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—— Abstract

Whether we deal with foundations or computation, logic relates questions and answers, typically

formulas and proofs: a very entangled relation due to the abuse of presuppositions.

In order to analyse syntax, we should step out from language, which is quite impossible.
However, it is enough to step out from meaning: this is why our first lighting of logic is that
of answers: it is possible to deal with them as meaningless artifacts assuming two basic states,
implicit and explicit. The process of explicitation (a.k.a. normalisation, execution), which aims
at making explicit what is only implicit, is fundamentally hazardous.

The second light is that of questions whose choice involves a formatting ensuring the conver-
gence of explicitation, i.e., the existence of “normal forms”. This formatting can be seen as the
emergence of meaning. It is indeed a necessary nuisance; either too laxist or too coercitive, there
is no just format. Logic should avoid the pitfall of Prussian, axiomatic, formats by trying to
understand which deontic dialogue is hidden behind logical restrictions.

The third lighting, certainty deals with the adequation between answers and questions: how
do we know that an answer actually matches a question? Apodictic certainty — beyond a
reasonable doubt — is out of reach: we can only hope for epidictic, i.e., limited, reasonable,
certainty. Under the second light (questions), we see that the format is made of two opposite
parts, namely rights and duties, and that logical deduction relies on a strict balance between
these two opposite terms, expressed by the identity group “A is A and conversely”. The issue of
certainty thus becomes the interrogation: “Can we afford the rights of our duties?”
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1  First light: what is an answer?

1.1 Implicit vs. explicit

A simple-minded approach to answers would reduce them to something completely explicit,
e.g., yes or ||| (the number 3 in Cro-Magnon numeration). However, implicit answers, those
given by programs or proofs, are more interesting, since portable. Indeed, the two sorts
of answers, implicit and explicit are linked by explicitation: the execution of a program
(cut-elimination, normalisation) reduces the implicit to the explicit. To sum up, an implicit
answer is a program before execution.

Explicit answers form the solid ground for logic, the ultimate reality, which is made
possible by the fact that they convey strictly no meaning. But how do we reckon that
something is explicit? Is explicit what belongs in the realm of constatation, i.e., what
is analytic. On a traditional typing machine, all keys are constative: they can but add
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new text, typically the “d ” key which opens a new line. On a computer, keys can also
assume a performative function: “J ” launches programs. The two aspects, constative and
performative, are mingled to the point that one easily launches a program by accident.
In logic, the constative and performative aspects of implication were mingled in XIX"
century syntax (Axiom + Rules): Modus Ponens. The XX' century reading (sequent
calculus) distinguishes carefully between implication = which is handled by the constative
left introduction and entailment - which is handled by the performative cut rule.

The distinction between implicit and explicit is purely subjective: we decide that an
object is finished, i.e., explicit enough for our taste. A cheque is the typical implicit answer:
we must cash it, then spend the money, both operations being hazardous. But we can decide
— say, it is a cheque of Paul Erdés — to pin it above the desk. In the same way, a program
need not be executed: it can be frozen, or opened with a developer. In logic, a cut on A can
be replaced with an left introduction of A = A F (or - A® ~A)!. This shows that there is
no real distinction between, say, programs and data: they all belong to the same analytic
space in which explicitation takes place; indeed, the program of explicitation itself must be
part of the space.

Although negated by totalitarian ideologies, starting with Bentham’s panoptic prototype
of Big Brother, the distinction between implicit and explicit is basic and incompressible. The
first evidence is to be found in incompleteness: there are questions without answers, typically
the Godel sentence. This evidence is however bridled by the iron discipline of formal systems;
we should concentrate on all means of producing explicit answers, including those proscribed
by logic. In this lax context, Turing’s undecidability yields a partial recursive function
that cannot be extended into a total one, thus forbidding us to foretell the convergence of
execution, i.e., explicitation. By the way, computational complexity deals with a less brutal
approach to the distinction between implicit and explicit: some answers are more implicit
(harder to compute) than others.

Almost anything can serve as analytic space, for instance the binary integers used in
machine code. However, in view of the necessary relation to be made with questions, some
choices are more interesting than others. In particular, explicitation should be as natural as
possible, so that implicit answers look as much as possible as as their own ezxecution — and
not as data to which an external program is applied.

A good candidate for an analytic space remains pure A-calculus; among its good properties,
Church-Rosser which states that the implicit contents, if any, is unique. The rewriting style
(basically one equation), although external, remains very natural. The limitations are those
of the functional paradigm with no direct access to other types of data, e.g., pairs. Also, the
treatment of bound variables (a-conversion, substitution) is particularily ad hoc. A-calculus
is indeed already too formated: the only abnormality is that of a never-ending normalisation.
The absence of deadlocks in pure A-calculus is both a measure of its intrinsic qualities and of
its limitations as an analytic space: deadlocks do exist!

Experience, that of linear logic and parallel computation, compels us to find a more
primitive notion, free from functionality, but still deterministic. The various versions of
Geometry of Interaction eventually stabilised into an analytic space based upon Herbrand’s
technique of unification, which is more primitive, less ad hoc, than rewriting: execution can
be seen as a sort of physical plugging. This was, by the way, the strongest point in the late
Logic Programming.

1 This remark can, surprinsingly, be traced back to Lewis Carroll who made a mess of it.
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1.2 Stars and galaxies
1.2.1 Unification

Consider a term language with infinitely many functional symbols of each arity. An equation
t = u between terms can be solved by means of substitutions: t,u are unifiable when t = uf
for some unifier 6. The point is that substitutions do compose, hence:

» Theorem 1 (Herbrand, 1930). If ¢, u are unifiable, there is a mother 6y of all unifiers for
t,u: any unifier 6 for ¢, u can be uniquely written 6y6’.

1.2.2 Flows

A flow is an expression t+t' where t,t' are terms with quite the same variables. These
common variables are internal to the flow, in other terms bound. In particular, when combining
two flows, one must always rename the variables so as to make them distinct. Composition
between t+—t' and u+ v’ is obtained by matching t' and u: matching is the particular
case of unification where the terms have no variable in common, what is the case when the
variables of t', u have been made distinct. If € is the principal unifier, we define composition
by (t —t')(u+—u') := td —u'6. Composition is thus a partial operation; if we formally add
an empty flow 0 to take care of a possible failure of the matching: (t—t')(u—u') := 0,
composition becomes associative, with neutral I := z < z.

If T is the set of closed terms, then any functional term ¢ induces a subset [t] C T,
namely the set of all closed ¢y which unify with ¢; ¢,t" are disjoint when [¢t] N [t'] = 0. Any
flow ¢t —t' induces a partial bijection [t — '] between the subsets [¢'] and [t] of 7. Let us
fix a copnstant ¢; if ¢ is closed, then [t < t']ty is defined when (¢t —¢')(¢o — ¢) # 0, in case
it writes [t — t']to < c. The condition “quite the same variables” ensures that [t — t']tg is
closed and that [t —¢'] is injective. Any flow u+ u is idempotent; its associated function is
the identity of the subset [u] C T.

1.2.3 The convolution algebra

One can introduce the convolution algebra of the monoid, i.e., the set of finite formal sums
> Ai¢; where the ¢; are flows and the A; are complex coefficients, the improper flow 0 being
identified with the empty sum. This algebra acts on the Hilbert space ¢2(7T) by means
implemented by the usual adjunction. The idempotents ¢t — ¢ correspond to the projections
on the subspaces ¢2([t]) and t <t induces a partial isometry of source ¢?([t']) and target
¢%([t]). The early versions of Gol did associate to proofs finite sums of flows. These sums
were partial isometries; u = t; ~—t} is a partial isometry (i.e., vu*u = u) if the targets ¢;
are pairwise disjoint, not unifiable, idem for the t;. The operators of Gol are indeed partial
symmetries (u = u® = u*): typically the identity axioms (t+—t') + (#' ~—1t) (t,t' disjoint).
The unification algebra internalises the major algebraic constructions.

Matrixes

If I is a finite set of closed terms, the I x I matrix (\;;) can be naturally represented by

Zij Aij (i j)-
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Direct sums

The flows P := p(z) ~— z,Q := q(x) ~— x induce an isometric embedding of ¢?(7) @ ¢*(T) in
2(T): 2®y +— [Plz+[Q)y. The isometricity comes from P*P = Q*Q = I, P*Q = Q*P = 0.
The embedding is not surjective: this would require PP* 4+ QQ* = I, in other terms that
every term matches either p(z) or ¢(z).

P and @ have been heavily used in the early Gol, in particular for multiplicatives —
and, modulo tensorisation with I, for contraction. They enable one to change the size
of matrices in a flexible way. Usually, the only possibility is to divide the size, typically
Minn(C) =~ M, (M, (C)) replaces a mn X mn matrix with a m x m matrix whose entries
are n X n matrices, i.e., blocks of size n x n. Thanks to P, @, one can replace a 3 X 3 matrix
with a 2 x 2 one (with four “blocks” of sizes 2 x 2,2 x 1,1 x 2,1 x 1).

Tensor products

The tensor product of two flows makes use of a binary function “-” and is defined by
(t—t)® (u—u') =t -u+ ¢ -u; the variables of the two flows must first be made distinct.
This corresponds to an internalisation of the tensor product, which plays an essential role in
the handling of exponentials, i.e., of repetition. The flow T := (z-y)-z — z-(y-z) compensates
the want of associativity of the internal tensor: T*(((t—1t) ® (u—v')) ® (v+=v'))T =
(t=t") © ((u=u) @ (v=0)).

Crown products

In the same style as T, the flow
o =a1- (2 (. (Tp1 - Tn) . 0)) = Toq) - (@o(2) - (- (Tona1) * To(n))---)) induces a
permutation of the constituents af a n-ary tensor.

1.3 Stars and galaxies
1.3.1 Stars

A star [t1,...,tn+1] consists in n 4+ 1 terms; these terms, the rays of the star, must be
pairwise disjoint, i.e., not matchable, which is strictly stronger than not unifiable.

Stars generalise the unification algebra; thus, the axiom link (¢t —¢t') + (¢’ —t) becomes
[t,t']. However, since our objects are no longer operators, there are some difficulties in
defining the analogue of composition. For this we shall use coloured stars. We select pairs
of complementary colours, e.g., (green,magenta) together with the neutral colour black;
a coloured star is a star in which each ray has been given a colour: typically, [¢, u,v,w].
Disjointness is required only for rays of the same colour, which comes from the fact that
coloured stars are not yet another notion, just a shorthand: indeed, consider three unary
functions g, m,b and replace [¢,u,v,w] with [g(t),g(u),b(v),m(w)]. t is thus a priori
disjoint from wu.

1.3.2 Galaxies

A galazy is a finite set of coloured stars. Cut-free proofs will be represented by black galaxies,
whereas the cut-rule will make use of complementary colours. The implicit thus lies in the
use of colours, this explains why it is relative and contextual: by making everything black,
a galaxy becomes explicit at no cost. Colours thus indicate that we consider the data as
unfinished, thus initiating a normalisation process.
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In order to normalise a galaxy, we first form its diagrams. By this I mean any tree (in
the topological acception) obtained by attaching N + 1 stars of the galaxy by means of N
vertices. By a vertexr, I mean a pair ¢t = u of rays of complementary colours. Since the same
star may be used several times in a diagram, a galaxy is likely to generate infinitely many
diagrams.

The unification of a diagram consists in unifying its vertices, so that
t0 = uf becomes an actual equality. Most unifications will fail; we are basically concerned
with correct diagrams, those for which unification succeeds.

1.3.3 Normalisation

In usual Gol, the cut-rule is handled by a partial symmetry o; the normal form of the proof
(u,0) is given by:

(I —o®)u(l —ou) (I —o?)

Here o corresponds to the swapping of complementary colours: ¢ exchanges green and
magenta and “kills” black. Under reasonable hypotheses (nilpotency), u(I — ou)~! can be
written as a finite sum u + uou + uocuou + . . ., which corresponds to the plugging of u with
itself through complementary colours. The two I — o2 correspond to the restriction to the
“black stars”.

Strong normalisation) generalise the nilpotency of ou:

1. There are only finitely many correct diagrams. In other terms, for an appropriate N, all
diagrams of size N + 1 fail; this finite N accounts for strong normalisation.

2. No correct diagram is closed, i.e., without a free ray. The condition thus excludes the
closed diagram {[¢],[t]} (vertex ¢t = t).

3. In a correct diagram, identify complementary colours, e.g., replace magenta with green;
then the free rays are disjoint. The simplest diagram thus excluded consists of a single
binary star: {[¢,u]}, with ¢,u not disjoint.

The normal form is obtained by collecting the correct diagrams whose free rays are black.

And to replace them with their residual star, i.e., the star whose rays are their free rays.

A galaxy G is isometric when rays of the same colour occurring in G are pairwise disjoint.

The normal form of an isometric galaxy is easily shown to be isometric.

1.3.4 Church-Rosser

In the presence of two pairs of complementary colours, there are three possible ways of
normalising:

1. Identify green = blue,magenta = yellow and normalise.
2. Normalise the cuts blue/yellow, then the residual cuts green/magenta.

3. Normalise the cuts green/magenta, then the residual cuts blue/yellow.

The Church-Rosser property equates (in any possible sense) these three possibilities. This
property will later be used to show the compositionality of cut, hence to develop various
functional, i.e., category-theoretic, interpretations. Hence one pair of colours is enough, at
least for theoretical considerations.

15
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2 Second light: what is a question?

2.1 Formatted vs. informal

An implicit answer, a program, may have no explicit contents: normalisation may diverge.
Fixing that point amounts at formatting; the emergence of meaning wholly lies in this
formatting. A synonym for meaning is question: the meaning of the answer is the question
it is supposed to solve. Now, there is a great divide between the formatted, typed, logical
approach and the unformal, untyped, “free” approach.

The lesson of incompleteness is that the format is a necessary nuisance, think of Family,
Justice, Police, etc. Indeed, the informal approach to logic is inconsistant — if we prefer, the
untyped approach to computation does not normalise: this account for the “necessary”. On
the other hand, a typing discipline always misses something. This remark is already present
in Richard’s Paradox (1905): “The smallest integer not definable in less than twenty words”.
The informal acception of “definable” makes it inconsistent, while a formated version — say
DEFINABLE — avoids the pitfall while producing a definition out of the scope of “DEFINABLE”.

The same totalitarian ideologies that claim that everything is explicit, transparent, would
consistently vouch for informality: witness the various qualunquists (libertarians, populists,
etc.) which pretend to approach politics without politicians, taxes, laws. When in charge,
these people turn out to be worse than the politicians they were opposing to. This is due
the fact that one cannot escape formatting: and then, better an explicit than a hidden one!

The real question is thus not that of the necessity of a format, but that of its nature, its
emergence. XIX*™ logic solved the problem by means of aziomatics, i.e., principles that one
cannot discuss. There must be something of the like, but we should at least understand what
we accept: axiomatics is too Prussian to be honest?. In logic, the format is usually invisible;
besides the choice of a language to avoid inconsistencies, it also occurs in the form preserved
by category-theoretic morphisms or in the rule of game-theoretic semantics. Can we discuss
these choices, or better: is this discussion part of logic?

The situation of an opaque deontic, normative?, kernel did not change till the invention
of linear logic in the mid eighties. Indeed, the existing formats, especially natural deduction,
were satisfactory enough to make us forget their axiomatic, Prussian, character. Linear logic,
with the introduction of classical features — basically an involutive negation — within the
constructive universe, posed a novel question, namely the handling of several simultaneous
conclusions, a problem hitherto avoided by the tree-like format which pinpoints both the
conclusion and the last rule applied. In proof-nets, the last rule is implicit to the point that
it is not even uniquely defined. What makes a proof-net correct, i.e., what compels it to have
a last rule and, this recursively, is a purely deontic question.

The question was not quite novel, since Herbrand’s theorem solved it in the limited
context of quantification. In a prenex form, the existentials should be given as functions
y; = t[x1,...,2,] of the universals. Assuming we forgot the step-by-step construction of ¢,
Herbrand replaces « with f(y) in the case of a formula JyVaz; if z actually occurs in ¢, then
we get a cycle (failed unification) y = ¢[f(y)].

The sort of dialogue at work in Herbrand’s theorem — more generally in proof-nets — is
not basically designed to tell truth from falsity, but what is permitted from what is illegal. This
dialogue is deontic (instead of alethic): it deals with permissions, obligations, and not with

2 In modern Greek, aziomatikos means “officer”!
3 This adjective may convey a derogatory approach to the format; “deontic” is more neutral.
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truth. A typical deontic dialogue is “Objection your Honor! Objection sustained/overruled”.
The dialogue has nothing to do with the truth/falsity of the statement under discussion: it
concerns its relevance to the case. One perfectly understands that not every question should
be taken into consideration; but also that this necessary deontic dialogue may be a way to
sweep things under the carpet.

Popper’s notion of falsifiablity is a limited form of deontic dialogue accounting for purely
universal, I19, formulas of arithmetic, e.g., Vz (z + 1)? = 22 + 2z + 1. Falsifiability does
not hold beyond II{ complexity, for the simple reason that falsifiability is itself II{: “for all
tests...”. Beyond the IIY case, the deontic dialogues becomes completely symmetric: if an
objection is overruled, something goes wrong, but we cannot foretell which side “is right”:
when the judge says “sustained”, he may be dismissed!

2.2 Vehicles and gabarits

We restrict our presentation to the familiar multiplicative case of linear logic.

2.2.1 Proof-nets

We should get rid of syntactical decorations so as to describe multiplicative proof-nets in
a purely locative way: in order to represent a proof of - A, B, C' unary functions pa, pp, pc
will be used to distinguish between the various locations available in the sequent; I could as
well use p1, p2, p3, but this would compel me into a systematic reindexing.

2.2.2 Vehicles: cut-free case

Let us choose, once for all, distinct constants 1,r and a binary function letter “-”. To each
proof ™ we associate its vehicle, i.e., a galaxy 7°®; this galaxy is black in the cut-free case.

Identity axiom: if 7 is the axiom - A, ~A, then 7* := {[pa(z),p~a(x)]}.
Z%-rule: if the proof m of FI', A% B has been obtained from a proof v of FT', A, B, then
m® := v* in which p4 and pp are now defined by
pa(®) :==pagp(l- ), pp(r) == pags(r- ).
®-rule: if the proof w of FI'; A ® B has been obtained from proofs v of FT', A and pu of
F B, A, then 7® := v®* U u®, with pa,pp defined by
pa(®) = panp(1l- ), pp(r) = panp(r - ).
The vehicle is thus a galaxy of axiom-links, seen as stars. The rules %, ® have been
used to relocate these links. For instance, the axiom [pa(z),p~a(x)] may relocate as

[[pAi’S’(NA@B)(l : x),pAi’?(NAQ@B)(r “(1-2)) ]

2.2.3 Vehicles: general case

In presence of cuts, coloured functions will be needed. We shall use a pair of complementary

colours, typically pp,p~p and pgp,p~p. The interpretation 7® now looks as a union V U C:

V (in black and green) is the vehicle proper, C — its feedback — is easily identified as the

magenta part of the vehicle.

Cut rule: if the proof 7 of FT has been obtained from proofs v of FI', A and p of F~A; A,
then 7° := v* U u® U {[pa(z),p~a(x)]}; furthermore, in v* U u®, pa,p~a have been
painted green: pa(t) — pa(t), poa(t) = poalt).

17
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2.2.4 Gabarits (1)

We must now make sense of the lower part of the proof-net, the one dealing with the %, ®
and Cut links. The main problem is to give a precise definition of the switching discipline
leading to the correctness condition. Indeed, to each switch, we shall associate an ordeal, i.e.,
a coloured galaxy. This finite set of ordeals is called the gabarit.

We already defined the unary functions p(z) for each formula and subformula of the
proof-net. We now introduce ga(z) := pa(g - ), where g is yet another constant. The
replacement of p4 with ¢4 in the context of gabarits is due to the fact that pagp(x) is not
disjoint from pa(x) := pagp(1l - x), whereas gagp(x) and ga(z) are disjoint: the ga provide
disjoint locations for the formulas occurring in the lower part of the proof-net.

Given a proof-net of conclusions I', a switch L/R of its %-links induces an ordeal, namely
the coloured galaxy made of the following stars:

X,~X: [pa(x),qa(z)] when A is a literal X,Y,~X,~Y,... ...

®: [qae5(2),q94(x), qp(2)].

Br: [gans(x),qa(z)] and [gp(z)]. In terms of graphs, [¢s(z)] “terminates” all [¢p(¢)].
Br: [qans(x),qp(x)] and [ga(z)] which “terminates” all [ qa(t)].

Cut: [ga(z),quna(z)].

Conclusion: [qa(x),pa(z)] when A €T, i.e., is a conclusion.

An ordeal thus normalises into a galaxy in black (conclusions) and blue (literals).

2.2.5 Correctness, a.k.a. completeness

Let V be V painted yellow. The correctness criterion thus writes as:
For any ordeal S, the galaxy VU S strongly normalises into {[pa(z) ; A €T']}.

This condition is obviously necessary; its sufficiency is the most elaborate form of completeness
that one can imagine, since it relates the symbolic testing by means of the ordeals with the
proofs in a logical system.

The main technical problem with completeness is that usual proof-nets are, so to speak,
“preconstrained”: the identity links relate complementary formulas A, ~A, whereas nothing
of the kind has been so far required. In other terms, our treatment of literals is completely
indistinct: X, ~X,Y are the same, up to their locations. How can we force an axiom link to
relate X with a ~X (and not a Y, nay another X)?

Here, we must remember that predicate or propositional calculi are convenient structures,
but that part of them belongs in the worst kind of a priori. Typically, the so-called
propositional “constants” X,Y and their negations: we are embarrassed since they mean
nothing by themselves. The real logic is a second order system — a sort of system F — in
which there is no propositional constants, but in which formulas are closed. What we call
first order logic indeed corresponds to those formulas VX5 ...VX, A, with A quantifier-free:
the behaviour of such formulas is extremely simple, especially in view of completeness issues,
e.g., the subformula property. The restriction to those formulas renders the universal prefix
compulsory —hence the possibility to omit it. To make the long story short, when dealing
with a proof-net, we must take into account the implicit second order quantification VX on
all propositional “constants”. What follows is a glimpse of the future treatment of second
order logic; indeed the easy case of the quantifier VX.

Every propositional “constant” must be switched; each switch has three positions, so
that n propositional constants induce 3™ possibilities. The switching corresponds to the
choice ® of a substitution X; ~» c; for each of the “constants” X;, the c; ranging over the
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three possibilities a,a ® b,a % b, where a, b are propositional letters. Now, to switch our
net consists in:

1. First switch the constants, thus yielding a substitution .

2. Then switch ©(I") as explained above.

This should be enough to ensure that literals are linked according to the book. As to general

axiom links (not between literals) an argument based upon nxpansion should exclude “illegal”
links.

2.2.6 Gabarits (I1): virtual switches

Let us turn our attention towards an exotic multiplicative, namely the “linear affine” im-
plication A — B. “—” yields a purely multiplicative second-order reduction of additives:
ADB:=VX((A—oX)— ((B—X)— X))~

Indeed, A — B is an intuitionistic implication without reuse of premises; this is why
it interests us. The associated disjunction A x B := ~A — B is problematic in terms of
gabarits. Indeed, the x-link:

is problematic: the premise A (written [A] for this reason®) might be absent, hence the
switch “L” is hazardous: it may destroy everything in case of absence. On the other hand,
we cannot content ourselves with the sole “R”, hence the idea of a wvirtual switch, i.e., a sort
of compensation for the missing switch.

Virtual switches are inspired from the proof by Mogbil and de Naurois of the NL
complexity of multiplicative proof-nets; improving the idea of contractibility introduced by
Danos, the authors show that it is enough to switch % on one side, e.g., always “R”; an
additional order condition (3 below) compensates for the missing switches. The point is that
this alternative approach can be used in case we cannot switch the % on “L”, typically if the
actual presence of the premise A is dubious. This is the case with the marginal connective
X, a multiplicative which actually needs virtual switches.

A wirtual switch is a star [t;uy, ..., u, ], with a distinguished ray, its root t. uy,...,u,
must be pairwise disjoint; each variable occurring in ¢ must still occur in the wu;.

The notion of ordeal is modified as follows, so as to include an auxiliary galaxy of virtual
switches. Typically, in the case of A x B, besides [qawp(z),¢p(x)] and [ga(x)], we add
the auxiliary stars [ qawp(z);qa(z)].

Consider the unique correct diagram in VU S, and let us unify it, so as to get a galaxy G.
For each virtual switch [¢;uq, ..., u, ], consider all rays obtained by unification from some
u;; since u;0 = u;6’ implies t0 = t6’, each such ray “comes from” a specific instanciation of ¢,
its “root”. We require that:

1. If u;0 € G, then its root t0 occurs in G.
2. wu;0 is “upwards connected” to t0, i.e., the connection does not transit through the vertex
t101 = t0.

4 Instead of VX ((A — X) = (B — X) = X)).
5 The graphism is reminiscent of the discharged hypotheses of natural deduction.
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For each t0 in G, we can consider the set G;y of all rays standing in between ¢0 and some
u;0" with root t6 (i.e., s.t. t0 = t6) including extremities; G;y is this a sort of tree, rooted in
t0. We define t16; =y ta0s by t101 € Gip,. If < is the reflexive and transitive closure of =<y,
we require that:

3. < is an order relation.

These conditions (especially 3) are clearly cO-NL, hence their complexity-theoretic import.
To understand how virtual switches work, let us assume that the ordeal S € G switches the
% link with conclusion A % B on “R” and that its virtual part contains [qamg(x),qa(z)];
we can get rid of this virtual switch by adding to G the ordeal S’, namely the twin of S with
the same % switched on “L”: conditions 1 — 3 precisely allow for this replacement. We can
thus eliminate the virtual switch [ganp(z),ga(2z)] from G at the price of a duplication of
the number of its ordeals.

Virtual switches are well-adapted to weakening, since they cope with the possible uncer-
tainty as to the presence of a specific premise. Moreover, since u; may contain variables not
in ¢, there is no limitation as to the number of u;#’ rooted in a given t6: the extra variables
thus account for contraction. The treatment of exponentials and additives makes a heavy
use of virtual switches.

3 Third light: what conveys certainty?

3.1 Epidictic vs. apodictic

The main difference between XIX'*" century, pre-Gédelian, and XX century logics is perhaps
the issue of certainty. Before incompleteness, a proof was supposed to be valid beyond any
doubt; hence the adjective apodictic, which corresponds to this absence of doubt, but whose
etymology is simply “proven”. Incompleteness opens the possibility of a reasonable doubt,
hence to a change of status for proofs: they are no longer apodictic, they can only be epidictic,
i.e., they only guarantee a reasonable form of certainty. Common sense can explain this
failure: deduction is a rational form of prediction, but prediction cannot be 100% rational.
Just like rating agencies were unable to prevent the subprime crisis, there is no absolute
certainty as to cheques, before cashing. The only absolutely reliable bank is completely
explicit: it directly delivers the goods you are looking for, the cow and the butter: but then,
forget money! In the same way, the only absolutely reliable formal system would be purely
analytic, limited to down to earth constatations of the form 2 + 2 = 4.

How come that our certainty is no longer that certain? We must remember that it never
occurred to XIX™ century logicians, e.g., Russell, Hilbert, that the logical format could “miss”
some “truth”, unless the definition was intentionally ambiguous. For instance, Euclide’s
Postulate left open the question of parallels, but this was made explicit by alternative models,
the sphere or the one-sheet hyperboloid; this question being fixed, nothing else was “missing”.
In the case of incompleteness, nothing specific is actually missing in the sense that it would
suffice to add it. But there is a definite shortage of counter models: nobody has ever seen
the tail of a refutation of the Godel sentence — the book says that such a refutation must
exist — but this “evidence” follows from incompleteness, while it should establish it. This is
why this “model” is styled non standard, i.e., good for nothing.

Back in the 1920s, the only possibility was that of proving too much, like in Burali-Forti’s
or Russell’s antinomies. Hence the reduction of certainty to consistency: if a deductive
system cannot prove A and —A, then it should be perfectly sound, i.e., conveys certainty.
However, PA + =G, Peano Arithmetic extended with the negation of the Godel sentence is
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equi-consistent with PA, although plainly wrong! An analogy: many criminals are found

“not guilty” on the grounds of some legal trick, say a statute of limitations; but an acquittal

based on a deontic use of Law can by no means restore confidence. In other terms, although

the negation =G avoids inconsistency, it is still far from plausible: consistency does not entail
certainty.

We must however reckon that consistency is (a minor) part of certainty. Here the second
incompleteness destroys the ultimate illusion of XIX* century logic: consistency itself cannot
be established beyond a reasonable doubt.

Godel’s incompleteness is the final firework of XIX'" logic. XX logic begins with
Gentzen’s cut-elimination (the distinction implicit/explicit), Herbrand’s theorem (the emer-
gence of format) and the “functional” interpretation of proofs, a.k.a. BHKS. Typically,
a proof of Vz A[z] is a function associating to each integer n a proof f(n) of A[n]. The
definition is interesting and problematic under the three lights:

Answers: f cannot be quite a function, since a function is an infinite object. It must thus
be a finite artifact, a program yielding the output f(n) when feeding it with n.

Questions: f must be of the right kind, i.e., associate to each n a proof of A[n], whatever
that means. Deontically speaking, this means that f must pass infinitely many tests:
first choose n, then test whether f(n) is a proof of A[n]. Something of the like occurs
with Popper’s falsifiablity.

Certainty: how do we know that the proof is actually a proof, in other terms, that it passes
the deontic tests which are infinetely many? In the II{ case, this proof that the proof is a
proof is indeed the proof irself: the function, something like f(n) := true is known in
advance, so the only thing at stake is to determine whether A[n] = true for all n, i.e.,
Vo Alz].

BHK can thus be seen as an archaic prefiguration the most recent developments in terms of

answers and questions: in that respect, it fully belongs in XX*™ century logic. It also poses

the problem of certainty: and, to start with, how come, in XX*" century terms, that we lost
absolute certainty?

3.2 Derealism
3.2.1 Proof-nets and certainty

The correctness criterion for proof-nets yields a form of apodictic certainty: yes, we can be

sure that a would-be proof is actually a proof. This is due to the combination of several

facts:

Finiteness: correction relates a vehicle with a gabarit. This involves finitely many finite
verifications, leaving no room for reasonable doubt.

Compositionality: the gabarit for A and the gabarit for ~A do match so as to ensure the
identity group, especially cut-elimination.

The great divide of logic is between first and second order. Indeed, if we take a second order

approach to logic (with quantifiers on predicates or propositions), the first order part is the

one in which second order quantifiers occur as universal prefixes VX ...V.X,: the formula

X = X is thus a shorthand for VX (X = X). Using the Dedekind translation of natural

numbers, arithmetic becomes part of second order logic: indeed, II{ formulas involve second

order existentials. First order is complete and apodictic, while second order proper — i.e.,

using 3X — is incomplete and can only be epidictic.

6 Indeed Brouwer-Heyting-Kolmogorov.

21

CSL’13



22

Three lightings of logic

Something puzzling is that the proof-net technology basically applies to full logic. The
fact that we lose certainty must be ascribed to second order quantification, more precisely, to
the the existential quantifier. The study of system F shows that this quantifier concentrates
most of the logical complexity: its interpretation through candidats de réductibilité involves
comprehension axioms, which cannot convey absolute certainty.

Indeed, in a second-order proof-net, we must indicate the existential witnesses T' cor-
responding to the rules deducing 3X A[X] from A[T]. And, relative to these witnesses T
(which carry their own gabarits), we can get absolute certainty, at least on the grounds of
finiteness. The issue of compositionality is, however, a cat of a different colour: indeed, X
occurs several times in A[X], in practice both positively and negatively. This means that we
must provide gabarits for both 7" and ~T. But how do we know that they actually match?

We already mentioned, concerning Popper, that his approach was too simplistic: like
in the Gospel, the judges must be judged. This means that the matching between the
normativity for T" and the normativity for ~T" is the most intricate thing one can imagine,
surely something not of this world. The reasonable doubts and the reasonable certainties as
to reasoning concentrate in this hazardous matching.

3.2.2 Epures

The deontic pair T/ ~T corresponds to the rights and duties attached to T. The identity
axiom T + T, or, better, - ~T,T is still valid when we relinquish our rights — and/or
exaggerate our duties. But the cut rule enables to pass from - ', T and - A, ~T, to - T, A
on the basis that we have the rights (T) of our duties (~T'). By the way, replacing T with
~T will not alter the pattern, since the rights of ~T are the duties of T

This schizophrenic approach to deduction first occurred in Schiitte’s partial valuations, in
other terms, three-valued models. The fact that one can relinquish our rights is expressed by
a third value, 4. Hence, in terms of rights, A is not false, while in terms of duties, A is true.
The fact that “true” implies “not false” accounts for the identity axiom. But the cut rule
requires the reverse implication, which is the case only in the usual, two-valued case. This
semantics is, as far as I know, the unique legitimate occurence of an exotic truth value. Its
technical interest is almost void: since ¢ = ¢ = ¢, the third value has a propension to swallow
the real ones. .. and what is the use of a model where almost everything takes the value 47
The only interest of the third value is that of a sort of “side wheels” helping us from mixing
rights and duties.

A much better incarnation of the same idea is the category-theoretic notion of dinaturality:
the entailment A F A between rights and duties becomes a morphism. And the failure of
compositionality can be ascribed the want of commutativity of certain “hexagons”. But this
is still semantics, not yet the real thing.

The French “épure” means the representation of an object through three planar projections.
I propose to use this term for the combination V + G of a vehicle and a gabarit: indeed, both
an object and several ways (the ordeals of G) of structuring it. The inclusion of a gabarit as
part of the épure renders quantification over gabarits possible: this should answer for the
problematic aspects of second order logic. By the way, if a proof is an épure, the missing
“auxiliary proof” of BHK is its gabarit.

3.2.3 The derealistic program

If we except first order quantification and equality, our understanding of first order logic is
quite satisfactory. This is not the case with second order logic, especially under the light



J.-Y. Girard 23

of certainty. The new approach — épures — should improve the the existing systems and
their interpretations: in particular, fix the limitations of the the usual realistic, semantic,
approach which collapsed in front of natural numbers. By introducing deontic components
— the gabarits at work in the épures —, we should able to find derealist integers explaining
— say — why the Gddel sentence is not provable.

As to certainty, the final pattern should look like:

A solid, i.e., non-deductive, analytic, rock in which reasoning takes place as a combination

of épures.

Depending upon the choice of the right gabarits, the access to a reasonable form of

deduction.
Certainty can only be epidictic, i.e., rely upon a covenant between rights and duties: such a
pact belongs in the realm of beliefs. But the day of true believers, of axiomatic certainty is
over: the idea of an épure is to make everything, including the covenant, part of the logical
artifact. Making suppositions part of the object is a way to get, once for all, rid of these
presuppositions which so badly hinder logic.
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