = ωp = exp 2iπ/p. For simplicity,
throughout the paper, we assume that p is a prime, although our results naturally extend
to prime powers. Denote the computational basis of Cp by {|j〉 : j = 0, 1, . . . , p− 1}. Then,
without loss of generality, we can fix the operators X and Z such that X|j〉 = |j + 1〉 and
Z|j〉 = ωj |j〉, respectively. Let I be the identity operator. The set {XaZb : a, b = 0, . . . , p−1}
of p2 operators forms a so-called nice unitary error basis which is a particular basis for the
vector space of p× p matrices [15, 16].

The n-qudit Pauli group Pn consists of all local operators of the form M = αMM1 ⊗
· · · ⊗Mn, where αM = ωk for some integer k is an overall phase factor, and Mi = Xa

i Z
b
i for

some a, b ∈ {0, 1, . . . , p− 1}, is an element of the single-qudit Pauli group of qudit i. We can
write M as αM (M1)1(M2)2 . . . (Mn)n or αMM1M2 . . .Mn when it is clear what the qudit
labels are. The weight of an operator M is the number of tensor factors Mi that differ from
identity.

The n-qudit Clifford group Ln is the group of pn × pn unitary matrices that map Pn to
itself under conjugation. The n-qudit local Clifford group is a subgroup in Ln containing
elements of the form M1 ⊗ · · · ⊗Mn, where each Mi is a single qudit Clifford operation, i. e.,
Mi ∈ L1.

A stabilizer group S in the Pauli group Pn is defined as an abelian subgroup of Pn which
does not contain ωI. A stabilizer consists of pm Pauli operators for some m ≤ n. As the
operators in a stabilizer commute with each other, they can be simultaneously diagonalized.
The common eigenspace of eigenvalue 1 is a stabilizer quantum code Q = ((n,K, d))p with
length n, dimension K = pn−m, and minimum distance d. The projection PQ onto the code
Q can be expressed as

PQ = 1
|S|

∑
M∈S

M . (1)
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The centralizer C(S) of the stabilizer S is given by the elements in Pn which commute with
all elements in S. For m < n, the minimum distance d of the code Q is the minimum weight
of all elements in C(S) \ S.

If m = n, then there exists a unique n-qudit state |ψ〉 such that M |ψ〉 = |ψ〉 for every
M ∈ S. Such a state |ψ〉 is called a stabilizer state, and the group S = S(|ψ〉) is called the
stabilizer of |ψ〉. A stabilizer state can also be viewed as a self-dual code over the finite field
Fp2 under the trace inner product [7]. For a stabilizer state, the minimum distance is defined
as the minimum weight of the non-trivial elements in S(|ψ〉) [7].

A union stabilizer (USt) code of length n is characterized by a stabilizer code with
stabilizer S = 〈g1, g2, . . . , gm〉, where g1, g2, . . . , gm are m independent generators, and a
classical code C over Fp of length m. Note that for a given S, the choice of the m generators
gj is not unique. Now for a classical code C of length m with K codewords, for each
codeword c = (c1, c2, . . . , cm) ∈ C, the corresponding quantum code is given by the subspace
Vc stabilized by ωc1g1, ωc2g2, . . . , ωcmgm. Note that for c 6= c′ ∈ C, the subspaces Vc and
Vc′ are mutually orthogonal. The corresponding USt code is then given by the subspace⊕

c Vc.
Therefore, the combination of S (more precisely, the generators of S) and C gives an

((n, 2n−mK))p USt quantum code Q. Hence we denote a USt code Q by Q = (S, C). The
projection onto Q can be expressed as

PQ =
∑
c∈C

1
pm

∑
y∈Fm

p

ωc·ygy1
1 . . . gym

m , (2)

where we identify the elements yi of the finite field with integers modulo p.
A CWS code Q of length n is a USt code with m = n. That is, it is characterized by a

stabilizer state with stabilizer S and a classical code C of length n. For a CWS code Q given
by Q = (S, C), the stabilizer S always corresponds to a unique stabilizer state. We will then
refer to S as the stabilizer state when no confusion arises.

For a CWS code, the projection PQ onto the code space is given by

PQ =
∑
t∈C

1
pn

∑
x∈Fn

p

ωt·xgx1
1 . . . gxn

n , (3)

where we again identify the elements xi of the finite field with integers modulo p.
A CWS code has a permutation symmetry σ if

PσQ = PQ, (4)

where PσQ is the projection onto the space obtained by permuting the qudits of the code Q
according to σ.

3 Canonical form of CWS codes

For a given a CWS code Q = (S, C), there might exist another stabilizer state S ′ and another
classical code C′ such that Q = (S ′, C′). In other words, the representation of a CWS code
by the stabilizer state S and the classical code C is non-unique.

In order to discuss the relationship between the symmetry of the CWS code Q and
that of the stabilizer state S, we first need to explore the relationship between the different
representations of Q (i. e., the relationship between S and S ′, as well as the relationship
between C and C′).
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Let us start by recalling that a stabilizer code can be viewed as a CWS code where the
classical code is a linear code [6]. A simple way to see this is that for a given stabilizer code Qs
with stabilizer generated by S = 〈g1, g2, . . . , gm〉, which is a code of dimension pn−m, we can
choose the larger stabilizer S ′ = 〈g1, g2, . . . , gm, Z̄1, . . . , Z̄n−m〉, where Z̄1, . . . , Z̄n−m ∈ C(S)
mutually commute. Now choose the classical code C′ =

{
(0, . . . , 0, xm+1, . . . , xn) : xj ∈

{0, . . . , p − 1}
}
of length n with pn−m codewords, where the first m coordinates of each

codeword are zero. Then we have Qs = (S ′, C′), i. e., the stabilizer code Qs can then be
viewed as a CWS code with stabilizer state S ′ and classical code C′. However, note that the
choice of S ′ (and hence C′) is non-unique, as in particular the choice of Z̄1, . . . , Z̄n−s ∈ C(S)
is non-unique.

I Example 1. As an example, consider the five-qubit code with stabilizer

g1 = XZZXI, g2 = IXZZX, g3 = XIXZZ, g4 = ZXIXZ. (5)

In the CWS picture, the stabilizer state can be chosen as

S = 〈g1, g2, g3, g4,ZL〉, (6)

where ZL = Z⊗5 is the logical Z operator. Alternatively, one can choose the stabilizer state

S ′ = 〈g1, g2, g3, g4,XL〉, (7)

where XL = X⊗5 is the logical X operator. For both S and S′, the classical code can be
chosen as C = {00000, 00001}.

Similarly, a USt code (S, C) can be viewed as a CWS code (S ′, C′) with the classical code
C′ of length n possessing some coset structure, i. e., C′ =

⋃
ti∈C̃ C0 + ti, where C0 is a linear

code. This linear code C0 of length n can be readily chosen as the classical code for the CWS
representation of the stabilizer code S. The code C̃ of length n can be derived from C of
length m by appending n−m zero coordinates. However, again, the choices of S ′ and C′ are
non-unique.

In the general situation, we have some freedom in choosing the stabilizer state when
representing a stabilizer code or a USt code in the CWS framework. Consequently, for a
given CWS code Q, there are also many different ways to write it in terms of a USt code
in general. We will show, however, that we can always obtain a unique stabilizer S, when
expressing a given CWS code as a USt code. The following theorem gives a canonical form
for any CWS code.

I Theorem 2. Every CWS code has a unique representation as a union stabilizer code.

Proof. To prove this theorem, we will need some lemmas.

I Lemma 3 (translational invariant codes). Let C ⊂ Fnp be a code over Fp with |C| = M

and assume that for some non-zero s ∈ Fnp we have C = C + s, i. e., the code is invariant
with respect to translation by s. Then C can be written as a disjoint union of cosets of the
one-dimensional space C0 = 〈s〉 generated by s, i. e.,

C =
⋃

ti∈C′

C0 + ti,

where C′ ⊂ Fnp with |C′| = M/p.
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Proof. By assumption, for every x ∈ C, the vector x + s is in the code as well. Hence we
can arrange the elements of C as follows:

C′ t1 t2 . . . tM/p

C′ + s t1 + s t2 + s . . . tM/p + s

C′ + 2s t1 + 2s t2 + 2s . . . tM/p + 2s
...

...
...

. . .
...

C′ + (p− 1)s t1 + (p− 1)s t2 + (p− 1)s . . . tM/p + (p− 1)s

Every column in this arrangements is a coset C0 + ti. J

I Lemma 4 (vanishing character sum). Let C ⊂ Fnq be an arbitrary code of length n. Assume
that the function

f : Fnp → C; f(y) =
∑
c∈C

ωc·y,

where ω = exp(2πi/p), vanishes outside a proper subspace V0 < Fnp . Then there exists a
non-zero vector s ∈ Fnp such that C = C + s. What is more, the code C can be written as a
union of cosets of the linear code C0 = V ⊥0 , i. e.,

C =
⋃

t∈C′

C0 + t. (8)

Proof. Let χC(y) denote the characteristic function of the code C, i. e., χC(y) ∈ {0, 1}, and
χC(y) = 1 if and only if y ∈ C. Define g(y) = 1− (1− ω)χC(y). Then g(y) = ωχC(y).

The Fourier transform of g(y) over Fnp reads

ĝ(y) = 1√
pn

∑
x∈Fn

p

ωx·yg(x)

= 1√
pn

∑
x∈Fn

p

ωx·y(1− (1− ω)χC(x)) =
√
pnδy,0 −

1− ω√
pn

∑
x∈Fn

p

ωx·yχC(x)

=
√
pnδy,0 −

1− ω√
pn

∑
c∈C

ωc·y =
√
pnδy,0 −

1− ω√
pn

f(y),

where δy,0 = 1 if y = 0, and δy,0 = 0 otherwise.
This shows that for y 6= 0, the Fourier transform ĝ(y) is proportional to the function

f(y), and hence ĝ vanishes outside of V0 as well. Recall that that dimV0 ≤ n− 1, as V0 is a
proper subspace by assumption. Let s ∈ V ⊥0 be a non-zero vector that is orthogonal to all
vectors in V0. Furthermore, let V c0 = Fnp \ V0 denote the set-complement of V0 in the full
vector space.

We want to show that the code C is invariant with respect to translations by s, i. e.,
C = C + s or equivalently, χC(y + s) = χC(y). This is in turn equivalent to showing that
g(y) = g(y + s). In the following, F−1 denotes the inverse Fourier transform:

g(y + s) = (F−1ĝ)(y + s) = 1√
pn

∑
x∈Fn

p

ω−x·(y+s)ĝ(x)

= 1√
pn

∑
x∈V0

ω−x·(y+s)ĝ(x) + 1√
pn

∑
x∈V c

0

ω−x·(y+s)ĝ(x)

= 1√
pn

∑
x∈V0

ω−x·sω−x·y ĝ(x)
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= 1√
pn

∑
x∈V0

ω−x·y ĝ(x)

= 1√
pn

∑
x∈V0

ω−x·y ĝ(x) + 1√
pn

∑
x∈V c

0

ω−x·y ĝ(x)

= 1√
pn

∑
x∈Fn

p

ω−x·y ĝ(x)

= (F−1ĝ)(y) = g(y).

Here we have used the fact that ĝ(x) vanishes outside of V0 and that s is orthogonal to all
vectors in V0.

From Lemma 3, it follows that the code C can be written as a union of cosets of the code
C0 = V ⊥0 generated by all vectors s that are orthogonal to V0. J

Now we are ready to prove Theorem 2. Let PQ denote the projection operator onto a
CWS code Q = ((n,K, d))p, i. e.

PQ =
∑
t∈C

1
pn

∑
x∈Fn

p

ωt·xgx1
1 . . . gxn

n = 1
pn

∑
x∈Fn

p

(∑
t∈C

ωt·x

)
gx1

1 . . . gxn
n

= 1
pn

∑
x∈Fn

p

αxgx1
1 . . . gxn

n (9)

where g1, . . . , gn are the generators of the stabilizer, and C = (n,K)p is a classical code.
First note that the coefficients αx in (9) are uniquely determined since the pn operators

{gx1
1 . . . gxn

n : x ∈ Fnp} are a subset of the error-basis of linear operators on the space Cpn . The
coefficient αx is proportional to tr(gx1

1 . . . gxn
n · PQ). On the other hand, αx =

∑
t∈C ω

t·x =
f(x), where f(x) is the function appearing in Lemma 4. So if the coefficients αx = f(x)
vanish outside of a proper subspace V0 < Fnp , the classical code C can be decomposed as
union of cosets of C0 = V ⊥0 . Then (9) can be re-written as follows:

PQ = 1
pn

∑
x∈V0

∑
t′∈C′

∑
c∈C0

ω(t′+c)·x

 gx1
1 . . . gxn

n

= 1
pn

∑
x∈V0

∑
c∈C0

ωc·x
∑

t′∈C′

ωt′·x

 gx1
1 . . . gxn

n

= |C0|
pn

∑
x∈V0

∑
t′∈C′

ωt′·x

 gx1
1 . . . gxn

n (10)

In the last step we have used the fact that the spaces V0 and C0 are orthogonal to each
other, i. e., the inner product c · x vanishes. Now assume that the space V0 has dimension m
and that {b1, . . . , bm} ⊂ Fnp is a basis of V0. Then every vector x ∈ V0 can be expressed as
x =

∑m
j=1 yjbj . For every t′ ∈ C′ we define the vectors s ∈ Fmp with sj =

∑n
i=1 tibji, forming

another classical code D ⊂ Fmp . Further, we define the m operators g̃j =
∏n
i=1 g

bji

i . This
allows us to express (10) as

PQ = 1
pm

∑
y∈Fm

p

(∑
s∈D

ωs·y

)
g̃y1

1 . . . g̃ym
m . (11)
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Hence, whenever the classical code associated to a CWS code has some non-trivial shift
invariance, the projection onto a CWS code can be expressed as a projection onto a USt code
(cf. (2)), thereby increasing the dimension of the underlying stabilizer code and reducing the
size of the classical code. In order to obtain a unique representation, we may assume that
the stabilizer code is of maximal dimension, and hence the classical code is “without any
linear structure.”

In order to show uniqueness, consider the coefficients tr(M · PQ) of the expansion of the
projection PQ in terms of the operator basis formed by the n-qudit Pauli matrices M . Clearly,
we have {M : tr(M ·PQ) 6= 0} ⊂ S = 〈g̃1, . . . , g̃m〉. If the group S ′ = 〈M : tr(M ·PQ) 6= 0〉
was a proper subgroup of S, the coefficients

∑
s∈D ω

s·y would vanish for y outside a proper
subspace V0 < Fmp , contradicting the assumption the classical code D has no linear structure.

Note that the stabilizer S is only unique up to the choice of some phase factors of the
error basis. For example, replacing g̃1 by ωg̃1 will introduce some phase factor which has
to be compensated by changing the first coordinate s1 of the codewords s of the classical
code D. To finally fix these degrees of freedom, we can enforce gi = M1 ⊗ · · · ⊗Mn, with
Mj = Xa

j Z
b
j for j = 1, 2, . . . , n and a, b ∈ {0, 1, . . . p− 1}. J

4 Symmetries of the stabilizer state of a CWS code

We are now ready to discuss the relationship between the symmetries of the CWS code Q
and that of the corresponding stabilizer state S.

I Theorem 5. For any CWS code Q with permutation symmetry σ, there exists a stabilizer
state S with the same permutation symmetry σ such that Q = (S, C).

Proof. To prove this theorem, we will need some lemmas.

I Lemma 6. If the projection operator PC given in Eq. (9) is invariant under a permutation
σ of the qudits, then the stabilizer code related to expressing PC in terms of a USt code as in
Eq. (11) is invariant with respect to the permutation as well.

Proof. The statement follows directly from the uniqueness of the stabilizer group S =
〈g̃1, . . . , g̃m〉 generated by the operators in Eq. (11). J

We now prove a lemma for a special case of Theorem 5, when the CWS code is a
Calderbank–Shor–Steane (CSS) code [4, 22].

I Lemma 7. For a CSS code Q with permutation symmetry σ, there exists a stabilizer state
|ψ〉 ∈ Q such that |ψ〉 has the same permutation symmetry as Q.

Proof. For a CSS code Q, the stabilizer generators can always be chosen such that every
generator is either a tensor product of powers of X (denoted by SX) or a tensor product of
powers of Z (denoted by SZ). We can use the following matrix form:[

SX 0
0 SZ

]
As the permutation symmetry σ of Q does not change the type of an operator, both SX and
SZ have necessarily the same symmetry σ. Furthermore, the logical operators can also be
chosen as either tensor products of powers of X or tensor products of powers of Z, which
correspond to the dual of the classical codes associated to either the Z stabilizers or the
X stabilizers, respectively. Without loss of generality let us choose a set LZ of commuting
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logical operators which are all of Z type. Then the group generated by the set SX∪SZ∪LZ of
mutually commuting operators is again invariant under the permutation σ. As the stabilizer
group is maximal, it stabilizes a unique state |ψ〉. Hence |ψ〉 is the stabilizer state with the
desired symmetry, and the CSS code can be expressed as CWS code in terms of |ψ〉 and
some classical code C. J

We now prove a lemma for the stabilizer code case of Theorem 5, which improves the
result of Lemma 7.

I Lemma 8. For a stabilizer code Q with permutation symmetry σ, there exists a stabilizer
state |ψ〉 ∈ Q such that |ψ〉 has the same permutation symmetry as Q.

Proof. To prove this lemma, we shall use a standard form for stabilizers (see [20, Section
10.5.7]):[

I A1 A2 B 0 C

0 0 0 D I E

]
=
[
SX SZ
0 S ′Z

]
=
[
S
S ′
]

where A1 is an r × (n− k − r) matrix, A2 is an r × k matrix, B is an r × r matrix, C is an
r × k matrix, D is an (n− k − r)× r matrix, and E is an (n− k − r)× k matrix. Similar
as in the CSS case, we can choose a set LZ of commuting logical operators which are all
of Z type. In matrix form, they are given by [0 0 0| − At2 0 I]. Then the group generated
by the mutually commuting operators in S ∪ S ′ ∪ LX stabilizes a unique state |ψ〉 which is
invariant with respect to the permutation σ. Hence |ψ〉 is the stabilizer state with the desired
symmetry that can be used to express Q as CWS code with some classical code C. J

To prove Theorem 5, given a CWS code Q, we first find its unique decomposition as a USt
code Q = (S, C), based on Theorem 2. Here S is in general a stabilizer code with m = n− k
generators. If Q has a permutation symmetry σ, then according to Lemma 6, the stabilizer
code S must also have the symmetry σ. Now according to Lemma 8, there exists a quantum
state |ψ〉 in the stabilizer code S which also has the symmetry σ. Hence |ψ〉 is the stabilizer
state with the desired symmetry. Note that the stabilizer S ′ of the state |ψ〉 contains the
original stabilizer S. Therefore, common eigenspaces of S are further decomposed into
one-dimensional joint eigenspaces of S ′, and we can rewrite the projection PQ onto the USt
code in the form corresponding to a CWS code. J

5 Symmetries of the Classical Code

Theorem 5 does not make any statement about the symmetry of the classical code. In
general, if we insist to use the canonical form of the CWS code as given by Theorem 2, we
cannot expect that the (non-linear) classical code C associated with the CWS code Q = (S, C)
has the same symmetry as Q. That is, in this case, even if the stabilizer S has the same
permutation symmetry σ as the quantum code Q, one might not be able to find a classical
code C with the same symmetry σ in general. Let us look at an example.

I Example 9. Consider the stabilizer state 1/
√

2(|00 . . . 0〉 − |11 . . . 1〉) (hence a CWS code,
denoted by Q), which is invariant under all permutations. Using the canonical form of
Q = (S, C) as given by Theorem 2, the group S is generated by XX . . .X and all pairs of Z,
which is permutation invariant. However, the classical code C consists of the vector which
is one in the first coordinate and zero elsewhere, i. e., C is a code with a single codeword
10 . . . 0, which has a smaller symmetry group than that of Q.
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On the other hand, if we choose the group S ′ generated by −XX . . .X and all pairs of Z,
the corresponding classical code C′ consists just of the zero vector. So in the representation
Q = (S ′, C′), both S ′ and C′ have the same permutation symmetries as Q.

This example indicates that exploiting the phase factor freedom in the USt code decom-
position of a CWS code, and thereby deviating slightly from the canonical form, there is some
chance to find both a stabilizer and a classical code with the same permutation symmetry as
the CWS code.

To study the properties of the classical code C associated with a CWS code Q = (S, C),
consider the case where the stabilizer state S has some permutation symmetry σ. Then for
given generators {g1, g2, . . . , gn} of the stabilizer S, the permuted operators {gσ1 , gσ2 , . . . , gσn}
generate the same stabilizer S. The transformation gi 7→ gσi can be characterized by a
Zp-valued, invertible n× n matrix R given by

gσi =
n∏
j=1

g
Rji

j . (12)

Let us write the K classical codewords in C as an K × n matrix with entries cij . We
are now ready to present the following theorem, which gives a sufficient condition for C to
guarantee that Q has the same permutation symmetry as S

I Theorem 10. Let Q = (S, C) be a CWS code, and let {g1, g2, . . . , gn} be generators of
S. If S has permutation symmetry σ, where gσi =

n∏
j=1

g
Rji

j , and CR ∼= C, then Q has the

same permutation symmetry σ as S. Here by CR ∼= C we mean that the set of rows of CR,
corresponding to the transformed code, equals the code C (not as a matrix).

Proof. We start by applying the permutation σ to the projection PQ onto the code space
given by Eq. (3):

PσQ =
∑
t∈C

1
pn

∑
x∈Fn

p

ωt·x(gσ1 )x1 . . . (gσn)xn =
∑
t∈C

1
pn

∑
x∈Fn

p

ωt·x(
∏
j

g
Rj1
j )x1 . . . (

∏
j

g
Rjn

j )xn

=
∑
t∈C

1
pn

∑
x∈Fn

p

ωt·xg

∑
j
R1jxj

1 . . . g

∑
j
Rnjxj

n (13)

Let x′j =
∑
iRjixi and ti =

∑
j Rjit

′
j . Then for t ∈ C, we have t′ ∈ C′, where the transformed

code C′, considered as a K × n matrix, is given by

C = C′R. (14)

Then Eq. (13) becomes

PσQ =
∑

t′∈C′

1
pn

∑
x∈Fn

p

ω

∑
i

∑
j
Rjit

′
jxig

∑
j
R1jxj

1 . . . g

∑
j
Rnjxj

n

=
∑

t′∈C′

1
pn

∑
x∈Fn

p

ω

∑
j
t′j(
∑

i
Rjixi)

g

∑
j
R1jxj

1 . . . g

∑
j
Rnjxj

n

=
∑

t′∈C′

1
pn

∑
x′∈Fn

p

ωt′·x′
g
x′

1
1 . . . g

x′
n
n . (15)
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Now because of CR ∼= C, the rows of CR are a permutation of the rows of C. Hence there
exists a permutation matrix P such that PCR = C, which gives

PC = CR−1 = C′. (16)

The second equality follows from Eq. (14). Hence the rows of C′ are a permutation of the
rows of C, i. e., C and C′ are the same code. Therefore Eq. (15) becomes

PσQ =
∑
t′∈C

1
pn

∑
x′∈Fn

p

ωt′·x′
g
x′

1
1 . . . g

x′
n
n = PQ, (17)

which proves the theorem. J

Note that although Theorem 10 is stated in terms of a set of generator gi of S, it is actually
independent of the choice of the generators. That is to say, if gσi =

n∏
j=1

g
Rji

j , and CR ∼= C

holds, then for some other generators g′i of S, where Q = (Sg′ , C′) and (g′i)σ =
n∏
j=1

(g′j)R
′
ji ,

one would then have C′R′ ∼= C′.
Theorem 10 gives a sufficient condition that the CWS code Q = (S, C) may have the

same permutation symmetry as S. Note that [8, Proposition 5.2] considers a special case of
Proposition 10, where the permutation σ is the cyclic shift. However, it turns out that the
argument in [8] is false; the cyclic symmetry of the stabilizer S is not sufficient to guarantee
the cyclic symmetry of the resulting quantum code Q; the classical code C must also have a
cyclic symmetry, as discussed in Corollary 12.

It remains unclear whether the condition given in Theorem 10 is also necessary, at least
in the case when both the CWS code Q and the stabilizer S have a permutation symmetry
σ. We expect that in this case the condition CR ∼= C would be necessary. However, while
the condition might be violated for a particular choice of S, it might hold for a different
representation Q = (S ′, C′).

6 The Standard Form Q = (G, C)

Starting with the unique representation of a CWS code as a USt code, we can derive a
standard form of a CWS code. We know that up to local Clifford (LC) operations, any CWS
code Q can be represented by a graph G and a binary classical code C [5, 6]. Starting with
a given CWS code Q = (S, C), one can transform the stabilizer S into a graph state using
LC operations, and then C will be transformed accordingly [5]. Our concern is that if Q has
some permutation symmetry σ, whether it can be kept during this LC operations, in other
words, whether one can always obtain a graph with the same permutation symmetry σ as Q
has.

Indeed, even if one can always find a stabilizer state S with the same symmetry as Q
has, we are asking too much here for the graph G. In general, one cannot find a graph with
the same permutation symmetry as Q has. Let us look at an example.

I Example 11. The stabilizer S for the 7-qubit Steane code is generated by

g1 = XIXXXII, g2 = IXIXXXI, g3 = IIXIXXX, (18)

which are the three X-type generators, and the three Z-type generators

g4 = ZIZZZII, g5 = IZIZZZI, g6 = IIZIZZZ. (19)
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Figure 1 (a) The graph for the Steane code with three-fold cyclic symmetry. (b) The toric code
on a square lattice. Qubits are sitting on edges of the lattice. p denotes a plaquette, which contains
4 qubits as shown across the red lines. s denotes a star, which contains 4 qubits as shown across the
blue lines.

This code is cyclic, and for its CWS representation, one can choose, e. g., the stabilizer
state |ψ〉 with stabilizer S ′ generated by S ′ = 〈g1, g2, g3, g4, g5, g6, Z

⊗7〉. Then |ψ〉 is cyclic
as well. However, when transforming the Steane code into the standard form of its CWS
representation, one cannot find it a cyclic graph [10]. In fact, the best symmetric graph one
can find is with a three-fold cyclic symmetry instead of a 7-fold cyclic symmetry, as shown
in Fig. 1(a). The three-fold symmetry is in fact the symmetry of the generators of S ′ instead
of the symmetry of the entire stabilizer group S ′. This is related to the fact that the graph
G in some sense represents only the stabilizer generators of its corresponding graph state.

The toric code turns out to provide another example, as shown in Fig. 1(b), which is in
some sense even worse than the Steane code example. Despite the fact that the generators
of the stabilizer group for the toric code have a translational symmetry, we will show in
Theorem 13 that one cannot find a graph with translational symmetry. However, both the
Steane code and the toric code do not provide counterexamples to Theorem 5, as the logical
zero has the desired symmetry in both cases.

Nevertheless, there might still be some interesting relationship between the permutation
symmetries of Q and the symmetries of G and C. Let us start with a simple case:

I Corollary 12. For a CWS code Q = (G, C), if both G and C have a permutation symmetry
σ, then the code Q has the permutation symmetry σ as well.

Proof. This is actually a direct implication of Theorem 10; in this case the matrix R is
nothing but a permutation matrix corresponding to the permutation σ. J

This turns out to be good luck, as due to the structure of the stabilizer generators of graph
states, a permutation of the qubits corresponds to the same permutation of the generators
gi, and hence also corresponds to a permutation of the coordinates in the classical code
C. Prominent examples are the ((5, 2, 3)) code and the ((5, 6, 2)) code, whose corresponding
graph is a pentagon in both cases, and the corresponding classical codes are cyclic (see [6,
Sec. IIIA,B]).

Finally, let us examine the graph symmetry for the toric code. The toric code was first
proposed by Kitaev in 1997 as an example demonstrating topologically ordered quantum
systems [13, 14]. The setting is a two-dimensional square lattice with periodic boundary
conditions and with a qubit sitting on each edge of the lattice. There are two types of
stabilizer generators:
1. (star) type, indicated in Fig. 1(b) as s:

AXs =
∏

j∈star(s)

Xj (20)
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2. (plaquette) type, indicated in Fig. 1(b) as p:

AZp =
∏

j∈plaquette(p)

Zj (21)

It is straightforward to check that AXs and AZp commute for any pair s and p.
These stabilizer generators are by definition translational invariant, for the translation

along each direction of the two-dimensional square lattice. What is more, one can even find
an encoding graph which is also translational invariant [2]. We will show that unfortunately
one cannot find a translational invariant graph to represent the toric code as a CWS code.

I Theorem 13. A graph corresponding to the toric code cannot have the same translational
symmetry as the code.

Proof. Let T be the toric code stabilizer generated by the star and plaquette operators as
given by Eq. (20) and Eq. (21). Suppose that Q = (G, C) is a code where G is as symmetric
as the toric code stabilizer (i. e., translational invariant) and is local Clifford equivalent to
T . This means that if we let S be the stabilizer of Q, then there are local Clifford elements
C1, C2, . . . such that S = ĈT Ĉ†, where Ĉ = C1 ⊗ C2 ⊗ · · · (here we choose an arbitrary
indexing of qubits).

Let σ be a permutation symmetry of the toric code and define Ĉσ = Cσ(1) ⊗ Cσ(2) ⊗ · · · .
Since σ is assumed to be a symmetry of S as well, we have

S = ĈT Ĉ† = ĈσT Ĉ†σ.

Then for Di = C†iCσ(i), we have D̂T D̂† = T , where D̂ = D1 ⊗D2 ⊗ · · · .
Let XXXX be the element of this stabilizer group T corresponding to some star .

Since D̂ is local, and XXXX is the only element of T that acts on edges corresponding
to , we must have DXXXXD† = XXXX. The same argument applies to the Z-terms
corresponding to a plaquette . As a result, conjugation by Di maps X to ±X and Z to
±Z. Hence Di is an element of the Pauli group.

Now we know that D̂ is in the Pauli group, and it holds for every permutation σ. On the
other hand, the symmetry group of the toric code is transitive. Therefore, for every i, j, the
product C†iCj is in the Pauli group, and furthermore

C1 ⊗ C2 ⊗ · · · = (H ⊗H ⊗ · · · )(P1 ⊗ P2 ⊗ · · · ),

where the factors Pi are in the Pauli group and H is some Clifford element acting on a single
qubit.

ĈT Ĉ† is supposed to correspond to a graph state, but (P1 ⊗ P2 ⊗ · · · ) just changes some
signs in the stabilizer group, and (H ⊗H ⊗ · · · ) cannot turn the stabilizer group of the toric
code into a graph-type stabilizer group. J

7 Summary and Discussion

In this work we have investigated the symmetry properties of CWS codes. Our main result
shows that for a given CWS code Q with some permutation symmetry σ, there always exits
a stabilizer state S with the same symmetry σ such that Q = (S, C) for some classical code
C. As many good CWS codes are found by starting from a chosen S, this ensures that when
trying to find CWS codes with certain permutation symmetry, the choice of S with the
same symmetry will suffice. A key point to reach our main result is to obtain a canonical
representation for CWS codes, i. e., a unique decomposition as USt codes.
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One natural question is whether there is any chance to find a classical code C with
the same symmetry σ as that of Q, which, together with some S with symmetry σ, gives
Q = (S, C). We do not know the answer in general, but we know that one can no longer
restrict S to the stabilizer used in the canonical form, but might have to introduce some
phase factors. We have developed a sufficient condition that C has to satisfy in order to
ensure that in combination with some S with symmetry σ, one will have Q = (S, C) with the
same symmetry σ. Observing the fact that the permutation on the code Q does not directly
translate into a permutation of the classical C (but a linear transformation given by the
matrix R), in general one cannot expect to find a classical code C with the same symmetry
as that of Q.

One interesting case are cyclic codes. If there exists a graph G which has the same
symmetry σ as the CWS code Q = (G, C), then the permutation of the code Q translates
directly into a permutation of the classical code C. Hence, combining a graph G whose
symmetry group contains the cyclic group of order n, with a cyclic classical code C of length
n, gives a cyclic CWS code Q = (G, C). It would be nice to see whether the converse is true
as well, i. e., given a cyclic CWS code Q which corresponds to a graph G whose symmetry
group contains the cyclic group of order n, can we always find a cyclic classical code C of
length n, such that Q = (G, C). We leave this for future investigation.

In general, although every CWS code Q is local Clifford equivalent to a standard form
(G, C), the local Clifford operation may destroy the permutation symmetry of the original
code. In other words, one cannot expect to always find a graph G which has the same
symmetry as that of Q. The seven-qubit Steane code is such an example where the graph can
only possess a three-fold cyclic symmetry which is the symmetry of the stabilizer generators,
instead of the seven-fold cyclic symmetry of the code. For the toric code, despite the stabilizer
generators being translational invariant, we show that there does not exist any associated
translational invariant graph. A general understanding of the conditions that graphs can
possess the same symmetry as the CWS code is worth further investigation.
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Abstract
Contrary to classical physics, the predictions of quantum theory for measurement outcomes are
of a probabilistic nature. Questions about the completeness of such predictions lie at the core
of quantum physics and can be traced back to the foundations of the field. Recently, the com-
pleteness of quantum probabilistic predictions could be established based on the assumption of
freedom of choice. Here we ask when can events be established to be as unpredictable as we
observe them to be relying only on minimal assumptions, ie. distrusting even the free choice
assumption but assuming the existence of an arbitrarily weak (but non-zero) source of random-
ness. We answer the latter by identifying a sufficient condition weaker than the monogamy of
correlations which allow us to provide a family of finite scenarios based on GHZ paradoxes where
quantum probabilistic predictions are as accurate as they can possibly be. Our results can be
used for a protocol of full randomness amplification, without the need of privacy amplification, in
which the final bit approaches a perfect random bit exponentially fast on the number of parties.
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1 Introduction

Physical theories aim at providing the best possible predictions for both natural phenomena
taking place in the universe and on the controlled environment of our laboratories. Inter-
estingly, the type of predictions theories can make has been changing over time, depending
heavily on the specific physical theory considered. Moreover, the latter happens not only
at the less surprising quantitative level, ie. general relativistic predictions about the peri-
helion precession shift of mercury are more accurate than those of newtonian theory of
gravity, but more strikingly, also at a qualitative level ie. the uncertainty on predictions hold
fundamentally different statuses in classical and quantum theory.

Classical mechanics, the theory governing our physical understanding until the XIX
century, is a deterministic theory by construction. The latter neither does imply that
probabilistic predictions do not play any role nor that we cannot observe physical phenomena
behaving as random and yet being governed by classical mechanical laws. Instead, it means
that all uncertainty in the predictions of the theory can be traced back to a lack of knowledge
about all the relevant degrees of freedom of the physical phenomena considered. As an
example, accurate knowledge of the applied force and torque, viscosity and gravitational
potential would make the outcome prediction of a coin flip fully predictable. Thus, no
room for intrinsic unpredictability is available within classical theory and the best possible
predictions are deterministic.
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208 Certifying the Absence of Apparent Randomness under Minimal Assumptions

With the advent of quantum mechanics, the former intuitions had to change dramatically.
Contrary to classical mechanics, quantum theory is a probabilistic theory as dictated by its
axioms. This means that, in general, the predictions of the theory for measurement outcomes
have an inevitable amount of uncertainty, even when full knowledge and control over all
relevant degrees of freedom is assumed.

Such a striking change on the role of predictability greatly shaked the foundations of
physics. The completeness of quantum predictions has indeed been widely debated by some
of the most eminent physicists that contributed to its development [1, 2]. However, John Bell
was the first to derive consequences on the issue of completeness from experimentally fasifiable
predictions under rigorous assumptions [3]. He proved that according to the predictions of
quantum theory and under the assumption of locality and freedom of choice, the outcomes of
some quantum experiments would be incompatible with an underlying deterministic theory.
Very recently, completeness of quantum theory could be established under the assumptions of
locality, the correctness of quantum theory and the crucial assumption of freedom of choice
[4]. However, one may consider cases where the freedom of choice assumption cannot be fully
trusted and ask whether it is truly a necessary requirement in order to exclude all apparent
randomness. In the present letter we pose such question, that is, under what conditions and
minimal assumptions can we certify that an event is as intrinsically unpredictable as it is
observed to be. In other words, when can we exclude all possible apparent randomness of an
event. Interestingly, in a recent work the full unpredictability of an event could be certified
under minimal assumptions [5]. Nevertheless, this result required a complex scenario on the
infinite number of parties limit. The proof was based on the monogamy of correlations in
such limit. The main result of this letter is to identify a sufficient condition weaker than the
monogamy of correlations [6] that certify events without any apparent randomness under
the assumptions of locality and the existence of a source of arbitrarily deterministic bits.
Using this condition, we construct a family of finite scenarios based on GHZ paradoxes [7]
where events are indeed as intrinsically random as they appear to be. Moreover, our results
imply a perfect free random bit can be approached exponentially fast in the number of
parties and is therefore suitable for a full randomness amplification protocol without privacy
amplification[5].

1.1 Geometric interpretation of the problem

Figure 1 Qualitative picture of local, quantum and no-sigalling sets.
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Fig. 1 is a useful qualitative geometric picture which serves to clarify the general idea
and to explain the scenario we work with. Given some non-local distribution Pobs, its
intrinsic randomness content is quantitatively dependent on whether we use the quantum or
non-signalling framework. For example, the Tsirelson correlations [8] in the (2, 2, 2) scenario
considered strictly within the quantum set yields 1.23 bits of randomness [9]. However, its
randomness in the larger non-signalling set is a much smaller 0.34 bits. Another example is
the GHZ correlations [10] which contain (considering the tripartite states in particular) 3
bits of randomness within the quantum set. However, in the non-signalling set it reduces to
just 1 bit since the extremal points are fully characterized in [11]. In fact, it is generally the
case that the intrinsic randomness of a point considered to be embedded in the non-signalling
set is lower than its intrinsic randomness within the quantum set. The reason is simply
that there are more general decompositions possible within the non-signalling set which
increases our ignorance about its underlying preparation. It is in this context that we can
finally pose the question that is the theme of this work. Is it possible to guarantee that the
observed correlations do not contain any classical randomness for some correlations Pobs
even allowing the largest possible ignorance by embedding it in the non-signalling set?

The challenge to answering this question in full generality is that the definition of intrinsic
randomness in such scenarios is defined as the optimization over all possible preparations of
Pobs. However, this computation requires a complete characterization of the corresponding no-
signalling polytope. This is known only for the smallest dimension and thus the computation
is infeasible for anything but the smallest systems. What we show here is that despite the
infeasibility of calculating the intrinsic randomness in full generality it is possible to choose
scenarios carefully in which the computation is rendered feasible. We not only demonstrate
one such case but also certify that the observed randomness is fully intrinsic in our chosen
scenario. What make the result counter-intuitive is that our results are valid for a whole
class of non-extremal distributions.

There is a further layer of subtlety which we additionally address in our work. This
is related to a paradox of randomness certification using Bell inequalities, which is the
freedom of choice assumption. The assumption of freedom of choice may be regarded a
reasonable assumption in many cases but it is particularly problematic for randomness
certification. Recently there has been a significant body of work in deriving Bell inequalities
with relaxations of this assumption [12, 13, 14, 15, 5]. A significant feature of our results
are that they are valid even under a complete (non-zero) relaxation of the measurement
assumption. For this reason, these results may also be interpreted as an alternative approach
for full randomness amplification with the benefit of significantly easier techniques.

2 Preliminaries

Suppose that a Bell test is performed repeatedly among N parties and the resulting statistics
is given by Pobs(a|x), where a = (a1, . . . , aN ) and x = (x1, . . . , xN ) are the string of
outcomes and measurement inputs of the parties involved. Let g be a function acting on
the measurement results a. As previously explained, there are different physically relevant
notions of randomness.

First, the observed randomness of g for measurements x is the randomness computed
directly from the statistics. Operationally, this may be defined as the optimal probability of
guessing the outcome of g for input x,

Gobs(g,x, Pobs) = max
k∈Im(g)

Pobs(g(a) = k|x). (1)

TQC’13
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where Im(g) is the image of function g.
Moving to the definition of the intrinsic randomness, one should consider all possible

preparations of the observed statistics in terms of no-signalling probability distributions. In
our context, a particular preparation reads

Pobs(a|x) =
∑
e

p(e|x)P ex
e (a|x) (2)

where the P ex
e are extremal points of the no-signaling set [16]. The terms p(e|x) may depend

on x, which accounts for possible correlations between the preparation e and the measurement
settings x, given that the choice of measurements are not assumed to be free. Hence, we
define the intrinsic randomness of a function g by optimizing over all possible non-signalling
preparations of Pobs so as to minimize the randomness of g. In other words,

Gint(g,x, Pobs) = max
{p(e|x),P ex

e }

∑
e

p(e|x)Gobs(g,x, P ex
e )

subject to:∑
e

p(e|x)P ex
e (a|x) = Pobs(a|x) (3)

p(x|e) ≥ δ with δ > 0; ∀ x, e (4)

where Gobs(g,x, P ex
e ) = maxk P ex

e (g(a) = k|x) is also the intrinsic randomness of P ex
e , since

intrinsic and observed randomness must coincide for extremal points of the non-signalling
set. Note that condition p(x|e) ≥ δ > 0 allows for an arbitrary (but not absolute) relaxation
of the freedom of choice assumption by allowing for arbitrary (yet not complete) correlations
between the preparation and the measurement settings. Physically, this condition ensures
that all measurement combinations appear for all possible preparations e. An example of a
source of randomness fulfilling this condition is a Santha-Vazirani source [17]. Note however
that our definition allows sources more general than the Santha-Vazirani sources.

From a cryptographic point of view, the observed randomness is the one perceived by the
parties performing the Bell test, whereas the intrinsic randomness is that perceived by a non-
signalling eavesdropper possessing knowledge of the preparation of the observed correlations
and with the ability to arbitrarily (yet not fully) bias the choice of the measurement settings.

In general, Gobs is strictly larger than Gintr, as the set of non-signalling correlations is
larger than the quantum. The results in [6, 18] provide a Bell test in which Gintr approaches
Gobs (and to 1/2) in the limit of an infinite number of measurements and assuming free
choices, that is, p(x|e) in (2) is independent of e. The results in [19] allow some relaxation of
this last condition. The results in [5] arbitrarily relaxed the free-choice condition and give
a Bell test in which Gintr tends to Gobs (and both tend to 1/2) in the limit of an infinite
number of parties. Here, we provide a significantly stronger proof, as we allow the same level
of relaxation on free choices and provide Bell tests in which Gintr = Gobs for any number
of parties. Moreover, a perfect random bit is obtained in the limit of an infinite number of
parties.

3 Scenario

Our scenario consists of N parties where each performs two measurements of two outcomes.
In what follows, we adopt a spin-like notation and label the outputs by ±1. Then, any
non-signalling probability distribution can be written as (for simplicity we give the expression
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for three parties, but it easily generalizes to an arbitrary number)

P (a1, a2, a3|x1, x2, x3) =
1
8

(
1 + a1〈A(x1)

1 〉+ a2〈A(x2)
2 〉+ a3〈A(x3)

3 〉+

a1a2〈A(x1)
1 A

(x2)
2 〉+ a1a3〈A(x1)

1 A
(x3)
3 〉 +

a2a3〈A(x2)
2 A

(x3)
3 〉+ a1a2a3〈A(x1)

1 A
(x2)
2 A

(x3)
3 〉

)
,

(5)

where A(xi)
i denotes the outputs of measurement xi by each party i. In this scenario, we

consider Mermin Bell inequalities, whose Bell operator reads

MN = 1
2MN−1(A(0)

N +A
(1)
N ) + 1

2M
′
N−1(A(0)

N −A
(1)
N ), (6)

where M2 is the Clauser-Horne-Shimony-Holt operator and M ′N−1 is obtained from MN−1

after swapping A(0)
i ↔ A

(1)
i . We study probability distributions that give the maximal

non-signalling violation of the Mermin inequalities and focus our analysis on a function f
that maps the N measurement results into one bit as follows:

f(a) =


+1 n−(a) = (4j + 2); with j ∈ {0, 1, 2, . . .}

−1 otherwise
(7)

where n−(a) denotes the number of results in a that are equal to −1.

4 Results

Our goal in what follows is to quantify the intrinsic randomness of the bit defined by f(a)
for those distributions maximally violating the Mermin inequality for odd N . We first prove
the following

I Lemma 1. Let PM(a|x) be an N-partite (odd N) non-signalling probability distribution
maximally violating the corresponding Mermin inequality. Then, for any input x appearing
in the inequality

PM(f(a) = hN |x) ≥ 1/2, with hN =
√

2 cos
(
π(N + 4)

4

)
. (8)

Note that, as N is odd, hN = ±1. Operationally, the Lemma implies that, for all points
maximally violating the Mermin inequality, the bit defined by f is biased towards the same
value hN . Since the proof of the Lemma for arbitrary odd N is convoluted, we give the
explicit proof for N = 3 here, which already conveys the main ingredients of the general
proof, and relegate the generalization to the Supplementary Information.

Proof for three parties. With some abuse of notation, the tripartite Mermin inequality may
be expressed as,

M3 = 〈001〉+ 〈010〉+ 〈100〉 − 〈111〉 ≤ 2, (9)

where 〈x1x2x3〉 = 〈A(x1)
1 A

(x2)
2 A

(x3)
3 〉 and similar for the other terms. The maximal non-

signalling violation assigns M3 = 4 which can only occur when the first three correlators in
(9) take their maximum value of +1 and the last takes its minimum of −1.

Take any input combination appearing in the inequality (9), say, xm = (0, 0, 1). Maximal
violation of M3 imposes the following conditions:
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1. 〈001〉 = 1. This further implies 〈0〉1 = 〈01〉23, 〈0〉2 = 〈01〉13 and 〈1〉3 = 〈00〉12.
2. 〈010〉 = 1 implying 〈0〉1 = 〈10〉23, 〈1〉2 = 〈00〉13 and 〈0〉3 = 〈01〉12.
3. 〈100〉 = 1 implying 〈1〉1 = 〈00〉23, 〈0〉2 = 〈10〉13 and 〈0〉3 = 〈10〉12.
4. 〈111〉 = −1 implying 〈1〉1 = −〈11〉23, 〈1〉2 = −〈11〉13 and 〈1〉3 = −〈11〉12
Imposing these relations on (5) for input xm = (0, 0, 1) one gets

PM(a1, a2, a3|0, 0, 1) = 1
8 (1 + a1a2a3 + (a1 + a2a3)〈0〉1+

(a2 + a1a3)〈0〉2 + (a3 + a1a2)〈1〉3)
(10)

Using all these constraints and the definition of the function (20), Eq. (8) can be expressed
as

PM (f(a) = +1|xm)
= PM(1,−1,−1|xm) + PM(−1, 1,−1|xm)
+ PM(−1,−1, 1|xm)

= 1
4(3− 〈0〉1 − 〈0〉2 − 〈1〉3)

(11)

Proving that P (f(a) = +1|xm) ≥ 1/2 then amounts to showing that 〈0〉1 + 〈0〉2 + 〈1〉3 ≤ 1.
This form is very convenient since it reminds one of a positivity condition of probabilities.

We then consider the input combination x̄m such that all the bits in x̄m are different from
those in xm. We call this the swapped input, which in the previous case is x̄m = (1, 1, 0).
Note that this is not an input appearing in the Mermin inequality. However, using the
previous constraints derived for distributions PM maximally violating the inequality, one has

PM(a1, a2, a3|1, 1, 0)

=1
8(1 + a1〈1〉1 + a2〈1〉2 + a3〈0〉3 + a1a2〈11〉12

+ a1a3〈10〉13 + a2a3〈10〉23 + a1a2a3〈110〉123)

=1
8(1 + a1〈1〉1 + a2〈1〉2 + a3〈0〉3 − a1a2〈1〉3

+ a1a3〈0〉2 + a2a3〈0〉1 + a1a2a3〈110〉123),

(12)

where the second equality results from the relations 〈11〉12 = −〈1〉3, 〈10〉13 = 〈0〉2 and
〈10〉23 = 〈0〉1.

It can be easily verified that summing the two positivity conditions PM(1, 1,−1|x̄m) ≥ 0
and PM(−1,−1, 1|x̄m) ≥ 0 gives the result we seek, namely 1− 〈0〉1 − 〈0〉2 − 〈1〉3 ≥ 0, which
completes the proof. J

Using the previous Lemma, it is rather easy to prove the following

I Theorem 2. Let Pobs(a|x) be an N -partite (odd N) non-signalling probability distribution
maximally violating the corresponding Mermin inequality. Then the intrinsic and the observed
randomness of the function f are equal for any input x appearing in the Mermin inequality:

Gint(f,x, Pobs) = Gobs(f,x, Pobs)

where

Gobs(f,x, Pobs) = max
k∈{+1,−1}

Pobs(f(a) = k|x)
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Proof of Theorem 1. Since Pobs maximally and algebraically violates the Mermin inequality,
all the extremal distributions P ex

e appearing in its decomposition must also necessarily lead to
the maximal violation of the Mermin inequality (see Supplementary Information for details).
Hence, the randomness of f in these distributions as well satisfies Eqn. (8) of Lemma 1.
Using this, we find,

Gobs(f,x, P ex
e ) = max

k∈{+1,−1}
P ex
e (f(a) = k|x)

= |P ex
e (f(a) = hN |x)− 1/2|+ 1/2

= P ex
e (f(a) = hN |x), (13)

for every e. Therefore,

Gint(f,x, Pobs) = max
{p(e|x),P ex

e }

∑
e

p(e|x)Gobs(f,x, P ex
e )

= max
{p(e|x),P ex

e }

∑
e

p(e|x)P ex
e (f(a) = hN |x)

= Pobs(f(a) = hN |x), (14)

where the last equality follows from the constraint
∑
e p(e|x)Pe(a|x) = Pobs(a|x). On the

other hand the observed randomness for f is, Gobs(f,x, Pobs) = Pobs(f(a) = hN |x). J

The previous technical results are valid for any non-signalling distribution maximally
violating the Mermin inequality. For odd N this maximal violation can be attained by
a unique quantum distribution, denoted by Pghz(a|x), resulting from measurements on a
Greenberger-Horne-Zeilinger (GHZ) state. When applying Theorem 2 to this distribution,
one gets

Main result: Let Pghz(a|x) be the N -partite (odd N) quantum probability probability
distribution attaining the maximal violation of the Mermin inequality. The intrinsic and
observed randomness of f for a Mermin input satisfy

Gint/obs(f,x, Pghz) = 1
2 + 1

2(N+1)/2 (15)

This follows straightforwardly from Theorem 2, since Pghz(a|x) = 1/2N−1 for outcomes
a with an even number of results equal to −1 and for those measurements appearing in the
Mermin inequality.

It is important to remark that f(a|xm) approaches a perfect random bit exponentially
with the number of parties. In fact, this bit defines a process in which full randomness
amplification takes place. Yet, it is not a complete protocol as, contrary to the existing
proposal in [5], no estimation part is provided.

5 Discussion

We have seen that for the choice of our function, the observed randomness in distributions
maximally violating the Mermin inequality is wholly intrinsic. This includes the physically
realizable GHZ correlations. For the latter, the randomness of the function approaches that
of a perfect bit exponentially fast in the size of the system. In adversarial terms, this implies
that no non-signalling adversary has additional knowledge or can predict the outcome of f
better than the parties performing the Bell test.
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214 Certifying the Absence of Apparent Randomness under Minimal Assumptions

In the context of the GHZ correlations (being the only correlations in the class we have
defined that may be attained by quantum systems), our result bears a resemblance to those
in [4, 18] where the completeness of quantum theory was discussed. These results show
that the predictive power of quantum theory is maximal. However, our scenario departs
significantly from the one considered there. For one thing, we do not assume quantum theory
is correct at the level of the dynamics, i.e we do not assume the unitarity of the dynamics,
but only at the level of correlations. Besides, we consider a function of the outcomes. Most
important of all, our setup allows us to relax the critical free choice assumption arbitrarily,
as long as it is not absolute. This was not possible in [4, 18], except perhaps in a very limited
sense due to the results of [19].

Furthermore, our results bear a deep relationship with full randomness amplification
[20]. Since the free choice can be relaxed and we find our function approaching a perfect
random bit with increasing system size, this is precisely the task set out to full randomness
amplification. The missing link is the full protocol including estimation, which we do not
provide here.

Future directions of work include exploiting such relations to upper bound the classical
randomness where exact relations are not possible. Moreover, an interesting line of work
is to extend these techniques for distributions non-maximally violating Bell inequalities.
These could perhaps lead to experimentally viable tests of fully general device independence
randomness certification.
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A Proof of the main theorem

Here we prove the principal theorem of the main text. It is basically a generalization of the
the proof for N = 3. We would like to prove that the function f defined in the main text,
satisfies the property:

P (f(a) = hN |xm) ≥ 1/2 (16)

for any N -partite distribution (odd N) that maximally violates the Mermin inequality. As in
the tripartite case, in order to prove the result we (I) express condition (16) in terms of some
correlators and (II) use positivity conditions from the swapped input to prove the inequality.

An N -partite no-signalling probability distribution P (a|x) with inputs x ∈ {0, 1}N and
outputs a ∈ {+1,−1}N can be parameterized in terms of correlators as,

P (a|x) = 1
2N

(
1 +

N∑
i=1

ai〈xi〉+

∑
i<j

aiaj〈xixj〉
∑
i<j<k

aiajak〈xixjxk〉+ · · ·+ a1a2 . . . aN 〈x1x2 . . . xN 〉

 (17)

Restricting P (a|x) to those maximally violating the N -partite Mermin inequality is
equivalent to requiring all correlators of input strings of odd parity to take their extremal
values. Namely, we have,

〈x1x2 . . . xN 〉 = (−1)(−1+
∑N

i=1
xi)/2, (18)

for all N -point correlators satisfying
∑N
i=0 xi = 1 mod 2. For instance, 〈0, 0, . . . , 1〉 = 1 and

similarly for all permutations. Also, 〈0, 0, . . . , 0, 1, 1, 1〉 = −1 as well as for for all permutations,
etc. In the following we will use the notation 〈.〉k to denote a k-point correlator. The input
combination used to extract randomness is a generalization of the tripartite case and denoted
by xm = (0, 0, . . . , 0, 1). The corresponding N -point correlator satisfies 〈0, 0, . . . , 0, 1〉 = 1
for all N . The latter implies two useful relations:
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1. Half the total outcomes vanish. In particular these are the terms for which the product
of outcomes is −1 i.e. P (

∏N
i=1 ai = −1|xm) = 0.

2. 〈.〉N−k = 〈.〉k for all 1 ≤ k ≤ (N − 1)/2 where the correlators 〈.〉N−k and 〈.〉k are
complementary in the input xm.

One can use these in Eqn. (17) to express P (a|xm) in terms of only the first (N − 1)/2-point
correlators as,

P (a|xm) = 1
2N−1

(
1 +

∑
ai〈xi〉+

∑
aiaj〈xixj〉+ · · ·+

∑
aiaj · · · ap〈xixj · · ·xp〉(N−1)/2

)
.

(19)

where a1 · a2 · a3 . . . aN = +1 since P (a|xm) = 0 when a1 · a2 · a3 . . . aN = −1.

B Expressing the inequality in terms of correlators

As mentioned, our first goal is to express Eq.(16) as a function of some correlators. Let us
recall the function we use in our main theorem,

f(a) =


+1 n−(a) = (4j + 2); with j ∈ {0, 1, 2, . . .}

−1 otherwise
(20)

where n−(a) denotes the number of results in a that are equal to −1.
It turns out that the quantity (Eq. (16)) we would like to calculate, namely, P (f(a) =

hN |xm)− 1/2 can be equivalently expressed as hN · (P (f(a) = +1|xm)− 1/2). The latter
form is convenient since the function only takes value +1 for all N .

We proceed to express the latter in terms of correlators (as in the proof for three parties
in the main text),

(hN · P (f(a) = +1|xm)− 1/2) = 2−(N−1)α′ · c, (21)

where

α′ = hN · (α0 − 2N−2, α1, α2, . . . , α(N−1)/2)

c =
(

1,
∑
S1

〈.〉1,
∑
S2

〈.〉2, . . . ,
∑

S(N−1)/2

〈.〉(N−1)/2

)
(22)

Note that, since the function f symmetric under permutations, the vector c consists of the
different sums of all k-point correlators, denoted by Sk, where k ranges from 0 to (N − 1)/2
because of Eq. (19). The vector α′ is the vector of coefficients for each sum of correlators.
Our next goal is to compute this vector.

Recall that function f is such that f(a) = +1 if n−(a) = 4j + 2 for any j ∈ N ∪ {0}. By
inspection, the explicit values of αi can be written as

αi =
i∑

r=0
(−1)r

(
i

r

)∑
j≥0

(
n− i

4j + 2− r

)
. (23)

For example, α0 =
∑
j≥0

(
n

4j+2
)
as one would expect since α0 simply counts the total number

of terms P (a|xm) being summed to obtain P (f(a) = +1|xm).
Making use of the closed formula

∑
j≥0

(
n

rj+a
)

= 1
r

∑r−1
k=0 ω

−ka(1 + ωk)n [21], where
ω = ei2π/r is the rth root of unity, we can simplify the second sum appearing in Eq. 23. Finally
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we recall that the phase hN was defined (in the main text) to be hN =
√

2 cos (N + 4)π/4.
Putting all this together and performing the first sum in Eq. (23) gives us,

α′i = 2
N−3

2

(
−2 cos (N − 2i)π

4 cos (N + 4)π
4

)
(24)

Notice that the term in the parenthesis is a phase taking values in the set {+1,−1} since N
is odd while the amplitude is independent of N . Thus, we can simplify Eqn. (24) for even
and odd values of i as,

α′i =


2(N−3)/2(−1) N−i

2 i odd

2(N−3)/2(−1) i
2 i even

(25)

Thus, to prove that f possesses the property hN · (P (f(a) = +1|xm)− 1/2) ≥ 0 necessary
to proving the main theorem is equivalent to proving

α′ · c ≥ 0, (26)

for c as defined in Eqn. (22) and for the values of α′ given by Eqn. (25). This is the task of
the following section, where we show that it follows from positivity constraints on P (a|x).

C Proving the inequality from positivity constraints

We show that positivity conditions derived from the swapped input x̄m = (1, 1, . . . , 1, 0) may
be used to show α′ · c ≥ 0. Notice that the components of x̄m and xm are opposite, ie.
{x̄m}i = {xm}i ⊕ 1 for all i. In the following we will repeatedly use the Mermin conditions
of Eqn. (18).

We start by summing the positivity conditions P (+ + + · · · + −|x̄m) ≥ 0 and P (− −
− · · · − +|x̄m) ≥ 0. Using Eqn. (17), one can easily see that upon summing, all k-point
correlators for odd k are cancelled out since these are multiplied by coefficients (products of
ais) that appear with opposite signs in the two positivity expressions. In contrast, k-point
correlators for even k add up since they are multiplied by coefficients that appear with the
same sign in the two expressions. For example, N being odd, the full correlator always
cancels out while the (N − 1)-point correlators always appear.

This leaves us with an expression containing only the even-body correlators,

1 +
∑
i<j

aiaj〈xixj〉+
∑

i<j<k<l

aiajakal〈xixjxkxl〉+ · · ·+
∑

ai . . . ap 〈xi . . . xp〉︸ ︷︷ ︸
(N−1)-pt. corr

≥ 0. (27)

Note once again, that this inequality is derived from the so-called swapped input x̄m. We
aim to cast it in a form that can be compared directly with Eqn. (22), which comes from the
chosen Mermin input xm. To this end, we need to convert Eqn. (27) to an expression of the
form,

(β0, β1, . . . β(N−1)/2).
(

1,
∑
〈.〉1, . . . ,

∑
〈.〉(N−1)/2

)
≥ 0 (28)

We first highlight the similarities and differences between the two preceding expressions,
namely, the one we have i.e. Eqn. (27) and the one we want, i.e. Eqn. (28). Each contains
(N −1)/2 distinct classes of terms. However the former contains only even k-point correlators
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for k = 2 to (N − 1) while the latter contains all terms from k = 1 to (N − 1)/2. Thus, terms
of Eq. (27) must be mapped to ones in Eqn. (28). Moreover, since the point of making this
mapping is to finally compare with Eqn. (22), we also note that the correlators appearing in
Eqn. (27) are locally swapped relative to those appearing in Eqn. (22). Thus, our mapping
must also convert correlators of the swapped input into those corresponding to the chosen
input.

We demonstrate next that one may indeed transform the inequality (27) into the inequality
(28) satisfying both the demands above. To this end, all the even k-point correlators (for
k ≥ N−1

2 ) appearing in Eqn. (27) are mapped to odd (N − k)-point correlators in Eqn. (28).
Likewise, all the even k-point correlators (for k < N−1

2 ) of the swapped input appearing in
Eqn. (27) are mapped to the corresponding k-point correlators of the chosen input in Eqn.
(28).

These mappings make systematic use of the Mermin conditions Eqn. (18) and are made
explicit in the following section.

C.1 Even-point correlators
Consider a 2k-point correlator where 2k ≤ (N − 1)/2. The correlators are of two forms and
we show how they are transformed in each case:
〈11 . . . 1〉2k. We would like to map this to the correlator 〈00 . . . 0〉2k appearing in xm. We
achieve the mapping by completing each to the corresponding Mermin full-correlators
〈11 . . . 1︸ ︷︷ ︸

2k

100 . . . 0︸ ︷︷ ︸
(N−2k)

〉N = (−1)k and 〈00 . . . 0︸ ︷︷ ︸
2k

100 . . . 0︸ ︷︷ ︸
(N−2k)

〉N = (−1)0 = 1. From the signs, we

have the relation, 〈11 . . . 1〉2k = (−1)k〈00 . . . 0〉2k
〈11 . . . 10〉2k, which we would like to map to 〈00 . . . 01〉2k. Using the same ideas we get
〈11 . . . 10︸ ︷︷ ︸

2k

110 . . . 0︸ ︷︷ ︸
(N−2k)

〉N = (−1)k and 〈00 . . . 01︸ ︷︷ ︸
2k

110 . . . 0︸ ︷︷ ︸
(N−2k)

〉N = (−1)1 = −1. Thus, giving us

the relation 〈11 . . . 10〉2k = (−1)k+1〈00 . . . 01〉2k.
By inspection one can write the relationship

a1a2 . . . a2k︸ ︷︷ ︸
even

〈x1x2 . . . x2k〉︸ ︷︷ ︸
cor in x̄m

= (−1)k 〈x1x2 . . . x2k〉︸ ︷︷ ︸
cor in xm(desired)

for correlators of either form discussed above on multiplying with their corresponding
coefficients. Since we have finally converted to the desired correlators of the chosen input x̄,
we can read off βi as the corresponding phase. Thus, βi = (−1)i/2 for even i.

C.2 Odd-point correlators
Consider now a 2k-point correlator where 2k ≥ (N − 1)/2. The correlators are again of
two forms and may be transformed to the required (N − 2k)-point correlators in each case.
The only difference from before is that the two correlators are now complementary to each
other in the swapped input. Since the details are similar, we simply state the final result
βi = (−1)(N−i)/2 for odd i.

The final expression thus reads,

βi =


(−1) N−i

2 i odd

(−1) i
2 i even

(29)
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Thus, the values of β given in Eqs. (29) exactly match the ones for α′i (up to the constant
factor) given in Eqn. 25. Together with the correlators matching those in c, it proves that f
satisfies the required α′ · c ≥ 0 and hence the full result.

D Proof that all distributions in decomposition maximally violate the
Mermin inequality

We end by proving the claim made in the main text that if an observed probability distribution
Pobs(a|x) violates maximally and algebraically the corresponding Mermin inequality, all the
no-signaling components P ex

e (a|x) present in its preparation must also algebraically violate
the inequality.

We recall that the decomposition appears in the definition of intrinsic randomness given
by,

Gint(g,x, Pobs) = max
{p(e|x),P ex

e }

∑
e

p(e|x)Gobs(g,x, P ex
e )

subject to:∑
e

p(e|x)P ex
e (a|x) = Pobs(a|x) (30)

p(x|e) ≥ δ with δ > 0 ∀ x, e (31)

Since Pobs algebraically violates the Mermin inequality, this definition imposes stringent
conditions on the correlators of Pobs satisfying the Mermin condition (18), namely that,

〈x1 . . . xN 〉Pobs = ±1 =
∑
e

p(e|x1, . . . , xN ) 〈x1 . . . xN 〉P ex
e

(32)

where by normalization
∑
e p(e|x1, . . . , xN ) = +1 and −1 ≤ 〈x1 . . . xN 〉P ex

e
≤ +1. Note

that condition p(x|e) ≥ δ for all x, e for δ > 0 can be inverted using the Bayes’ rule
to obtain p(e|x) > 0 for all x, e. Now is clear by convexity that the condition p(x|e) ≥ δ

(denying absolute relaxation of freedom of choice) implies that all the correlator 〈x1 . . . xN 〉P ex
e

appearing in the Mermin inequality must also necessarily satisfy 〈x1 . . . xN 〉P ex
e

= ±1 for all
e thus maximally violating the Mermin inequality. In fact it is also clear that this constraint
on p(x|e) is strictly necessary to ensure that the decomposition correlations satisfy maximal
Mermin violation. To see this, suppose p(x|e0) = 0, then the corresponding 〈x1 . . . xN 〉P ex

e0
is

fully unconstrained while satisfying Eq. (32).
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Abstract
We investigate the asymptotic relationship between quantum cloning and quantum estimation
from the global point of view where all the copies produced by the cloner are considered jointly.
For an N -to-M cloner, we consider the overall fidelity between the state of theM output systems
and the state ofM ideal copies, and we ask whether the optimal fidelity is attained by a measure-
and-prepare protocol in the limit M → ∞. In order to gain intuition into the general problem,
we analyze two concrete examples: (i) cloning qubit states on the equator of the Bloch sphere
and (ii) cloning two-qubit maximally entangled states. In the first case, we show that the optimal
measure-and-prepare fidelity converges to the fidelity of the optimal cloner in the limit M →∞.
In the second case, we restrict our attention to economical covariant cloners, and again, we
exhibit a measure-and-prepare protocol that achieves asymptotically the optimal fidelity. Quite
counterintuitively, in both cases the optimal states that have to be prepared in order to maximize
the overall fidelity are not product states corresponding toM identical copies, but instead suitable
M -partite entangled states.

1998 ACM Subject Classification J.2 Physical sciences and engineering
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1 Introduction

It is well known that every quantum machine producing a large number of indistinguishable
clones—referred to as asymptotic cloning machine—is “equivalent” to a machine that measures
the input states and re-prepares many identical copies of a state depending on the outcome
[1, 2, 3, 4]. Here, “equivalent” has to be understood in the following sense: when one restricts
the attention to a few clones, their state will be almost indistinguishable from the state
that can be produced by a measure-and-prepare protocol. Precisely, the trace distance
between the state of k clones produced by machine and the state of k clones produced by the
measure-and-prepare protocol goes to zero as k/M , where M is the number of output copies
[3, 4]. For k = 1, the fact that the state of each individual clone is asymptotically equal to
the state produced by a measure-and-prepare protocol implies that the single-copy fidelity
of quantum cloning is asymptotically equal to the fidelity of state estimation, a fact that is
commonly known as “equivalence between asymptotic cloning and state estimation” [5].

In this paper we raise the question whether the equivalence between asymptotic cloning
and state estimation continues to hold when one considers all the M clones together, rather
than restricting the attention to a single clone or a small subset of k clones. We refer to this
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new form of equivalence as global asymptotic equivalence between quantum cloning and state
estimation and we conjecture that the equivalence holds. A few observations supporting
the conjecture are the following: First of all, in the known cases—cloning of arbitrary pure
states [6, 7] and the cloning of coherent states [8, 9, 10, 11, 12]—the equivalence holds, and
in a fairly strong sense: the joint state of all the output clones converges in trace distance to
the output state of a measure-and-prepare protocol. A more general argument supporting
our conjecture comes from the intuition that producing a large number of identical copies
means “classicalizing” the information contained in the input states, and therefore it is
natural to expect that the optimal way to classicalize quantum information is to perform a
measurement.

In order to discuss the question of the global equivalence one needs first to fix the rules
of the game, by defining a suitable figure of merit. Here we consider the global fidelity,
namely the overlap between the output state of all clones and the desired quantum state
of M identical copies. In this setting, proving the equivalence means proving that the
global fidelity of the optimal N -to-M cloner can be achieved by a measure-and-prepare
protocol in the asymptotic limit M →∞. In order to gain intuition into the problem, we
consider two concrete examples: the cloning of qubit states on the equator of the Bloch
sphere and the cloning of two-qubit maximally entangled states. In the first case it is known
that the optimal cloner, derived in Ref. [13], is economical [14, 15, 16], that is, it can be
implemented by a unitary interaction between the N input copies and M −N blank copies.
An economical cloner is far from being implementable by a measure-and-prepare protocol,
and observing an asymptotic equality of fidelities becomes here a quite non-trivial matter.
In the second case (cloning of maximally entangled states), we will deliberately restrict
ourselves to economical cloning machines, asking the question whether the global fidelity
of the optimal economical cloner can be achieved by measurement and re-preparation. In
both cases we will give an affirmative answer, showing that the difference between the global
fidelity of the optimal economical N -to-M cloner and the global fidelity of the optimal
measure-and-prepare protocol becomes negligible in the asymptotic limit M →∞, for every
fixed value of N . Quite counterintuitively, we observe that the obvious protocols consisting
in estimation of the unknown state and re-preparation of M identical copies do not reach
the maximum fidelity, even in the asymptotic limit. This feature is in stark contrast with the
intuition coming from the single-copy scenario, where re-preparing identical copies of the
same state is asymptotically the best strategy.

2 Preliminaries

In this section we formalize the problem of the joint asymptotic equivalence and give an
overview of the methods used in the rest of the paper.

2.1 The problem of the global asymptotic equivalence

Consider a set of states {|ψx〉}x∈X in a finite dimensional Hilbert space H. The task of
optimal quantum cloning is to convert N perfect copies of an unknown state |ψx〉, given with
probability px, into M approximate copies that are as accurate as possible. Examples of this
problem are the universal cloning of pure states [17, 18, 19, 6, 7, 20] and the phase-covariant
cloning [21, 13, 22, 23, 15, 16].

The most general cloning process will be described by a quantum channel (completely
positive trace-preserving map) C transforming density matrices on H⊗N to density matrices
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on H⊗M . As a figure of merit for the quality of the copies we will consider the global fidelity,

F [N →M ] =
∑
x∈X

Tr
[
ψ⊗Mx C(ψ⊗Nx )

]
ψx := |ψx〉〈ψx|. (1)

When the set {|ψx〉}x∈X is continuous, it is understood that the sum over the possible input
states has to replaced with an integral with a suitable probability distribution p(x) dx. The
optimal cloner will be the quantum channel that maximizes F [N →M ]. The fidelity of the
optimal cloner will be denoted by by Fclon[N →M ].

In addition to the maximum over all channels, it is important to consider the maximum
of F [N → M ] over the set of measure-and-prepare channels. Operationally, a measure-
and-prepare channel can be realized by measuring the input copies with a POVM (Py)y∈Y
and, when the measurement gives outcome y, by re-preparing a state ρy. Averaging over
the measurement outcomes, the action of the measure-and-prepare channel on the density
matrices is given by C(ρ) =

∑
y∈Y Tr[Pyρ] ρy. We will denote by Fest[N →M ] the maximum

of the fidelity over the set of measure-and-prepare channels. Such a maximum is known in the
literature as classical fidelity threshold [24, 25, 26, 27, 12] and can be used as a benchmark
for the experimental demonstration of quantum advantages.

In the following we will ask the question whether the difference between Fclon[N →M ]
and Fest[N → M ] becomes negligible in the asymptotic limit M → ∞, while keeping
N fixed. An affirmative answer to this question would mean that the quantum way to
process information and the classical way fare equally well in the asymptotic limit. In the
formalization of the problem there is a catch, because both fidelities converge to zero in
many interesting cases when the family of states to be cloned is continuous: a non-vanishing
fidelity would indeed violate the Heisenberg limit of quantum metrology [28]. In order not to
trivialize the question, it is then important to consider the relative difference between the
two fidelities, given by

∆[N →M ] := Fclon[N →M ]− Fest[N →M ]
Fclon[N →M ] . (2)

Our conjecture is that, for every fixed N , the relative difference vanishes in the limit
M →∞. In formula:

lim
M→∞

Fclon[N →M ]− Fest[N →M ]
Fclon[N →M ] = 0 ∀N ∈ N. (3)

We refer to the conjectured equality as global asymptotic equivalence between quantum cloning
and quantum state estimation. Of course, here the word “global” refers to the fact that we
are considering the global fidelity as the performance measur, as opposed to the single-copy
fidelity considered in the previous literature. [19, 6, 20]

From previous results on optimal cloning we know that the relation is satisfied in the case
of universal quantum cloning [6, 7] (see [4] for the proof that the optimal channel converges
to a measure-and-prepare channel) and in the case of the coherent-state quantum cloning
[8, 9, 10, 11, 12] (see [12] for the proof that Fclon[N →M ] becomes asymptotically equal to
Fest[N →M ], up to a negligible error). In the following we will exhibit two new examples
supporting the conjecture that joint cloning is asymptotically equivalent to state estimation.

In the first example, we consider the optimal cloning of qubit states on the equator of
the Bloch sphere. In this case, the optimal N -to-M cloner is known [13]) and has a very
interesting feature: it can be realized through a unitary interaction between the N input
copies and only M −N blank copies of the input system. In formula, the optimal quantum
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channel has the form

C(ρ) = U
[
ρ⊗ |0〉〈0|⊗(M−N)

]
U†, (4)

where U : H⊗M → H⊗M is a unitary operator and |0〉 is a fixed state in H. Cloning channels
of this form are usually referred to as economical [14, 15, 16]. For the optimal cloner of qubit
states on the equator, we will show that our conjecture holds, by explicitly constructing a
family of measure-and-prepare channels that attains the maximum fidelity Fclon[N →M ].
In a sense, this example is more intriguing than the previous ones, because the economical
cloner considered here is far from being achieved by measure-and-prepare protocols: the
asymptotic equivalence is then a non-trivial relation between the optimal joint fidelities.

In the second example, we consider the cloning of two-qubit maximally entangled states.
For simplicity, here we restrict our attention to economical quantum cloners satisfying a
natural symmetry requirement, and we denote by Fclon,eco[N →M ] the maximum fidelity
achieved by these channels. In this case, we show that the maximum value Fclon,eco[N →M ]
can be achieved by a suitable family of measure-and-prepare channels, in the limit M → N .
Again, this example supports the validity of our conjecture.

2.2 General methods
Here we make some general considerations that apply to the two specific examples considered
in the paper.

2.2.1 Covariant economical channels
In many relevant cases, the unknown state to be cloned is of the form |ψg〉 := Ug|ψ〉 , where
|ψ〉 ∈ H is unit vector and U : G→ Lin(H), g 7→ Ug is a unitary representation of a compact
group G on the set Lin(H) of linear operators on H. Examples of this problem are the
universal cloning of pure states [7] and the phase-covariant cloning [21, 13, 22, 23, 15, 16].
Due to the symmetry of the states, the maximum of the fidelity can be achieved by choosing
a covariant channel, namely a quantum channel satisfying the property

C ◦ U⊗Ng = U⊗Mg ◦ C g ∈ G, (5)

where Ug is the unitary channel defined by Ug(ρ) = UgρU
†
g , for every density matrix ρ. For

covariant channels, the expression of the fidelity is reduced to

F [N →M ] = Tr
[
ψ⊗MC(ψ⊗N )

]
. (6)

A further simplification arises if we assume that the covariant channel C is economical,
namely C(ρ) = V ρV † for a suitable isometry V : the fidelity takes the simple form

F [N →M ] =
∣∣〈ψ|⊗MV |ψ〉⊗N ∣∣2 (7)

and the covariance condition becomes

U⊗Mg V
(
U⊗Ng

)† = ωg V g ∈ G, (8)

where ω : G → C is a one-dimensional representation of the group G. For the cloning of
maximally entangled states of qudits, where the group is SU(d), Eq. (8) is simply

U⊗Mg V
(
U⊗Ng

)† = V g ∈ G, (9)

because the only one-dimensional representation of SU(d) is the trivial one (ωg = 1, ∀g).
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2.2.2 Covariant measure-and-prepare protocols

In order to prove the global asymptotic equivalence, our goal is to construct a family of
measure-and-prepare protocols that attains the fidelity of the best quantum cloners in the
limit M → ∞. To achieve this goal, we will make a series of assumptions motivated by
physical intuition. A posteriori, the fact that our protocols attain the desired fidelity will
provide a confirmation that the intuition was sound.

First of all, for an input state of the form |ψg〉 = Ug|ψ〉 we will consider measure-and-
prepare strategies that are based on state estimation, namely strategies where the set of
measurement outcomes coincides with the set parametrizing the input states, namely X ≡ G.
Hence, the measurement is described by a POVM Pĝ dĝ with in the group G, normalized as∫

d ĝ Pĝ = I⊗N .
For the re-preparation stage , we will require that the states that are re-prepared have

the form |Φĝ〉 = U⊗Mĝ |Φ〉, for a given unit vector |Φ〉 ∈ H⊗M . With this particular choice,
the optimization of the measure-and-prepare protocol is equivalent to the optimization of a
state estimation protocol that is designed to maximize the average of the function

f(ĝ, g) := Tr
[
Φĝ ψ⊗Mg

]
. (10)

In this case, is known that the optimal POVM can be chosen to be covariant [29], that is,
Pĝ = U⊗Nĝ ηU†⊗Nĝ where η ∈ Lin

(
H⊗N

)
is a suitable positive operator, called the seed of

POVM. For a covariant POVM, the probability density p(ĝ|g) = Tr[Pĝψ⊗Ng ] satisfies the
relation

p(hĝ|hg) = p(ĝ|g) ∀h, ĝ, g ∈ G. (11)

Hence, the fidelity of the corresponding measure-and-prepare protocol becomes

F [N →M ] =
∫

d g Tr
[
η ψ⊗Ng

]
Tr
[
Φ ψ⊗Mg

]
. (12)

Finding the optimal measure-and-prepare protocol is then reduced to finding the optimal
operator η and the optimal state |Φ〉. To this purpose, in the two examples considered in
this paper we will make a suitable ansatz on the form of the state |Φ〉, which guarantees
that Tr

[
η ψ⊗Ng

]
, as a function of g, varies slowly with respect to Tr

[
Φ ψ⊗Mg

]
, which is

concentrated around its maximum at g = e, the identity element of the group. Under this
ansatz, the fidelity can be approximated as

F [N →M ] ≈
{∫

d g Tr
[
Φ ψ⊗Mg

]}
Tr
[
η ψ⊗N

]
= 〈Φ|ρ(M)

aver|Φ〉 p
(N)
true. (13)

where ρ(M)
aver :=

∫
dg ψ⊗Mg is the average state of M ideal copies and p(N)

true := Tr
[
η ψ⊗N

]
is

the probability density that the estimated value ĝ coincides with true values g.
Thanks to Eq. (13), optimizing the measure-and-prepare protocol is reduced to two

independent optimization problems: the maximization of the fidelity between the state |Φ〉
and the average state ρ(M)

aver (under the restriction that |Φ〉 must be compatible with the
ansatz) and the maximization of the probability density p(N)

true. In the specific cases considered
in this paper, we will show that the ansatz can be done without loss of generality: indeed,
the fidelity achieved by measure-and-prepare protocols satisfying the ansatz approaches the
fidelity of the optimal quantum channel.
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3 Cloning equatorial qubit states

Here we consider the optimal N -to-M cloning of pure qubit states on the equator of the
Bloch sphere, evaluating the asymptotic expression of the optimal quantum fidelity and
showing that it can be achieved via a suitable measure-and-prepare protocol.

3.1 The performance of the optimal quantum cloner
Consider the qubit states on the equator of the Bloch sphere, defined as

|ψθ〉 = |0〉+ eiθ|1〉√
2

θ ∈ [−π, π)

= Uθ|ψ〉

Uθ := exp
[
iθ(σz + I)

2

]
, |ψ〉 := |0〉+ |1〉√

2
.

The state of the N input copies can be represented as

|ψ〉⊗N =
N/2∑

n=−N/2

√
bN,n|N/2, n〉 bN,n := 1

2N

(
N

N/2 + n

)

where {|N/2, n〉 | n = −N/2, . . . , N/2} are the Dicke states and bN,n is the binomial
distribution.

The optimal cloning channel was derived in Ref. [13]. When M −N is even, the optimal
channel is covariant with respect to the action of the phase shifts Uθ and economical, i.e. of
the form C(ρ) = V ρV † where V : H⊗N → H⊗M is an isometry(i.e. V †V = I). Specifically,
the isometry of the optimal cloner is V =

∑N/2
n=−N/2 |M/2, n〉〈N/2, n| and produces the

output state

V |ψ〉⊗N =
N/2∑

m=−N/2

√
bN,m|M/2,m〉. (14)

Inserting this expression in Eq. (7) one gets the maximum fidelity [13]

Fclon[N →M ] =

 N/2∑
n=−N/2

√
bN,nbM,n

2

. (15)

When M is large compared to N , the fidelity becomes:

Fclon[N →M ] ≈ bM,0

 N/2∑
n=−N/2

√
bN,n

2

M � N. (16)

In the next subsection we will construct a measure-and-prepare channel that achieves this
asymptotic value for every N ∈ N.

Note that the optimal quantum fidelity in Eq. (15) has a simple expression when N is large
(N � 1). In this case, the probability distributions bN,n and bM,n are well approximated by
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the Gaussian distributions gN (x) =
√

2
πN e

−2x2/N and gM (x) =
√

2
πM e−2x2/M , respectively.

Replacing the summation in Eq. (15) with a Gaussian integral, one gets

Fclon[N →M ] ≈
√

4MN

M +N
N � 1. (17)

Incidentally, it is interesting to observe that in this regime the fidelity is close to 1 whenever
the number of extra-copies M − N is negligible compared to N , whereas it is close to 0
whenever N is negligible compared toM . This fact is an illustration of the standard quantum
limit for cloning introduced in Ref. [28].

3.2 A family of measure-and-prepare protocols achieving
asymptotically the optimal fidelity

Here we consider the maximization of the cloning fidelity over measure-and-prepare protocols
based on state estimation (cf. subsection 2.2.2). For equatorial qubit states, the measure-
and-prepare protocol consists in the estimation of the parameter θ ∈ [0, 2π) from the N input
copies and in the re-preparation of an M -qubit output state |Φθ̂〉 conditional to the estimate
θ̂. In order to maximize the global fidelity, the states |Φθ̂〉 = U⊗N

θ̂
|Φ〉 should be contained

in the symmetric space spanned by the Dicke states {|M/2,m〉 | m = −M/2, . . . ,M/2}, i.e.
|Φθ̂〉 = U⊗M

θ̂
|Φ〉 with

|Φ〉 =
M/2∑

m=−M/2

√
pM,m|M/2,m〉, (18)

for some suitable coefficients {pM,m} that can be chosen to be positive without loss of
generality. For states of this form, the optimal covariant POVM is known [29] and is given
by Pθ̂ = U⊗N

θ̂
ηU†⊗N

θ̂
where the seed η is the rank-one operator η = |η〉〈η| with

|η〉 :=
N/2∑

n=−N/2

|N/2, n〉. (19)

Now, the expression for the fidelity is given by

F [N →M ] =
∫ d θ

2π Tr
[
η ψ⊗Nθ

]
Tr
[
Φ ψ⊗Mθ

]
. (20)

and the goal is to maximize it over all possible choices for the coefficients in Eq. (18). The
optimization can be carried out for given values of N and M . However, the full optimization
is not needed if one just wants to discuss the large M asymptotics. To this purpose, we make
a variational ansatz for the coefficients {pM,m} and later we will prove that asymptotically
the ansatz is not too restrictive, because it allows one to achieve the fidelity of the optimal
cloner. Our variational ansatz is the following:

pM,m(λ) =
{
bdM/λe,m − dM/λe

2 6 m 6 dM/λe
2

0 otherwise
(21)

for some λ > 1. We denote by |Φ(λ)〉 the state in Eq. (18) with the above choice of
coefficients.
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With our variational choice, the expression for the fidelity in Eq. (20) can be simplified
in the regime

M

1 + λ
� N. (22)

Indeed, under this condition the function Tr
[
η ψ⊗Nθ

]
varies slowly with respect to Tr

[
Φ(λ) ψ⊗Mθ

]
(see the proof in the Appendix) and therefore we can approximate Eq. (20) with

F [N →M ] ≈ Tr
[
η ψ⊗N

] (∫ d θ
2π Tr

[
Φ(λ) ψ⊗Mθ

])
= p

(N)
true 〈Φ(λ)|ρ(M)

aver|Φ(λ)〉 (23)

where ρ(M)
aver =

∑M/2
m=−M/2 bM,m|M/2,m〉〈M/2,m| and p(N)

true =
(∑

n

√
bN,n

)2
.

If there were no constraint on |Φ(λ)〉, the optimal choice that maximizes the expectation
value 〈Φ(λ)|ρ(M)

aver|Φ(λ)〉 would be |Φ(λ)〉 = |M/2, 0〉, the eigenvector corresponding to the
maximum eigenvalue of ρ(M)

aver. However, from Eq. (21) it is clear that this would require
M/λ < 1, in contradiction with the condition M/(1 + λ)� N , under which Eq. (23) was
derived. What can be done instead is to choose λ in such a way that both conditions λ� 1
and M/(1 + λ)� N are satisfied. With this choice, the expectation value 〈Φ(λ)|ρ(M)

aver|Φ(λ)〉
is still close to the maximum eigenvalue:

〈Φ(λ)|ρ(M)
aver|Φ(λ)〉 =

dM/λe/2∑
m=−dM/λe/2

bM,mbdM/λe,m ≈ bM,0 λ� 1

Hence, the fidelity of our variational measure-and-prepare protocol, denoted by Fλ[N →M ],
becomes

Fλ[N →M ] ≈ 〈Φ(λ)|ρ(M)
aver|Φ(λ)〉 p(N)

true ≈ bM,0

 N/2∑
n=−N/2

√
bN,n

2

≈ Fclon[N →M ],

(24)

where the last approximate equality comes from Eq. (16). Since by definition the maximum
fidelity Fest[N →M ] over all measure-and-prepare channels is lower bounded by Fλ[N →M ]
and upper bounded by Fclon[N →M ], we conclude that

Fest[N →M ] ≈ Fλ[N →M ] ≈ Fclon[N →M ] M

1 + λ
� N,λ� 1.

This shows that asymptotically, there is no loss of generality in our ansatz: the protocols
satisfying the ansatz have a fidelity that is arbitrarily close to the fidelity of the best measure-
and-prepare protocol, which in turn is asymptotically equal to the fidelity of the best quantum
cloner.

Let us consider now the fidelity of the naive measure-and-prepare protocol that consists
in estimating the phase θ and re-preparing M identical copies of the estimated state. In
this case, we have |Φ〉 = |ψ〉⊗M ≡ |Φ(λ = 1)〉 [cf. Eqs. (18) and (21)], and, therefore,
〈Φ(λ = 1)|ρ(M)

aver|Φ(λ = 1)〉 =
∑M/2
m=−M/2 b

2
M,m.

For largeM , the Gaussian approximation gives 〈Φ(λ = 1)|ρ(M)
aver|Φ(λ = 1)〉 ≈

√
1/(πM) ≈

bM,0/
√

2, and the fidelity becomes

Fλ=1[N →M ] ≈ bM,0√
2

 N/2∑
n=−N/2

√
bN,n

2

≈ Fclon[N →M ]√
2

∀N ∈ N.
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This proves that re-preparing M identical copies is a strictly suboptimal strategy, which
cannot reach the global fidelity of the optimal cloner.

In summary, in this section we showed that the fidelity of the optimal quantum cloner
Fclon[N → M ] is asymptotically equal to the fidelity of the optimal measure-and-prepare
protocol Fest[N → M ] in the limit M → ∞. Hence, the conjectured equality in Eq. (3)
is verified. However, achieving the optimal fidelity requires one to prepare suitable M -
partite entangled states: the simple strategy consisting in re-preparing M identical copies of
estimated state does not give the maximal fidelity, even in the asymptotic limit.

4 Cloning two-qubit maximally entangled states

In this section we consider the N-to-M cloning of two-qubit maximally entangled states,
computing the fidelity of the optimal economical covariant cloner and showing that it can be
asymptotically attained via a suitable measure-and-prepare protocol.

Consider a general two-qubit maximally entangled state |ψg〉 ∈ HA⊗HB , HA ' HB ' C2,
which can be parametrized as

|ψg〉 = (Ug ⊗ I)|I〉〉√
2

, g ∈ SU(2). (25)

Here we are using the “double-ket notation” |A〉〉 :=
∑
m,n〈m|A|n〉 |m〉|n〉 for a generic

operator A ∈ Lin(H) [30].
We now give a convenient decomposition of the input state |ψg〉⊗N = (HA ⊗HB)⊗N '

H⊗NA ⊗H⊗NB . With a suitable choice of basis, the Hilbert space H⊗NA , can be decomposed
as a direct sum of tensor product pairs

H⊗NA =
N/2⊕

j=j(N)
min

(
R

(j,N)
A ⊗M

(j,N)
A

)
, (26)

where j is the quantum number of the total angular momentum and j(N)
min = 0 for even N

while j(N)
min = 1

2 for odd N , R(j,N)
A is a representation space, of dimension dj = 2j + 1, and

M
(j,N)
A is a multiplicity space, of dimension m

(N)
j = 2j+1

N/2+j+1
(

N
N/2+j

)
(see e.g. Ref. [31]).

Relative to this decomposition, we can express U⊗Ng as a block diagonal matrix, where each
block corresponds to an irreducible representation of SU(2), namely

U⊗Ng =
N/2⊕

j=j(N)
min

[
U (j,N)
g ⊗ I(N)

mj

]
. (27)

where U (j,N)
g ∈ Lin(R(j,N)

A ) is the unitary operator representing the action of the element
g ∈ SU(2) and I(N)

mj denotes the identity on M
(j,N)
A .

Using Eq. (27), the input state |ψg〉⊗N can be cast in the form

|ψg〉⊗N = 2−N/2(Ug ⊗ I)⊗N |I〉〉⊗N = 2−N/2
N/2⊕

j=j(N)
min

(
|U (j,N)
g 〉〉 ⊗ |I(N)

mj 〉〉
)

(28)

with |U (j,N)
g 〉〉 ∈ R

(j,N)
A ⊗ R

(j,N)
B and |I(N)

mj 〉〉 ∈ M
(j,N)
A ⊗M

(j,N)
B . Hence, we obtained the

decomposition

|ψg〉⊗N =
N/2⊕

j=j(N)
min

√
c

(N)
j |ψ(j,N)

g 〉 |ψ(j,N)
g 〉 := |U

(j,N)
g 〉〉√
dj

⊗
|I(N)
mj 〉〉√
m

(N)
j

(29)
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and c(N)
j := djm

(N)
j

2N = (2j+1)2

(N/2+j+1) bN,j , bN,j being the binomial distribution bN,j =
(

N
N/2+j

)
/2N .

Note that every state |ψg〉⊗N in Eq. (29) belongs to the subspace

H
(N)
ent :=

N/2⊕
j=j(N)

min

(
R

(j,N)
A ⊗ R

(j,N)
B ⊗M

(j,N)
A ⊗M

(j,N)
B

)
⊂ (HA ⊗HB)⊗N . (30)

Hence, for the optimization of the fidelity we can restrict our attention to this subspace
and consider quantum channels that map states on H

(N)
ent to states on H

(M)
ent .

4.1 The performance of the optimal economical covariant cloner
Here we focus here on a special type of cloning machines, namely economical covariant
cloning machines [14, 15, 16]. An economical covariant cloner is described by an isometric
channel C(ρ) = V ρV †, where V : H(N)

ent → H
(M)
ent is an isometry satisfying the covariance

requirement, which in our case is expressed by the relation

(Ug ⊗ Uh)⊗MV
(
U†g ⊗ U

†
h

)⊗N
= V ∀g, h ∈ G. (31)

Note that the action of (Ug ⊗ Uh)⊗N , restricted to the subspace H
(N)
ent is

(Ug ⊗ Uh)⊗N
∣∣
H

(N)
ent

=
N/2⊕

j=j(N)
min

(
U (j,N)
g ⊗ U (j,N)

h ⊗ I(N)
mj ,A

⊗ I(N)
mj ,B

)
,

where I(N)
mj ,A

(I(N)
mj ,B

) denotes the identity on the multiplicity space M(j,N)
A (M(j,N)

B ). A similar
decomposition holds for the action of (Ug ⊗ Uh)⊗M restricted to the subspace H

(M)
ent .

Now, using the Schur’s lemma, Eq. (31) is reduced to

V =
N/2⊕

j=j(N)
min

(Rj ⊗Mj), (32)

where Rj : R(j,N)
A ⊗ R

(j,N)
B → R

(j,M)
A ⊗ R

(j,M)
B is an isometry acting on the representation

spaces and satisfying
(
U

(j,M)
g ⊗ U (j,M)

h

)
Rj

(
U

(j,N)
g ⊗ U (j,N)

h

)
= V ∀g, h ∈ G, and Mj :

M
(j,N)
A ⊗M

(j,N)
B →M

(j,M)
A ⊗M

(j,M)
B is an isometry acting on the multiplicity spaces.

The fidelity of the economical cloner with isometry V in Eq. (32) is given by

F [N →M ] =
∣∣〈ψ|⊗M V |ψ〉⊗N

∣∣2 =

∣∣∣∣∣∣∣
N/2∑

j=j(N)
min

√
c

(N)
j c

(M)
j 〈ψ(j,N)|V |ψ(j,M)〉

∣∣∣∣∣∣∣
2

≤

 N/2∑
j=j(N)

min

√
c

(N)
j c

(M)
j


2

.

The equality holds when V |ψ(j,N)〉 = |ψ(j,M)〉 for every j = j
(N)
min, . . . , N/2, or, equivalently,

Rj
|I(j,N)〉〉√

dj
= |I

(j,N)〉〉√
dj

, Mj
|I(N)
mj 〉〉√
m

(N)
j

=
|I(M)
mj 〉〉√
m

(M)
j
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Interestingly, the optimal covariant economical cloner can be achieved using local operations,
because the above isometries only represent an embedding of the state of N systems on
A’s and B’s sides into Hilbert space of M systems, and these embedding operations can be
carried out locally.

The maximal fidelity among all possible economical covariant cloner is then

Feco,clon[N →M ] =

 N/2∑
j=j(N)

min

√
c

(N)
j c

(M)
j


2

, (33)

and, when M is large compared to N , becomes

Feco,clon[N →M ] ≈ 2bM,0

M

 N/2∑
j=j(N)

min

√
bN,j(2j + 1)4

N/2 + j + 1


2

M � N. (34)

In the next subsection we will construct a measure-and-prepare channel that achieves this
asymptotic value, despite the fact that the fact that the cloning machine considered here is
economical, and, therefore, far from a measure-and-prepare channel.

Before concluding, it is worth noting that the expression for the optimal quantum fidelity
becomes simpler when N is large (N � 1). Approximating the summation in Eq. (33) with
a Gaussian integral, one obtains the fidelity

Feco,clon[N →M ] ≈
(∫ N/2

0
8x2

√
gM (x)gN (x)

MN
dx
)2

≈
(

4N
M

)3/2
N � 1. (35)

Also in this case, it is also interesting to observe that the fidelity is close to 1 whenever the
number of extra-copies M −N is negligible compared to N , whereas it is close to 0 whenever
N is negligible compared to M , in agreement with the standard quantum limit for cloning
[28].

4.2 A family of measure-and-prepare protocols achieving
asymptotically the optimal fidelity

Here we show how to reach the fidelity Fclon,eco[N →M ] with a suitable measure-and-prepare
protocol. Also in this case, we will first make a series of assumptions on the protocol, and we
will eventually show that asymptotically our choice achieves the desired fidelity.

To start with, we consider strategies where the states re-prepared are of the form

|Φĝ〉 =
M/2⊕

j=j(M)
min

√
p

(M)
j |ψ(j,M)

g 〉 (36)

where |ψ(j,M)
g 〉 is the vector defined in Eq. (29) and {p(M)

j } are some non-negative coefficients.
Our choice is quite natural, as it is motivated by the form of the desired states |ψg〉⊗M [cf.
Eq. (29) ].

Once we assume states of this form for the re-preparation, the optimal POVM for the
measurement is known [31] and is given by the square-root measurement [32], which in this
case has the expression Pĝ = U⊗Nĝ ηU†⊗Nĝ , where η = |η〉〈η| and |η〉 =

⊕N/2
j=j(N)

min

dj |ψ(j,N)〉
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Then, we make a variational anstaz on the form of the coefficients {p(M)
j } in Eq. (36),

similar to the ansatz made in subsection 3.2: we assume

p
(M)
j (λ) =

{
c

(dM/λe)
j j 6 dM2λe

0 j > dM2λe,
(37)

for a parameter λ ≥ 0 to be optimized. Denoting by |Φ(λ)〉 the state of Eq. (36) with
the variational choice of coefficients, one can argue that asymptotically |〈η|ψg〉⊗N |2 varies
slowly with respect to |〈Φ(λ)|ψg〉⊗M |2 provided that M/(1 + λ) � N , following the same
lines illustrated in the Appendix for the case of equatorial qubits. Hence, the fidelity can be
turned into Eq. (13) with:

ρ(M)
aver =

M/2∑
j=j(M)

min

c
(M)
j

[
I

(j,M)
A

dj
⊗
I

(j,M)
B

dj
⊗
|I(M)
mj 〉〉〈〈I

(M)
mj |

m
(M)
j

]
(38)

where I(j,M)
A ( I(j,M)

B ) denotes the identity on the representation space R
(j,M)
A (R(j,M)

B ), and

p
(N)
true =

 N/2∑
j=j(N)

min

√
c

(N)
j dj


2

. (39)

With similar observation as in subsection 3.2, λ should be chosen in such a way that
both conditions λ� 1 and M/λ� N are satisfied. With this choice, the expectation value
〈Φ(λ)|ρ(M)

aver|Φ(λ)〉 is

〈Φ(λ)|ρ(M)
aver|Φ(λ)〉 =

dM/λe/2∑
j=j(dM/λe)

min

c
(dM/λe)
j c

(M)
j

d2
j

≈ 2bM,0

M
λ� 1

Hence, the fidelity of our measure-and-prepare protocol, denoted by Fλ[N →M ], becomes

Fλ[N →M ] ≈ 〈Φ(λ)|ρ(M)
aver|Φ(λ)〉 p(N)

true ≈
2bM,0

M

 N/2∑
j=j(N)

min

(2j + 1)2

√
bN,j

N/2 + j + 1


2

≈ Feco,clon[N →M ], (40)

the last approximate equality coming from Eq. (34). This shows that asymptotically, the
fidelity of the protocols satisfying the assumptions gets arbitrarily close to the fidelity of the
best economical covariant cloner.

Also in this case, we can compare the fidelity of our measure-and-prepare protocol with
the naive protocol that consists in estimating the state and re-preparing M identical copies
according to the estimate. In this case, we have |Φ〉 = |ψ〉⊗M ≡ |Φ(λ = 1)〉 [cf. Eqs. (36)
and (37)], and, therefore,

〈Φ(λ = 1)|ρ(M)
aver|Φ(λ = 1)〉 =

M/2∑
j=j(M)

min

(
c

(M)
j

dj

)2

. (41)
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For large M , this gives 〈Φ(λ = 1)|ρ(M)
aver|Φ(λ = 1)〉 ≈

√
1/(πM3) ≈ bM,0/(

√
2M), and the

fidelity becomes

Fλ=1[N →M ] ≈ bM,0√
2M

 N/2∑
j=j(N)

min

√
c

(N)
j dj


2

≈ Feco,clon[N →M ]
23/2 .

This proves that re-preparing M identical copies is a strictly suboptimal strategy, which
cannot reach the fidelity of the optimal economical covariant cloner.

In summary, in this section we showed that for the case of two-qubit maximally entangled
states, the fidelity of the optimal economical covariant cloner Feco,clon[N → M ] can be
achieved by a measure-and-prepare protocol Fλ[N →M ] in the asymptotic limit M →∞.
However, achieving the optimal fidelity requires one to prepare suitable M -partite entangled
states: the simple strategy consisting in re-preparing M identical copies of estimated state
does not give the desired fidelity, even in the asymptotic limit.

5 Discussion and conclusions

In this paper we posed the question whether the asymptotic cloning is equivalent to state
estimation in terms of the global fidelity between the output state of all clones and the
desired state ofM perfect copies. To gain insight into the problem, we provided two examples
(cloning of equatorial qubit states and cloning of two-qubit maximally entangled states)
where the equivalence between cloning and estimation is satisfied in a rather non-trivial way,
despite the cloning machines under consideration are economical. Our results suggest the
existence of a general mechanism that guarantees the equality of fidelities in Eq. (3). Finding
a general proof, or finding a counterexample to the conjectured equivalence between global
asymptotic cloning and state estimation is the most pressing open question raised by our
work.
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A Justification of the asymptotic approximation for the fidelity

In order to study the asymptotic behavior of the fidelity for measure-and-prepare protocols,
we can use a Taylor expansion of Tr

[
η ψ⊗Ng

]
up to the second order term:

Tr
[
η ψ⊗Ng

]
=

N/2∑
n,m=−N/2

√
bN,nbM,me

i(n−m)θ

≈

 N/2∑
n=−N/2

√
bN,n

2

− θ2

2

 N/2∑
n,m=−N/2

√
bN,nbN,m(n−m)2


=

 N/2∑
n=−N/2

√
bN,n

2

− θ2

 N/2∑
n=−N/2

n2√bN,n
 N/2∑

m=−N/2

√
bN,m

 . (42)

In the asymptotic limit of large amplification, i.e. M � N , bM,m can be approximated by
the Gaussian gM (x) :=

√
2
πM e−

2x2
M , thus we have:

Tr
[
Φ ψ⊗Mg

]
=

∣∣∣∣∣∣
dM/2λe∑

m=−dM/2λe

√
bdM/λe,mbM,me

imθ

∣∣∣∣∣∣
2

≈

∣∣∣∣∣
∫ dM/2λe

−dM/2λe
dx

√
2
πM

λ
1
4 e−

(1+λ)x2
M +iθx

∣∣∣∣∣
2

= 2
√
λ

1 + λ
e−

Mθ2
2(1+λ) .

Taking these into Eq. (12) we get the expression of measure-and-prepare fidelity for large
amplification:

F [N →M ] =
∫ d θ

2π Tr
[
η ψ⊗Nθ

]
Tr
[
Φ ψ⊗Mθ

]
≈ 2
√
λ

1 + λ

 N/2∑
n=−N/2

√
bN,n

 N/2∑
n=−N/2

√
bN,n

∫ π

−π

d θ
2π e−

Mθ2
2(1+λ)

−
N/2∑

n=−N/2

n2√bN,n ∫ π

−π

d θ
2π θ2 e−

Mθ2
2(1+λ)


=

√
2λ

πM(1 + λ)

 N/2∑
n=−N/2

√
bN,n


 N/2∑
n=−N/2

√
bN,n −

1 + λ

2πM

N/2∑
n=−N/2

n2√bN,n
 .

(43)

It is clear that the contribution resulting from the second order term of the expansion
is negligible whenever M/(1 + λ) � N . In particular, for large N the binomial can be
approximated by a Gaussian, giving

N/2∑
n=−N/2

√
bN,n ≈ (2πN)1/4

N/2∑
n=−N/2

n2 √bN,n ≈ (2πN)1/4N

2 . (44)

so that the ratio between the second and first order term in Eq. (43) is N(1 + λ)/M .
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Abstract
Magic state distillation is a fundamental technique for realizing fault-tolerant universal quantum
computing, and produces high-fidelity Clifford eigenstates, called magic states, which can be
used to implement the non-Clifford π/8 gate. We propose an efficient protocol for distilling
other non-stabilizer states that requires only Clifford operations, measurement, and magic states.
One critical application of our protocol is efficiently and fault tolerantly implementing arbitrary,
non-Clifford, single-qubit rotations in average constant online circuit depth and polylogarithmic
(in precision) offline resource cost, resulting in significant improvements over state-of-the-art
decomposition techniques. Finally, we show that our protocol is robust to noise in the resource
states.
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1 Introduction

Given recent progress in quantum algorithms, quantum error correction, and quantum
hardware, a scalable quantum computer is becoming closer and closer to reality. For many
proposed quantum computer architectures, e.g., the surface-code model based on code
deformation [1], Clifford operations, stabilizer-state preparations, and measurements can
be implemented efficiently. However, these operations alone are not sufficient for quantum
universality and can be simulated classically [2]. Magic state distillation [3, 4, 5, 6] produces
Clifford eigenstates, which in turn can be used to realize a non-Clifford operation, e.g., the
single-qubit π/8 gate, T .

In this paper, we present an efficient protocol for distilling other non-stabilizer states. Our
protocol uses only |H〉-type magic resource states, Clifford operations, and measurements,
and is robust to noise in the resource states. One notable application of our protocol is
producing an arbitrary single-qubit, fault-tolerant unitary operation. Most commonly, a
single-qubit unitary U is decomposed into a discrete set of gates, typically {H,T}, using
Solovay-Kitaev decomposition [7, 8], which efficiently produces an approximate fault-tolerant
implementation of U with circuit depth Θ(logc(1/ε)), where ε is the precision and c is around
3.97 [9, 8]. Remarkably, efficient decomposition algorithms have recently been proposed
which lower c to 1 [10, 11]. Each T gate in the decomposed sequence requires a number of
copies of a quantum magic state |H〉, dependent on the specific state distillation protocol and
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|Z(θ)〉 X(Z) FE |m〉
|ψ〉 • Z(X)((−1)mθ)|ψ〉

Figure 1 Circuit to rotate by angle ±θ around the Z(X)-axis.

purity of the state [3, 4, 5, 6]. We show that our protocol requires only constant online circuit
depth and fewer resources than state-of-the-art decomposition techniques. Our protocols
may be useful for other applications as well.

2 Distilling Magic States and Implementing Rotations

We first review how to perform an arbitrary rotation about the Z-axis using a resource
state. A state |ψ〉 is magic if we can “distill" a purer |ψ〉 state from a Clifford circuit applied
to n noisy copies of |ψ〉. We focus on the +1 eigenstate of the Hadamard operation H,
|H〉 = cos π8 |0〉+ sin π

8 |1〉. We assume throughout that Clifford operations are perfect and
resource states are arbitrarily pure. We can arbitrarily purify these states by applying a
distillation protocol recursively [3, 4, 5, 6]. We concentrate on single-qubit states found in
either the XZ- or XY -plane of the Bloch sphere; note that a state can be rotated from one
plane to the other through application of the Clifford HSHX operation.

Suppose we have states |Z(θ)〉 = |0〉 + eiθ |1〉 and |ψ〉 = a |0〉 + b |1〉. The circuit to
implement a rotation around the Z-axis using |Z(θ)〉 as a resource state is presented in Fig. 1.
Upon measurement of the first qubit in the computational basis, we obtain either

m=0−−−→ a |0〉+ beiθ |1〉 , or
m=1−−−→ aeiθ |0〉+ b |1〉 = a |0〉+ be−iθ |1〉 ,

each with probability 1/2. Thus, the rotation angle is randomly either θ or −θ, up to global
phase. An analogous circuit performs a rotation about the X-axis [1].

As an example, consider the XY -plane version of |H〉:

|Z(π/4)〉 = HSHX |H〉 = |0〉+ eiπ/4 |1〉 .

Using the circuit in Fig. 1, we can implement a Z-rotation of angle ±π/4, producing at
random either the T gate or its adjoint, T †. We can deterministically correct the angle by
applying the phase gate S: ST † |ψ〉 = T |ψ〉. For general rotations, deterministic correction
is not possible.

3 Distilling Other Non-Stabilizer States

We now present our protocol for producing other non-stabilizer states using a very simple
two-qubit Clifford circuit and |H〉 states as an initial resource.

Consider the circuit of Fig. 2. One can easily verify that it measures the parity of the
two input qubits and decodes the resulting state into the second qubit. Consider the two
inputs to be |H〉 states and define θ0 = π

8 and |H〉 = |H0〉 = cos θ0 |0〉 + sin θ0 |1〉. Then
upon application of the controlled-NOT gate Λ(X),

|H0〉 |H0〉
Λ(X)−−−→ cos2 θ0 |00〉+ sin2 θ0 |01〉+ cos θ0 sin θ0(|11〉+ |10〉).
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|H0〉 X FE |0〉(|1〉)
|Hi〉 • |Hi+1〉(|Hi−1〉)

Figure 2 Two-qubit circuit used to obtain new |Hi〉 states from initial resource states |H0〉. Upon
measuring the 0 (1) outcome, the output state is |Hi+1〉 (|Hi−1〉).

Upon measurement m of the first qubit, we have

m=0−−−→ cos2 θ0 |0〉+ sin2 θ0 |1〉
cos4 θ0 + sin4 θ0

, or m=1−−−→ 1√
2 (|0〉+ |1〉).

We define θ1 such that

cos θ1 |0〉+ sin θ1 |1〉 = cos θ0 |0〉+ sin θ0 |1〉
cos4 θ0 + sin4 θ0

,

from which we deduce cot θ1 = cot2 θ0. We define |H1〉 = cos θ1 |0〉+sin θ1 |1〉, a non-stabilizer
state obtained from |H〉 states, Clifford operations, and measurements. If the measurement
outcome is 1, then we obtain a stabilizer state and discard the output (see Fig. 2). The
measurement outcomes occur with respective probabilities p0 = cos4 θ0 + sin4 θ0 = 3

4 and
p1 = 1− p0 = 1

4 .
We now recurse on this protocol using the non-stabilizer states produced by the previous

round of the protocol as input to the circuit in Fig. 2. We define |Hi〉 = cos θi |0〉+ sin θi |1〉,
where cot θi = coti+1 θ0. Using as input the previously produced |Hi〉 state and a new |H0〉
state, we have

|H0〉 |Hi〉
Λ(X)−−−→ cos θ0 cos θi |00〉+ sin θ0 sin θi |01〉+ sin θ0 cos θi |10〉+ cos θ0 sin θi |11〉 .

Upon measurement of the first qubit, we have
m=0−−−→ (cos θ′ |0〉+ sin θ′ |1〉),
m=1−−−→ (cos θ′′ |0〉+ sin θ′′ |1〉), where

cot θ′ = cot θi cot θ0 = coti+2 θ0 = cot θi+1,

cot θ′′ = cot θi tan θ0 = coti θ0 = cot θi−1.

Thus, if we measure m = 0, we obtain the state |Hi+1〉 and if we measure m = 1, we obtain
|Hi−1〉. The probability of measuring 0 is given by p0,i = cos2 θi cos2 θ0 + sin2 θi sin2 θ0. Note
that 3

4 ≤ p0,i < cos2 π
8 = 0.853 . . .

We can view this recursive process as a semi-infinite random walk with biased non-
homogeneous probabilities, as Fig. 3 illustrates. Every time a step is taken along this “ladder"
of states, one |H〉 ≡ |H0〉 is consumed, except at the first step of the ladder when we require
two |H〉 states; if m = 1 at the first node, we discard the output and start with two new |H〉
states.

4 A Denser Ladder

We can produce a denser ladder of states by using additional resource states
∣∣∣ψ0,1,2

0

〉
.

Consider the Clifford circuit of Fig. 4(a) that takes as input four |H〉 states. With probability
3(2 +

√
2)/32 ≈ 0.320, the measurement outcome is 000 and the resulting state is

∣∣ψ0
0
〉

=
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Figure 3 Obtaining non-stabilizer states from initial |H〉 states. Using |Hi〉 and |H0〉 states
probabilistically yields a |Hi−1〉 or |Hi+1〉 using the circuit of Fig. 2. Each ladder step costs one
|H0〉 state, except the first one which costs two.

|H0〉 H X • ����� 0

|H0〉(|+〉) • • H ����� 0

|H0〉 H X • • H H|ψ0(1)〉
|H0〉 X Z X ����� 0

|H0〉 • • H ����� 0

|H0〉 X X H |ψ2〉
|H0〉 • X ����� 0

|H0〉 X • ����� 0
(a) (b)

Figure 4 (a) Circuit to produce
∣∣ψ0

0
〉
(
∣∣ψ1

0
〉
) states. (b) Circuit to produce

∣∣ψ2
0
〉
states.

cosφ0
0 |0〉+sinφ0

0 |1〉 with φ0
0 = π

2−cot−1
(

2+3
√

2
6+5
√

2

)
≈ 0.446. Otherwise the output is discarded.

Since the probability of success is 0.320 and every trial consumes four copies of |H0〉, the
average cost to produce

∣∣ψ0
0
〉
is 12.50 |H0〉 states.

Another interesting state is obtained using the same circuit with one input state replaced
with a |+〉 state. Measurement 000 is obtained with probability (6+

√
2)/32 ≈ 0.232, resulting

in the state
∣∣ψ1

0
〉

= cosφ1
0 |0〉 + sinφ1

0 |1〉 with φ1
0 = π

2 − cot−1
(

2
√

2
3+
√

2

)
≈ 0.570. Since the

probability of success is 0.232 and every trial consumes three |H0〉 states, the average cost
to produce

∣∣ψ1
0
〉
is 12.95 |H0〉 states. Fig. 4(b) shows a circuit which produces the output

state
∣∣ψ2

0
〉

= cosφ2
0 |0〉+ sinφ2

0 |1〉 with φ2
0 = π

2 − cot−1
(

7
6
√

2

)
≈ 0.690, when measurement

000 is obtained (with probability 11/32 ≈ 0.344). The probability of success is 0.344 and the
average cost to produce

∣∣ψ2
0
〉
is 11.64 |H0〉 states.

Now we can use one of these non-stabilizer states as input to the circuit in Fig. 2 in place
of the top |H0〉 state. Begin with states

∣∣ψi0〉 and |H0〉. If m = 1, the state is discarded.
Otherwise, we obtain

∣∣ψi1〉 = cosφi1 |0〉+ sinφi1 |1〉, where cotφi1 = cotφi0 cot θ0. As before,
we define

∣∣∣ψji〉 = cosφji |0〉+ sinφji |1〉, where cotφji = cotφj0 coti θ0. If we input states
∣∣∣ψji〉

and |H0〉, we obtain

|H0〉
∣∣∣ψji〉 Λ(X)−−−→ cos θ0 cosφji |00〉+ sin θ0 sinφji |01〉+ sin θ0 cosφji |10〉+ cos θ0 sinφji |11〉 ,

such that the output state is, depending on the measurement outcome,

m=0−−−→
∣∣∣ψji+1

〉
, or m=1−−−→

∣∣∣ψji−1

〉
.

Denser “ladders" of states can be obtained using
∣∣∣ψ0,1,2

0

〉
as inputs in place of the top |H0〉

state.

5 Noisy states

A priori, noise in the |H0〉 resource states could be amplified by the circuit in Fig. 2
and affect the purity of the |Hi〉 states. However, we show this is not the case. We
measure the accuracy of the imperfect |Hi〉 states using the trace distance on states ρ and
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Figure 5 (a) Evolution of the trace distance between imperfect ρa
i and perfect |Hi〉 states with noise

p. Exponential decay fits give (2.08∗10−3)×2.31−i, (1.63∗10−5)×2.28−i and (1.26∗10−7)×2.24−i

for the circle, square and diamond data set, respectively. (b) Improvement factor of the total offline
cost using the noisiest |H0〉 states to distill |Hi〉 states of precision ε as a function of the relative
precision of the rotation ε/φ.

σ: D(ρ, σ) = tr(
√

(ρ− σ)†(ρ− σ))/2. We assume errors only occur on the |H0〉 states. We
numerically study three types of errors. For the first error, we assume that the mixed state,
ρa0 , is on the line joining the center of the Bloch sphere and the the perfect state, i.e.,

ρa0(p) = (1− p)|H0〉〈H0|+ p| −H0〉〈−H0|,

where |−H0〉 = sin π
8 |0〉 − cos π8 |1〉 is the state orthogonal to |H0〉. We denote the imperfect

version of |Hi〉 obtained from ρa0 states as ρai . We can always bring any mixed state into this
form using twirling [4]. For the protocol to be practical, we require it to remain stable under
the two following types of errors, where we assume the state is pure and the rotation is off of
the desired axis by δ:

ρb0(δ) = 1
2

(
I + sin

(π
4 + δ

)
X + cos

(π
4 + δ

)
Z
)
,

ρc0(δ) = 1
2

(
I + sin π4 cos δX + sin π4 sin δY + cos π4Z

)
.

We numerically generated 1000 pseudo-random instances of the protocol to produce |Hi〉
states for different values of i for each error type and for noise strengths 10−4, 10−6, and
10−8. Figure 5(a) shows an exponential decay of the distance between erroneous and ideal
states; if we start with a |H0〉 state distilled to our target accuracy, all subsequent derived
|Hi〉 states will also be distilled to at least that accuracy. This further suggests that for
larger values of i, noisier |H0〉 states could be used to still achieve the desired accuracy, and
in turn decrease the number of distillation recursions (and resources) necessary to prepare
the |H0〉 states.

Extrapolating from Fig.5(a), one could for example prepare ρ12 states with accuracy 10−9

using only input |H0〉 states of accuracy 10−6, saving at least one round of distillation prior
to our protocol, reducing the total offline cost (including magic state distillation). Using
states as noisy as possible and using the costs and accuracies presented in Table I of [4], we
were able to estimate, via numerical simulations, the improvement factor to be gained in
offline cost for different rotations and precisions. The results are presented in Fig. 5(b). Two
important behaviors are noted. First, for any given realtive precision ε/φ, the improvement
factor increases as the absolute precision ε goes down. Second, and more importantly, there
is as much as an order of magnitude to be gained for rotation angles that are comparable to
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the desired accuracy ε, e.g., for ε = 5× 10−10 and φ ∼ 100ε, there is a factor ∼ 11 reduction
in resource offline cost.

6 Application to Single-qubit Rotations

We now show how to use the ladders of states to enable the fault-tolerant approximation of
any single-qubit rotation. Results do not include the improvements in offline cost discussed in
previous section, so an additional gain factor between 2 and 10, depending on ε, is expected.
Recall the circuit given in Fig. 1. If we input either HSHX |Hi〉 or HSHX

∣∣∣ψji〉 in place
of the top qubit, we obtain rotation Z(±2θi) on |ψ〉. Note that there is a factor of two
difference between the angle θi involved in the description of the state and the rotation
applied, e.g., the |H0〉 state is over θ0 = π

8 , and can be used to implement a π
4 rotation. Also,

since 0 < θi <
π
4 (∀i), the discontinuity of cotangent is not a problem.

Although the circuit in Fig. 1 randomly applies ±θ, our protocols still result in efficient
application of the desired Z-rotation.

We propose the following protocol to approximate a Z-rotation Z(φ):
1. Set desired accuracy ε.
2. Pick a target rotation angle 0 < φ < 2π.
3. Find the state |Hi〉 (or denser state

∣∣∣ψji〉) such that 2θi is close to φ.
4. Simulate an instance of the ladder to obtain that state and add its cost to the offline cost.
5. Apply a rotation using |Hi〉 (or denser state

∣∣∣ψji〉) as input to the circuit of Fig. 1 and
add one to the online cost.

6. Recurse on steps 3 through 5 until the desired accuracy is reached.
Thus, one has to implement a sequence of j rotations {Z(2θij )} on |ψ〉 using the sequence of
states {

∣∣Hij

〉
}, such that Z(φ) ≈

∏
j Z(2θij ). The online cost is also given by

∣∣{∣∣Hij

〉
}
∣∣.

We define the accuracy of the applied rotation V compared to the target rotation U = Z(φ)
as

max
|ψ〉

D(U |ψ〉 〈ψ|U†, V |ψ〉 〈ψ|V †),

where D(ρ, σ) is the trace distance between states ρ and σ. If U and V are rotations
about the same axis, one can show that in our case, for small angles of rotation, this
reduces to the difference of rotation angles: ε = ∆φ. In [9], the distance measure used is
D(U, V ) =

√
(2− |tr(UV †)|)/2. In the case of rotations about the same axis, it can be

reduced to
√

1− | cos(∆φ)| ≈ ∆φ/
√

2 for small ∆φ.
We define an online and offline cost to apply a unitary gate. The online cost, Con, is the

expected number of |Hi〉 states required to implement the unitary. The offline cost, Coff, is
the total number of distilled |H0〉 states required to obtain all of the intermediate |Hi〉 states
used to perform the given unitary. For Solovay-Kitaev decomposition, the offline cost equals
the online cost and is given by the total number of T and T † gates in the decomposition. In
both cases, we do not count the cost of initially distilling |H0〉 states.

We simulated ∼ 1.8 × 104 instances of our |H〉 protocol, each for a random angle φ
and target accuracy between 10−12 < ε < 10−4. We assume that Con ∼ lncon( 1

ε ), and
Coff ∼ lncoff( 1

ε ), where Con and Coff are the online and offline costs, respectively, such
that lnCon ∼ con ln ln( 1

ε ), and lnCoff ∼ coff ln ln( 1
ε ). From linear fits to the data, we

find ln(Con) = −0.21 + 1.23 ln(ln(1/ε)) with a standard deviation around the mean of
ln(∆Con) = −0.30 + 0.83 ln(ln(1/ε)), and ln(Con) = −0.44 + 2.22 ln(ln(1/ε)) with a standard
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Figure 6 Cost of (a) random Z-rotations and (b) random unitaries as a function of precision
ε. Solid line: SK decomposition [9]. Dotted line: Offline cost using |H〉, or {

∣∣ψ0〉 , ∣∣ψ1〉 , ∣∣ψ2〉} as
initial resources. Dashed line: Online cost using |H〉, or

∣∣ψ0〉 , ∣∣ψ1〉 , ∣∣ψ2〉} as initial resources. The
shaded regions around the dashed and dotted lines represent the standard deviation around the
mean. (a) ln(C′ZSK) = −4.88 + 4.41 ln(ln(1/ε)); ln(C′ZOn) = −0.46 + 1.04 ln(ln(1/ε)); ln(C′ZOff) = 0.96 +
1.64 ln(ln(1/ε)). (b) ln(C′SK) = −2.67 + 3.40 ln(ln(1/ε)); ln(C′On) = −0.46 + 1.04 ln(ln(1/ε)) + ln 3;
ln(C′Off) = 0.96 + 1.64 ln(ln(1/ε)) + ln 3.

deviation around the mean of ln(∆Con) = 0.02 + 1.87 ln(ln(1/ε)). We deduce that con ∼ 1.23
and coff ∼ 2.22 for our protocol.

For the denser protocol, the offline costs are 12.50, 12.95, and 11.64 for
∣∣ψ0

0
〉
,
∣∣ψ1

0
〉
, and∣∣ψ2

0
〉
, respectively. The denser set of states results in improved scalings for both the online

and offline costs: c′on ∼ 1.04 and c′off ∼ 1.64, where ′ denotes the denser protocol. However,
the offline costs of our new states

∣∣ψi0〉 are improved only when precisions are smaller then
ε ≈ 1.28× 10−5.

Figure. 6 shows the behavior of the protocols on Z rotations and arbitrary rotations. For
an arbitrary rotation, recall that a single-qubit unitary U is composed of three rotations
around the X- and Z-axes [12]: U ∝ X(α)Z(β)X(γ), for some angles α, β, γ. We can
use our protocol to implement both Z and X rotations as previously outlined. Fig. 6(a)
plots the fit for Solovay-Kitaev decomposition [9] (solid line), the online cost (dashed), and
offline cost (dotted). For all practical precisions, the online cost of our proposed scheme is
consistently smallest. The offline cost is advantageous when ε ≤ 4.41× 10−4 for Z-rotations
and ε < 1.03× 10−6 for random unitaries.

7 Minimizing Online Cost

We can further minimize the online cost by considering instead the following protocol to
implement a Z rotation by angle φ: Prepare offline the state |Z(φ)〉 using the protocol
described to apply |Z(φ)〉 to a |0〉 ancilla. Then, use |Z(φ)〉 online to apply the rotation to
the desired qubit. With probability 1

2 , the rotation Z(φ) is applied and the online cost is 1.
If it fails, prepare offline |Z(2φ)〉; with probability 1

2 , Z(φ) is applied online and the online
cost is 2. If it fails, prepare offline |Z(4φ)〉, and so on. The probability of success after n
iterations decreases exponentially with n; the process is a negative binomial of parameter
p = 1

2 and the expected number of online rotations for success is ∼ 1
p = 2. We simulated

this process for random angles 0 < φ < 2π and accuracies 10−12 < ε < 10−4 and found the
expected number of online rotations is 〈C ′′on〉 = 1.99 and the offline cost is c′′off ∼ 1.75. Note
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Figure 7 Comparison of online (solid) and offline (dashed) costs to decompose Z rotations
vs. accuracy ε. Methods plotted include CPAR [13], CPS [10], CBS [9], CF [14]. COn, COff, C′On, C′Off,
C′′On, C′′Off represent our |H〉 ladder, dense ladder, and minimal online cost with the dense ladder,
respectively. The offline costs for C{BS,PS,F} are equal to their online costs.

that any method can be used to prepare the ancilla state offline, and here we use our protocol
for preparation. We discovered after writing that a similar technique was described in [13].

Figure 7 compares the cost of state-of-the-art decomposition techniques with our protocols.
The plot highlights the tradeoffs between the various methods. Note that we only plotted
two methods, our protocol C ′′ and CPAR (which uses CF to prepare the state), using the
minimal online framework, but the other techniques could also be used to prepare the state
offline, yielding an expected online cost of 2 and a roughly doubled offline cost. Our protocols
C, C ′, and C ′′ (red, green, black) exhibit a very clear tradeoff between online circuit depth
and offline cost. For example, if operations on logical qubits must be minimized (due to
noise), then trading offline resources for low online circuit depth is desirable, making C, C ′,
and C ′′ advantageous compared to C{BS,F,PS}. C ′′ is competitive with the minimal-online
versions of CF (plotted as CPAR) and CPS (not plotted). In practice, several decomposition
techniques will be used throughout the compilation of a quantum algorithm.

Finally, our protocol can be used to fault-tolerantly implement elements of the V basis,
which consists of V{1,2,3} = (I + 2i{X,Y, Z})/

√
5 and their inverses. The V basis was shown

to be efficiently universal, guaranteeing decompositions to be of depth O(log(1/ε)) [15]. It was
previously dismissed as a candidate basis for decomposition due to the inability to implement
the gates fault-tolerantly. However, our protocol enables fault-tolerant implementation:
V = Z(π/4)Z(2θ2), which is a T gate followed by a rotation using the |H2〉 resource state.
On average, it requires an offline cost of 10 |H0〉 states. This has prompted the development
of decomposition algorithms targeted to the V basis that may outperform those for the
{H,T} basis [16].
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8 Conclusions

We have proposed a protocol to distill non-stabilizer states efficiently using magic states,
Clifford operations, and measurements. One application of our protocol is implementing
arbitrary single-qubit rotations with lower resource cost than state-of-the-art decomposition
methods and constant online circuit depth. An extension of our work is to study other
stabilizer circuits as “ladders" of states, or to use SH eigenstates distilled using the protocols
of [3, 5]. Finally optimizing the sequence of angles required to implement the desired rotation,
or determining when to use a given decomposition technique, will be a necessary component of
any quantum compiler. We thank Alex Bocharov and Cody Jones for many useful discussions.
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Realistic Cost for the Model of Coherent
Computing
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Abstract
For the model of so-called coherent computing recently proposed by Yamamoto et al. [Y. Yama-
moto et al., New Gen. Comput. 30 (2012) 327–355], a theoretical analysis of the success probab-
ility is given. Although it was claimed as their prospect that the Ising spin configuration problem
would be efficiently solvable in the model, here it is shown that the probability of finding a desired
spin configuration decreases exponentially in the number of spins for certain hard instances. The
model is thus physically unfeasible for solving the problem within a polynomial cost.
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1 Introduction

It has been of long-standing interest to study the ability of analog computing systems to
solve computationally difficult problems [1, 2]. It is recently of growing interest to investigate
the power of quantum adiabatic time evolution in this direction [3]. Nevertheless, it has been
commonly believed, with strong theoretical and numerical evidences, that a desired solution
should not be obtained with a sufficiently large probability within polynomial time owing to
the exponential decrease in the energy gap between desired and undesired eigenstates during
an adiabatic change of Hamiltonians [4, 5, 6, 7, 8, 9].

Recently, Yamamoto et al. wrote a series of papers [10, 11, 12] on their model—so
called the coherence computing model—of an injection-locked slave laser network, which uses
quantum states to some extent in contrast to conventional classical optical computing models
[14, 15]. It was claimed to be promising in solving the Ising spin configuration problem [16]
and those polynomial-time reducible to this problem faster than known conventional models.

The Ising spin configuration problem has been well-known as a typical NP-hard problem
described by an Ising-type Hamiltonian [16]. A typical description is as follows.

Ising spin configuration problem: Given a graph G = (V,E) with set V of vertices and
set E of edges, and weighting functions J : E → {0,±1} and B : V → {0,±1}, find
the minimum eigenvalue λg of the Hamiltonian H =

∑
(ij)∈E Jijσz,iσz,j+

∑
i∈V Biσz,i.

Here, σz,i is the Pauli Z operator acting on the space of the ith spin (there are n = |V |
spin-1/2’s).

In an intuitive point of view, the problem is difficult in the sense that the number of given
parameters grows quadratically while the number of eigenvalues including multiplicity grows
exponentially. Although the Hamiltonian is diagonal in the Z basis, writing it in the matrix
form itself takes exponential time. Hereafter, we employ n for representing the input length
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of an instance although, precisely speaking, the bit length of an encoded instance is O(n2).
We do not go into the controversy on the definition of the input length [17]. As for known
results on the complexity of the problem, it becomes P in case the graph is a planer graph
and Bi = 0 ∀i (see Ref. [18]); for nonplaner graphs, it is in general NP-hard, and it is so
under many different conditions [18]. In addition, a planer graph together with nonzero
Bi’s also makes the problem NP-hard [16]. It is also worthwhile to mention that the typical
value of λg is cgn with coefficient cg (so-called the ground-state energy density) typically
between −2 and −1/2 when the values of Jij are chosen in a certain random manner and
Bi are set to zero [19, 20, 21, 22, 23, 24, 25, 26] (cg is between −1.5 and −1 when the
graph is a ladder and Jij and Bi are randomly chosen from {±1} [27]). Furthermore, it
should be mentioned that the distribution of eigenenergies of H (namely, the envelope of
the multiplicity of eigenenergies with a normalization) is a normal distribution with mean
zero and standard deviation proportional to

√
n in the random energy model [22, 33, 25].

Here, the important observation is that the standard deviation increases with n in spite of
the exponentially increasing number of spin configurations.

Let us also introduce the NP-complete variant of the Ising spin configuration problem as
follows.

NPC Ising spin configuration problem:
Instance: Positive integer n, integer K, and parameters Jij ∈ {0,±1} (i < j) and
Bi ∈ {0,±1} for integers 0 ≤ i, j ≤ n− 1.
Question: Is there an eigenvalue λ of the Hamiltonian H =

∑n−1
i,j=0;i<j Jijσz,iσz,j +∑n−1

i=0 Biσz,i such that λ < K ?

This is the problem we are going to investigate in this contribution as for its computational
difficulty under the coherent computing model.

Let us now briefly look into Yamamoto et al.’s coherent computing model [10, 11, 12]
which is schematically depicted as Fig. 1. It has one master laser whose output is split into
n paths and injected to n slave lasers. Each slave laser is initially locked to the superposed
state (|R〉i + |L〉i) where |R〉 and |L〉 are the right and left circular polarized states (see,
e.g., Refs. [28, 29] for physics of the injection-locked laser system). The initial state of the
n slave lasers is therefore

⊗n−1
i=0 (|R〉i + |L〉i). The laser network is a macroscopic system;

thus initially it holds many photons in this same state. The computational basis is set
to {|R〉, |L〉}n and σz is written as |R〉〈R| − |L〉〈L|. The ith slave laser and the jth slave
laser are connected for nonzero Jij . At time t = 0, they mutually inject a small amount
of horizontally polarized signal via an attenuator, a phase shifter, and a horizontal linear
polarizer, which determine the amplitude attenuation coefficient that is regarded as Jij .
Among the three instruments, the attenuator’s transmission coefficient controls |Jij | and the
other instruments controls sgnJij . In addition, a small amount of injection of horizontally
polarized signal is also made from the master laser to each slave laser at t = 0. This amount
corresponds to Bi for the ith slave laser. It is controlled by the combination of a half-wave
plate and a quarter wave plate. For more details of implementation of the coefficients, see
section 7 of Utsunomiya et al. [10].

Then one waits for a small time duration tst to let the system evolve. Laser modes
satisfying the matching condition with the above-mentioned setting grow rapidly and other
modes are suppressed. For t > tst, the system is thought to be in a steady state. Then for
each slave laser its output is guided to a polarization beam splitter and the right and the left
polarization components are separately detected by photodetectors. By a majority vote of
photon number counting, the computational result of each slave laser, |a〉i ∈ {|R〉, |L〉}, is
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Figure 1 Schematic description of the coherent computing model. See the text for how Jij and
Bi are realized by optical instruments.

retrieved. The steady state |a〉0 · · · |a〉n−1 is thus determined. Once this is determined, it
takes only polynomial time to calculate the corresponding eigenvalue since there are only
O(n2) terms in the Hamiltonian (here, we do not use its matrix form).

Thus, in short, the state starts from (|R〉 + |L〉)⊗n and eventually reaches a steady
state representing a configuration that corresponds to the minimum energy of the given
Hamiltonian. Yamamoto et al. [10, 11, 12] employed rate equations involving several
factors characterizing each oscillator and connections with other oscillators to analyze photon
numbers of the right and left polarization components for each slave laser; they concluded
that the system reaches a steady state within 10 nano seconds without obvious dependence
on n.

It has been unknown so far if the coherent computing model is a valid computer model in
view of a rigid and fair description of computational costs. Conventional analog computing
models do not solve NP-hard problems within a polynomial cost; they require either exponen-
tially long convergence time or exponentially fine accuracy [13]. Thus it should be natural
to be skeptical against the power of the coherent computing model. In this contribution,
we investigate the signal per noise ratio in the output of the coherent computer when the
NPC Ising spin configuration problem is handled. We will reach the fact that for certain
hard instances, the relative signal intensity corresponding to solutions is bounded above by
a function decreasing exponentially in n. This is because the number of modes that are
possibly locked in the laser network increases rapidly in n owing to the fact that the locking
range of the laser network does not shrink as n grows considering imperfectness of optical
instruments.

The analysis of computational difficulty is described in Sec. 2. The result is discussed in
Sec. 3 and summarized in Sec. 4.
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2 Computational difficulty in the coherent computing model

The coherent computing model illustrated in Fig. 1 was so far analyzed by Utsunomiya et
al. [10, 11, 12] on the basis of the assumption that given coefficients Jij and Bi are exactly
implemented by optical instruments although fluctuations and quantum noise in the system
were considered in their analyses of time evolutions using rate equations, which led to a quite
ideal convergence taking only 10 nano seconds.

Here, we assume that individual optical instruments are imperfect1 so that there are
errors in Jij and Bi, which are due to calibration errors and/or thermal fluctuations. Then
the following proposition is achieved.

I Proposition 1. Consider the NPC Ising spin configuration problem. Suppose calibration
errors and/or thermal fluctuations of optical instruments cause nonzero physical deviations,1
εij ∈ R for nonzero Jij and κi ∈ R for nonzero Bi. We assume that εij are i.i.d. random
variables with mean zero and a certain standard deviation σε and κi are i.i.d. random
variables with mean zero and a certain standard deviation σκ. Then, for large n, there exist
YES instances such that the probability to obtain a spin configuration corresponding to one
of λ’s < K using the coherent computer is ≤ poly(n)2−n.

Proof. Here we consider instances generated in the way that Jij ’s and Bi’s are independent
uniformly distributed random variables with values in {0,±1}. Since a problem instance
is a given data set, the standard deviation for Jij and that for Bi intrinsic to the problem
instance itself are not of our concern. We only consider physical deviations as errors.

As the model is a sort of a bulk model (there are many photons), it is convenient to consider
populations of individual configurations. Let Pλ,lλ(t) be the population of eigenstate |ϕλ,lλ〉
(lλ ∈ {0, . . . , dλ − 1}) corresponding to eigenenergy λ of the Hamiltonian (specified by the
problem instance), where t stands for time and dλ is the multiplicity of λ. We also introduce
Pλ(t) =

∑dλ−1
lλ=0 Pλ,lλ(t). It should be kept in mind that we do not start from the thermal

distribution; for the initial state, we have identical copies of
∑
λ

∑
lλ
|ϕλ,lλ〉 = (|R〉+ |L〉)⊗n.

In the present setting, the random-energy model [22, 33] is valid2 and hence, for large n,
with an appropriate scaling factor M , one can write Pλ(0) = MN (0, σ2

λ) with σλ = Θ(
√
n)

where N (µ, σ2) is the density function of the normal distribution with mean µ and standard
deviation σ. Here, we have M = 2nPλg,0(0) with λg the ground state energy because the
initial population is same for all the configurations.

Let us denote the set of solution states (spin configurations corresponding to λ’s < K) as
Y . The total population of solution states at t is given by PY (t) =

∑
λ<K Pλ(t). Similarly,

the total population of nonsolution states is given by PX(t) =
∑
λ≥K Pλ(t); here, X =

{|ϕλ,lλ〉 | λ ≥ K}. Ideally, only |ϕλ,lλ〉’s ∈ Y will enjoy population enhancement by mode
selections. However, there exists v ≥ K such that Pλ(t > tst)� 0 for λ ≤ v. This is because

1 It is a common case that each optical instrument has a few permil uncertainty in the calibration of each
property (see Ref. [30]). In addition, there is a quantum limit in any classical instrument [31, 32] so
that a manufacturing error and a manipulation error cannot be made arbitrarily small.

2 Let us pick up a certain configuration |ϕ〉. Suppose, by applying m bit flips, its energy changes by
∆E(ϕ m7→ ϕ′) with |ϕ′〉 a resultant configuration. This process should obey the random energy change
and hence for large m, ∆E(ϕ m7→ ϕ′) should obey the normal distribution with mean zero and a standard
deviation proportional to

√
m by the central limit theorem (in regard with a sum of random variables).

In addition, the most typical number of bit flips is n/2 when we generate all other configurations from
|ϕ〉. Typical bit flips generate a dominant number of configurations. Thus the distribution of energies is
approximated by the normal distribution with mean zero and a standard deviation proportional to

√
n.

In this way, we have just obtained the energy distribution function in the random-energy model.
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the matching condition is imperfect in reality; the locking range is broader than the ideal
range considering errors in optical instruments.3 Let us write PZ(t) =

∑
K≤λ≤v Pλ(t); here,

Z = {|ϕλ,lλ〉 | K ≤ λ ≤ v}.
By assumption, we are considering physical deviations (including calibration errors and

thermal fluctuations), εij for nonzero Jij and κi for nonzero Bi. The Hamiltonian implemen-
ted on the laser network is written as H̃ =

∑
i<j|Jij 6=0(Jij+εij)σz,iσz,j+

∑
i|Bi 6=0(Bi+κi)σz,i.

This suggests that v = K + K ′(n) with K ′(n) ' σε
√
n(n− 1)/3 + σκ

√
2n/3 by the cent-

ral limit theorem in regard with a sum of random variables (see, e.g., Refs. [35, 36]),
considering the expected number of nonzero Jij ’s and that of nonzero Bi’s. Therefore,
PZ(0) = M

∫K+K′(n)
K

N (0, σ2
λ)dλ.

Let us write H = HJ + HB with HJ =
∑
i<j Jijσz,iσz,j and HB =

∑
iBiσz,i. As we

have mentioned, it is known [19, 20, 21, 22, 23, 24, 25, 26] that the ground state energy
of HJ is typically cgn with −2 < cg < −1/2. Therefore, for any normalized vector |v〉 in
the Hilbert space of the system of our concern, 〈v|H|v〉 is typically bounded below by −3n.
Thus, for typical instances we can choose K = K(n) with −K(n) = O(n). Recall that

K ′(n) = Θ(n) and σλ = Θ(
√
n). We find that

∫K+K′(n)
K

N (0, σ2
λ)dλ =

[
1
2 erf( λ√

2σλ
)
]K+K′(n)

K
is a monotonically increasing function of n. Hence, for a certain constant b > 0, PZ(0) ≥
b2nPλg,0(0).

Let us assume that locked modes have equally enhanced intensities for t > tst. This leads
to the signal per noise ratio for t > tst: PY (t > tst)/PZ(t > tst) = PY (0)/PZ(0). (In case
one can assume that only one of |ϕλ,lλ〉’s in Y ∪ Z survives, the ratio of the probability of
finding |ϕλ,lλ〉 originated from Y and that of finding |ϕλ,lλ〉 originated from Z at t > tst is
given by the same equation.)

Consider some typical instances for which dg is small and is not clearly dependent on n (dg
is the multiplicity in the ground level). This is a typical situation because the multiplicity of λ
obeys the distribution N (0, σ2

λ) with σλ = Θ(
√
n) in the present setting, as we have explained.

It is always possible to choose4 the value of K such that all |ϕλ,lλ〉 ∈ Y are configurations
with at most a constant number of bits different from one of the ground states. In this case,
PY (0) = poly(n)Pλg,0(0) and thus, for large n, PY (t > tst)/PZ(t > tst) ≤ poly(n)2−n. J

I Remark. It is trivial to find a similar proof for the existence of hard instances of the Ising
spin configuration problem for finding a ground level in the coherent computing model.

By Proposition 1, it is now easy to prove the following theorem.

I Theorem 1. There exists an instance of the NPC Ising spin configuration problem such
that a decision takes Ω(2n/poly(n)) time in the coherent computing model when nonzero
physical deviations,1 εij ∈ R for nonzero Jij and κi ∈ R for nonzero Bi, are considered.
Here, εij (κi) are assumed to be i.i.d. random variables with zero mean and a certain standard
deviation σε (σκ).

Proof. By Proposition 1, there exists an YES instance such that the probability ps for a single
trial of coherent computing to find λ < K is ≤ poly(n)2−n. The success probability after τ
trials is given by 1−(1−ps)τ . In order to make this probability larger than a certain constant
c > 0, we need τ > log(1− c)/ log(1− ps) = (log 1

1−c )/[ps +O(p2
s)] = Ω(2n/poly(n)). J

3 See, e.g., Ref. [34] for an experimental gain curve.
4 Recall that we are proving the existence of hard instances.
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3 Discussion

We have theoretically shown a weakness of the coherent computing model for the problem to
examine the existence of a suitably small (large negative) eigenvalue of an Ising spin glass
Hamiltonian. As the number n of spins grows, the desired signal decreases exponentially for
certain hard instances because exponentially many undesired configurations obtain gains in
a realistic setting.

Indeed, Yamamoto et al. made numerical simulations [10, 11, 12] to examine their
prospect that a desired configuration would be found efficiently in the coherent computing
model. But, in general, the following points should be taken into account whenever a
computer simulation of a physical system is performed.

First, in classical computing, exponentially fine accuracy is achievable by linearly increas-
ing the register size of a variable or an array size of combined variables. Nevertheless, in
physical systems, noise decreases as ∝ 1/

√
T with T the number of trials or the number of

identical systems according to the well-known central limit theorem. In the field of quantum
computing, this has been well-studied in the context of NMR bulk-ensemble computation at
room temperature which suffers from exponential decrease of signal intensity corresponding
to the computation result as the input size grows (see, e.g., [37, 38]). In the coherent
computing model, the ratio of the population of correct configurations and that of wrong
configurations at the steady state should not decrease in a super-polynomial manner if the
model were physically feasible for solving the problem efficiently. So far, Yamamoto et al.
reported [10, 11, 12] that each slave laser maintains a sufficiently large discrepancy between
the populations of |R〉 and |L〉 at the steady state for some instances with a small number of
spins (n ≤ 10), using a simulation based on rate equations. They also showed their simulation
results for n = 1000 for a very restricted type of instances such that Jij ’s take the same value
and Bi’s for odd i take the same value and so do for even i. Nevertheless, the populations (in
other words, the joint probabilities) of correct and wrong configurations and how they scale
for large n were not reported. Recently, Wen [39] showed his simulation results for the case
where the graph was a two-layer lattice for n up to 800. Although it was reported that his
simulations of the coherent computer found eigenvalues lower than those found by a certain
semidefinite programming method, the populations of correct and wrong configurations were
not shown. Thus, it is difficult to discuss the power of the coherent computing model on the
basis of presently known simulation results.

Second, the coefficients of a problem Hamiltonian cannot be implemented as they are, in
reality. Seemingly negligible errors in the coefficients might be crucial in complexity analyses
for a large input size. This point has not been considered in conventional simulation studies
[11, 12, 39] of the coherent computing model. In the coherent computing model, nonzero Jij ’s
and nonzero Bi’s in the Ising spin glass Hamiltonian should accompany calibration errors
and/or thermal fluctuations. In particular, optical instruments usually have nonnegligible
calibration errors [30]. As we have written in the proof of Proposition 1, a well-known
application of the central limit theorem for the sum of random variables [35, 36] indicates
the important observation that the sum of such physical deviations is an increasing function
of the number of spins. This fact has led to our conclusion that the relative population of
desired configurations decreases exponentially in n for certain hard instances.

The second point is also usually overlooked in computer simulations [3] of adiabatic
quantum computing. Discussions on the complexity of adiabatic time evolution are usually
made as to how long time should be spent in light of a minimum energy gap between the
ground state and the nearest excited state during adiabatically changing the Hamiltonian
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toward its final form. The coefficients in the starting and the final Hamiltonians are quite
often considered to be given accurate numbers [9]. Nevertheless, they should have certain
errors due to imperfect calibrations [30] and/or fluctuations in reality, as we have discussed.
The target state will not appear as a stable state if a nontarget state of the final Hamiltonian
becomes a ground state of the Hamiltonian owing to the errors. A real physical setup for
adiabatic quantum computing should suffer from the demand of considerably fine tuning of
individual apparatus to implement desired coupling for large n. So far, n has not been very
large in physical implementations [40, 41, 42] so that this problem has not been significant.
(In addition, even under the setting without error in Hamiltonian coefficients, adiabatic
quantum computing tends to suffer from exponentially decreasing energy gap when random
instances of certain NP-hard problems are tried, according to the numerical analysis by Farhi
et al.[9])

A possible way to avoid very fine tuning is to use error correction schemes similar to those
for standard circuit-model quantum computing. There have been several studies on error
correction codes [43] and dynamical decoupling [44, 45] in the context of adiabatic quantum
computing. It is of interest if similar schemes apply to the coherent computing model. As
for error correction codes, each Pauli operator in an original Hamiltonian should be encoded
to a certain multi-partite coupling term in an encoded Hamiltonian. Thus one needs to
find a scheme to implement such a term in the coherent computing model. It is highly
nontrivial to introduce, e.g., a four-partite coupling among slave lasers. Further investigation
is needed for the usability of error correction codes. Another scheme is dynamical decoupling.
This scheme looks effective for suppressing thermal fluctuations at a glance. Consider the
minimum gap between two distinct eigenvalues of a problem Hamiltonian and normalize it
with the maximum gap. This decreases only polynomially in n for any instance of the Ising
spin configuration problem by the definition of the problem. Thus the minimum operation
interval of dynamical decoupling required for an effective noise suppression decreases only
polynomially in n according to Eq. (52) of Ref. [46]. One problem is how to use this scheme
for cancelling calibration errors. In addition, we need to find an implementation of the
scheme such that the scheme itself does not introduce an uncontrollable noise. This will be
difficult for large n because imperfections in decoupling operations probably lead to a similar
argument as Proposition 1.

As we have proved, there are hard instances of the NPC Ising spin configuration problem
for which one cannot efficiently achieve a correct decision in the coherent computing model
(Theorem 1). This is a reasonable result in light of the fact that no known conventional
computer model could solve an NP-complete problem within a polynomial cost. It is still
an open problem if an unreasonable computational power is achievable by combining error
protection schemes with the coherent computing model.

4 Conclusion

The model of coherent computing has been theoretically investigated in view of computational
cost under a realistic setting. It has been proved that there exist hard instances of the NPC
Ising spin configuration problem, which require exponential time for a correct decision in the
model.
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Yoshihisa Yamamoto for helpful discussions. This work is supported by the Grant-in-Aid for
Scientific Research from JSPS (Grant No. 25871052).



A. SaiToh 251

References
1 T. Roska, L. O. Chua, The CNN Universal Machine: An Analogic Array Computer, IEEE

Trans. Circuits Sys. II 40 (1993) 163-173.
2 M. Ercsey-Ravasz, T. Roska, and Z. Néda, Cellular neural networks for NP-hard optim-

ization, in the 11th International Workshop on Cellular Neural Networks and their Ap-
plications (CNNA2008), Santiago de Compostela, Spain, 14-16 July 2008, pp.52-56; ibid,
EURASIP J. Adv. Signal Process. 2009 (2009) 646975.

3 E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda, A Quantum
Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem,
Science 292 (2001) 472-475.

4 W. van Dam, M. Mosca, and U. Vazirani, How Powerful is Adiabatic Quantum Computa-
tion? in: Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science
(FOCS 2001), Las Vegas, NV, 14-17 October 2001 (IEEE, New York, 2001) pp.279-287.

5 M. Žnidarič, Scaling of the running time of the quantum adiabatic algorithm for proposi-
tional satisfiability, Phys. Rev. A 71 (2005) 062305.

6 M. Žnidarič and M. Horvat, Exponential complexity of an adiabatic algorithm for an NP-
complete problem, Phys. Rev. A 73 (2006) 022329.

7 M. H. S. Amin, Effect of Local Minima on Adiabatic Quantum Optimization, Phys. Rev.
Lett. 100 (2008) 130503.

8 I. Hen and A. P. Young, Exponential complexity of the quantum adiabatic algorithm for
certain satisfiability problems, Phys. Rev. E 84 (2011) 061152.

9 E. Farhi, D. Gosset, I. Hen, A. W. Sandvik, P. Shor, A. P. Young, and F. Zamponi,
Performance of the quantum adiabatic algorithm on random instances of two optimization
problems on regular hypergraphs, Phys. Rev. A 86 (2012) 052334.

10 S. Utsunomiya, K. Takata, and Y. Yamamoto, Mapping of Ising models onto injection-
locked laser systems, Opt. Exp. 19 (2011) 18091.

11 K. Takata, S. Utsunomiya, and Y. Yamamoto, Transient time of an Ising machine based
on injection-locked laser network, New J. Phys. 14 (2012) 013052.

12 Y. Yamamoto, K. Takata, and S. Utsunomiya, Quantum Computing v.s. Coherent Com-
puting, New Gen. Comput. 30 (2012) 327-355.

13 S. Aaronson, Guest Column: NP-complete problems and physical reality, ACM SIGACT
News, 36(1) (2005) 30-52.

14 N. T. Shaked, S. Messika, S. Dolev, and J. Rosen, Optical solution for bounded NP-
complete problems, Appl. Opt. 46 (2007) 711-724.

15 S. Dolev, T. Haist, and M. Olteans, Eds., Optical Supercomputing, 1st Int. Workshop,
Vienna, Austria, 26 August 2008, Proceedings, LNCS 5172 (Springer, Berlin, 2008).

16 F. Barahona, On the computational complexity of Ising spin glass models, J. Phys. A:
Math. Gen. 15 (1982) 3241-3253.

17 T. E. O’Neil, The Importance of Symmetric Representation, in: Proceedings of the 2009
International Conference on Foundations of Computer Science (FCS’09), Las Vegas, NV,
13-16 July 2009 (CSREA Press, USA, 2009) pp.115-119.

18 S. Istrail, Statistical mechanics, three-dimensionality and NP-completeness: I. Universality
of intractability for the partition function of the Ising model across non-planar surfaces,
in: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing
(STOC’00), Portland, OR, 21-23 May 2000 (ACM, New York, 2000) pp.87-96.

19 J. Vannimenus and G. Toulouse, Theory of the frustration effect: II. Ising spins on a square
lattice, J. Phys. C: Solid State Phys. 10 (1977) L537-L542.

20 S. Kirkpatrick, Frustration and ground-state degeneracy in spin glasses, Phys. Rev. B 16
(1977) 4630-4641.

TQC’13



252 Realistic Cost for the Model of Coherent Computing

21 I. Morgenstern and K. Binder, Magnetic correlations in two-dimensional spin-glasses, Phys.
Rev. B 22 (1980) 288-303.

22 B. Derrida, Random-energy model: Limit of a family of disordered models, Phys. Rev. Lett.
45 (1980) 79-82.

23 B. Derrida, Random-energy model: An exactly solvable model of disordered systems, Phys.
Rev. B 24 (1981) 2613-2626.

24 C. De Simone, M. Diehl, M. Jünger, P. Mutzel, G. Reinelt, and G. Rinaldi, Exact ground
states of Ising spin glasses: New experimental results with a branch-and-cut algorithm, J.
Stat. Phys. 80 (1995) 487-496.

25 A. Andreanov, F. Barbieri, and O.C. Martin, Large deviations in spin-glass ground-state
energies, Eur. Phys. J. B 41 (2004) 365-375.

26 S. Boettcher, Simulations of ground state fluctuations in mean-field Ising spin glasses, J.
Stat. Mech. 2010 (2010) P07002.

27 T. Kadowaki, Y. Nonomura, and H. Nishimori, Exact ground-state energy of the Ising spin
glass on strips, J. Phys. Soc. Jpn. 65 (1996) 1609-1616.

28 H. Haken, H. Sauermann, Ch. Schmid, and H. D. Vollmer, Theory of Laser Noise in the
Phase Locking Region, Z. Phys. 206 (1967) 369-393.

29 H. A. Haus and Y. Yamamoto, Quantum noise of an injection-locked laser oscillator, Phys.
Rev. A 29 (1984) 1261-1274.

30 The SP 250 Series on NIST Measurement Services,
http://www.nist.gov/calibrations/sp250_series.cfm, see e.g., SP 250-64: R. W.
Leonhardt, Calibration Service for Low-level Pulsed-Laser Radiometers at 1.06 µm: Pulse
Energy and Peak Power.

31 A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, Introduction
to quantum noise, measurement, and amplification, Rev. Mod. Phys. 82 (2010) 1155-1208.

32 M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, Approaching the Quantum Limit
of a Nanomechanical Resonator, Science 304 (2004) 74-77.

33 B. Derrida, A generalization of the Random Energy Model which includes correlations
between energies, J. Physique Lett. 46 (1985) L-401-L-407.

34 S. Kobayashi and T. Kimura, Injection Locking in AlGaAs Semiconductor Laser, IEEE J.
Quant. Ele. QE-17 (1981) 681-689.

35 A. N. Shiryaev, Probability (2nd ed., translated by R. P. Boas, Springer-Verlag, New York,
1996).

36 A. Klenke, Probability Theory: A Comprehensive Course (Springer-Verlag, London, 2008).
37 E. Knill, I. Chuang, and R. Laflamme, Effective pure states for bulk quantum computation,

Phys. Rev. A 57 (1998) 3348-3363.
38 A. SaiToh and M. Kitagawa, Matrix-product-state simulation of an extended Brüschweiler

bulk-ensemble database search, Phys. Rev. A 73 (2006) 062332.
39 K. Wen, Injection-locked laser network for solving NP-complete problems, PhD Thesis,

Stanford University (2012), http://purl.stanford.edu/xp446hc0861.
40 M. Steffen, W. van Dam, T. Hogg, G. Breyta, and I. Chuang, Experimental Implementation

of an Adiabatic Quantum Optimization Algorithm, Phys. Rev. Lett. 90 (2003) 067903.
41 X. Peng, Z. Liao, N. Xu, G. Qin, X. Zhou, D. Suter, and J. Du, Quantum Adiabatic

Algorithm for Factorization and Its Experimental Implementation, Phys. Rev. Lett. 101
(2008) 220405.

42 M. W. Johnson et al., Quantum annealing with manufactured spins, Nature 473 (2011)
194-198.

43 S. P. Jordan, E. Farhi, and P. W. Shor, Error-correcting codes for adiabatic quantum
computation, Phys. Rev. A 74 (2006) 052322.

http://www.nist.gov/calibrations/sp250_series.cfm
http://purl.stanford.edu/xp446hc0861


A. SaiToh 253

44 D. A. Lidar, Towards Fault Tolerant Adiabatic Quantum Computation, Phys. Rev. Lett.
100 (2008) 160506.

45 G. Quiroz and D. A. Lidar, High-fidelity adiabatic quantum computation via dynamical
decoupling, Phys. Rev. A 86 (2012) 042333.

46 H. K. Ng, D. A. Lidar, and J. Preskill, Combining dynamical decoupling with fault-tolerant
quantum computation, Phys. Rev. A 84 (2011) 012305.

TQC’13



Optimal Robust Self-Testing by Binary Nonlocal
XOR Games
Carl A. Miller1 and Yaoyun Shi2

1 Electrical Engineering and Computer Science Department
University of Michigan
2260 Hayward St. Ann Arbor, MI 48109 USA carlmi@umich.edu

2 Electrical Engineering and Computer Science Department
University of Michigan
2260 Hayward St. Ann Arbor, MI 48109 USA shiyy@umich.edu

Abstract
Self-testing a quantum apparatus means verifying the existence of a certain quantum state as well
as the effect of the associated measuring devices based only on the statistics of the measurement
outcomes. Robust (i.e., error-tolerant) self-testing quantum apparatuses are critical building
blocks for quantum cryptographic protocols that rely on imperfect or untrusted devices. We
devise a general scheme for proving optimal robust self-testing properties for tests based on
nonlocal binary XOR games. We offer some simplified proofs of known results on self-testing,
and also prove some new results.
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1 Introduction

Consider a quantum apparatus with a classical input/output interface, and suppose that
the internal behavior of the apparatus — the quantum state inside and the measurements
selected by the classical input — cannot be trusted to conform to a desired specification. The
apparatus is said to be self-testing [8], if there exists a self-test, i.e., a set of constraints on the
input-output correlations, that once satisfied will guarantee the accuracy to the specification.

The notion of quantum self-testing was explicitly formulated by Mayers and Yao [8],
who pointed out its importance for quantum cryptography: self-testing enables quantum
cryptographic protocols that rely on imperfect or untrusted quantum devices. Such protocols
were advanced in the recent thrust of research on device-independent quantum cryptography [1,
15, 9, 14, 6, 5, 18].

Multiple self-testing results are known. Such results are often based on nonlocal games.
Popescu and Rohrlich [16] proved that any state that achieves a maximal violation of the
CHSH inequality [3] must be equivalent to a direct sum of singlets. A self-testing result was
proved for the GHZ paradox by Colbeck [4].

In order for self-testing to be practically useful, it must tolerate error. That is, an
apparatus close to passing the self-test must be close to the specification. Robust self-testing
results have been proved in [7, 10, 12, 11, 17]. These papers include two recent results which
prove robust self-testing for the CHSH game [11, 17].
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Existing proofs of self-testing are fairly lengthy and technical, and appear specific to the
underlying (class of) quantum states. Also, there is some variation in the error terms afforded
by these results. Some of the results on nonlocal games show that if the score achieved is
within ε of a passing score, the deviation of the apparatus from perfect behavior is no more
than C

√
ε. For other results (e.g., in [10, 11]) the error term is Cε1/4. It is natural to ask

whether these error bounds can be tightened.
Most existing self-tests are based on binary nonlocal XOR games. In this paper, working

within this class, we provide a simple criterion which determines whether a particular game
is a robust self-test. The criterion guarantees an error term of C

√
ε, which is easily seen

to be the best possible (up to the constant C). The criterion is fairly simple to check, it
encompasses known results on the CHSH game and the GHZ paradox, and it allows the
proof of new results.

The starting point of our theory is the idea, first observed by Werner and Wolf [19], that
the optimal score for a binary nonlocal XOR game can be expressed as the maximum of
a certain multivariable sinusoidal function. In the present paper, we take the idea a step
further and show that the robust self-testing property can be checked using the local and
global properties of this function.

We will begin with some definitions and then state our main results. The results are
stated initially for multiqubit states only, and a higher-dimensional generalization is given at
the end of the paper. The proofs are sketched here—full proofs can be found in [13]. We
offer some examples. We give a simple proof that the CHSH game is a robust self-test. (This
result improves on the error term in [11], and it matches that of the independent work [17].)
We also augment a recent paper [2] on randomness and quantum correlations by showing
that a certain one-parameter family of games satisfies the robust self-testing condition.

2 Definitions

For our purposes, a binary nonlocal XOR game is simply a function f : {0, 1}n → R. The
function f describes a scoring rule for the game: if the input sequence is (i1, i2, . . . , in),
and the output sequence satisfies ⊕kok = 0, then the score is f(i1, i2, . . . , in); if the input
sequence is (i1, i2, . . . , in) and the output sequence satisfies ⊕kok = 1, then the score is
−f(i1, i2, . . . , in).

To any nonlocal game f , let us associate a polynomial Pf : Cn → C like so: for any
n-tuple (λ1, . . . , λn) of complex numbers, let Pf (λ1, . . . , λn) be equal to∑

(i1,...,in)∈{0,1}n
f(i1, . . . , in)λi11 λ

i2
2 · · ·λinn . (1)

For example, if g is the CHSH game (g(1, 1) = −1, g(0, 0) = g(0, 1) = g(1, 0) = 1) then

Pg = 1 + λ1 + λ2 − λ1λ2. (2)

Additionally, for any binary nonlocal XOR game f : {0, 1}n → R, and any real numbers
θ0, θ1, . . . , θn, let Zf (θ0, . . . , θn) denote the quantity

∑
(ik)∈{0,1}n

f(i1, . . . , in) cos
(
θ0 +

∑
k

ikθk

)
. (3)

Thus,

Zg(θ0, θ1, θ2) = cos(θ0) + cos(θ0 + θ1) + cos(θ0 + θ2)− cos(θ0 + θ1 + θ2). (4)
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Note that the function Zf is 2π-periodic in every variable.
The two quantities Pf and Zf are related by the following identity.

Zf (θ0, . . . , θn) = Re[eiθ0Pf (eiθ1 , . . . , eiθn)]. (5)

Note also that∣∣Pf (eiθ1 , . . . , eiθn
)∣∣ = max

t∈[−π,π]
Zf (t, θ1, . . . , θn). (6)

3 Quantum strategies

For our purposes, a quantum strategy for a binary n-player nonlocal game is a pure state

|ψ〉 ∈ Q1 ⊗Q2 ⊗ . . .⊗Qn, (7)

where eachQj is a finite-dimensional Hilbert space, together with two projective measurements{
P

(0,+)
j , P

(0,−)
j

}
,
{
P

(1,+)
j , P

(1,−)
j

}
(8)

on the space Qj . These measurements can be more compactly expressed as Hermitian
operators:

M
(0)
j := P

(0,+)
j − P (0,−)

j (9)

M
(1)
j := P

(1,+)
j − P (1,−)

j (10)

The score for such a strategy is

〈ψ|
∑
(ik)

f(i1, . . . , in)M (i1)
1 ⊗ . . .⊗M (in)

n |ψ〉 . (11)

Let us use the term qubit strategy to refer to a strategy whose Hilbert spaces Qj are all
copies of C2 and whose projection operators P (i,∗)

j are all one-dimensional projectors.
For any nonlocal game f , let qf denote the highest possible score for f that can be

achieved by a qubit strategy. This quantity has a relationship to the functions Zf and Pf
which was proved in [19]. For the benefit of our exposition, we include a proof here.

I Proposition 1. Let f : {0, 1}n → R be a nonlocal binary XOR game. Then,

qf = max
|λ1|=...=|λn|=1

|Pf (λ1, . . . , λn)| (12)

and

qf = max
θ0,...,θn∈[−π,π]

Zf (θ0, . . . θn). (13)

Proof. Let
(
ψ,
{
{M (0)

j ,M
(1)
j }

}
j

)
be a qubit strategy for f . Each of the operators M (i)

j

is a Hermitian operator on a 2-dimensional space that has eigenvalues in the set {−1,+1}.
After an appropriate change of basis, we may make the assumption that

M
(0)
j =

[
0 1
1 0

]
, M

(1)
j =

[
0 eiθj

e−iθj 0

]
(14)

for some θ0, . . . , θn ∈ [−π, π].
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The score for this quantum strategy is clearly bounded by the operator norm of the
operator

M :=
∑
(ik)

f(i1, . . . , in)M (i1)
1 ⊗ . . .⊗M (in)

n (15)

The operator M is on a Hilbert space which has basis {|a1a2 . . . an〉 | ai ∈ {0, 1}}. If we
take the elements of this basis in lexicographical order, the resulting matrix expression is a
reverse-diagonal matrix:

0 0 . . . 0 ∗
0 0 . . . ∗ 0
...

...
...

...
0 ∗ . . . 0 0
∗ 0 . . . 0 0

 (16)

The entries along the reverse diagonal are given by the expressions

Pf

(
ei(−1)a1θ1 , . . . , ei(−1)anθn

)
(17)

for (ak) ∈ {0, 1}n.
Using the simple observation that the eigenvalues of any matrix of the form

z1
z2

· · ·
zn

zn
· · ·

z2
z1


, (18)

are ± |z1| ,± |z2| , . . . ,± |zn|, we find that the operator norm of M is

max
(ai)∈{0,1}n

∣∣∣Pf (ei(−1)a1θ1 , . . . ei(−1)anθn
)∣∣∣ . (19)

Formula (12) follows. Formula (13) follows also via equality (5). J

4 Self-testing

Let f be a binary nonlocal XOR game. Let us say that f is a self-test if the following
condition holds:

(*) There is a single optimal qubit strategy (φ, {M (0)
j ,M

(1)
j }j) such that for any other

optimal qubit strategy (ψ, {N (0)
j , N

(1)
j }j), there exist unitary matrices Uj : C2 → C2

such that

(U1 ⊗ U2 ⊗ . . .⊗ Un)ψ = φ (20)

and

UjN
(i)
j U†j = M

(i)
j (21)

for all i ∈ {0, 1}, j ∈ {1, 2, . . . , n}.
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I Proposition 2. Let f : {0, 1}n → R be a nonlocal binary XOR game. Then f is a self-test
if and only if the following two conditions hold:
1. There exists a maximum (α0, . . . , αn) of f such that none of α1, . . . , αn is a multiple of π.
2. Every other maximum of f is congruent modulo 2π to either (α0, . . . , αn) or (−α0, . . . ,−αn).

Proof. Suppose that f satisfies both of these conditions. Let

φ = 1√
2

(
|00 . . . 0〉+ Pf (α1, . . . , αn)

|Pf (α1, . . . , αn)| |11 . . . 1〉
)
.

Suppose that (ψ, {{M (0)
j ,M

(1)
j }}j) is an optimal qubit strategy for f . After a unitary change

of basis, we may assume that the operators M (i)
j have the form

M
(0)
j =

[
0 1
1 0

]
, M

(1)
j =

[
0 eiθj

e−iθj 0

]
, (22)

with (θj) ∈ [−π, π]n, and we may make the additional assumption that the vectors (α1, . . . , αn)
and (θ1, . . . , θn) lie in the same quadrant. (That is, for every j ∈ {1, 2, . . . , n}, θjαj ≥ 0.)

Again we let

M =
∑
(ik)

f(i1, . . . , in)M (i1)
1 ⊗ . . .⊗M (in)

n . (23)

Since the chosen strategy is optimal, by formula (19) we must have (θ1, . . . , θn) = (α1, . . . , αn).
Moreover, the vector ψ must lie in the eigenspace corresponding to the largest eigenvalue of
M. This eigenspace is spanned by φ. We conclude that f is a self-test.

It is easy to show that if f fails to satisfy either of the two conditions of the theorem,
then there exist multiple optimal strategies for f which are inequivalent. J

The reader may note one consequence of this proof: if a binary XOR game f is a self-test,
then all optimal qubit-strategies for f use states that are equivalent to the GHZ state

1√
2 (|00 . . . 0〉+ |11 . . . 1〉).

5 Robustness

Let us say that two qubit strategies (ψ, {{N (0)
j , N

(1)
j }}j) and (γ, {{S(0)

j , S
(1)
j }}j) are δ-close

if

‖ψ − γ‖ ≤ δ (24)

and∥∥∥N (i)
j − S

(i)
j

∥∥∥ ≤ δ (25)

for all j ∈ {1, 2, . . . , n} and i ∈ {0, 1}. Let us say that a binary nonlocal XOR game
f : {0, 1}n → R is a second-order robust self-test if both condition (*) and the following
condition hold:

(**) There exists a constant C > 0 such that any qubit strategy whose score is within ε of
the optimal score is (C

√
ε)-close to an optimal qubit strategy.
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The next proposition uses the concept of a Hessian matrix. For any twice-differentiable
function G : Rm → R and any element c = (c1, . . . , cm) ∈ Rm, let

Hessc(G) =
[
∂2G

∂xi∂xj
(c)
]
i,j

. (26)

The Hessian matrix can be used to calculate the second derivatives of the function G in any
direction. When the function G is such that the Hessians at all of its maxima are nonsingular
(meaning that all second-derivatives at maxima are negative) the function has the property
that near-maxima tend to lie close to true maxima. This fact is the basis for the following
proposition, which is proved in full detail in the supplementary information of [13].
I Proposition 3. Let f : {0, 1}n → R be a binary nonlocal XOR game. Then f is a second-
order robust self-test if and only if the conditions of Proposition 2 are satisfied and the
Hessian matrix of Zf at (α0, . . . , αn) is nonsingular. J

Proof sketch. Let T be the set of all n-qubit strategies
(
ψ,
{
{M (0)

j ,M
(1)
j }

}
j

)
which are

such that the operators M (i)
j have the form

M
(0)
j =

[
0 1
1 0

]
, M

(1)
j =

[
0 eiθj

e−iθj 0

]
(27)

(j = 1, . . . , n) and the state ψ has the form

ψ = 1√
2
(
|00 . . . 0〉+ eiθ0 |11 . . . 1〉

)
(28)

with θj ∈ [−π, π]. Direct calculation shows that the score for such a strategy is given by
Zf (θ0, . . . , θn). The Hessian assumption implies that f is a second-order robust self-test
within the class T.

Let S be the set of all n-qubit strategies
(
φ,
{
{M (0)

j ,M
(1)
j }

}
j

)
such that the operators

M
(i)
j have the form (27) and the state φ is permitted to be any n-qubit state satisfying
〈φ | 00 . . . 0〉 ≥ 0. Then, it can be shown that there exists a constant K > 0 such that any
n-qubit strategy in S which achieves a score of qf − ε must be (K

√
ε)-close to some n-qubit

strategy in T which achieves an equal or higher score. As a consequence, robust self-testing
holds within the class S as well. The proof is then completed by the observation that any
qubit strategy is equivalent under local unitary transformations to a strategy in S. J

6 Examples

It is easy to show that the function Zg (4) corresponding to the CHSH game has two maxima:
(−π4 ,

π
2 ,

π
2 ) and (π4 ,−

π
2 ,−

π
2 ). The Hessian matrices at these maxima are both equal to

(
− 1√

2

) 4 2 2
2 2 1
2 1 2

 , (29)

which is a nonsingular matrix. Therefore, the CHSH game is a second-order robust self-test.
Let d be the 3-player GHZ game:

Zd(θ0, θ1, θ2, θ3) = cos(θ0)− cos(θ0 + θ1 + θ2)
− cos(θ0 + θ2 + θ3)− cos(θ0 + θ1 + θ3).
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260 Optimal Robust Self-Testing by Binary Nonlocal XOR Games

It easy to show that the maxima of this function are (0,±π2 ,±
π
2 ,±

π
2 ), and that the Hessian

matrices at these maxima are nonsingular. Therefore the GHZ game is also a self-test
that satisfies second-order robustness. (This fact can also be proved using the results on
self-testing graph states in [10].)

Let us see how Proposition 3 can be used to prove new results. The recent paper [2] by
Acin et al. considers a family of nonlocal games {hα : {0, 1}2 → R}α>1 defined by

hα(0, 0) = α hα(0, 1) = α

hα(1, 0) = 1 hα(1, 1) = −1. (30)

The authors characterize the qubit-devices that achieve an optimal score at these games, and
show that these devices achieve more randomness than optimal devices for the standard CHSH
inequality. The games hα may therefore be suitable for randomness expansion. However in
randomness expansion protocols, it is only possible to approximately determine the expected
score of a device. Thus it is important to ask whether the games from this family satisfy
robust self-testing.

With the aid of the theory in [2], one can show that the function Zhα(θ0, θ1, θ2) has two
maxima in [−π, π]3, and the Hessian matrices at these maxima are

−(1 + α2)−1/2

 2α2 + 2 α2 + 1 2
α2 + 1 α2 + 1 1

2 1 2

 (31)

which is nonsingular for any α > 1. Therefore, each of the games in the family {hα}α>1 is a
second-order robust self-test.

7 General quantum strategies

Now suppose that we consider quantum strategies of arbitrary finite dimension. Whenever
there are two Hermitian operators M (0),M (1) on a single finite-dimensional Hilbert space Q,
each having eigenvalues in the set {−1, 1}, there exists a decomposition

Q =
m⊕
`=1
Q` (32)

which is respected by both of the operators M (0),M (1), with dimQ` ≤ 2. This allows us to
reduce general quantum strategies to n-qubit strategies. In particular, this implies that for
any binary nonlocal XOR game f , the maximum score achievable by qubit strategies (qf ) is
the maximum score achievable by any quantum strategy.

The following generalization of Proposition 3 follows from the above decomposition. (See
[13].)
I Proposition 4. Let f : {0, 1}n → R be a binary nonlocal XOR game which satisfies the
conditions of Proposition 2 and, additionally, satisfies the condition that the Hessian matrices
of the maxima of Zf are all nonsingular. Then, there exists a constant K > 0 and an n-qubit
state χ ∈

(
C2)⊗n such that the following holds: for any quantum strategy

Φ ∈ Q1 ⊗ . . .⊗Qn (33)
M

(i)
j : Qj → Qj (34)

achieving a score of qf − ε, there exist unitary embeddings Uj : Qj → C2 ⊗Q′j and a vector
Γ ∈ Q′1 ⊗ . . .⊗Q′n such that

‖(U1 ⊗ · · · ⊗ Un) Φ− χ⊗ Γ‖ ≤ K
√
ε. J (35)

As in the 2-dimensional case, we can take the state χ to be the n-qubit GHZ state.
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8 Conclusion

We have provided some general results which allow for easy proofs of robust self-testing in
the context of nonlocal binary XOR games. A natural question is whether our results could
be generalized to a larger class of games. A possible next step would be to consider games in
which the score is based on the XOR of a subset of the outputs (as in the tests used [10]). It
would also be interesting to explore further applications to randomness expansion.
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Abstract
A quantum algorithm is exact if it always produces the correct answer, on any input. Coming
up with exact quantum algorithms that substantially outperform the best classical algorithm has
been a quite challenging task.

In this paper, we present two new exact quantum algorithms for natural problems:
for the problem EXACTn

k in which we have to determine whether the sequence of input bits
x1, . . . , xn contains exactly k values xi = 1;
for the problem THRESHOLDn

k in which we have to determine if at least k of n input bits
are equal to 1.
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1 Introduction

We consider quantum algorithms in the query model. The algorithm needs to compute a
given Boolean function f : {0, 1}n → {0, 1} by querying its input bits until it is able to
produce the value of the function, either with certainty, or with some error probability. The
complexity of the algorithm is measured as the number of queries it makes (other kinds of
computation needed to produce the answer are disregarded).

In the bounded error setting where the algorithm is allowed to give an incorrect answer
with probability not exceeding a given constant ε, 0 < ε < 1

2 , many efficient quantum
algorithms are known, with either a polynomial speed-up over classical algorithms (e.g.,
[12, 1, 9, 16, 4]), or, in the case of partial functions, even an exponential speed-up (e.g.,
[18, 17]).

Less studied is the exact setting where the algorithm must give the correct answer with
certainty. Though for partial functions quantum algorithms with exponential speed-up are
known (for instance, [8, 5]), the results for total functions up to recently have been much
less spectacular: the best known quantum speed-up was just by a factor of 2.

Even more, as remarked in [13], all the known algorithms achieved this speed-up by the
same trick: exploiting the fact that XOR of two bits can be computed quantumly with one
query, while a classical algorithm needs two queries [8, 7, 10].

A step forward was made by [13] which presented a new algorithm achieving the speed-up
by a factor of 2, without using the “XOR trick”. The algorithm is for the Boolean function
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EXACT4
2 which is true iff exactly 2 of its 4 input bits are equal to 1. It computes this

function with 2 queries, while a classical (deterministic) algorithm needs 4 queries.
This function can be generalized to EXACTn

k in the obvious way. Its deterministic
complexity is n (due to its sensitivity being n, see [15]). [13] conjectured that its quantum
query complexity is max {k, n− k}.

In this paper we prove the conjecture. We also solve the problem for a similar function,
THRESHOLDn

k which is true iff at least k of the input bits are equal to 1. When n = 2k−1,
this function is well-known as the MAJORITY function. The quantum query complexity of
THRESHOLDn

k turns out to be max {k, n− k + 1}, as conjectured in [13].
In a recent work [2], a function f(x1, . . . , xn) with the deterministic query complexity

n and the exact quantum query complexity O(n.8675...) was constructed. The quantum
advantage that is achieved by our algorithms is smaller but we think that our results are
still interesting, for several reasons.

First, we present quantum algorithms for computational problems that are natural and
simple to describe. Second, our algorithms contain new ideas which may be useful for de-
signing other exact algorithms. Currently, the toolbox of ideas for designing exact quantum
algorithms is still quite small. Expanding it is an interesting research topic.

2 Technical Preliminaries

We denote [m] = {1, 2, . . . ,m}. We assume familiarity with basics of quantum computation
[14]. We now briefly describe the quantum query algorithm model.

Let f : {0, 1}n → {0, 1} be the Boolean function to compute, with the input bit string
x = x1x2 . . . xn. The quantum query algorithm works in a Hilbert space with some fixed
basis states. It starts in a fixed starting state, then performs on it a sequence of unitary
transformations U1, Q, U2, Q, . . . , Ut, Q, Ut+1. The unitary transformations Ui do not
depend on the input bits, while Q, called the query transformation, does, in the following
way. Each of the basis states corresponds to either one or none of the input bits. If the
basis state |ψ〉 corresponds to the i-th input bit, then Q |ψ〉 = (−1)xi |ψ〉. If it does not
correspond to any input bit, then Q leaves it unchanged: Q |ψ〉 = |ψ〉. For convenience in
computations, we denote x̂i = (−1)xi .

Finally, the algorithm performs a full measurement in the standard basis. Depending on
the result of the measurement, it outputs either 0 or 1 which must be equal to f(x).

By the principle of delayed measurement, sometimes a measurement performed in the
middle of computation is equivalent to it being performed at the end of computation [14].
We will use that in our algorithms, because they are most easily described as recursive
algorithms with the following structure: perform unitary U1, query Q, unitary U2, then
measure; depending on the result of measurement, call a smaller (by 2 input bits) instance of
the algorithm. The principle of delayed measurement ensures that such recursive algorithm
can be transformed by routine techniques into the commonly used query algorithm model
described above.

The minimum number of queries made by any quantum algorithm computing f is denoted
by QE(f). We use D(f) to denote the minimum number of queries used by a deterministic
algorithm that computes f .
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3 Algorithm for EXACT

I Definition 1. The function EXACTn
k is a Boolean function of n variables being true iff

exactly k of the variables are equal to 1.

I Theorem 2.

QE(EXACT2k
k ) ≤ k

Proof. We present a recursive algorithm. When k = 0 the algorithm returns 1 without
making any queries. Suppose k = m. For the recursive step we will use basis states |0〉, |1〉,
. . . , |n〉 and |i, j〉 with i, j ∈ [2m], i < j. The i-th input bit will be queried from the state
|i〉. We begin in the state |0〉 and perform a unitary transformation U1:

U1 |0〉 →
2m∑
i=1

1√
2m
|i〉.

Next we perform a query:

2m∑
i=1

1√
2m
|i〉 Q−→

2m∑
i=1

x̂i√
2m
|i〉.

Finally, we perform a unitary transformation U2, such that

U2 |i〉 =
∑
j>i

1√
2m
|i, j〉 −

∑
j<i

1√
2m
|j, i〉+ 1√

2m
|0〉

One can verify that such a unitary transformation exists by checking the inner products:

1) for any i ∈ [2m],

〈i|U†2U2 |i〉 =
∑
j>i

1
2m +

∑
j<i

1
2m + 1

2m = 1.

2) for any i, j ∈ [2m], i 6= j,

〈j|U†2U2 |i〉 =

∑
l>j

1√
2m
〈j, l| −

∑
l<j

1√
2m
〈l, j|+ 1√

2m
〈0|

 ·
(∑

l>i

1√
2m
|i, l〉 −

∑
l<i

1√
2m
|l, i〉+ 1√

2m
|0〉
)

= 0

The resulting quantum state is

2m∑
i=1

x̂i√
2m
|i〉 U2−−→

2m∑
i=1

x̂i

2m |0〉+
∑
i<j

x̂i − x̂j

2m |i, j〉.

If we measure the state and get |0〉, then EXACT2m
m (x) = 0. If on the other hand we get

|i, j〉, then xi 6= xj and EXACT2m
m (x) = EXACT2m−2

m−1 (x \ {xi, xj}), therefore we can use
our algorithm for EXACT2m−2

m−1 .
J
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Note that we can delay the measurements by using |i, j〉 as a starting state for the
recursive call of the algorithm.

For the sake of completeness, we include the following corollary already given in [13]:

I Corollary 3. [13]

QE(EXACTn
k ) ≤ max {k, n− k}

Proof. Assume that k < n
2 . The other case is symmetric. Then we append the input x with

n− 2k ones producing x′ and call EXACT2n−2k
n−k (x′). Then concluding that there are n− k

ones in x′ is equivalent to there being (n−k)− (n−2k) = k ones in the original input x. J

The lower bound can be established by the following fact:

I Proposition 4. If g is a partial function such that g(x) = f(x) whenever g is defined on
x, then QE(g) ≤ QE(f).

I Proposition 5.

QE(EXACTn
k ) ≥ max {k, n− k}

Proof. Assume that k ≤ n
2 . The other case is symmetric. Define

g(xk+1, . . . , xn) = EXACTn
k (1, . . . , 1, xk+1, . . . , xn).

Observe that g is in fact negation of the OR function on n−k bits which we know [3] to take
n− k queries to compute. Therefore by virtue of Proposition 4 no algorithm for EXACTn

k

may use less than n− k queries. J

4 Algorithm for THRESHOLD

We will abbreviate THRESHOLD as Th.

I Definition 6. The function Thn
k is a Boolean function of n variables being true iff at least

k of the variables are equal to 1.

The function Th2k+1
k+1 is commonly referred to as MAJ 2k+1 or MAJORITY 2k+1 because

it is equal to the majority of values of input variables.
Remarkably an approach similar to the one used for EXACT works in this case as well.

I Theorem 7.

QE(MAJ 2k+1) ≤ k + 1.

Proof. Again, a recursive solution is constructed as follows. The base case k = 0 is trivial
to perform with one query, because the function returns the value of the single variable.
The recursive step k = m shares the states, unitary transformation U1 and the query with
our algorithm for EXACT , but the unitary U2 is slightly different:

U1 |0〉 →
2m+1∑

i=1

1√
2m+ 1

|i〉.

2m+1∑
i=1

1√
2m+ 1

|i〉 Q−→
2m+1∑

i=1

x̂i√
2m+ 1

|i〉.
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U2 |i〉 =
∑
j>i

√
2m− 1
2m |i, j〉 −

∑
j<i

√
2m− 1
2m |j, i〉+

∑
j 6=i

1
2m |j〉.

The resulting state is

2m+1∑
i=1

x̂i√
2m+ 1

|i〉 U2−−→
2m+1∑

i=1

∑
j 6=i

x̂j

2m
√

2m+ 1
|i〉+

∑
i<j

(x̂i − x̂j)
√

2m− 1
2m
√

2m+ 1
|i, j〉.

We perform a complete measurement. There are two kinds of outcomes:

1) If we get state |i〉, then either

a) xi is the value in the majority which according to the polynomial
∑

j 6=i x̂j not being
zero implies that in x \ {xi} the number of ones is greater than the number of zeroes
by at least 2; or

b) xi is a value in the minority.
In both of these cases, for all j : j 6= i it is true that MAJ 2m+1(x) = MAJ 2m−1(x \
{xi, xj}). Therefore, we can solve both cases by removing xi and one other arbitrary
input value and calculating majority from the remaining values.

2) If we get state |i, j〉, then it is even better: we know that xi 6= xj and therefore
MAJ 2m+1(x) = MAJ 2m−1(x \ {xi, xj}).

J

I Corollary 8. If 0 < k < n, then

QE(Thn
k ) ≤ max {k, n− k + 1}.

Proof. Assume that k ≤ n
2 . The other case is symmetric. Then we append the input x

with n − 2k + 1 ones producing x′ and call MAJ 2n−2k+1(x′). Then x′ containing at least
n− k+ 1 ones is equivalent to x containing at least (n− k+ 1)− (n− 2k+ 1) = k ones. J

I Proposition 9.

QE(Thn
k ) ≥ max {k, n− k + 1}

Proof. Assume that k ≤ n
2 . The other case is symmetric. Define

g(xk, xk+1, . . . , xn) = Thn
k (1, . . . , 1, xk, xk+1, . . . , xn).

Observe that g is in fact the OR function on n−k+1 bits which we know [3] takes n−k+1
queries to compute. Therefore by virtue of Proposition 4 no algorithm for Thn

k may use less
than n− k + 1 queries. J

5 Conclusion

Coming up with exact quantum algorithms that are substantially better than any classical
algorithm has been a difficult open problem. Until a few months ago, no example of total
Boolean function with QE(f) < D(f)/2 was known and the examples of functions with
QE(f) = D(f)/2 were almost all based on one idea: applying 1-query quantum algorithm
for x1 ⊕ x2 as a subroutine.

The first exact quantum algorithm with QE(f) < D(f)/2 (for a total f) was constructed
in [2]. However, no symmetric function with QE(f) < D(f)/2 is known. It has been proven
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that if f(x) is a symmetric, non-constant function of n variables, then QE(f) ≥ n/2− o(n)
[11, 6].

In this paper, we construct exact quantum algorithms for two symmetric functions:
EXACT and THRESHOLD. Both of those algorithms achieve QE(f) = D(f)/2 (exactly
or in the limit) and use new ideas. At the same time, our algorithms are quite simple and
easy to understand.

The main open problem is to come with more algorithmic techniques for constructing
exact quantum algorithms. Computer experiments via semidefinite optimization [13] show
that there are many functions for which exact quantum algorithms are better than deter-
ministic algorithms. Yet, in many of these cases, the only way to construct these algorithms
is by searching the space of all quantum algorithms, using semidefinite optimization as the
search tool.

For example, from the calculations in [13] (based on semidefinite optimization) it is
apparent that there are 3 symmetric functions of 6 variables for which QE(f) = 3: PARITY ,
EXACT6

3 and EXACT6
2,4 (exactly 2 or 4 of 6 variables are equal to 1).

Unlike for the first two functions, we are not aware of any simple quantum algorithm
or lower bounds for EXACT6

2,4. Based on the evidence from semidefinite optimization, we
conjecture that if n is even and 2k < n then the quantum query complexity of EXACTn

k,n−k

is n− k− 1. In particular, this would mean that the complexity of EXACTn
n/2−1,n/2+1 is n

2
and this function also achieves a gap of QE(f) = D(f)/2.

At the moment, we know that this conjecture is true for k = 0 and k = 1. Actually,
both of those cases can be solved by a classical algorithm which uses the 1-query algorithm
for x1 ⊕ x2 as a quantum subroutine. This approach fails for k ≥ 1 and it seems that the
approach in the current paper is also not sufficient — without a substantial new component.
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Abstract
We investigate the universal linear inequalities that hold for the von Neumann entropies in a
multi-party system, prepared in a stabiliser state. We demonstrate here that entropy vectors for
stabiliser states satisfy, in addition to the classic inequalities, a type of linear rank inequalities
associated with the combinatorial structure of normal subgroups of certain matrix groups.

In the 4-party case, there is only one such inequality, the so-called Ingleton inequality. For
these systems we show that strong subadditivity, weak monotonicity and Ingleton inequality
exactly characterize the entropy cone for stabiliser states.
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1 Introduction

1.1 Background
Undoubtedly, the single most important quantity in (classical) information theory is the
Shannon entropy, and its properties play a key role: for a discrete probability distribution p
on T

H(p) = −
∑
t∈T

p(t) log p(t) . (1)

The quantum (von Neumann) entropy is understood to be of equal importance to quantum
information: for a quantum state (density operator) ρ ≥ 0, Tr ρ = 1

S(ρ) = −Tr ρ log ρ (2)
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which reduces to (1) when ρ is diagonal.
For N -party systems, one can apply these definitions to obtain the entropy of all marginal

probability distributions (in the classical case) and reduced density operators (aka quantum
marginals) in the quantum case. The collection of these entropies can be regarded as a vector
in R2N , and the collection of all such vectors forms a set whose closure is a convex cone. It
is an interesting open question to determine the inequalities which characterize this cone. As
discussed in Section 1.3, it is now known that in the classical setting the Shannon inequalities
given below do not suffice; they describe a strictly larger cone.

This work has motivated us to consider analogous questions for the von Neumann entropy
in N -party quantum systems. Although we are unable to answer this question, we can fully
characterize the cone associated with a subset of quantum states known as stabiliser states in
the 4-party case. Moreover, we can show that for any number of parties, entropy vectors for
stabiliser states satisfy additional inequalities in the class known as linear rank inequalities
discussed in Section 3. In the classical setting, distributions whose entropies satisfy this
subclass of stronger inequalities, suffice to achieve maximum throughput in certain network
coding problems [28].

1.2 Classic inequalities and Definitions
It is well-known that the classical Shannon entropy for an N -party classical probability
distribution p on a discrete space T1 × · · · × TN , has the following properties, commonly
known as the Shannon inequalities:
1. It is non-negative, i.e. H(A) ≥ 0; H(∅) = 0. (+)
2. It is strongly subadditive (aka submodular), i.e.

H(A) +H(B)−H(A ∩B)−H(A ∪B) ≥ 0. (SSA)

3. It is monotone non-decreasing, i.e.

A ⊂ B =⇒ H(A) ≤ H(B). (MO)

where H(A) denotes the entropy H(pA) of the marginal distribution pA on TA =
⊗

j∈A Tj .
The monotonicity property (MO) implies that if H(A) = 0 then H(B) = 0 for all B ⊂ A

and, thus, pA =
⊗

j∈A δtj is a product of point masses. Some of the most remarkable
features of quantum systems arise when (MO) is violated. Indeed, for a pure entangled state
ρAB = |ψ〉〈ψ|AB for which S(ρAB) = 0, but the entropy of the reduced states ρA = TrB ρAB
and ρB = TrA ρAB can be (and usually is) strictly positive. In fact, S(ρAB)− S(ρA) can be
as large as − log d, where d is the Hilbert space dimension of the smaller of A and B.

For multi-party quantum systems, (+) and (SSA) are still valid [29], but (MO) has to be
replaced by the third property below – in analogy to the classical case, we call them Shannon
inequalities:
1. Non-negativity: S(A) ≥ 0; S(∅) = 0. (+)
2. Strong subadditivity:

S(A) + S(B)− S(A ∩B)− S(A ∪B) ≥ 0. (SSA)

3. Weak monotonicity:

S(A) + S(B)− S(A \B)− S(B \A) ≥ 0. (WMO)
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However, in contrast to the classical setting, this weaker version of monotonicity is not
completely independent of strong subadditivity (SSA). In fact, it can be obtained from the
latter by the (non-linear) process known as purification described in Section 2.2. Using a
slight abuse of notation, we use I(A : B) and I(A : B|C) to denote, respectively, the mutual
information and conditional mutual information for both classical and quantum systems,
defined explicitly in the latter case as

I(A : B) = S(A) + S(B)− S(AB),
I(A : B|C) = S(AC) + S(BC)− S(ABC)− S(C),

for pairwise disjoint sets A, B, C. Note that SSA can then be written as I(A : B|C) ≥ 0.

1.3 Entropy cones and non-Shannon inequalities

The first non-Shannon entropy inequality was obtained in 1997-98 by Yeung and Zhang [43,
44, 45] for 4-party systems. Their work established that the classical entropy cone is strictly
smaller than the polyhedral cone defined by the Shannon inequalities. This was the only
non-Shannon inequality known until 2006, when Dougherty, Freiling and Zeger [12, 13] used
a computer search to generate new inequalities. Then Matúš [34] found two infinite families,
one of which can be written as

t Ing(AB : CD) + I(A : B|D) + t(t+ 1)
2

[
I(B : D|C) + I(C : D|B))

]
≥ 0 (3)

where t is a non-negative integer, and Ing(AB : CD) is defined in (ING) below. The case
t = 1 in (3) yields the inequality in [45]. Moreover, either of the Matúš families can be used
to show that the 4-party entropy cone is not polyhedral. In [15] additional non-Shannon
inequalities were found.

In the quantum setting, Lieb [30] considered the question of additional inequalities in
a form that could be regarded as extending SSA to more parties, but found none. Much
later Pippenger [39] rediscovered one of Lieb’s results and used it to show constructively
that there are no additional inequalities for 3-party systems. He also explicitly raised the
question of whether or not additional inequalities hold for more parties. Despite the fact
that (SSA) is still the only known inequality, it has been shown that for 4-party systems
there are constrained inequalities [4, 31] that do not follow from SSA. (Numerical evidence
for additional inequalities is given in the thesis of Ibinson [21].)

1.4 Structure of the paper

This paper is organized as follows. In Section 2 we give some basic notation and review
some well-known facts. In Section 3 we discuss what is known about linear rank inequalities
beginning with the Ingleton inequality in Section 3.1 and concluding with a discussion of
their connection to the notion of common information in Section 3.3. In Section 4 we discuss
stabiliser states, beginning with some basic definitions in Section 4.1. In Section 4.2 we
consider the entropies of stabiliser states, showing half of our main result that pure stabiliser
states generate entropy vectors which satisfy the Ingleton inequality and a large class of
other linear rank inequalities. In Section 5 we prove the other half, i.e., that all extremal
rays of the 4-party Ingleton cone can be achieved using 5-party stabiliser states. We conclude
with some open questions and challenges.
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2 Preliminaries

2.1 Notation

We now introduce some notation needed to make precise the notion of entropy vectors and
entropy cones. We will let X = {A,B,C, . . .} denote an index set of finite size |X | = N so that
in many cases we could just assume that X = {1, 2, . . . N}. However, it will occasionally be
useful to consider the partition of some the index set into smaller groups, e.g, by grouping A
and B as well as D and E, X5 = {A,B,C,D,E} gives rise to a 3-element X3 = {AB,C,DE}.
When the size of X is important, we write XN .

An arbitrary N -partite quantum system is associated with a Hilbert space H =
⊗

x∈X Hx
(with no restrictions on the dimension of the Hilbert spaces Hx) with |X | = N . The reduced
states (properly called reduced density operators, but more often referred to as reduced
density matrices (RDM) and also known as quantum marginals) are given by ρJ = Tr Jcρ,
where Jc = X \ J . This gives rise to a function S : J 7−→ S(J) = S(ρJ) on the subsets
J ⊂ X . An element of the output of S can be viewed as a vector in R2X , whose coordinates
are indexed by the power set 2X of X . We study the question of which such vectors arise
from classical or quantum states, i.e., when their elements are given by the entropies S(ρJ)
of the reduced states of some N -party quantum state.

Classical probability distributions can be embedded into the quantum framework by
restricting density matrices to those which are diagonal in a fixed product basis. A function
H : 2X → R, associating real numbers to the subsets of a finite set X , which satisfies the
Shannon inequalities, eqs. (+), (SSA) and (MO), is called poly-matroid. By analogy with
poly-matroids, we propose to call a function S : 2X → R a poly-quantoid, if it satisfies (+),
(SSA) and (WMO) [36].

We will let ΓCX and ΓQX denote, respectively, the convex cone of vectors in a poly-matroid
or poly-quantoid. The existence of non-Shannon entropy inequalities implies that there are
vectors in ΓCX which can not be achieved by any classical state. Neither the classical nor
quantum set of true entropy vectors is convex, because their boundaries have a complicated
structure [4, 31, 35, 39]. However, the closure of the set of classical or quantum entropy
vectors, which we denote ΣCX or ΣQX , respectively, is a closed convex cone. The inclusion
ΣCX ⊂ ΓCX is strict for N ≥ 4 [45]. It is an important open question whether or not this also
holds in the quantum setting, i.e., is the inclusion ΣQX ⊆ ΓQX also strict?

In this paper, we consider entropy vectors which satisfy additional inequalities known as
linear rank inequalities, i.e. those satisfied by the dimensions of subspaces of a vector space and
their intersections. A poly-matroid H is called linearly represented if H(J) = dim

∑
j∈J Vj

for subspaces Vj of a common vector space V .
The simplest linear rank inequality is the 4-party Ingleton inequality (see section 3 below).

Poly-matroids and poly-quantoids which also satisfy these additional inequalities will be
denoted ΛCX and ΛQX respectively.

2.2 Purification and complementarity

For statements about J and Jc = X \ J , it suffices to consider a bipartite quantum system
with Hilbert spaces HA and HB . It is well-known that any pure state |ψAB〉 can be written
in the form

|ψAB〉 =
∑
k

µk|φAk 〉 ⊗ |φBk 〉 (4)
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with µk > 0 and {φAk } and {φBk } orthonormal. Indeed, this is an immediate consequence of
the isomorphism between HA ⊗HB and L(HA,HB), the set of linear operators from HA to
HB, and the singular value decomposition. It then follows that both ρA and ρB have the
same non-zero eigenvalues µ2

k, and hence S(ρA) = S(ρB).
This motivates the process known as purification. Given a density matrix ρ =

∑
k λk|φk〉〈φk|,

one can define the bipartite state

|ψ〉 =
∑
k

√
λk |φk〉 ⊗ |φk〉

whose reduced density matrix TrB |ψ〉〈ψ| is ρ.
Therefore, every vector in an N -party quantum entropy cone ΣQN can be obtained from

the entropies of some reduced state of a (N + 1)-party pure state |Ψ〉. In that case, we say
that the entropy vector is realized by |Ψ〉.

In an abstract setting, we could define a cone Γ̃QX whose elements satisfy (+), (SSA) and
the complementarity property S(J) = S(Jc), and let ΓQN be the cone of vectors which arise as
subvectors of Γ̃QN+1. Although we will not need this level of abstraction, this correspondence
is used in Section 5.

2.3 Group inequalities
Consider a (finite) group G and a family of subgroups Gx < G, x ∈ X . Then, H(J) =
log |G/GJ |, with GJ =

⋂
j∈J Gj is a poly-matroid. In fact, Chan and Yeung [9] show that

it is entropic because it can be realised by the random variables Xj = gGj ∈ G/Gj for a
uniformly distributed g ∈ G. The fact that for two subgroups G1, G2 < G, the mappings

G/(G1 ∩G2) −→ G/G1 ×G/G2 and g(G1 ∩G2) 7−→ (gG1, gG2),

are one-to-one [42], guarantees that indeed H(XJ) = H(J).
Thus, the inequalities satisfied by poly-matroids, and more specifically entropic poly-

matroids give rise to relations between the cardinalities of subgroups and their intersections
in a generic group. Conversely, Chan and Yeung [9] have shown that every such relation
for groups, is valid for all entropic poly-matroids. This result motivates the search for a
similar, combinatorial or group theoretical, characterization of the von Neumann entropic
poly-quantoids, and our interest in stabiliser states originally grew out of it.

However, it must be noted that if some subgroups of G are not general, but, e..g, normal
subgroups as in Theorem 6 below, then the Chan-Yeung correspondence breaks down. In this
case further inequalities hold for the group poly-matroid that are not satisfied by entropic
poly-matroids.

3 Linear rank inequalities

3.1 The Ingleton inequality
The classic Ingleton inequality, when stated in information theoretical terms, and as manifestly
balanced, reads

Ing(AB : CD) ≡ I(A : B|C) + I(A : B|D) + I(C : D)− I(A : B) ≥ 0, (ING)

where A, B, C and D are elements (more generally pairwise disjoint subsets) of X . It was
discovered by Ingleton [22] as a constraint on linearly represented matroids.
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Although this inequality does not hold universally, it is of considerable importance, and
continues to be studied [32, 37, 41, 36], particularly when reformulated as an inequality for
subgroup ranks. In Theorem 11 we show that (ING) always holds for a special class of states.
Before doing that, we give some basic properties first. Observe that (ING) is symmetric
with respect to the interchanges A↔ B and C ↔ D, so that it suffices to consider special
properties only for A and D.

Because it is not always easy to see if a 4-party state ρABCD is the reduction of a pure
stabiliser state, it is worth listing some easily checked conditions under which (ING) holds.

I Proposition 1. The Ingleton inequality (ING) holds if any one of the following conditions
holds.
(a) ρABCD = |ψABCD〉〈ψABCD| is any pure 4-party state.
(b) ρABCD = ρABC ⊗ ρD or ρA ⊗ ρBCD
(c) The two-party component of the entropy vector for (ρABCD) is symmetric under a partial

exchange between (A,B) and (C,D), i.e. under any one (but not two) of the exchanges
A↔ C, B ↔ D, A↔ D or B ↔ C.

Proof. To prove (a) it suffices to observe that

Ing(AB : CD) = I(A : B|C) + S(AD) + S(BD)− S(D)− S(ABD)
+S(C) + S(D)− S(CD)− S(A)− S(B) + S(AB)

= I(A : B|C) + S(AD) + S(AC)− S(A)− S(ACD)
= I(A : B|C) + I(C : D|A) ≥ 0.

To prove (b) observe that when ρABCD = ρABC ⊗ ρD then I(A : B|D) = I(A : B) and
I(C : D) = 0 so that (ING) follows immediately from (SSA). For ρABCD = ρA ⊗ ρBCD the
first, second and last terms in (ING) are zero so that it becomes simply I(C : D) ≥ 0.

For (c) we observe that (ING) is equivalent to

I(B : C|A) + I(A : D|B) +R ≥ 0 with R = S(BC) + S(AD)− S(CD)− S(AB). (5)

The exchange A↔ C takes R to −R. Thus, if ρABCD is symmetric under this exchange, then
R = 0 and (ING) holds. The sufficiency of the other exchanges can be shown similarly. J

If (ING) holds, then all of the Matúš inequalities (3) also hold, since they add only condi-
tional mutual informations I(X : Y |Z) ≥ 0 to it. However, it is well-known that entropies do
not universally obey the Ingleton inequality. A simple, well-known counterexample is given
by independent and uniform binary variables C and D, and A = C ∨D, B = C ∧D. Then
the first three terms in (ING) vanish, so that Ing(AB : CD) = −I(A : B) < 0.

To obtain a quantum state which violates Ingleton, let |ψ〉 = 1√
2

(
|0000〉+ |1111〉

)
and

ρABCD = 1
2 |ψ〉〈ψ|+

1
4 |1010〉〈1010|+ 1

4 |1001〉〈1001|. (6)

All the reduced states ρABC , ρBD, etc. are separable and identical to those of the state

ρABCD = 1
4 |0000〉〈0000|+ 1

4 |1111〉〈1111|+ 1
4 |1010〉〈1010|+ 1

4 |1001〉〈1001|.

corresponding to the classical example above. Therefore (6) violates the Ingleton inequality,
but still satisfies all of the Matúš inequalities. Note that the state |ψ〉 is maximally entangled
wrt the splitting A and BCD. Additional quantum states with the same entropy vectors as
classical states which violate Ingleton [32, 33] can be similarly constructed. However, we do
not seem to know “genuinely quantum” counterexamples to the Ingleton inequality.

I Question 2. Do there exist quantum states which violate Ingleton and are neither separable
nor have the same entropy vectors as some classical state?
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3.2 Families of inequalities
When the subsystem C or D is trivial, the Ingleton inequality reduces to the 3-party SSA
inequality, I(A : B|C) ≥ 0; when subsystem A or B is trivial, it reduces to the 2-party
subadditivity inequality I(C : D) ≥ 0. This suggests that the Ingleton inequality is a member
of a more general family of N -party inequalities. In 2011, Kinser [23] found the first such
family, which can be written (for N ≥ 4) as

K[N ] = I(1 : N |3) +H(1N)−H(12)−H(3N) +H(23) +
N∑
k=4

I(2 : k − 1|k) ≥ 0. (7)

This is equivalent to the Ingleton inequality when N = 4.
I Remark. As in the proof of Proposition 1(c), it can be shown that Kinser’s inequalities
hold if ρ is symmetric with respect to the interchange 1↔ 3 or 2↔ N . They also hold if
ρ1,2,...N = ρ2 ⊗ ρ1,3,...N One can ask if part (a) of Theorem 1 can be extended to the new
inequalities, i.e., do they hold for hold for N -party pure quantum states?

3.3 Inequalities from common information
Soon after Kinser’s work, another group [14] found new families of linear rank inequalities
for poly-matroids for N > 4 that are independent of both Ingleton’s inequality and Kinser’s
family. In the 5-party case, they found a set of 24 inequalities which generate all linear rank
inequalities for poly-matroids. Moreover, they give an algorithm which allows one to generate
many more families of linear rank inequalities based on the notion of common information,
considered much earlier in [1, 2, 16] and used below. However, it was shown in [8] that there
are N -party linear rank inequalities that cannot be obtained from the process described in
[14].

I Definition 3. In a poly-matroid H on X , two subsets A and B are said to have a common
information, if there exists an extension of H to a poly-matroid on the larger set X

.
∪ {ζ},

such that H({ζ} ∪ A) − H(A) =: H(ζ|A) = 0, H({ζ} ∪ B) − H(B) =: H(ζ|B) = 0 and
H(ζ) = I(A : B).

Here we used H(Z|A) = H(AZ)−H(A) to denote the conditional entropy. For complete-
ness we include a proof (courtesy of a Banff talk by Dougherty) of the following result, as
well as a proof of Lemma 5 below, which appear in [14].

I Proposition 4. Let h be a poly-matroid on X , and A,B,C,D ⊂ X such that A and B
have a common information. Then the Ingleton inequality (ING) holds for A, B, C and D.

Proof. Let ζ be a common information of A and B. Then, using H(F |A) ≥ H(F |AC) in
Lemma 5 below, and letting F = ζ, gives

I(A : B|C) +H(ζ|A) ≥ I(ζ : B|C).

Using this a total of six times, we obtain

I(A : B|C) + I(A : B|D) + I(C : D) + 2H(ζ|A) + 2H(ζ|B)
≥ I(A : ζ|C) + I(A : ζ|D) + I(C : D) + 2H(ζ|A)
≥ I(ζ : ζ|C) + I(ζ : ζ|D) + I(C : D)
= H(ζ|C) +H(ζ|D) + I(C : D) ≥ H(ζ|C) + I(ζ : D) ≥ I(ζ : ζ) = H(ζ).

Inserting the conditions for ζ being a common information, completes the proof. J
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I Lemma 5. In a poly-matroid H on a set X with subsets A,B,C, F ⊂ X .

I(A : B|C) +H(F |AC) ≥ I(F : B|C) (8)

Proof. By a direct application of the poly-matroid axioms:

I(A : B|C) +H(F |AC)− I(F : B|C) = H(B|FC)−H(B|AC) +H(F |AC)
= H(BCF ) +H(ACF )−H(CF )−H(ABC) (9)
≥ H(BCF ) +H(ACF )−H(CF )−H(ABCF )
= I(A : B|CF ) ≥ 0, (10)

where we used only algebraic identities, SSA and monotonicity. J

In a linearly represented poly-matroid, (ING) is universally true: There, H(J) = dimVJ ,
with VJ =

∑
j∈J Vj for a family of linear subspaces Vj ⊂ V of a vector space. The common

information of any A,B ⊂ X is constructed by defining Vζ = VA ∩ VB .

I Theorem 6. Any linear rank inequality for a poly-matroid obtained using common inform-
ation and the poly-matroid inequalities, also holds for a group poly-matroid when its defining
subgroups are normal.

Proof. It suffices to show that when GA, GB C G are normal subgroups for A,B ⊂ X , then A
and B have a common information given by Gζ = GAGB C G (the latter from the normality
of GA and GB). The first two conditions for a common information are clearly satisfied, as
GA, GB ⊂ GAGB , and the third follows from the well-known natural isomorphisms [42]

G/(GAGB) h (G/GA)
/(

(GAGB)/GA
) and (GAGB)/GA h GB/(GA ∩GB),

which imply

H(ζ) = log |G/(GAGB)| = log |G/GA| − log |(GAGB)/GA|
= log |G/GA|+ log |G/GB | − log |G/(GA ∩GB)| = I(A : B). J

4 Entropies of stabiliser states

4.1 Stabiliser groups and stabiliser states
Motivated by the stabiliser states encountered in the extremal rays of Σ2, Σ3 and Σ4, we
now focus on (pure) stabiliser states, i.e. 1-dimensional quantum codes. Stabilizer codes
have emerged in successively more general forms. We use the formulation described by
Klappenecker and Rötteler [24, 25] (following Knill [26]) which relies on the notion of abstract
error group: This is a finite subgroupW < U(H) of the unitary group of a (finite dimensional)
Hilbert space H, which satisfies the following axioms:
1. The center C of W consists only of multiples of the identity matrix (“scalars”): C ⊂ C11.
2. Ŵ ≡W/C is an abelian group of order |H|2, called the abelian part of W .
3. For all g ∈W \ C, Tr g = 0.
Note that conditions 1 and 2 imply that W is non-abelian; whereas condition 2 says that the
non-commutativity is played out only on the level of complex phases: for g, h ∈W ,

gh = ω(g, h)hg, with ω(g, h) ∈ C.

Finally, condition 3 means that g, h ∈W in different cosets modulo C are orthogonal with
respect to the Frobenius (or Hilbert-Schmidt) inner product: Tr g†h = 0. It is known that
Ŵ is a direct product of an abelian group T with itself, such that |T | = |H|.
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I Example 7 (Discrete Weyl-Heisenberg group). Let H be a d-dimensional Hilbert space,
with a computational orthonormal basis {|j〉}dj=0. Define discrete Weyl operators

X|j〉 = |j + 1〉 mod d, Z|j〉 = ej
2πi
d |j〉.

They are clearly both of order d, and congruent via the discrete Fourier transform. The funda-
mental commutation relation, XZ = e2πi/dZX ensures that the groupW generated by X and
Z is finite, and indeed an abstract error group with center C =

{
ej

2πi
d : j = 0, . . . , d− 1

}
.

Note that the tensor product of abstract error groups is again an abstract error group. Now,
assume that each party x ∈ X of the composite quantum system can be associated with an
abstract error group Wx < U(Hx) of unitaries with center Cx, which satisfy Wx ⊃ Cx ⊂ C11,
such that Ŵx = Wx/Cx is abelian and has cardinality d2

x ≡ |Hx|2. Let W ≡
⊗

x∈X Wx be
the tensor product abstract error group, acting on H =

⊗
x∈X Hx. For any subgroup Γ < W ,

we let Γ̂ = (CΓ)/C ' Γ/(Γ ∩ C) denote the quotient of Γ by the center of W .
Stabiliser codes [17, 5] are subspaces of H which are simultaneous eigenspaces of abelian

subgroups of W .
Consider a maximal abelian subgroup G < W , which contains the center C =

⊗
x∈X Cx <

C11 of W , so that Ĝ = G/C has cardinality
√
|Ŵ | = |H| =

∏N
j=1 |Hj |. Since G is abelian it

has a common eigenbasis, each state of which is called a stabiliser state |ψ〉.
More generally, let G < W be any abelian subgroup of an abstract error groupW < U(H).

Since all g ∈ G commute, they are jointly diagonalisable: let P be one of the maximal joint
eigenspace projections. Then for g ∈ G, gP = χ(g)P , for a complex number χ(g). Thus
χ : G −→ C is necessarily the character of a 1-dimensional group representation, which gives
rise to the following expression for P :

P = 1
|G|

∑
g∈G

χ(g) g. (11)

If χ(g0) = 1 and g = c g0 is in the coset g0 C, then c = χ(g) and χ(g) g = g0. Thus,
G0 = {g ∈ G : χ(g) = 1} is a subgroup of G isomorphic to Ĝ = G/C and (11) can be
rewritten as

P = 1
|G0|

∑
g∈G0

g. (12)

Since g−1 = g† this sum is self-adjoint, and

P 2 = 1
|G0|2

∑
g,h∈G0

gh = 1
|G0|

∑
g∈G0

g = P,

so that (12) is indeed a projection.

Note: The above reasoning is true because we assumed that χ(g) records the eigenvalues of
g on the eigenspace with projector P ; as such, it has the property χ(t11) = t for t ∈ C. For a
general character χ, however, only G0 < χ−1(1) holds.

Because of the importance of the case of rank one projections, we summarize the results
above in the case of maximal abelian subgroups.

I Theorem 8. Let G be a maximal abelian subgroup of an abstract error group W with
center C. Any simultaneous eigenstate of G can be associated with a subgroup G0 ' G/C

for which |ψ〉〈ψ| = 1
|G0|

∑
g∈G0

g. J
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I Remark. The use of the trivial representation is not essential in the expression above. It
was used only to define G0. Once this has been done, one can use the (1-dim) irreducible
representations of G0 to describe the orthonormal basis of stabiliser states associated with G.
Let χk(g) denote the d = |G0| irreducible representations of G0 and define

|ψk〉〈ψk| = 1
|G0|

∑
g∈G0

χk(g)g. (13)

Then the orthogonality property of group characters implies that Tr |ψj〉〈ψj ||ψk〉〈ψk| =
|〈ψj |ψk〉|2 = δjk.

4.2 Entropies of stabiliser states
The next result seems to have been obtained independently by several groups [20, 10, 11].

I Proposition 9. For a pure stabiliser state ρ = |ψ〉〈ψ| with associated error group G < W ,
and any J ⊂ X , the entropy

S(J) = S(ρJ) = log dJ

|ĜJ |
. (14)

Here, dJ =
∏
x∈J dx and

GJ ≡ {⊗x∈X gx ∈ G : ∀x 6∈ J gx = 11} ⊂ G,

and ĜJ = GJ/CJ is the quotient of GJ with respect to the center CJ = GJ ∩ C.

Proof. It is enough to consider a bipartite system with local error groups WA and WB , by
considering party A all systems in J , and B all systems in X \ J . Then,

|ψ〉〈ψ| = 1
|Ĝ|

∑
(gA,gB)∈Ĝ

gA ⊗ gB .

Since Tr gB = 0 unless gB = 11 and |Ĝ| = dAdB , this implies

ρA = TrB |ψ〉〈ψ| =
1
|Ĝ|

∑
(gA,gB)∈Ĝ

(Tr gB) gA

= 1
|Ĝ|

∑
gA∈ĜA

|HB | gA

= 1
|HA|

∑
gA∈ĜA

gA = |ĜA|
dA

(
1
|ĜA|

∑
gA∈ĜA

gA

)
.

Since, Tr ρA = 1 , the last line implies that ρA is proportional to a projector of rank dA

|ĜA|
.

Thus, its entropy is simply S(ρA) = log dA

|ĜA|
. J

The following corollary is the key to our main result, Theorem 11.

I Corollary 10. For a pure stabiliser state as in Proposition 9, the entropy of the reduced
state ρJ satisfies

S(J) = S(ρJ) = log |Ĝ|
|ĜJc |

− log dJ = log |Ĝ|
|ĜJ |

− log dJc . (15)
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Proof. As in Proposition 9, it suffices to consider the bipartite case. Since |ψ〉〈ψ| is pure,

S(ρA) = S(ρB) = log dB

|ĜB |
= log dAdB

|ĜB |
− log dA.

Since dAdB = |Ĝ| this gives the desired result. J

I Theorem 11. Any pure stabiliser state ρ = |ψ〉〈ψ| on an 5-party system gives rise to
4-party reduced states whose entropies satisfy the Ingleton inequality.

Proof. By Corollary 10, we have

S(J) = log |Ĝ|
|ĜJc |

−
∑
x∈J

log dx . (16)

The first term H(J) = log |Ĝ|
|ĜJc |

is a Shannon entropy of the type used in [9]. To be precise,

observe that ĜJc =
⋂
x∈J ĜX\x. Moreover, since Ĝ and its subgroups ĜJc are abelian, this

implies that the entropy vector for each of the 4-party reduced states satisfies the Ingleton
inequality. (This was observed in [9] and also follows from Theorem 6.)

To complete the argument, it suffices to observe that the Ingleton inequality is balanced,
so that the Ingleton expression is identically zero for the sum-type “rank function” from the
second term in (16), i.e. h0(J) ≡

∑
x∈J log dx defines a poly-matroid satisfying (ING) with

equality. J

Any linear combination of mutual informations and conditional mutual informations is a
balanced expression (and vice versa, any balanced expression can be written as such a linear
combination). Kinser’s family of inequalities is balanced, which can be seen by inspection of
(7). It also holds by construction for the inequalities obtained from [14, Thms. 3 and 4] and,
more generally, any inequality obtained using a “common information” as in [14]. Therefore,
we can conclude using the same argument as above that

I Theorem 12. Any pure stabiliser state on an (N + 1)-party system generate an N -party
entropy vector which satisfies the Kinser [23] family (7) of inequalities, and more generally
those of Dougherty et al. [14].

A consequence of Theorem 11 is that the Matúš family of inequalities holds for stabiliser
states; however, rays generated by the stabiliser state entropy vectors do not span the entropy
cone ΣQ4 . In fact, from the proof of Theorem 11, we see that every balanced inequality that
holds for the Shannon entropy, holds automatically for stabilizer quantum entropies.1 Note
also that apart from (MO), all other necessary entropy inequalities for the Shannon entropy
are balanced [6].

5 The 4-party quantum entropy cone

By direct calculation using symbolic software, we can compute the extreme rays of 4-party
poly-quantoids plus Ingleton inequalities. The results are given (up to permutation) as rays
0 to 6 in Table 1 below, as elements of the 5-party cone Γ̃Q4+1 (on subsets of {a, b, c, d, e})
of vectors which satisfy (+) (SSA) and the complementarity property S(J) = S(Jc) as
described at the end of Section 2.2.

1 We are grateful to D. Gross and M. Walter, whose paper [18] made us aware of this observation.
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Table 1 Extreme rays of the 4-party quantum Ingleton cone.

subset
∖ray 1 2 3 4 5 6 0

a 1 1 1 1 2 1 1
b 1 1 1 1 1 1 1
c 0 1 1 1 1 2 1
d 0 1 1 1 1 2 2
e (=̂ abcd) 0 0 0 1 1 2 2

ab 0 1 2 1 3 2 2
ac 1 1 2 1 3 3 2
ad 1 1 2 1 3 3 2
ae (=̂ bcd) 1 1 1 1 3 3 2
bc 1 1 2 1 2 3 2
bd 1 1 2 1 2 3 2
be (=̂ acd) 1 1 1 1 2 3 2
cd 0 1 2 1 2 2 2
ce (=̂ abd) 0 1 1 1 2 2 2
de (=̂ abc) 0 1 1 1 2 2 2

The following stabiliser states found by Ibinson [21] (some of which were known earlier)
realise entropy vectors on the rays 1 through 6 shown in Table 1.

|ψ1〉 = 1√
2
(
|00〉+ |11〉

)
ab
|000〉cde, (R1)

|ψ2〉 = 1√
2
(
|0000〉+ |1111〉

)
abcd
|0〉e, (R2)

|ψ3〉 = 1
3

∑
i,j=0,1,2

|i〉a|j〉b|i⊕ j〉c|i⊕ 2j〉d|0〉e, (R3)

|ψ4〉 = 1√
2
(
|00000〉+ |11111〉

)
abcde

, (R4)

|ψ5〉 = 1√
2
(
|0〉a′ |0L〉a′′bcde + |1〉a′ |1L〉a′′bcde

)
, (R5)

|ψ6〉 = 1√
27

∑
i,j,k=0,1,2

|i〉a|j〉b|i⊕ j〉c′ |k〉c′′ |i⊕ j〉d′ |k〉d′′ |i⊕ j〉e′ |k〉e′′ , (R6)

where in eq. (R5), |0L〉 and |1L〉 are the logical 0 and 1 on the famous 5-qubit code [27, 3].
These are also extremal rays of the quantum entropy cone ΣQ4 . In addition, ray 0 in Table 1
is realised by the (stabiliser!) state

|ψ0〉 = 1
2
∑

i,j=0,1
|i〉A|j〉B |i⊕ j〉C |ij〉D|ij〉E . (R0)

on 1 + 1 + 1 + 2 + 2 qubits.
Let us call an N -party poly-quantoid stabiliser-represented, if it is in the closure of the

cone generated by the entropy vectors of (N + 1)-party stabiliser states in the sense used
above. Then the above reasoning proves the following analogue of a theorem by Hammer,
Romashchenko, Shen and Vereshchagin [19]:
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I Theorem 13. A 4-party poly-quantoid is stabiliser-represented if and only if it satisfies
the Ingleton inequality (and all its permutations). J

It seems reasonable to conjecture that the closure of the cone generated by the entropy
vectors of stabiliser states is identical to that obtained when inequalities obtained from
common information as in [14] are added to the classical ones. However, it is not even clear
if stabiliser states satisfy the additional linear rank inequalities shown to exist in [8].

6 Conclusion

The difficult question of whether or not the quantum entropy satisfies inequalities beyond
positivity and SSA remains open for four or more parties.

Do quantum states which do not satisfy Ingleton always lie within the classical part of
the quantum entropy cone? We know that the quantum entropy cone ΣQX is strictly larger
than the classical one ΣCX . Recall that ΛC,Q4 denotes the polyhedral cones formed from the
classical inequalities (in each case) and the Ingleton inequality. We want to know whether or
not ΣQ4 \ ΛQ4 is strictly larger than ΣC4 \ ΛC4 , i.e., are there quantum states whose entropy
vectors do not satisfy the Ingleton inequality and are not equal to any vector in the closure
of the classical entropy cone, ΣC4 ? If the answer is negative, then 4-party quantum entropy
vectors must also satisfy the new non-Shannon inequalities.

It seems that a better understanding of quantum states which do not satisfy (ING) may
be the key to determining whether or not quantum states satisfy the classical non-Shannon
inequalities.

This question extends naturally to the 5-party case, in which all linear rank inequalities
are known from [14]. However, for more parties, one can ask the same question for both the
cones associated with inequalities obtained using one common information as in [14], and
for the cones obtained using all linear rank inequalities. Although we know from [7, 8] that
additional inequalities are required, we do not even have explicit examples to consider.

Related work. After completion of the present research, we became aware of independent
work by Gross and Walter [18], who use discrete phase space methods for stabilizer states to
show that the entropies of stabilizer states satisfy all balanced classical entropy inequalities.
Indeed, this can also be seen from our formula for the reduced state entropies in Corollary 10.
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Abstract
We study the quantum error correction threshold of Kitaev’s toric code over the group Zd subject
to a generalized bit-flip noise. This problem requires novel decoding techniques, and for this
purpose we generalize the renormalization group method we previously introduced in [5, 6] for
Z2 topological codes.
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1 Introduction

Kitaev’s topological code (KTC) [11] on qubits is the archetypical topological code and has
been extensively studied. As explained in Kitaev’s original paper [11], this construction
applies to any group. Much less is known about these generalizations, and in this paper we
investigate the quantum error correction (QEC) thresholds of the KTCs built with the groups
Zd, where d ≥ 2. We label these as Zd-KTC, so the original code on qubits corresponds to
Z2-KTC.

As explained in [4], Z2-KTC can be decoded by a binary perfect matching algorithm [7],
since every particle is its own anti-particle in this model. Because this is not the case for
d > 2, other techniques are required and for this purpose we generalize the renormalization
group (RG) soft decoder that we introduced in [5, 6]. Our numerical simulations show that
the threshold increases monotonically with d and appears to follow the general trend of the
qudit hashing bound.

This paper is organized as follows. First, we introduce a generalized Pauli group (see
[12, 9] for more details), stabilizer codes, and Zd-Kitaev’s toric code. Next, we briefly review
the decoding problem of these systems and show how the RG decoder applies in this case.
Finally, we present the numerical results and close with a discussion.

2 Zd generalization of Kitaev’s toric code

In this section, we review the definition of Zd-KTC and show that many features of KTC
on qubits extend to them. Since we will be working with qudits, we introduce a generalized
Pauli group. The Hilbert space of a qudit, Hd, is spanned by the states {|0〉, |1〉, . . . , |d−1〉}.
We define the operators X and Z such that

X|g〉 = |g ⊕ 1〉, Z|g〉 = ωg|g〉, (1)
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© Guillaume Duclos-Cianci and David Poulin;
licensed under Creative Commons License CC-BY

8th Conference on Theory of Quantum Computation, Communication and Cryptography.
Editors: Simone Severini and Fernando Brandao; pp. 285–293

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TQC.2013.285
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


286 Kitaev’s Zd-Codes Threshold Estimates

X

X

Z

ZX
−1

X
−1

Z
−1

Z
−1

v p

Figure 1 Zd-KTC stabilizer generators. To each vertex v, we associate an operator Av(left) and
to each plaquette p, we associate an operator Bp (right).
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Figure 2 Plaquette defects created by the application of some power of X. The values a (−a)
in the plaquettes are such that the eigenvalue of the corresponding Bp is ωa (ω−a). By choosing
appropriately the powers of X, we can build string operators with defects only on their endpoints.
Non-trivial cocyles of Xa correspond to Xa logical operators.

where 0 ≤ g < d, “⊕" denotes addition modulo d, and ω = ei2π/d. The generalized
Pauli group is generated by X, Z, and a phase, i.e., Pd = 〈ω,X,Z〉 if d is odd and
Pd = 〈ω1/2, X, Z〉 if d is even (XZ has order 2d in this case). From the definitions of
Eq. (1), we deduce the following properties

Xa|g〉 = |g ⊕ a〉, ZX|g〉 = ωXZ|g〉, (2)
Za|g〉 = ωag|g〉, ZaXb|g〉 = ωabXbZa|g〉.

Lastly, we define the n-qudit Pauli group Pnd ≡ P
⊗n
d as the n-fold tensor product of Pd.

The stabilizer group S is an ablian subgroup of Pnd . The code is defined as the sim-
ultaneous +1 eigenspace of all stabilizers. Note that even though the generalized Pauli
operators are unitary, they are not hermitian in general so do not correspond to physical
observables. However, the operator 1

2 (s+ s†) is hermitian and can be measured. Since s has
eigenvalues ωa, 1

2 (s+ s†) has eigenvalues 1
2 (ωa+ω−a) = cos(2πa/d) which are in one-to-one

correspondence with the eigenvalues of s.
With these definitions in place, we present a generalization of KTC on qudits, which we

call Zd-KTC, using Kitaev’s original construction [11] on the cyclic groups Zd with d ≥ 2.
The system is a square lattice of linear size L with periodic boundary conditions. Each edge
is occupied by a qudit, so there are in total n = 2L2 qudits. We define vertex operators
Av and plaquette operators Bp as shown in Fig. 1. There is one such operator for each
vertex and each plaquette. We verify that they commute using the last line of Eq. (2).
These operators generate the stabilizer group S = 〈Av, Bp〉 and the code is spanned by the
simultaneous +1 eigenstates of the stabilizer generators.

Figure 2 illustrates how applying some power of X on a codestate creates defects on
the lattice. Indeed, Xa applied on some qudit does not commute with the two plaquette
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operators involving that qudit. The eigenvalues of the plaquettes to the north or east of
the error will change from 1 to ωa, and those of the plaquettes to the south or west will
change from 1 to ω−a. One can show that the defects thus created are topological charges;
we associate the charge a to a plaquette defect corresponding to an eigenvalue ωa of that
plaquette. With this choice of labeling, the charge group restricted to plaquettes is Zd with
addition.

From these simple facts, it follows that string operators can be built with defects attached
only to their endpoints (these strings actually live on the dual lattice, just like in KTC).
This requires a careful choice of the powers of X on the qudits along the string such that the
total charge in each plaquette is 0 except on its endpoints. For instance, one can adopt the
convention that power a is used when heading north or east, and −a when heading south or
west. Moreover, we can verify that non-trivial cocycles (loops on the dual lattice, see Fig. 2)
of any power of X obeying this convention commute with the stabilizer. These operators
are not in the stabilizer as all the vertex generators of Fig. 1 are trivial cocyles. It follows
that such operators, e.g. the one found at the bottom of Fig. 2, are logical operators (for
any value of a).

A similar analysis holds for defects created by powers of Z operators. In this case, the
defects live on vertices and string operators, on the direct lattice. Also, non-trivial cycles
of any power of Z are logical operators. From the form of the logical operators, we directly
deduce that there are two qudits encoded in the code space. Again, this is analogous to the
case of KTC.

3 Zd-KTC decoding

We are now interested in the problem of error correcting Zd-KTCs for d > 2. In our study,
we consider a simple noise model that generalizes the independent symmetric bit-flip channel
to qudits1: with probability 1 − pphys, the qudit remains unaffected and with probability
pphys, we apply at random (uniformely distributed) one of X,X2, . . . , Xd−1. Suppose an
error E ∈ Pnd occurs on a code state. It creates defects on the lattice and by measuring the
eigenvalues of every 1

2 (Av+A†v) and 1
2 (Bp+B†p) we can learn the position and charge of each

defect. The role of the decoder is to bring the system back in the code space by applying a
correcting Pauli operator, C ∈ Pnd . However, care must be taken in choosing an appropriate
correcting operation. Indeed, if the operator CE resulting from the combination of the error
and the recovery is an element of S, the state is unaffected. However, if CE is a non-trivial
logical operator, then the system is returned to the code space but potentially in a different
code state, so the information is corrupted.

Any operator E ∈ Pnd creating the measured configuration of defects is a potential error.
However, we classify these operators by their logical effect on the code space: two operators
E1, E2 with the same configuration of defects are equivalent iff E†2E1 has a trivial effect
on the code, i.e. E1 ∼ E2 iff E†2E1 ∈ S. Note that since E1 and E2 lead to the same
defect configuration, E†2E1 creates no defect, or equivalently, E1 creates some defects that
E†2 annihilates.

Given a measured defect configuration, the decoder seeks for the best correction among
the set of all errors which would lead to this defect configuration. One strategy would be to
identify the error from this set that has the largest probability P(E), where the probability

1 This noise model can also be seen as emerging from a qudit depolarization channel that maps ρ →
(1− q)ρ+ q Id when X and Z errors are treated independently, and pphys = q(1− d−1).

TQC’13
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Figure 3 (a) The lattice is cut into unit cells containing ten qudits (edges). The renormalization
process takes the defect configuration and the noise model on a unit cell as inputs and outputs a two-
qudit distribution (white disks) which corresponds to a probability on the charge flow through the
corresponding boundaries. Green disks represent plaquette operators. The plaquette corresponding
to the green circle is replaced by the product of all four plaquettes of the unit cell, such that its
eigenvalue gives the total charge of the cell. This value is only going to be used in the next round
of RG (larger green disk). (b) Labeling convention for qudits in Eq. (3).

of an error is specified by the physical noise model, in our case the symmetric bit-flip channel.
This turns out not to be optimal however, because some errors have equivalent effects on
all code states. Thus, the decoder should instead seek for the most likely equivalence class
of errors. The probability of an equivalence class of errors is obtained by summing over the
probability of each error within a class. Given these probabilities, the optimal correction
consists in applying the adjoint of any representative of the class with maximal probability.

4 RG decoder generalization to Zd-KTC

Unfortunately, the above procedure cannot be realized efficiently in general since the number
of errors in each equivalence class scales exponentially with the system size. In [5, 6], we
introduced a renormalization group soft decoder (RG decoder) that efficiently approximates
the exact calculation (see [3] for a related scheme). The general idea is to cut the lattice into
small unit cells (e.g. 2× 2 sub-lattices) and to “distill" from each cell an effective two-qubit
noise model, c.f. Fig. 3(a). This is realized by keeping track of the flow of charges through
the cell and summing over the microscopic details leading to this flow. This has the effect
of shrinking the lattice linear size by a constant factor (k for cells of size k × k). Recursing
on this process, one can shrink the lattice to a constant, manageable, size where the exact
decoding can be performed. With appropriate simple modifications, this method can be
used for charges over Zd.

There are two technical difficulties in realizing the above heuristic description, which are
both caused by charge conservation. First, because the unit cells share boundaries, the flow
of charge through one boundary of a cell should be equal and opposite to the flow of charge
of the corresponding boundary of the neighbouring cell. Thus, the variable corresponding
to charge flows in each cell are highly constrained. This problem is easily circumvented by
keeping only track of the flow of charge through the northern and the western boundary of
each cell, i.e. by eliminating this redundancy.

Second, the sum of the charge flow through the boundaries of a cell must be equal to its
total charge, revealed by the syndrome measurement. This once again sets a hard constraint
between the variables corresponding to the charge flows, which would in principle require
a probability distribution that correlates all the variables of the system. This cannot be
realized efficiently, so we must resort to some approximation. As a first approximation, we
choose to ignore the cross-cell correlations, and keep only marginal probabilities on the flows
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associated to a given cell (we keep a probability distribution that involves the northern and
western boundary only). To diminish the effect of these correlations we are neglecting, we
let the charge inside a unit cell fluctuate. For each unit cell, we measure all but one of the
plaquettes it encloses. This remaining plaquette thus determines the total charge of the
unit cell, and indeed we can substitute the corresponding stabilizer generator by a plaquette
enclosing the entire unit cell (obtained by multiplying all the plaquette operators contained
in the unit cell). This new stabilizer generator represents a renormalized charge.

This procedure is illustrated on Fig. 3(a) where green disks represent plaquettes that are
measured and the green circle represents the plaquette that is left fluctuating. This green
circle is replaced by the larger, renormalized green disk (on the right) that is used in the
next RG step. The white disks on this figure each represent a probability distribution on
charge flow, or equivalently a two-qudit probability distribution. Thus, after one round of
RG, we are left with a smaller lattice and both renormalized charges and renormalized noise
models.

Equation (3) lists a set of generators for all X operators living on a unit cell (see Fig. 3(b)
for labelling). This basis will be used to decompose any X-type error contained on the unit
cell. These operators are defined in accordance to the renormalization process itself as we
now explain. The Ti operators are used to build a representative error with the appropriate
defect configuration. Indeed, only the Ti operators of Eq. (3) do not commute with all three
plaquette operators in the unit cell (green disks of Fig. 3(a)). Label the defect configuration
on a unit cell as ~a = (a0, a1, a2), where a0 is the charge of the north-west plaquette, a1 is
the charge of the north-east one, and a2 is the charge of the south-west one. Then, the
Pauli operator t(~a) = T a0

0 T a1
1 T a2

2 creates the defect configuration ~a. Moreover, given a
defect configuration ~a, every potential error has to contain this product in its decomposition
on basis Eq. (3) since only the Ti operators do not commute with plaquettes. The Li
operators characterize the flow of charge through the northen and western boundaries, so
the two-qudit ouput distribution of a RG round is precisely the probability distribution
over these two operators. The Si operators are stabilizer operators (or parts of stabilizer
generators supported on the unit cell). They only deform strings without changing their
defect configuration or their associated charge flow. Lastly, the Ei operators correspond
to charge flowing through the southern and eastern boundaries into the plaquette operator
that is left out. Thus, they are responsible for the charge fluctuation inside the unit cell and
they are summed over.

S0 = X0X
−1
2 X−1

3 T0 = X4X
−1
7

S1 = X1X
−1
4 X−1

5 T1 = X6

S2 = X3X4X
−1
6 X−1

7 T2 = X−1
7

(3)
E0 = X6X8 L0 = X2X6

E1 = X−1
7 X−1

9 L1 = X5X7

With these definitions, we can formally describe a RG round that starts with a defect
configuration ~a, and computes the marginal probability of each l ∈ 〈L0, L1〉 conditioned on
the measured defect configuration,

P(l) =
∑

e∈〈E0,E1〉

∑
s∈〈S0,S1,S2〉

P(tles), (4)
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where t = T a0T a1T a2 is given by the defect configuration and P(tles) is the probability
assigned to the error E = tles by the noise model. The complexity of decoding a unit cell
is given by the number of operators that are considered in Eq. (4): |〈L0, L1〉| · |〈E0, E1〉| ·
|〈S0, S1, S2〉|. Since all Li, Ei and Si have order d, the complexity is the constant d7. For
different unit cell sizes, the complexity is still a power of d, but with a different exponent
which depends on the number of qudits in the cell and the number of measured stabilizer
generators. Moreover, the number of unit cells to decode in a given round of RG is given by
(L/k)2 where k and L are the linear sizes of the unit cell and the global lattice, respectively.
Thus, the complexity of a step of RG goes as dc(L/k)2 for some constants c and k that
depend on the choice of unit cell. Of course, the RG calculations on different cells can be
executed in parallel.

The procedure we have described above to evade the correlations caused by local charge
conservation is only a heuristic, and can be improved using belief propagation (BP). Roughly,
the role of BP is to ensure consistency between the marginal probability of qubits located at
the boundary of two or more unit cells, e.g. qudits 0, 1, 8 and 9 (see Fig. 3(b) for labeling).
First, given a defect configuration inside a unit cell, one can compute the marginal error
probability Pq(tles|q) for each qudit q, obtained by taking a marginal of P(tles). These
are called messages and denoted mout

q (p), where q labels a qudit and p is a one-qudit Pauli
operator. These outgoing messages are then exchanged between neighbouring cells, and
become incoming messages, e.g. a cell c sends to its northern neighbour c′ the message
mout

0 that becomes min
9 in c′, and receives from c′ the message mout

9 that becomes min
0 in c.

Subsequent rounds of messages can be calculated using the received messages, following the
prescription

mout
q (p)←

∑
l,s,e

δ(tles|q, p)
P(tles)
Pq(tles|q)

∏
q′ 6=q

min
q′ (tles|q′), (5)

Here, q, q′ ∈ {0, 1, 8, 9}, tles|q is the restriction to qudit q of the Pauli operator tles and Pq
is the marginal on qudit q of the noise model as above. BP can be iterated a few times (e.g.
three rounds) before executing a RG step. This has the effect of replacing Eq. (4) by

P(l) =
∑

e∈〈E0,E1〉

∑
s∈〈S0S1S2〉

P(tles)
∏
q

min
q (tles|q). (6)

5 Numerical results

In this section, we present our numerical estimates of the thresholds of Zd-KTCs for 2 ≤
d ≤ 6 subject to the generalized bit-flip noise model introduced in the previous section. The
threshold is defined as the value of the physical noise rate pphys below which the decoding
error probability pdec can be made arbitrarily small by increasing the lattice size L.

The simulations were performed as follows. For various values of d, L and pphys, specifiy-
ing a Zd-KTC of linear size L subject to a noise of parameter pphys, we performed a Monte
Carlo simulation to estimate the decoding error probability pdec. We used sample sizes of
the order of 104. For a fixed value of d, we plotted estimates of pdec vs pphys for different
values of L. We then used the fitting model pdec = (pphys − pth)L1/ν (see [4, 10] for more
details) to estimate the value of the threshold. As an example, we plotted the results and
the fits for Z3-KTC on Fig. 4.

Repeating this for 3 ≤ d ≤ 6 (2 was studied in [5, 6]), Fig. 5 shows pth as a function of
d. Heuristically, we did expect that the value of pth increases with d. Indeed, if we imagine
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Figure 4 Threshold estimation for Z3-KTC. The x-axis represents physical error rate and the
y-axis, decoding error rate. The blue dots, red squares and yellow diamonds correspond to L = 32,
L = 64 and L = 128 respectively. The fitting curve used is pdec = (pphys − pth)L1/ν . In this case,
we find pth = 0.13(0).
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Figure 5 The blue diamonds are the values extracted by fitting the threshold values for 2 ≤ n ≤ 6
(see Fig. 4 for example). The red squares are obtained via the generalized hashing bound (see text)
rescaled by a common factor α = pth(2)/C2 ≈ 0.81. The error bars are (pessimistically) obtained
e.g. by replacing each line in Fig. 4 by a stripe of width equal to the statistical error bars, and
determining the values of pphys above and below the crossing point where the strips cease to overlap.
We do not report the fitting parameter ν because they are too sensitive to statistical fluctuations
and therefore unreliable in our study.
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simulating a qudit using log2 d qubits, a fixed noise rate for increasing values of d translates
into a decreased noise rate per qubit. Moreover, it was reported in [1] that the performance
of BP for Zd-KTC, which is very poor in the qubit case, is greatly increased as d grows.

It is intringuing to note that for Z2-KTC subject to bit-flip or depolarizing noise, pth is
numerically very close to the hashing bound [4, 10, 2]. The hashing bound, obtained by a
simple packing argument [8], states that for non-degenerate CSS codes,

0 ≤ 1− 2H2(p), (7)

where H2 is the binary entropy: H2(p) = (1−p) log2(1−p)+p log2 p. From Eq. (7), one can
calculate the saturating point C2 ≈ 0.110 which is indeed quite close to the optimal threshold
of the Z2-KTC subject to independent bit-flip and phase-flip errors, pth(2) ≈ 0.109(4) [4, 10].
This near coincidence is intriguing given that topological codes are highly degenerate, so
there is no reason they should obey the hashing bound. Of course, the decoder we are
using here is sub-optimal, so the threshold we find pth(2) ≈ 0.89(6) is a smaller fraction
α = pth(2)/C2 ≈ 0.81(4) of the hashing bound.

For qudits, the hashing bound is

0 ≤ 1− 2Hd(p) with Hd(p) = (1− p) log(1− p) + p log p

d− 1 . (8)

In this case, we find C3 ≈ 0.159, C4 ≈ 0.189 and so on. Figure 5 shows the threshold
pth(d) obtained with the RG decoder as well as a rescaled hashing bound αCd where α is
determined by the Z2 fit. The agreement is both unexplained and surprisingly good. Note
also that even though our decoder is sub-optimal, pth(d+ 1) > Cd for all d we have studied,
which strongly support the claim that the threshold increases with d.

6 Conclusion

In this paper, we presented a generalization of the renormalization group decoder of [5, 6]
to Kitaev topological codes built with the groups Zd. Our numerical results show that the
threshold value increases as a function of the local dimension d. Moreover, its behaviour is
in very good agreement with a scaling predicted by the hashing bound. This trend could be
confirmed by more accurate numerical estimates using a mapping to a statistical mechanics
model, which does not require solving the decoding problem [4, 2]. A theoretical under-
standing of this behavior is also desirable. Lastly, estimating the threshold in the presence
of measurement error and detailed syndrome measurement circuits on qudits remains an
interesting open question.
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Abstract
We show that the depth of quantum circuits in the realistic architecture where a classical con-
troller determines which local interactions to apply on the kD grid Zk where k ≥ 2 is the same
(up to a constant factor) as in the standard model where arbitrary interactions are allowed. This
allows minimum-depth circuits (up to a constant factor) for the nearest-neighbor architecture to
be obtained from minimum-depth circuits in the standard abstract model. Our work therefore
justifies the standard assumption that interactions can be performed between arbitrary pairs of
qubits. In particular, our results imply that Shor’s algorithm, controlled operations and fanouts
can be implemented in constant depth, polynomial size and polynomial width in this architecture.

We also present optimal non-adaptive quantum circuits for controlled operations and fanouts
on a kD grid. These circuits have depth Θ( k

√
n), size Θ(n) and width Θ(n). Our lower bound

also applies to a more general class of operations.
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1 Introduction

Quantum algorithms are typically formulated at an abstract level and allow arbitrary one-
and two-qubit interactions. However, in physical implementations of quantum computers,
typically only local interactions between neighboring qubits are possible. This motivates the
kD nearest-neighbor two-qubit concurrent (kD NTC) architecture [19] (cf. [5]) in which the
qubits are arranged on the kD grid Zk; this is shown in Figure 1a for the case where k = 2.
Operations may involve one or two qubits with the restriction that two-qubit operations
may only be performed along an edge in the grid. Multiple operations may be performed
concurrently as long as they are on disjoint sets of qubits; an example is shown in Figure 1b.

The idea of using a classical controller to determine which operations to apply at each
step is implicit in the pre- and post-processing stages of Shor’s algorithm [16] and is often
assumed for fault-tolerant quantum computation. Since the classical controller can take
intermediate measurement outcomes into account, this model includes the class of adaptive
quantum circuits as a special case. It is potentially even more powerful since the classical
controller can perform randomized polynomial-time computations to determine which oper-
ations to apply as well as perform pre- and post-processing. Since quantum operations are
far more expensive than classical operations, we are primarily concerned with the depth of
the quantum circuit and do not count the operations performed by the classical controller
as long as they take polynomial time.
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(a) Interactions in the 2D NTC architecture:
the grid lines indicate the two-qubit interactions
which can be performed

(b) An example of concurrent interactions in
the 2D NTC architecture: the components con-
nected by the thick red edges indicate concur-
rent interactions and the thick red circles indi-
cate single-qubit interactions

Figure 1 The 2D NTC architecture.

In this work, we study both the classical-controller kD NTC (kD CCNTC) architecture
— a classical controller model where interactions are restricted to a kD grid — as well as the
non-adaptive kD NTC 1 (NANTC) architecture where no classical controller is used and the
operations applied cannot depend on intermediate measurement outcomes. The CCNTC
model ignores the cost of offline computations performed by the classical controller and
assumes that there are no classical locality restrictions. This is realistic since the clock rate
for a classical computer is much faster than for a quantum computer. Because quantum
computers are already forced to be parallel devices in order to perform operations fault
tolerantly [1], the total runtime of a quantum circuit is proportional to the depth of the
corresponding quantum circuit. The restriction that interactions are between neighbors on
a kD grid comes from the underlying physical device: in most technologies, only qubits that
are spatially close can interact.

We first show how to simulate the standard classical controller abstract concurrent
(CCAC) architecture in kD CCNTC with constant factor overhead in the depth. We ac-
complish this using a 2D CCNTC teleportation scheme that allows arbitrary interactions
on disjoint sets of qubits to be performed in constant depth.

I Theorem 1.1. Suppose that C is a CCAC quantum circuit with depth d, size s and width
n. Then C can be simulated in O(d) depth, O(sn) size and n2 width in 2D CCNTC.

This result justifies the standard assumption that non-local interactions can be performed
efficiently. Simulating each of the d timesteps from the CCAC circuit in 2D CCNTC requires
an O(n) time classical computation; this can be reduced to O(logn) time if the classical
controller is a parallel device or if it includes a simple classical circuit. Since the clock

1 The original NTC architecture described by Van Meter and Itoh [19] is in fact NANTC; however, we
prefer NANTC to avoid confusion with CCNTC where a classical controller is used.
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speeds of classical devices are currently much faster than those of quantum devices, this
overhead is not likely to be significant.

I Corollary 1.2. Let E be a quantum operation on n qubits. Let d1 and d2 be the minimum
depths2 required to implement E with error at most ε using poly(n) size and poly(n) width
in the CCAC and kD CCNTC models respectively where k ≥ 2. Then d1 = Θ(d2).

It is possible to implement Shor’s algorithm [16] in constant depth in CCAC [3] which
implies that it can also be implemented in constant depth in 2D CCNTC.

I Corollary 1.3. Shor’s algorithm can be implemented in constant depth, polynomial size
and polynomial width in 2D CCNTC.

Since controlled-U operations and fanouts can also be performed in constant depth and
polynomial width in CCAC [8, 3, 17], we also have the following corollary.

I Corollary 1.4. Controlled-U operations with n controls and fanouts with n targets can be
implemented in constant depth, poly(n) size and poly(n) width in 2D CCNTC.

Our main technical result allows any subset of qubits to be reordered in constant depth.
Theorem 1.1 follows from this as a corollary.

I Theorem 1.5. Suppose we have an n×n grid where all qubits except those in the first col-
umn are in the state |0〉. Let T ⊆ {0, . . . , n−1} and let π : T → {0, . . . , n−1} be an injection
such that for all j ∈ T with π(j) = 0, {k ∈ T c | k < j} = ∅. Set m = |{j ∈ T | π(j) 6= 0}|.
Then we can move each qubit at (0, j) to (π(j), 0) for all j ∈ T in O(1) depth, O(mn) size
and (m+ 1)n ≤ n2 width in 2D CCNTC.

Upper bounds for the depth of quantum circuits when converting between various ar-
chitectures with no classical controller were previously studied by Cheung, Maslov and
Severini [4]. Their results imply that CCAC can be simulated in kD CCNTC with O( k

√
n)

factor depth overhead, O(n) size overhead and no width overhead. In contrast to our results,
their techniques are based on applying swap gates to move the interacting qubits next to
each other and do not perform any measurements.

Implementations of Shor’s algorithm in kD CCNTC with various super-constant depths
were previously known for k = 1 and k = 2. Fowler, Devitt and Hollenberg [7] showed a
1D CCNTC circuit for Shor’s algorithm which requires O(n3) depth, O(n4) size and O(n)
width where n is the number of bits in the integer which is being factored. Maslov [10]
showed that any stabilizer circuit can be implemented in linear depth in 1D CCNTC from
which the result of Fowler, Devitt and Hollenberg [7] can be recovered. Kutin [9] gave
a more efficient 1D CCNTC circuit which uses O(n2) depth, O(n3) size and O(n) width.
For 2D CCNTC, Pham and Svore [12] showed an implementation of Shor’s algorithm in
polylogarithmic depth, polynomial size and polynomial width.

It was also previously known that controlled-U operations and fanouts can be imple-
mented in constant depth, polynomial size and polynomial width in CCAC. This line of work
was started by Moore [11] who showed that parity and fanout are equivalent and posed the
question of whether fanout has constant-depth circuits. Høyer and Špalek [8] proved that
if fanout has constant-depth circuits then controlled-U operations can also be implemented

2 Here, we assume that there is a minimum depth required to implement E in CCAC when the size and
width are poly(n).
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in constant depth with inverse polynomial error. Browne, Kashefi and Predrix [3] showed
that one-way quantum computation is equivalent to unitary quantum circuits with fanout.
A consequence of this is that constant depth adaptive circuits for fanout can be used to
implement controlled-U operations in constant depth in CCAC. Takahashi and Tani [17]
reduced the size of this circuit by a polynomial and made it exact.

In many technologies, measurements are much more costly than unitary operations.
For this reason, we also consider the non-adaptive kD NANTC model. Here, there is no
classical controller and the operations applied depend only on the size of the input and not
on intermediate measurement outcomes. Our result in this model is a characterization of
the complexity of controlled-U operations and fanouts.

I Theorem 1.6. The depth required for controlled-U operations with n controls and fanouts
with n targets in kD NANTC is Θ( k

√
n). Moreover, this depth can be achieved with size

Θ(n) and width Θ(n).

If the clock speeds of the quantum computer and its classical controller are comparable,
then operations implemented using Theorem 1.6 are significantly faster than those imple-
mented using Corollary 1.4. For this reason, Theorem 1.6 may become a better option as
quantum computing technology matures.

The layout of our paper is as follows. In Section 2, we discuss definitions used in the
rest of the paper and define the models of computation precisely. In Section 3, we review
quantum teleportation and describe teleportation chains. In Section 4, we describe our
2D teleportation scheme and show that it allows arbitrary interactions to be implemented
in constant depth in 2D CCNTC. In Section 5, we show an algorithm that implements
controlled-U operations and fanouts for kD NANTC in depth O( k

√
n). In Section 6, we

describe how our techniques can be applied to obtain kD NANTC quantum circuits for
fanout with depth O( k

√
n). In Section 7, we prove a matching lower bound for a class of

operations that includes controlled-U operations and fanouts.

2 Definitions

The one- and two-qubit operations that can be performed by the hardware are called the
basic operations. We assume that the basic operations are a universal gate set so that any
one- or two-qubit unitary can be constructed from the basic operations. We also assume
that the basic operations include measurement in the computational basis.

It is useful to distinguish between physical and logical timesteps. During each physical
timestep, we can perform any set of disjoint basic operations. During a logical timestep, we
allow any set of disjoint t-qubit operations to be performed. In this work, we take t = O(k)
and assume k is constant.

I Definition 2.1 (NANTC). In the kD NANTC model, computation is performed by applying
a sequence of sets of basic operations S1, . . . , Sd to the kD grid of qubits. We require that
the operations in the set Si are disjoint and are either single-qubit operations or two-qubit
operations between neighbors in the kD grid. The sequence of sets of operations must be
randomized polynomial-time computable from the size n of the input.

In the models where a classical controller is present, the classical controller is invoked
after each physical timestep to determine which operations to apply at the next step.

I Definition 2.2 (CCAC). Let M be a randomized polynomial-time machine that takes the
input x and the measurement outcomes from the first i physical timesteps and outputs a
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set M1, . . . ,M` of disjoint basic operations to be applied to the qubits at the i+ 1th physical
timestep. If no more physical timesteps are to be performed, then M outputs the special
symbol �. Computation in the CCAC model is performed at physical timestep i by using M
to compute the set of operations to apply and then applying them to the qubits.

The CCNTC model is similar except that it also requires that two-qubit operations are
only performed between neighbors on the kD grid.

I Definition 2.3 (CCNTC). Let M be a randomized polynomial-time machine that takes
the input x and the measurement outcomes from the first i physical timesteps and outputs
a set M1, . . . ,M` of disjoint basic operations to be applied to the kD grid of qubits at the
i+ 1th physical timestep. We require that each Mi is either a single-qubit operation or a
two-qubit operation between neighbors in the kD grid. If no more physical timesteps are to
be performed, then M outputs the special symbol �. Computation in the CCNTC model is
performed at physical timestep i by using M to compute the set of operations to apply and
then applying them to the kD grid of qubits.

In this paper, the machine M from Definitions 2.2 and 2.3 will be deterministic except
for the pre- and post-processing stages of Shor’s algorithm.

For NANTC, a quantum circuit is the sequence of basic operationsM1, . . . ,M` be applied
to the kD grid of qubits. For the CCAC and CCNTC models, a quantum circuit is described
by the machine M from Definitions 2.2 and 2.3. We now define three standard measures of
cost in these models.

I Definition 2.4. The depth of a quantum circuit is
(a) d for NANTC where S1, . . . , Sd is the sequence of operations from Definition 2.1 for an

input of size n
(b) maxx∈{0,1}n maxr dx,r for CCAC and CCNTC where dx,r is the number of physical

timesteps it takes for the machine M from Definitions 2.2 and 2.3 to output � when
the input is x and the random seed is r. The first max is taken is over all possible
inputs x of length n and the second is over all possible random seeds r.

We note that the depth only changes by a constant factor if we use logical timesteps
instead of physical timesteps in the above definition. This is due to our assumption that
any operation performed in a logical timestep acts on at most O(k) = O(1) qubits.

I Definition 2.5. The size of a quantum circuit is
(a)

∑
i |Si| for NANTC where S1, . . . , Sd is the sequence of operations from Definition 2.1

for an input of size n
(b) maxx∈{0,1}n maxr sx,r for CCAC and CCNTC where Sx,r is the total number of opera-

tions applied when the input is x and the random seed is r. The first max is taken over
all possible inputs x of length n and the second is over all possible random seeds r.

In the next definition, we assume that the qubits are indexed by N for CCAC.

I Definition 2.6. The width of a quantum circuit is
(a) the total number of qubits acted on by operations in the sets Si for NANTC where

S1, . . . , Sd is the sequence of operations from Definition 2.1 for an input of size n
(b) maxx∈{0,1}n |Ax| for CCAC where Ax is the smallest subset of N such that every qubit

acted on is contained in Ax for input x and all random seeds r
(c) maxx∈{0,1}n |Ax| for CCNTC where Ax is the smallest hypercube in Zk such that every

qubit acted on is contained in Ax for input x and all random seeds r
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Typically, the depth is the most important metric to optimize since it is proportional to
the amount of time required to execute the quantum operations. The width is also impor-
tant since the number of qubits is currently quite limited but the size is largely irrelevant.
Moreover, if parallelism is properly exploited then we expect the size to be roughly the depth
times the width.

3 Quantum teleportation

In this section we review quantum teleportation [2]. As we shall see, teleportation is a useful
primitive that allows non-local interactions to be performed in a constant-depth circuit
in kD CCNTC. Let us denote the states of the Bell basis by |Φ0〉 = |00〉+|11〉√

2 , |Φ1〉 =
|01〉+|10〉√

2 , |Φ2〉 = |01〉−|10〉√
2 and |Φ3〉 = |00〉−|11〉√

2 . Up to global phase, these can be written as
|Φ`〉AB = σB` |Φ0〉AB . Recall that in the quantum teleportation setting, Alice has a state
|ψ〉S = α |0〉S + β |1〉S that she wishes to send to Bob. The two parties are not allowed to
send quantum states to each other but each have one qubit of a Bell state σB` |Φ0〉 and can
communicate classically.

To perform quantum teleportation, Alice performs a Bell measurement on the SA regis-
ters. If the measurement outcome is |Φk〉, then a simple calculation shows that the resulting
state is |Φk〉SA ⊗ σ`σk |ψ〉B . Alice then sends the classical measurement outcome k to Bob;
by applying the appropriate Pauli operation to his register B, Bob causes to overall state to
become |Φk〉SA ⊗ |ψ〉B . Observe that Alice’s state |ψ〉 has been recovered in Bob’s register.

Let us now consider how quantum teleportation chains can be used in the 1D CCNTC
model to perform non-local operations in constant depth. Suppose that we have a qubit
in the state |ψ〉S along with m Bell states

∣∣Φ`j

〉AjBj . These are arranged on a line so
that the overall state is |ψ〉S

⊗m
j=1

∣∣Φ`j

〉AjBj . Our goal is to move qubit S to Bm. One
way to do this is to first teleport S to B1 by performing a Bell measurement on SA1. We
then store the measurement outcome k1 but do not apply the correcting Pauli operation;
at this point, the state of B1 is σ`1σk1 |ψ〉. Continuing this process, we obtain the state⊗m

j=1
∣∣Φkj

〉∏1
j=m

(
σ`j

σkj

)
|ψ〉Bm . Since

∏1
j=m

(
σ`j

σkj

)
is just a Pauli operation, we obtain

the state
⊗m

j=1
∣∣Φkj

〉
|ψ〉Bm in a single quantum operation. The crucial point here is that all

of the Bell measurements are performed on disjoint pairs of qubits so they can all be done
in parallel as in one-way quantum computation [14, 13] and [18]. Thus, we can perform a
non-local interaction of arbitrary distance in constant depth. It is important to note that
this is not possible without a classical controller since otherwise there is no way to compute
the correcting Pauli operation.

4 Depth complexity in kD CCNTC

In this section, we show that an arbitrary set of CCAC interactions corresponding to basic
operations can be performed in constant depth in 2D CCNTC. We assume that there are
n qubits on which the interactions are to be performed and store these in the first column
of a 2D n × n CCNTC grid. Since we must handle interactions between qubits that are
not neighbors, we may as well assume that the original n qubits are stored in the first
column. The remaining columns are used as ancillas to implement teleportation chains. We
teleport each of the n qubits horizontally to the right so that interacting pairs are in adjacent
columns. Since these teleportations are on disjoint sets of qubits, they can be performed in
parallel as in [14, 13, 18]. A second set of vertical teleportation chains is then used to move
all the qubits down to the first row. At this point, the interacting qubits are neighbors so
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(a) (b) (c)

Figure 2 Performing an arbitrary set of interactions in 2D CCNTC. The qubits crosshatched
green are the data qubits and the qubits shaded with diagonal downward blue lines are ancilla
qubits.

(a) (b)

Figure 3 Performing an arbitrary set of interactions in 2D CCNTC.

the interactions may be implemented directly. We then perform the reverse teleportations
to move the qubits back to their original positions.

4.1 An example of arbitrary interactions in 2D CCNTC

We show an example in Figure 2. The desired interactions are shown in Figure 2a. The
layout of the data qubits in the 2D grid is shown in Figure 2b; the ancilla qubits are used
to implement the teleportation chains and are initially set to |0〉. We start by horizontally
teleporting the qubits that interact to adjacent columns in Figure 2c where the teleporta-
tion chains are denoted by the dotted red arrows. The red double arrow indicates a swap
operation; this is just a less expensive way of achieving the same result when the qubits
are neighbors. The next step is to vertically teleport the data qubits down to the first row
as shown in Figure 3a. Finally, all interacting qubits are now neighbors so we perform the
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desired interactions in Figure 3b. The final reverse teleportations are not shown but can be
obtained by reversing the arrows in Figures 2c and 3a.

4.2 An algorithm for performing arbitrary interactions in 2D CCNTC
It is easy to generalize the approach of Figure 2 to show that the qubits in the first column
can be reordered arbitrarily in constant depth. The pseudocode is the obvious generalization
of Figure 2 (see the full version of our paper [15]).

I Theorem 1.5. Suppose we have an n×n grid where all qubits except those in the first col-
umn are in the state |0〉. Let T ⊆ {0, . . . , n−1} and let π : T → {0, . . . , n−1} be an injection
such that for all j ∈ T with π(j) = 0, {k ∈ T c | k < j} = ∅. Set m = |{j ∈ T | π(j) 6= 0}|.
Then we can move each qubit at (0, j) to (π(j), 0) for all j ∈ T in O(1) depth, O(mn) size
and (m+ 1)n ≤ n2 width in 2D CCNTC.

We note that the teleportation chains in our scheme require an O(n) time classical com-
putation to determine the correcting Pauli matrix (see Section 3). Since this computation
simply involves multiplying O(n) Pauli matrices, it can be done more efficiently in O(logn)
time by arranging the multiplications in a binary tree. The O(logn) runtime requires either
that the classical controller is a parallel device or that it includes a special classical circuit
for computing the correcting Pauli operation. Since classical operations are much faster
than quantum operations on current devices, this overhead is unlikely to be a problem.

From this, it follows that any set of one- and two-qubit operations on disjoint sets of
qubits can be performed in constant depth in 2D. This implies that any CCAC circuit can
be simulated with constant factor depth overhead in 2D CCNTC.

I Theorem 1.1. Suppose that C is a CCAC quantum circuit with depth d, size s and width
n. Then C can be simulated in O(d) depth, O(sn) size and n2 width in 2D CCNTC.

The rest of our results for kD CCNTC follow from Theorem 1.1. Let Dn denote the set
of all n × n density matrices. A general quantum operation is represented as a completely
positive trace preserving (CPTP) map E : Dn → Dn. Obviously, any circuit in the 2D
CCNTC model can also be applied when arbitrary interactions are allowed. The following
corollary is immediate.

I Corollary 1.2 (continuing from p. 296). Let E : Dn → Dn be a CPTP map and let ε ≥ 0.
Let d1 and d2 be the minimum depths required to implement E with error at most ε in the
CCAC and kD CCNTC models respectively where k ≥ 2. Then d1 = Θ(d2).

It is known that Shor’s algorithm can be implemented in constant depth, polynomial
size and polynomial width in CCAC [3] from which we obtain another corollary.

I Corollary 1.3. Shor’s algorithm can be implemented in constant depth, polynomial size
and polynomial width in 2D CCNTC.

Because controlled-U operations and fanouts with unbounded numbers of control qubits
or targets can be performed in constant depth, polynomial size and polynomial width in
CCAC [8, 3, 17], we have the following result.

I Corollary 1.4. Controlled-U operations with n controls and fanouts with n targets can be
implemented in constant depth, poly(n) size and poly(n) width in 2D CCNTC.

TQC’13



302 Optimal Quantum Circuits for Nearest-Neighbor Architectures

(a) (b) (c) (d)

Figure 4 A controlled operation on a 3 × 3 grid. The qubits crosshatched green are the data
qubits, the qubits shaded with diagonal upward orange lines are ancilla qubits which store interme-
diate data and the qubits shaded with diagonal downward blue lines are ancilla qubits which are
currently unused.

5 Controlled operations in kD NANTC

In this section, we show how to control a single-qubit U operation by n controls using O( k
√
n)

operations in kD NANTC. We start with an m×m grid; for reasons that will become clear
later, we require that m is odd. The control qubits are placed such that they are not at
adjacent grid points; the central 3 × 3 square has no controls except when m = 3. This
is illustrated in Figures 4a and 5a for the cases where m = 3 and m = 5. Let c be the
center of the grid which corresponds to the target qubit. The circuit works by considering
each square ring in the grid with center c (i.e., a set of points in the grid that all have the
same distance to the center under the `∞ norm). We start with the outermost such ring
and propagate its control values into the next ring. At each such step, some of the control
values are combined so that all the values can fit into the smaller ring. This continues until
we reach a 3 × 3 ring at which point we apply a special sequence of operations to finish
applying the controlled operation to the central qubit. Each stage can be implemented in
constant depth so the overall depth is O(

√
n).

5.1 The base case: the 3× 3 grid
We now describe how this circuit works in greater detail. First, consider the case where
m = 3. The grid starts as shown in Figure 4a; note that we do not force the central 3 × 3
square to be devoid of controls in this case since this is the entire grid. All ancilla qubits
start in the state |0〉. We start by setting the lower left and upper right corner ancilla qubits
to the ANDs of their neighboring controls as shown in Figure 4b. Both of these operations
are disjoint, so this can be done in one logical timestep. The next step is to swap these two
corner qubits with the vertical middle qubits so they can interact with the central target
qubit; this is done in Figure 4c. Finally, we apply a U operation to the target qubit and
control by the two middle qubits in Figure 4d.

At this point, the target qubit has the desired value; however, there are two other ancilla
qubits in Figure 4d that must have their values uncomputed. This is done by applying the
operations of Figures 4b–c in reverse order.

5.2 An example of the general case: the 5× 5 grid
We now consider an example of the general case where m = 5 as shown in Figure 5a. The
first step is to propagate the values of the outer ring inwards; since the inner ring is 3× 3,
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there are no controls in the inner ring so this can be done as shown in Figure 5b. We then
rotate the inner ring as in Figure 5c. At this point, the remaining operations to perform are
the same as in the 3× 3 case and are shown in Figures 5d–f. At this point the target qubit
has the desired value so we uncompute the intermediate ancillas by applying the operations
of Figures 5b–e in reverse order.

The same idea applies to an m×m grid except that when the inner rings have controls
(i.e. for m ≥ 7), the controls from the outer ring must be combined with those in the inner
ring at the same time they are propagated inwards. See the full version of our paper [15]
for examples of the 7× 7 and 9× 9 cases.

(a) (b)

(c) (d)

(e) (f)

Figure 5 A controlled operation on a 5× 5 grid. See Figure 4 for the meaning of the colors and
shading used.
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5.3 An algorithm for controlled-U operations in O(
√

n) depth in 2D
NANTC

We now present the algorithm used in Figures 4 – 5 for the general m×m grid. Consider an
odd m > 3. We denote the coordinates of the qubits on this grid by (x, y) where 0 ≤ x, y <
m. Let G be the set {0, . . . ,m−1}2 of all points on the grid and let c = ((m−1)/2, (m−1)/2)
be the central point. As discussed previously, the geometry induced by the `∞ norm is useful
for reasoning about this grid. From now on, all distances in this subsection are understood
to be with respect to the `∞ norm.

We will say that the kth ring is the set of points that have distance (m− 1)/2− k to c
so the zeroth ring is outermost; we denote by Rk = (rk0 , . . . , rk`k

) the points of the kth ring
where rk0 is the bottom left corner and the rest of the points are in clockwise order.

The ring Rk contains 4
(
m−1

2 − k
)

controls so the entire grid has n =
4
∑

3<m−2k≤m
(
m−1

2 − k
)

= (1/2)(m2 − 9/2) controls for m > 3. In the case where m = 3,
there are 4 controls. Thus, it is indeed the case that the depth is O(

√
n).

Writing out the explicit pseudocode is straightforward (see the full version of our pa-
per [15]).

From this, we obtain the following theorem.

I Theorem 5.1. Controlled-U operations with n controls have depth O(
√
n), size O(n) and

width O(n) in 2D NANTC.

5.4 Generalization to kD NANTC

In this section, we discuss how the circuit can be generalized to k dimensions. The algorithm
works in the same way except the ring Rk is replaced by the grid points on the surface of
the hypercube formed by the points at `∞ distance (m− 1)/2− k from the center c of the
grid. We proceed as before and propagate the controls on Rk into Rk+1 until we obtain a
grid of width 3. Since the number of controls on a kD grid of length m is O(mk), we obtain
a circuit of depth O( k

√
n) for implementing a controlled-U operation with n controls. The

constant depends on k, but we assumed that k is constant in Section 2. From this, we obtain
the following result.

I Theorem 5.2. Controlled-U operations with n controls have depth O( k
√
n), size O(n) and

width O(n) in kD NANTC.

6 Fanout operations

In this section, we describe quantum circuits for fanout. In this case, we have a single
control qubit and our goal is to XOR it into each of the target qubits. The construction
of fanout circuits is adapted from that of controlled operations; the circuits are the same
except that the qubit that was the target becomes the control qubit and qubits that were
the controls become the targets. Let n be the number of targets. In the case of the circuit
of Section 5, we simply apply all operations in reverse order and replace each Toffoli gate
y ← y ⊕ x1 ∧ . . . ∧ xn with a fanout operation xj ← xj ⊕ y for all 1 ≤ j ≤ n. This yields a
kD NANTC fanout circuit of depth O( k

√
n). We have shown the following.

I Theorem 6.1. fanouts to n targets have depth O( k
√
n), size O(n) and width O(n) in kD

NANTC.



David J. Rosenbaum 305

7 Optimality

In this section, we prove that the depth, size and width of the circuits of Theorem 5.1
(and its kD generalization) are optimal for NANTC. A similar lower bound for addition
is discussed in [6]. These lower bounds hold regardless of where the controls and target
qubits are located on the kD grid. They also hold for a more general class of operations
that contains the controlled-U operations and fanouts.

Since each qubit is acted on by a constant number of operations in Theorem 5.1, the size
of the circuit is O(n). This is clearly optimal since any circuit that implements a controlled
operation must act on each of the controls.

I Theorem 7.1. Any NANTC quantum circuit that implements a non-trivial controlled-U
operation with n controls has size Ω(n).

The trace norm of a density matrix ρ (denoted ‖ρ‖tr) is equal to (1/2) tr |ρ| (the (1/2)
factor ensures that ‖ρ− σ‖1 is the probability of distinguishing ρ and σ with the best possible
measurement). Consider a general quantum operation E : Dn → Dn represented as a CPTP
map. We will use an operator version of the trace norm defined by ‖E‖tr = supρ∈D ‖E(ρ)‖1;
if E1 and E2 are two CPTP maps then ‖E1 − E2‖tr is the probability of distinguishing between
them on the worst possible input. Thus, it is a measure of how much these operations differ.
We will also make use of the partial trace. If x is a qubit, then we will denote the partial
trace over all qubits except x by tr¬x = trZk\{x}.

Controlled-U operations are special case of a more general class of operations.

I Definition 7.2. Let E : Dn → Dn be a CPTP map. We say that E is ε-input sensitive if
there exists a qubit y such that for Ω(n) qubits x, there exists a CPTP map F : Dn → Dn
acting only on x such that ‖tr¬y(EF − E)‖tr ≥ ε.

Intuitively, an ε-input sensitive operation is a generalization of a Toffoli gate where
modifying some input qubit x yields a different value on the output with probability ε.
Similarly, we can define ε-output sensitive operations which are generalizations of fanout.

I Definition 7.3. Let E : Dn → Dn be a CPTP map. We say that E is ε-output sensitive if
there exists a qubit x such that for Ω(n) qubits y, there exists a CPTP map F : Dn → Dn
acting only on x such that ‖tr¬y(EF − E)‖tr ≥ ε.

We say that E is ε-sensitive if it is ε-input or ε-output sensitive. A family {E : Dn → Dn}
of CPTP maps is ε-sensitive if every En is ε-sensitive. Our lower bounds will apply to all
families of ε-sensitive operations. All proofs will be for the case of ε-input sensitive operations
but the argument of ε-output sensitive operations is all but identical.

I Theorem 7.4. Let {En : Dn → Dn} be a family of ε-sensitive operations. Then any family
of kD NANTC circuits {Cn} such that ‖En − Cn‖tr < ε/2 for all n has size Ω(n).

Proof. Suppose that Cn has size o(n). Assume En is ε-input sensitive and choose a qubit y as
in definition Definition 7.2 (the case where it is ε-output sensitive is very similar). There are
Ω(n) qubits x such that there exists a CPTP map F : Dn → Dn acting only on x such that
‖tr¬y(EnF − En)‖tr ≥ ε. For large n, there is such an x which is not acted on by Cn. Then
tr¬y CnF = tr¬y Cn.Now ‖tr¬y(Cn − En)‖tr ≥

∣∣‖tr¬y(CnF − EnF)‖tr − ‖tr¬y(EnF − En)‖tr
∣∣

> ε/2 which is a contradiction. J

We call a controlled-U operation non-trivial if U 6= I. It is easy to prove the following.
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I Lemma 7.5. Non-trivial controlled-U operations and fanouts are 1-sensitive.

We now obtain a corollary of Theorem 7.4 of which Theorem 7.1 is a special case.

I Corollary 7.6. Let {En : Dn → Dn} denote a family of controlled-U operations or fanouts.
Any family of kD NANTC circuits {Cn} such that ‖Cn − En‖tr < 1/2 has size Ω(n).

This shows that the circuits of Theorem 5.1 (and its kD generalization) have optimal
size. Next, we will show that ε-sensitive kD NTC circuits have depth Ω( k

√
n). For this we

require the following easy lemma.

I Lemma 7.7. For any subset S ⊆ Zk and any x ∈ Zk, there exists a subset T ⊆ S of size
Ω(|S|) such that for all y ∈ T , ‖x− y‖1 = Ω( k

√
|S|).

We are now ready to prove our depth lower bound.

I Theorem 7.8. Let {En : Dn → Dn} be a family of ε-sensitive operations. Then any family
of kD NANTC circuits {Cn} such that ‖En − Cn‖tr < ε/2 for all n has depth Ω( k

√
n).

Proof. Suppose {Cn} has depth t = o( k
√
n). Assume that En is ε-input sensitive (the case

where it is ε-output sensitive is very similar) and choose a qubit y as in Definition 7.2. There
is a set S of Ω(n) qubits such that for each x ∈ S, there exists a CPTP map F : Dn → Dn
acting only on x with ‖tr¬y(EnF − En)‖tr ≥ ε. Let c > 0 be the hidden constant in the
expression Ω( k

√
|S|) from Lemma 7.7. For sufficiently large n, the depth of Cn is strictly less

than c k
√
n. Let Gi be the set of disjoint one- and two-qubit operations that are performed

at timestep 1 ≤ i ≤ t in Cn. For an operation M ∈ Gi, let us say that M is active if
(a) M acts non-trivially on y or
(b) there is an operation M ′ ∈ Gj with i < j ≤ t such that M ′ is active and M and M ′ act

non-trivially on a common qubit
Let us say that a qubit x influences y if there exists an active operation M ∈ Gi

that acts non-trivially on x. Suppose x influences y after t timesteps. Because all op-
erations act on pairs of adjacent qubits, the `1 distance between x and y is at most t.
By Lemma 7.7, there exists a subset T of S of size Ω(n) such that ‖x− y‖1 ≥ c k

√
n

for all x ∈ T . Because t < c k
√
n, x does not influence y for x ∈ T . Let us fix some

x ∈ T . Choosing a F acting only on x as in Definition 7.2, we have ‖tr¬y(Cn − En)‖tr ≥∣∣‖tr¬y(CnF − EnF)‖tr − ‖tr¬y(EnF − En)‖tr
∣∣ > ε/2 which is a contradiction. J

By Lemma 7.5, we obtain the following corollary.

I Corollary 7.9. Let {En : Dn → Dn} denote a family of controlled-U operations or fanouts.
Any family of kD NANTC circuits {Cn} such that ‖Cn − En‖tr < 1/2 has depth Ω( k

√
n).

From Theorems 5.2 and 6.1 and Corollaries 7.6 and 7.9, we conclude that the circuits of
Theorem 5.1 and its kD generalization are optimal in their depth, size and width.

I Theorem 1.6. The depth required for controlled-U operations with n controls and fanouts
with n targets in kD NANTC is Θ( k

√
n). Moreover, this depth can be achieved with size

Θ(n) and width Θ(n).
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Abstract
We give graphical characterisation of the access structure to both classical and quantum inform-
ation encoded onto a multigraph defined for prime dimension q, as well as explicit decoding
operations for quantum secret sharing based on graph state protocols. We give a lower bound on
k for the existence of a ((k, n))q scheme and prove, using probabilistic methods, that there exists
α such that a random multigraph has an accessing parameter k ≤ αn with high probability.
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1 Introduction

In this work we consider encoding, and accessing, both quantum and classical information
onto graph states of qudits - multipartite entangled states which are one to one corresponding
to multigraphs (which we will consider as simple graphs with multiple edges). We are
particularly interested in using these states for secret sharing.

Secret sharing is an important cryptographic primitive, which was first put forward
classically in [33], and then extended to the quantum realm in [19, 9]. The aim of the
protocol is for a dealer to distribute a secret (quantum or classical) to a set of players, in such
a way that only authorized sets of players can access the secret, and unauthorized sets of
players cannot (there may be sets of players which are neither authorized nor unauthorized).
The sets of authorized and unauthorized players is called the access structure. Any secret
sharing scheme of n players can be loosely paramaterised by two numbers, k and k′, such
that any subset of k players is an authorized set, whereas any subset of k′ players or less
is unauthorized. We call such paramaterised schemes (k, k′, n) ramp schemes. In the case
when k′ = k − 1, we say it is a threshold scheme, and simplify the notation to (k, n).

In this work we consider two classes of quantum schemes, one class using quantum
channels to distribute classical secrets, denoted CQ schemes [19], and the other sharing
quantum secrets [9, 19], denoted QQ schemes. The notation CQ and QQ used here follows
the work [30, 26, 28], where both classes were phrased in the same language of graph states
(first for qubits [30] then qudits [26, 28]). The equivalence of both schemes was shown in
[28]. Using the graph state formalism can be useful both practically - since graph states
are amongst the most well developed multipartite entangled states experimentally - and
theoretically, since graph states are rich in their uses in quantum information, and allow for
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graphical characterization of information flow, and access of information. The connection
between error correction and secret sharing was understood early on [9], and implies that for
general access structures it is necessary to use high dimensional states to encode the secret
[30, 28]. In [24] an entirely graphical description of the access structure was given for the
graph state protocols on qubits. This has led to many applications, for instance in proving
lower and upper bounds on what k and k′ are possible in ramp schemes. We are naturally
interested in doing the same for higher dimensional versions.

The first result of this paper is to extend to higher dimension the characterisation of the
access structure in a graph, previously done in [24] for 2-dimensional system. By gathering
the graphical conditions and previous results, we show that the accessibility problem to
quantum information can be reduced to study the classical information’s one in both a set
of player and its complementary (which was proved in [24, 21] for 2 dimensional system).
Finally we use this result for the decoding phase of both QQ and CQ protocols, as we know
[28] that a CQ authorised is a QQ authorised set and vice versa. In the last part, we study
the existence, as a function of k, of a ((k, n))q scheme (this will be defined explicitly later,
but can be understood as the underlying graph encoding which gives rise to (k, n− k, n) QQ
secret sharing schemes). We derive a lower bound over k, that is, there exists α such that
every (k, n− k, n) QQ secret sharing must satisfies k > αn, and we use probabilistic method
to find c < 1 such that a ((cn, n))q scheme exists with high probability.

2 Background

2.1 Qudit graph states, F∗
q-graphs, and multigraphs

The qudit graph state formalism [32, 14, 27, 1] consists of representing a quantum state using
a weighted undirected graph where every vertex represents a q-dimensional quantum system
and every edge, which has assigned an element from the finite field Fq, represents intuitively
the entanglement between the elementary systems (a formal definition is given in Definition
1). Such graphs, labeled with elements of a finite field Fq, are known as F∗q-graphs [23] and
can be interpreted as edge-colored graphs. In this paper, we consider q prime, and choose to
interpret F∗q-graphs as multigraphs i.e., graphs with possibly parallel edges between pairs
of vertices. Albeit equivalent to the other interpretation of F∗q-graphs, we believe that the
multigraph interpretation is relevant in the context of qudit graph states for secret sharing
protocols, in particular for the graphical characterisation of authorised and unauthorised
sets of players (see Lemmas 5 and 7).

I Definition 1 (q-multigraphs). Given a prime number q, a q-multigraph G is a pair (V,Γ)
where V is the finite set of vertices and Γ : V × V → Fq is the adjacency matrix of G: for
any u, v ∈ V , Γ(u, v) is the multiplicity of the edge (u, v) in G.

The term multigraph is used for q-multigraph when q is clear from the context or
irrelevant. In this paper, we consider undirected simple multigraphs G = (V,Γ) i.e., for any
vertices u, v ∈ V , Γ(u, v) = Γ(v, u) and Γ(u, u) = 0. For our characterizations of encoding
and accessing later on, it will be useful to introduce further concepts. We will see several
examples of them along the way, but for now we state definitions. Given a set V of vertices,
a vector D : V → Fq represents a multiset of vertices of V : for every v ∈ V , D(v) ∈ Fq is
the multiplicity of v in D. sup(D) = {v ∈ V | D(v) 6= 0 mod q} is the support of D. For any
multigraph G = (V,Γ) and any multiset of vertices D : V → Fq, the matrix product Γ.D
is the multiset of neighbours of D: for any v ∈ V , v is a neighbour of D with multiplicity
(Γ.D)(v) =

∑
u∈V Γ(u, v).D(u) mod q. In particular, for any vertex u, Γ.{u} is the multiset
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of neighbours of u. We call G[D] = (V ′,Γ′) the sub-multigraph of G = (V,Γ) induced
by the multiset D : V → Fq, where V ′ = V ∩ sup(D) and Γ′ : V ′ × V ′ → Fq = (u, v) 7→
D(u).Γ(u, v).D(v) mod q. Notice that the multiplicity of an edge in G[D] is the multiplicity of
this edge in the original graph G times the multiplicity in D of the two vertices connected by
this edge. For any A,B ⊆ V , Γ[A,B] denotes the submatrix of Γ whose columns correspond
to the vertices in A and rows to the vertices in B. Γ[A,B] represents the edges which have
one end in A and the other one in B.

I Definition 2 (Qudit Graph State). Given a q-multigraph G = (V,Γ) with V = {v1, . . . , vn},
let |G〉 ∈ Cqn be its associated qudit graph state defined as

|G〉 = 1√
qn

∑
x=(x1,··· ,xn)∈Fnq

ω|G[x]||x〉

where ω is the qth root of unity and |G[x]| is the number of edges of the sub-multigraph
G[x] = (Vx,Γx) induced by x, where Vx = {vi ∈ V, xi 6= 0} and Γx : Vx × Vx → Fq =
(vi, vj) 7→ xixjΓ(vi, vj).

Qudit graph states satisfy the following fundamental fixpoint property. Given a q-
multigraph G = (V,Γ), |G〉 is the unique quantum state (up to a global phase) such that, for
any u ∈ V ,

XuZΓ.{u}|G〉 = |G〉 (1)

where Γ.{u} is the multiset of neighbours of u, X = |b〉 7→ |b + 1 mod q〉, Z = |b〉 7→ ωb|b〉
are Pauli operators, and for any mulitset D : V → Fq, ZD :=

⊗
v∈V Z

D(v)
v .

I Example 3. We define the 3-multigraph G = (V,Γ) by V = {v1, v2, v3, v4, v5},

Γ =


0 0 1 0 1
0 0 2 0 1
1 2 0 2 0
0 0 2 0 2
1 1 0 2 0

 v4

v5

v3

v1

v2

2

2

1
1

1
2

1

Let A = {v1, v2} be a subset of V , and D : A→ F3 a multiset such that D(v1) = 2, D(v2) = 1.
That is D = {v1, v1, v2}. Then, with previous definitions, the graph induced by D is G[D] =

v1

v2

2 The multiset of neighbours of A is {v1, v2, v5, v5}. The multiset of neighbours of D is

{v1, v2, v2, v3}.

2.2 Local complementation and cut rank
The local complementation [5] is a graph transformation which is incredibly useful for the
study of graph states [35]. Indeed, if two graphs G and G′ are locally equivalent (i.e. one
can transform G into G′ by means of a series of local complementations), they represent the
same entanglement (i.e. there exists a local unitary transformation U such that |G′〉 = U |G〉)
[35]. Local complementation is extended to multigraphs as follows [23]: Given a q-multigraph
G = (V,Γ), u ∈ V and λ ∈ Fq, the λ-local complementation at u of G is the q-multigraph
G?λu = (V,Γ′) such that ∀v, w ∈ V , v 6= w, Γ′(v, w) = Γ(v, w) + λ.Γ(v, u).Γ(u,w) mod q.
Keet et al. [26] have proved that for any q-multigraph G = (V,Γ), any u ∈ V and any λ ∈ Fq,
there exists a local unitary transformation U such that |G?λu〉 = U |G〉.
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The cut rank [31] is a set function which associates with every set B of vertices the rank
of the matrix describing the edges of the cut (B, V \B): Given a multigraph G = (V,Γ), let
Γ[B] := Γ[B, V \B] be the cut matrix of the cut (B, V \B), moreover for any A,B ⊆ V , let
rkG(A,B) := rank(Γ[A,B]) and cutrkG(B) := rkG(B, V \B) be the cut rank of B. Notice
that rkG(A,B) = rkG(B,A) and cutrkG(B) = cutrkG(V \B).

We point out in this paper that the cut rank, which is known to be invariant by local
complementation [23], is a key parameter of q-multigraphs for the study of secret sharing
protocols with qudit graph states. Indeed, Theorem 9 states that the capability of a set of
players to reconstruct a quantum secret is characterised by the discrete derivative of the
cut rank function. Notice that the cut-rank of a bipartition is nothing but the Schmidt
measure of entanglement of this bipartition in the corresponding graph state. This is shown
for the qubit case in [17], and easily extends to the qudit case. As a consequence, Theorem 9
characterises the accessibility of a set of players as the derivative of the Schmidt measure of
entanglement.

2.3 Description of the encoding:
We now introduce the encoding of classical and quantum information onto graph states (CQ
and QQ respectively), which will be the starting point for the secret sharing protocols defined
in section 4. For ease of notation we present the CQ encoding as deterministic, and in one
basis. When used in the full CQ protocol this is randomised by measurement and choice
of basis (described fully in section 4). The ability of players to access encoded information
(both classical and quantum) is fully described in graph theoretical language in section 3.

CQ encoding:
Given a multigraph G = (V,Γ) of order n and a distinguished non isolated vertex d ∈ V ,

the corresponding CQ encoding of a classical secret s ∈ Fq among n− 1 players consists of
the dealer preparing the state

|sL〉 := ZsΓ.{d}|G\d〉

and sending one qudit to each player, where G\d = (V \{d},Γ[V \{d}, V \{d}]) is the multi-
graph obtained by removing the vertex d and all its incident edges.

In the CQ protocol (described in section 4) the secret s is randomised by measurement
on the dealer’s vertex d of the full graph state |G〉, and further, the encoding is randomised
by choice of measurement basis - the dealer chooses at random t ∈ T , T ⊆ Fq and |T | ≥ 2,
and measures his qudit in the associated complementary basis XtZ. Measuring in this t
basis will correspond exactly to using the above CQ encoding of the same secret value s onto
the complementary multigraph G?td.

QQ encoding:
Given a multigraph G = (V,Γ) of order n and a distinguished non isolated vertex d ∈ V ,

the corresponding QQ encoding on a qudit graph state for sharing an arbitrary quantum
secret |φ〉 =

∑q−1
j=0 sj |j〉 ∈ Cq among n− 1 players consists, for the dealer, in preparing the

state

|φL〉 =
q−1∑
j=0

sjZ
j
Γ.{d}|G\d〉 =

q−1∑
j=0

sj |jL〉

and in sending one qudit of |φL〉 to each player.
Notice that the preparation consists in applying the map |j〉 7→ ZjΓ.{d}|G\d〉 which is an

isometry as long as d is not an isolated vertex in G. We describe encoding procedures in
appendix A.
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The accessing structure of the protocols (i.e. the description of the sets of players which
can recover the secret, as well as those which have no information about the secret) is given
in the next section which provides a graphical characterisation of the accessing structure for
the secret sharing protocols using these encodings. Moreover, the operations the authorised
sets of players have to perform to reconstruct the secret are also described in the next section.

3 Access Structure in a Graph in Higher Dimension:

3.1 Classical Information
In this section, we show, when the secret is classical, that the protocol is perfect (i.e. every
set of players is either able to recover the secret or has no information about the secret), and
that the accessing structure is graphically characterised by a simple rank-based function:

I Theorem 4. Given a q-multigraph G = (V,Γ) and a distinguished vertex d ∈ V , a set
B ⊆ V \{d} of players can recover a classical secret for the corresponding CQ encoding if
and only if πG(B, d) = 1, where

πG(B, d) := cutrkG(B)− cutrkG\d(B)

A graphical interpretation of Theorem 4 is that a set B is accessible if and only if the
presence of the ‘dealer vertex’ d increases the rank of the cut between B and the rest of the
vertices.

The rest of the section is dedicated to the proof of Theorem 4.
First, we prove that a set B of players can recover a classical secret if, roughly speaking,

there exists a multiset D of them which is not ‘seen’ from outside except by the ‘dealer’:

I Lemma 5. Given a q-multigraph G = (V,Γ) and d ∈ V , a set B ⊆ V \{d} of players
can recover a classical secret for the corresponding CQ encoding if there exists a multiset
D : B → Fq such that sup(Γ[B, V \B].D) = {d} i.e.,

the number of neighbours of d in D is not congruent to 0 mod q;
∀u ∈ V \(B∪{d}), the number of neighbours of u in D is congruent to 0 mod q.

Proof. Given B ⊆ V and D : B → Fq such that sup(Γ[B, V \B].D) = {d}. W.l.o.g. we
assume the multiplicity of d in Γ.D is 1 (otherwise we consider the multiset D′ = u 7→
(Γ.D)(d)−1.D(u) instead of D). The players in B can recover the secret by measuring an ap-
propriate product of stabilizers. Indeed, there exists r ∈ Fq such that

∏
u∈B(XuZΓ.{u})D(u) =

ωrXDZΓ.D = Zdω
rXDZΓ[V,V \{d}].D. As

∏
u∈B(XuZΓ.{u})D(u)|G〉 = |G〉, we deduce that

ωrXDZΓ[V,V \{d}].D|G\d〉 = |G\d〉. If the classical secret is s ∈ Fq,
ωrXDZΓ[V,V \{d}].DZ

s
Γ.{d}|G\d〉 = ωr−sZsΓ.{d}XDZΓ[V,V \{d}].D|G\d〉 = ω−sZsΓ.{d}|G\d〉. So

if the players in B measure according to ωrXDZΓ[V,V \{d}].D, they get the outcome −s mod q,
so they recover the classical secret s. J

Lemma 5 provides a sufficient condition for a set of players to be able to reconstruct a
classical secret. Notice that this reconstruction is nothing but a Pauli measurement, so it
can be done by means of local Pauli measurements and classical communications.

I Corollary 6. Given a q-multigraph G = (V,Γ), d ∈ V , and B ⊆ V \{d}, if πG(B, d) = 1
then B can reconstruct a classical secret for the corresponding CQ encoding.

Proof. Let F = V \(B∪{d}). According to lemma 5, B can recover a classical secret if
there exists D : B → Fq such that sup(Γ[B, V \B].D) = {d}. W.l.o.g. we can assume
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that the multiplicity of d in Γ[B, V \B].D is one. So B can recover a classical secret if

the system
(

Γ[B, {d}]
Γ[B,F ]

)
.x =

(
1
0

)
has a non zero solution, which is equivalent to

rank
(

Γ[B, {d}]
Γ[B,F ]

)
= rank

(
Γ[B, {d}] 1
Γ[B,F ] 0

)
. Using the last column of the right-side

matrix to cancel terms of the row Γ[B, {d}], we are finally reduced to rank
(

Γ[B, {d}]
Γ[B,F ]

)
=

1 + rank(Γ[B,F ]) i.e., cutrkG(B)− rkG(B,F ) = 1 = πG(B, d). J

In the following, a sufficient condition for a set of players to have no information about the
secret is introduced: roughly speaking, a multiset of players D which includes the dealer d,
can ‘hide’ the secret to every player who is connected to D with a number of edges congruent
to 0 modulo q:

I Lemma 7. Given a q-multigraph G = (V,Γ) and d ∈ V , a set B ⊆ V \{d} has no
information about a classical secret for the corresponding CQ encoding if there exists D :
V \B → Fq, such that D(d) 6= 0 mod q and Γ[V \B,B].D = 0 i.e.,

the multiplicity of d in D is not congruent to 0 mod q;
∀u ∈ B, the number of neighbours of u in D is congruent to 0 mod q.

Proof. W.l.o.g. we assume D(d) = 1 mod q. Notice that R|G\d〉〈G\d|R† = |G\d〉〈G\d|
with R =

∏
u∈V \(B∪{d}) (XuZΓ[V \{d},V \{d}].{u})D(u). Moreover R.ZΓ.{u} is only acting on

V \(B∪{d}), so the reduced density matrix for the players in B is
TrV \(B∪{d})(ZsΓ.{d}|G\d〉〈G\d|Z†

s
Γ.{d})

= TrV \(B∪{d})((ZΓ.{d}R)s|G\d〉〈G\d|(ZΓ.{d}R)†s)
= TrV \(B∪{d})(|G\d〉〈G\d|)

which does not depend on the secret, so the players in B have no information about the
secret. J

I Corollary 8. Given a q-multigraph G = (V,Γ), d ∈ V , and B ⊆ V \{d}, if πG(B, d) = 0
then B has no information about the classical secret for the corresponding CQ encoding.

Proof. Let F = V \(B∪{d}). According to lemma 7, B has no information about classical
secret if there exists D : V \B → Fq such that D(d) = 1 mod q and Γ[V \B,B].D = 0,
so if Γ[F,B].C = −Γ[V,B]{d}, where C : F → Fq = u 7→ D(u) is the restriction of
D to F . As a consequence, B has no information about classical secret if the system
Γ[F,B].x = −Γ[V,B]{d} has a non zero solution, which is equivalent to find a non zero
solution to the system Γ[F,B].x = Γ[V,B]{d}, so if rank(Γ[F,B]) = rank(Γ[V \B,B]) i.e.,
πG(B, d) = 0. J

Proof of Theorem 4. The proof of Theorem 4 follows from Corollaries 6 and 8 and the fact
that for every B, 0 ≤ πG(B, d) ≤ 1. It proves that the encoding is perfect i.e., every set of
players is either able to reconstruct the secret (when πG(B, d) = 1) or has no information
about the secret (when πG(B, d) = 0). J

3.2 Quantum Information
In the following we prove that the accessibility of a set a players is characterised by the
derivative of the cut-rank function with respect to the dealer.
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I Theorem 9. Given a q-multigraph G with a distinguished dealer d ∈ V (G), a set B ⊆
V (G)\{d} of players can recover a quantum secret in the corresponding QQ encoding iff

∂dcutrkG(B) = −1

where ∂dcutrkG(B) = cutrkG(B∪{d})− cutrkG(B) is the discrete derivative of cutrkG in B
with respect to d.

Proof. It is known that B can access a quantum secret in G iff B can access a classical secret
in two mutual unbiased bases, say in G and G ∗1 d [28]. Moreover B can access a classical
secret in G iff πG(B, d) = 1, where πG(B, d) = cutrkG(B)− rkG(B, V \(B∪{d})).
(⇒) If B can access a quantum secret, B can access a classical secret and V \(B∪{d}) has no
information about a quantum secret [9], which implies that V \(B∪{d}) cannot access a clas-
sical secret. Thus πG(B, d) = 1 and πG(V \(B∪{d}), {d}) = 0. As a consequence πG(B, d)−
πG(V \(B∪{d}), {d}) = 1, so 1 = cutrk(B) − rkG(B, V \(B∪{d})) − cutrk(V \(B∪{d})) +
rkG(V \(B∪{d}), B) = cutrk(B)− cutrk(V \(B∪{d})) = cutrk(B)− cutrk(B∪{d}).
(⇐) If cutrkG(B) = cutrkG(B∪{d}) + 1, then πG(B, {d}) = 1, so B can access a clas-
sical secret in G. Moreover, since the cut rank is invariant by local complementation [23],
cutrkG?1d(B) = cutrkG?1d(B∪{d}) + 1, so B can also access a classical secret in G?1d. J

Notice that for any set B of players, ∂dcutrkG(B) ∈ {−1, 0, 1}: if ∂dcutrkG(B) = −1,
B can recover the quantum secret; if ∂dcutrkG(B) = 1 they have no information since
V \(B∪{d}) can recover the quantum secret; and if ∂dcutrkG(B) = 0 they have some partial
information about the secret.

Since the cut rank function is submodular [31], its derivative is monotonic (decreasing):
if B ⊆ B′, ∂dcutrkG(B) ≥ ∂dcutrk(B′). Indeed, if B can recover the secret, any superset B′
of B can recover it too; and if B′ has no information about the secret, any subset B of B′
has no information too.

4 Application to CQ and QQ protocols

We now see how the encoding of section 2.3, and the results on access structures in section 3
can be used to provide secret sharing protocols. Following the prescription of [28] (based on
[30, 26], see also [29]) we will now introduce two protocols, one for sharing classical secrets
over a quantum channel (CQ) and one for sharing a quantum secret (QQ), both based on
a graph state associated with a multigraph. Both protocols can be understood as using
the graph state as a channel between the dealer (associated with vertex d) and the players
(the remaining vertices). In the CQ case this channel is used to perform an Ekert-like key
distribution protocol between the dealer and authorised players, so that when completed the
dealer and authorised players will share a random ‘dit’ string which is unknown to anybody
else. In the QQ case the channel is used to teleport the secret to the players such that only
authorised sets of players can access the information (the QQ encoding in section 2.3 can be
understood as this teleportation, see Appendix A). More details on the protocols and their
relation to each other as well as error correction can be found in [28].

4.1 Detailed protocols
Before we write the full protocols out, we first review some background on the graph state
formalism, which will be the key in seeing how the stabilisers can be used to specify how
authorised sets can access the information, given the satisfaction of the conditions outlined
in the previous section.
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Given a multigraph G = (V,Γ), we begin with an illustrative expansion of the graph state
|G〉V according to the d, V \{d} partition.
|G〉 = 1√

qn

∑
x∈Fnq

ω|G[x]||x〉V = 1
√
q

∑
s

|s〉dZsΓ.{d}|G\d〉V \{d}

= 1
√
q

∑
s

|s〉d|sL〉V \{d}

= 1
√
q

∑
s

|s(t)〉d|sL(t)〉V \{d},

for any t ∈ Fq, where the second line follows from definitions in section 2.3, corresponding
to the CQ encoding achieved by the dealer measuring in the Z basis. The third line
corresponds to when the dealer measures in bases XtZ (explained in more detail later),
where they are defined as |s(0)〉 = |s〉, and |s(t)〉 = 1√

q

∑q−1
j=0 ω

j(j−t)
2t −st

−1j |j〉 for t = 1...q− 1,
so that XtZ|s(t)〉 = ωs|s(t)〉, and further |s(0)L〉 = |sL〉 = ZsΓ.{d}|G\d〉 and |sL(t)〉 :=
1√
q

∑q−1
k=0 ω

−k(k−t)
2t +st−1k|kL〉 for t = 1...q − 1. The state |s(t)L〉V \{d} is equivalent to the CQ

encoding of i on graph G ∗t d [26].
We now look at how the conditions for access arrived at in section 3 can be used, along

with the stabiliser (or “fixed point”) condition (1), to eventually see how authorised sets can
access the information in the CQ and QQ protocols. We start with the QQ case, which is
enough to imply the CQ case (see [28]). Suppose a set of players B ⊂ V \{d} has access to
quantum information in a graph G = (V,Γ). We proved with Theorem 9 that B can access
QQ encoded quantum information in G if and only if B can access the CQ encoded classical
information in G and V \(B∪{d}) cannot. Thus, by rewriting lemma 5 and 7 applied to B
and V \(B∪{d}), we have: there exists D : B → Fq and C : B∪{d} → Fq such that C(d) = 1

and
{

sup(Γ[B, V \B].D) = {d} (A)
Γ[B∪{d}, V \(B∪{d})].C = 0 (B)

Now, call Ki = XiZΓ.{i} and ki = XiZΓ[V \{d},V \{d}]{i} (these are the fixpoint operators, or
stabilisers for graphs G and G\d respectively according to (1)).
First we have KC = Kd

∏
i∈BK

C(i)
i = XdZ

β
d .ZΓ.{d}

∏
i∈B k

C(i)
i with β = Γ.C(d). Then

ZΓ.{d}
∏
i∈B k

C(i)
i = ωλ

∏
i∈B X

C(i)
i Z

Γ.C(i)
i , with λ =

∑
i,j∈B∪{d},j<i Γ(j, i)C(j)C(i).

Next KD satisfies KD =
∏
i∈BK

D(i)
i = Zαd

∏
i∈B k

D(i)
i , with α = Γ.D(d) 6= 0 since (A), and∏

i∈B k
D(i)
i = ωλ

′∏
i∈B X

D(i)
i Z

Γ.D(i)
i , λ′ =

∑
i,j∈B,j<i Γ(j, i)D(j)D(i).

Later we will suppose α = 1 (change D to α−1.D if necessary).
Hence Kt

CKD
1−tβ |G〉 = ω

t(t−1)
2 βXt

dZd.[ZΓ.{d}
∏
i∈B k

C(i)
i ]

t
[
∏
i∈B k

D(i)
i ]

1−tβ
|G〉 = |G〉

which is a stabiliser / fixpoint equation involving operators only in d and B which will be
used to inform which measurements should be made to recover the secret in the CQ case,
and how to find the QQ decoding operation. We can rewrite this as follows
[ZΓ.{d}

∏
i∈B k

C(i)
i ]

t
[
∏
i∈B k

D(i)
i ]

1−tβ
= ωc

∏
i∈B X

xi(t)
i Z

zi(t)
i with

xi(t) = tC(i) + (1− tβ)D(i) (2)
zi(t) = tΓ.C(i) + (1− tβ)Γ.D(i), (3)

c = t2λ′ + (1− tβ)2λ+ t(1− tβ)
∑
i,j∈B

Γ(i, j)C(i)D(j) (4)

and we further define

ft(r) := −r − c− t(t− 1)
2 β. (5)

We can then see that given the state |G〉V , if the dealer measures XtZ, getting result ωs(t)
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and each player i in B measures its qudit in the Xxi(t)Zzi(t) bases, denoting their results
mi(t), if we define m(t) = f−1

t (
∑
imi(t)), then the fixpoint stabiliser conditions imply

m(t) = s(t). This will be the basis of the CQ accessing strategy.
For the QQ accessing, we define operators UB and VB only acting on B such that

UB :=
∏
i∈B k

−D(i)
i , which satisfies UB |sL〉 = ωs|sL〉 and VB := ZΓ.{d}

∏
i∈B k

C(i)−βD(i)
i ,

which satisfies VB |sL〉 = |(s+ 1)L〉.
We also define the extended Bell basis as the following bipartite states over a system {a, b}:
∀k, l ∈ Fq, |βk,l〉ab = ZkaX

l
b

∑
i∈Fq

|ii〉ab√
q . The result (k, l) of a measurement over {a, b} in the

Bell basis yield the state as |βk,l〉ab.

CQ Protocol: Let T be a subset of {0, · · · , q − 1}, |T | ≥ 2

1. The dealer prepares the graph state |G〉 = 1
√
q

q−1∑
i=0
|i(t) 〉d|i′L(t)〉V \{d} and sends one

qudit of the state to each player.
2. The dealer randomly measures its qudit among the bases: {XtZ}t∈T and denotes the

result ωs(t). That leaves the state over the players on |i(t)L〉V \{d}.
3. A player b ∈ B randomly chooses t′ ∈ T and send t′ to the other players in B using

their private channel.
4. Each player i in B measures its qudit in the Xxi(t′)Zzi(t

′) bases (see (2),(3)) and sends
the result ωmi(t′) ∈ {1, ω, .., ωq−1} to b.

5. b computes m(t′) = f−1
t′ (
∑
imi(t′)) (see (5)).

6. Repeat step 1. 2. 3. p→∞ times. The list of measurement results s(t) and m(t′) are
the raw keys of the dealer and players B respectively.

7. security test: Follow standard QKD security steps. Through public discussion
between d and B first sift the key followed by standard error correction and privacy
amplification to generate a secure key (see [28] and [34]).

Correctness : After the QKD security steps the dealer and the authorised set B will be
able to share a perfectly secure random key. Furthermore, QQ unauthorised sets for the
same graph will not be able to establish such a key (see [28] for proofs).

QQ Protocol: Let |ζ〉S =
∑q−1
i=0 si|i〉S ∈ Cq be a quantum secret.

1. A dealer prepares the state 1
√
q

q−1∑
i=0

siZ
i
Γ.{d}|G\d〉V \{d}

2. The dealer sends one qudit of the resultant state to each player.
3. (measurement) The authorized set B uses two ancillas qudits {a1, a2} prepared in

the Bell pair state |β00〉a1a2 , and performs the following two commuting projective
measurement on {B a1}, V −1

B X−1
a1

and UBZ
−1
a1

on , with result denoted k and l

respectively.
4. (correction) B applies ZkX−l over the second ancilla {a2}.

Correctness: UB and VB satisfy UB |iL〉V \{d} = ωi|iL〉V \{d}, and VB |iL〉V \{d} = |(i +
1)L〉V \{d} ∀i ∈ Fq. We can rewrite the state over V \{d}∪{a1, a2} as:∑

i∈Fq si|iL〉V \{d}
∑
j∈Fq

|jj〉a1a2√
q .

= 1√
q

∑
l∈Fq IV \{d}X

l
a1
X l
a2

∑
i∈Fq |iLi〉V \{d}a1si|i〉a2

= 1√
q

∑
l∈Fq IV \{d}X

l
a1
X l
a2

∑
k∈Fq

∑
i∈Fq ω

k.i |iLi〉V \{d}a1
q

∑
j ω
−k.jsj |j〉a2

= 1√
q

∑
l∈Fq IV \{d}X

l
a1
X l
a2

∑
k∈Fq U

k
BIa1Z

−k
a2

∑
i∈Fq

|iLi〉V \{d}a1
q

∑
j sj |j〉a2

= 1
q

∑
l,k∈Fq U

k
BX

l
a1

∑
i∈Fq

|iLi〉V \{d}a1√
q X l

a2
Z−ka2

∑
j∈Fq sj |j〉a2)
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Table 1 List of typical subsets B of 4 players in the Reed Solomon Graph State described
in Fig 1a. For each B, B ∪ {u∈V \B |

∑
v∈B

D(v).Γ(u, v)6= 0 mod q} = B ∪ {d} = B ∪ {d} ∪
{u∈V \(B∪{d}) |

∑
v∈B∪{d} C(v).Γ(v, u) 6= 0 mod q}, meaning that B can access quantum informa-

tion, whereas V \(B∪{d}), that is all subset of 3 players, cannot. (The remaining subsets are covered
by symmetry.)

B (D(b))b∈Bs (C(b))b∈d∪B B (D(b))b∈Bs (C(b))b∈d∪B

{v7, v1, v2, v3} (1, 0, 0, 0) (1, 0, 4, 3, 6) {v6, v1, v2, v3} (1, 0, 0, 0) (1, 0, 2, 2, 1)
{v5, v1, v2, v3} (1, 0, 0, 0) (1, 0, 3, 4, 1) {v4, v1, v2, v3} (1, 0, 0, 0) (1, 0, 4, 6, 2)
{v6, v7, v2, v3} (3, 1, 0, 0) (1, 0, 0, 1, 3) {v6, v7, v1, v2} (1, 4, 0, 0) (1, 0, 0, 3, 6)
{v6, v7, v1, v3} (4, 1, 0, 0) (1, 0, 0, 5, 5) {v5, v7, v2, v3} (3, 4, 0, 0) (1, 0, 0, 6, 1)
{v5, v7, v1, v2} (1, 1, 0, 0) (1, 0, 0, 2, 1) {v5, v7, v1, v3} (4, 3, 0, 0) (1, 0, 0, 1, 4)
{v4, v7, v2, v3} (4, 1, 0, 0) (1, 0, 0, 2, 2) {v4, v7, v1, v3} (3, 4, 0, 0) (1, 0, 0, 6, 1)
{v5, v6, v1, v2} (3, 1, 0, 0) (1, 0, 0, 1, 3) {v5, v6, v1, v3} (1, 6, 0, 0) (1, 0, 0, 4, 3)
{v5, v6, v7, v3} (2, 2, 1, 0) (1, 0, 0, 0, 2) {v5, v6, v7, v2} (4, 1, 1, 0) (1, 0, 0, 0, 5)
{v5, v6, v7, v1} (5, 6, 1, 0) (1, 0, 0, 0, 6) {v4, v5, v7, v3} (1, 1, 1, 0) (1, 0, 0, 0, 6)
{v4, v5, v7, v1} (4, 6, 1, 0) (1, 0, 0, 0, 3) {v4, v5, v7, v2} (6, 1, 4, 0) (1, 0, 0, 0, 3)
{v4, v5, v6, v7} (5, 6, 1, 2) (1, 0, 0, 0, 0)

As V −1
B X−1

a1
(UkBX l

a1

∑
i∈Fq

|iLi〉V \{d}a1√
q ) = ωkUkBX

l
a1

∑
i∈Fq

|iLi〉V \{d}a1√
q and

UBZ
−1
a1

(UkBX l
a1

∑
i∈Fq

|iLi〉V \{d}a1√
q ) = ωlUkBX

l
a1

∑
i∈Fq

|iLi〉V \{d}a1√
q , the projective measure-

ment according to V −1
B X−1

a1
and UBZ−1

a1
reveals the syndrome (k, l), such that the correction

ZkX−l over the ancilla {a2} leaves the state as
∑
i si|i〉a2 .

4.2 Example

We illustrate the use of characterisation of the access structure in a multigraph with a Reed
Solomon Graph State that allows a quantum secret (or equivalently a random key of dits) to
be shared between a dealer and all subset of at least n+1

2 players among a set of n players
over a field of q elements, with q ≥ n. We refer to [29], [9] for more details about Reed
Solomon Graph for secret sharing.
We saw B ⊂ V \{d} can access quantum information with respect to d in G iff there exist
D : B → Fq and C : B∪{d} → Fq such that C(d) = 1 and

sup(Γ[B, V \B].D) = {d}
Γ[B∪{d}, V \(B∪{d})].C = 0

We rewritte these conditions in the following way: B ⊂ V \{d} can access quantum inform-
ation in G iff there exist D : B → Fq and C : B ∪ {d} → Fq such that C(d) = 1 and{

B ∪ {u ∈ V \B |
∑
v∈B D(v).Γ(u, v) 6= 0 mod q} = B ∪ {d}. (5)

B ∪ {d} ∪ {u ∈ V \(B∪{d}) |
∑
v∈B∪{d} C(v).Γ(v, u) 6= 0 mod q} = B ∪ {d} (6)

For A : V → Fq, we call GA = (VA,ΓA) the subgraph induced by A and its neighbours
such that: VA = sup(A) ∪ {v ∈ V \sup(A) | Γ[sup(A), V \sup(A)].A(v) 6= 0 mod q}

and ∀vi ∈ sup(A),
{

ΓA(vi, vj) = A(vi)A(vj).Γ(vi, vj) if vj ∈ sup(A)
ΓA(vi, vj) = A(vi)Γ(vi, vj) if vj ∈ VA\sup(A)

For example, let G = (V,Γ), d ∈ V , |V | = 8, be the (4, 3, 7)7 Reed Solomon Graph State
given in Fig 1a. Such a graph can be used by dealer d to encode any quantum secret
|ξ〉 ∈ C7 and share it between 7 players such that all subset of at least 4 players can recover
the secret, whereas any subset of 3 players or less cannot have any information about it.
We can reprove this result using the previous graph characterisation, that is by checking if
conditions (5) (6) are satisfied in a basis G for all subset B ⊂ V \{d} of 4 players. In fig 1b,
we give the relevant induced graphs for two different subsets B. And in table 1 we give a list
of relevant multiset D : B → Fq and C : B∪{d} → Fq for typical subsets B of four players.
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d

v4

v5

v6

v7

v1

v2

v3

6

3

4

1

6

6

3

34

4

4

4

1

1

1
1

(a) (4, 3, 7)7 Reed Solomon
QQ Graph scheme.

and D(v7) = 1
with B = {v7, v1, v2, v3}

GD, D : B → Fq

d

v7

v1

v2

v3
1

6
34

GC , C : d∪B → Fq

with C(d) = 1, C(v1) = 4
C(v2) = 3, C(v3) = 6

d

v7

v1

v2

v3
1

3
23

and D(v6) = 3, D(v7) = 1
with B = {v6, v7, v2, v3}

GD, D : B → Fq

d
v6

v7

v2

v3

5
1

63
5
3

GC , C : d∪B → Fq

with C(d) = 1, C(v2) = 1,
C(v3) = 3

d
v6

v7

v2

v3

4
1

43
5
1

(b) Examples of subgraphs GD associated with
subset B showing that B can access classical in-
formation in G and of subgraphs GC associated
with d∪B showing that V \B cannot have clas-
sical information in G.

Figure 1 Checking quantum accessibility in a (4, 3, 7)7 Reed Solomon Graph.

5 Existence of ((k, n))q scheme

In this section, we focus on the properties of the secret sharing scheme realised by a given
Fq-graph, as well as the existence of Fq-graphs realising a given secret sharing protocol.
A Fq-graph G of order n with a particular dealer d is said to realise a ((k, n))q scheme if
k − 1 = maxB⊆V \{d}(∂dcutrkG(B) ≥ 0). In other words, G realises a ((k, n))q scheme if
all sets of at least k players can recover a quantum secret and there exists a set of k − 1
players which cannot. A Fq-graph which realises an ((k, n))q scheme can be used as an
(k, k′ ≥ n− k, n)q CQ protocol or (k, n− k, n)q QQ protocol as described in section 4 (note
that they can also be used for (k, k′ ≥ n− k, n)q schemes to share a quantum secret using
hybrid protocols (e.g. [4, 21, 11, 12])).

5.1 Finding new schemes
Theorem 9 offers a combinatorial characterisation of quantum accessibility, and raises as
a consequence several questions about the complexity of deciding: (i) whether a given
set of players can access a quantum secret in a given q-multigraph? (ii) whether a given
q-multigraph realises a ((k, n)) protocol? (iii) whether, given q, n and k, there exists an
Fq-graphs realising a ((k, n)) protocol?

Problem i Given an Fq-graph G of order n with a particular dealer d and a set B of k
players, deciding whether B can access a quantum secret consists of deciding whether
∂dcutrkG(B) = −1. This can be decided efficiently since ∂dcutrkG(B) is computed in
O(nk1.38) operations using the Gaussian elimination for computing the rank [6, 20].

Problem ii Given a Fq-graph G of order n and α ∈ [0, 1], deciding whether G is a ((αn, n))
scheme can be done by enumerating all the

(
n
αn

)
sets of players of size αn and for each

of them deciding whether they can access a quantum secret. It leads to O(n2.382nH2(α))
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operations. This problem is NP-complete, as it has been shown to be NP complete when
q = 2 [7], and also hard in terms of parameterised complexity as it is hard for W [1] [7].

Problem iii Given n, α, and q, deciding whether there exists a ((αn, n)) Fq-graph? A
brute-force approach consists in enumerating all the q

n(n−1)
2 Fq-graphs of order n and

then decide whether they realise a ((αn, n)) protocol. It leads to O(q
n(n−1)

2 n2.382nH2(α))
operations. This can be implemented for small values of n only and permits to prove that
there is no (4, 3, 7)3 QQ secret sharing with qutrit graph state.

Solving problem i can be done with the similar algortihm C of [13]. Note that for one
thing, the later is more general and can be applied to input states (that is quantum secrets)
and to multigraphs of arbitrary dimension (not necessarily prime number). For another thing,
it concerns rather the access to partial information. Also it is not optimised for problem i of
our particular interest.

In the following sections, we develop a different approach for deciding the existence of
((αn, n)) Fq-graphs realising. We show an upper and a lower bound on the minimal α such
that there exists an Fq-graph realising a ((αn, n)) protocol. The upper bound (Theorem 11)
is based on non constructive probabilistic methods, whereas the lower bound (Theorem 14)
is based on a counting argument.

5.2 Existence of q-multigraphs realising ((αn, n))q schemes
In this section, we prove a Gilbert-Varshamov-like result: for any α such that Hq2(1−α) < 1

2
there exists a q-multigraph realising a ((αn, n))q scheme. The proof is using probabilistic
methods and is, as a consequence, non constructive. However, we prove that a random
q-multigraph satisfies such ((αn, n))q scheme with high probability as long as Hq2(1−α) < 1

2 .

I Lemma 10. For any q-multigraph G = (V,Γ) of order n, and any α ∈ [0.5, 1], if for any
multiset C : V → Fq, |sup(C)∪sup(Γ.C)| > (1−α)n then for any d ∈ V and any B ⊆ V \{d}
such that |B| ≥ αn, ∂dcutrkG(B) = −1.

Proof. For any B ⊆ V such that |B| ≥ αn, ker(Γ[V \B]) = {0}, otherwise there would
be a multiset C such that sup(C) ⊆ V \B and |sup(C)∪sup(Γ.C)| ≤ (1 − α)n. So for any
B ⊆ V such that |B| ≥ αn, cutrkG(B) = n − |B|. As a consequence, for any d ∈ V and
any B ⊆ V \{d} such that |B| ≥ αn, ∂dcutrkG(B) = n − |B∪{d}| − (n − |B|) = −1. Thus
∂dcutrkG(B) = −1 J

A random Fq-graph G(n, 1/q) is a Fq-graph of order n such that, for every pair of vertices
u and v, the number of edges between u and v is chosen uniformly at random in Fq.

I Theorem 11. Given q ≥ 2, and α ∈ [0.5, 1] such that Hq2(1− α) < 1
2 , for any n ∈ N, a

random q-multigraph G(n, 1/q) realises a ((αn, n))q scheme with probability 1− 2Ω(n), where
d is any vertex of G(n, 1/q).

Proof. Let Cα = {C : V → Fq, |sup(C)| ≤ (1− α)n}. For any C ∈ Cα, let AC be the (bad)
event |sup(C)∪sup(Γ.C)| ≤ (1− α)n.
For any C ∈ Cα, Pr(AC) = 1

q(1−c)n

∑(1−α−c)n
k=0

((1−c)n
k

)
(q − 1)k where c = |sup(C)|/n, and∑

C∈Cα Pr(AC) =
∑(1−α)n
j=0 f(j) with f(j) =

∑
Cs.t.|sup(C)|=j Pr(AC).

In the following, we show an upperbound on f(k). For any c ∈ [0, 0.5], f(cn) =
(
n
cn

)
(q −

1)cn 1
q(1−c)n

∑(1−α−c)n
k=0

((1−c)n
k

)
(q − 1)k ≤ (q−1)cn

q(1−c)n 2nH2(c)+(1−c)nH2( 1−α−c
1−c )(q − 1)(1−α−c)n =

2ng(c) where g(c) = H2(c) + (1− c)H2( α
1−c ) + (1− α) log2(q − 1)− (1− c) log2(q). g′(c) =
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− log2(c) + log2(1− α− c) + log2(q), so g′(c) = 0 ⇐⇒ c = q
q+1 (1− α). As a consequence,

g(c) ≤ g( q
q+1 (1 − α)) = −α log2(α) − (1 − α) log2(α) + (1 − α) log2(q2 − 1) − log2(q) =

log2(q)(2Hq2(1 − α) − 1). Thus,
∑
C∈Cα Pr(AC) ≤ (1 − α)nqn[2Hq2 (1−α)−1], so, thanks

to the union bound, Pr(
⋂
C∈Cα AC) ≥ 1 − (1 − α)nqn[2Hq2 (1−α)−1] = 1 − 2Ω(n) when

2Hq2(1 − α) − 1 < 0. So according to lemma 10, κQ(G, d) ≤ αn for any vertex d when
Hq2(1− α) < 1

2 . J

Theorem 11 extends the upper bound of the binary case (q = 2) [21]. Notice that even if
a random Fq-graph realises a ((αn, n))q scheme with probability almost 1, double checking
whether a (randomly chosen) Fq-graph actually realises a ((αn, n))q scheme is a hard task
(see Problem (ii) in section 5.1).

5.3 Lower bound on quantum accessibility
The no cloning theorem implies that for any ((αn, n)) secret sharing protocol, α > 0.5. In
the following we improve this lower bound for secret sharing schemes based on qudit graph
states. The lower bound on α depends on the dimension q (see Theorem 14), the value of
the lower bound is plotted for small values of q in figure 2.

The lower bound is based on the properties of the kernel with respect to the dealer defined
as follows:

I Definition 12. Given a q-multigraph G, for any d ∈ V (G) and any B ⊆ V (G)\{d}, let
Sd(B) = ker(ΓG[B∪{d}])\ ker(ΓG[B]) be the kernel of B with respect to d.

I Lemma 13. Given a q-multigraph G, for any d ∈ V (G) and any B ⊆ V (G)\{d}, if
∂dcutrkG(B) = −1, there exists C ∈ Sd(B) such that

|sup(C)| < q

q + 1cutrkG(B)

Proof. Since cutrkG(B∪{d})−cutrkG(B) = −1, dim(ker(ΓG[B∪{d}]))−dim(ker(ΓG[B])) =
2. Moreover, ker(ΓG[B]) ⊆ ker(ΓG[B∪{d}]), so |Sd(B)| = (q2 − 1).qt where t = dim(ker(
ΓG[B])). Let M =

(
I
M ′

)
a matrix in standard form (or reduced column echelon form)

generating ΓG[B∪{d}]. Since |Sd(B)| = (q2− 1).qt and | ker(ΓG[B∪{d}])| = qt+2, there exist
two columns C1 and C2 of M such that ∀(x, y) ∈ [0, q − 1]2\{(0, 0)}, x.C1 + y.C2 ∈ Sd(B).
Notice that since M is in standard form, |sup(C1)∪sup(C2)| ≤ |B|+ 1− t. Moreover for any
v ∈ sup(C1)∪sup(C2), v has a zero multiplicity in q−1 vectors of the q2−1 linear combinations
x.C1 + y.C2 for x, y ∈ [0, q − 1]\{(0, 0)}, so

∑
(x,y)∈[0,q−1]2\{(0,0)} |sup(x.C1 + y.C2)| =

(q2 − 1 − (q − 1)).|sup(C1)∪sup(C2)|, so there exists C ∈ Sd(B) such that |sup(C)| ≤
q2−q
q2−1 (|B|+ 1− t) = q

q+1 (cutrkG(B) + 1) < q
q+1cutrkG(B). J

I Theorem 14. If a q-multigraph G of order n realises a ((αn, n))q scheme, then(
n

(1−α)qn
q+1

)(
αn

(2α− 1)n

)
≥ (2α− 1)(1− α)

2

(
n

αn

)
Asymptotically, as n tends to infinity, α satisfies:

H2(αq + 1
q + 1 ) + αH2(1− α

α
) ≥ H2(α)
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Figure 2 Lower bound on the accessibility to quantum information in a ((k, n))q scheme. There
is no ((k, n))q scheme with k ≤ αn

Proof. Given B0 of size αn, according to lemma 13 there exists C0 ∈ Sd(B0) such that
|sup(C0)| < q

q+1 (1− α)n. Notice that the set sup(C0)∪sup(ΓG.C0) has some partial inform-
ation about the secret so |sup(C0)∪sup(ΓG.C0)| ≥ (1− α)n. Moreover for any B of size αn,
if C0 ∈ Sq(B) then sup(C)∪sup(ΓG.C) ⊆ B. So there are at most

(
n−1−(1−α)n
αn−(1−α)n

)
=
(
αn−1

(2α−1)n
)

sets B ⊆ V \{d} of size αn such that C0 ∈ Sd(B). For any B of size αn there is a C which
support is of size at most q

q+1 (1 − α)n − 1, any every such C is associated with at most(
αn−1

(2α−1)n
)
such Bs, so a counting argument implies

(
n−1
αn

)
≤
(
αn−1

(2α−1)n
)∑ q

q+1 (1−α)n−1
i=1

(
n−1
i

)
.

Moreover,
∑ q

q+1 (1−α)n−1
i=1

(
n−1
i

)
≤ 1+αq

q(2α−1)
( n−1

(1−α)qn
q+1 −1

)
= (1−α)(1+αq)

(2α−1)(q+1)
( n

(1−α)qn
q+1

)
. So, ( nαn)

( αn
(2α−1)n)

=

α
(1−α)2

(n−1
αn )

( αn−1
(2α−1)n)

≤ α(1+αq)
(2α−1)(1−α)(q+1)

( n
(1−α)qn
q+1

)
≤ 2

(2α−1)(1−α)
( n

(1−α)qn
q+1

)
.

Since 2n(H2(p)+o(1)) ≤
(
n
pn

)
≤ 2nH2(p), asymptotically, as n tends to infinity, α satisfies

the equation H2(αq+1
q+1 ) + αH2( 1−α

α ) ≥ H2(α). J

6 Discussion

In this work we have studied the encoding of classical and quantum information onto graph
states of qudits, and its application for secret sharing schemes. We have given complete
graphical characterization of which sets of vertices (players) can access the information,
and shown how this can be done both for classical and quantum information. Using this
characterization we have given bounds on which protocols are possible and how difficult the
access structure is to calculate given a graph.

Whilst we have focused on the application of our results for secret sharing, there may
be applications to other quantum information protocols. Indeed, the QQ encoding defined
in section 2.3 is exactly the same encoding procedure used in measurement based quantum
computing and error correction, so we can expect that these results have implications in both
these domains. Furthermore, quantum secret sharing is intimately linked to error correction
[28, 9]. All secret sharing schemes are error correcting schemes, and the QQ protocols
presented here are equivalent to all possible stabilizer codes [28]. Thus, the existence of
((αn, n)) protocols is an existence statement about error correcting protocols too, and the no
goes on secret sharing imply no-goes for all stabilizer codes - so that there are no stabilizer
codes with parameters violating our lower bounds.
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A Appendix-QQ Encoding-Decoding Operations

The QQ encoding-decoding can basically be done by three typical ways. The first method
is based on projective Bell measurements (possibly extended to a |B|+ 1 length state) and
the two last one are accessible by local measurements and/or series of two qudit control
operations, which should finally result in a similar experimental complexity. We briefly
describe the three encoding methods E1, E2, E3 and decoding D2, D3. (D1 has been done
in section 4.1). For a graph G = (V,Γ), with d, u ∈ V such that Γ(d, u) 6= 0, W := V \{d},
a quantum secret |ξ〉S :=

∑q−1
i=0 si|i〉S , we write X̄ := ZΓ.{d} and Z̄ := (XuZΓ.{u})−Γ(u,d)−1

,
as they act like logical operators over the bases states over W , that is Z̄|iL〉 = ωi|iL〉,
X̄|iL〉 = |(i+ 1)L〉 with notation of 4.1.
E1 |ξ〉|G〉 =

∑
i∈Fq si|i〉S

∑
j∈Fq

|j〉D|jL〉W√
q

= 1√
q

∑
i,j∈Fq |i〉S |j〉Dsi|jL〉W = 1√

q

∑
l∈Fq ISX

l
DX̄

l
W (
∑
i∈Fq |i〉S |i〉Dsi|iL〉W )

= 1√
q

∑
l∈Fq ISX

l
DX̄

l
W (
∑
k∈Fq

∑
i∈Fq ω

k.i |i〉I |i〉D
q

∑
j∈Fq ω

−k.jsj |jL〉W )
= 1√

q

∑
l∈Fq ISX

l
DX̄

l
W (
∑
k∈Fq Z

k
I IDZ̄

−k
W

∑
i∈Fq

|i〉I |i〉D
q

∑
j∈Fq sj |jL〉W )

= 1
q

∑
l,k∈Fq Z

k
SX

l
D(
∑
i∈Fq

|i〉S |i〉D√
q )X̄ l

W Z̄
−k
W

∑
j∈Fq sj |jL〉W )

so that applying the correction: Z̄kX̄−l over V \{d}, according to the syndrom (l, k) of a
Bell measurement over {S,D}, leaves the state over W as

∑
i∈Fq si|iL〉.

E2 CX̄dW |ξ〉|0L〉 =
∑
i∈Fq si|i〉X̄

i|0L〉 =
∑
i∈Fq si|iiL〉 =

∑
i∈Fq siX

i|0〉|iL〉
=
∑
i∈Fq siX

i
∑
j∈Fq

|bj〉√
q |iL〉 =

∑
i∈Fq siX

i
∑
j
Z−j |b0〉√

q |iL〉
= 1√

q

∑
i,j siω

i.jZ−j |b0〉|iL〉 =
∑
j∈Fq

|bj〉√
q (Z̄j

∑
i∈Fq si|iL〉)

where | bj 〉 = Z−j |+〉 constitutes the X basis, so that applying the correction Z̄−j over W ,
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according to the result j of a Xd measurement, leaves the state to distribute as
∑
i si|iL〉

(see also [2]).
E3 CZ̄dWHdCX̄dW |ξ〉|0L〉 = CZ̄dWHd(

∑
i si|i〉|iL〉) = CZ̄dW (

∑
i siZ

−i
d |+〉|iL〉)

= 1√
qCZ̄dW (

∑
i,k si|k〉Z̄−k|iL〉) = |+〉

∑
i si|iL〉)

.

The same process can be done for the decoding by an authorised set B, where the operators
UB and VB defined in 4.1 will act as Z̄ and X̄ operators respectively. An ancilla qudit {a} is
prepared in the state |+〉a by B.
D2 CV −1

aB |+〉a(
∑
j∈Fq sj |jL〉W ) = 1√

q

∑
k∈Fq X

−k
a (

∑
i∈Fq si|i〉a)|kL〉W .

D3 CUaB .Ha.
1√
q

∑
k∈Fq X

−k(
∑
i∈Fq si|i〉a)|kL〉W =

∑
i∈Fq si|bi〉a

∑
k∈Fmq

|kL〉W√
q .
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