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Abstract
Model checking of higher-order recursion schemes (HORS) has recently been studied extensively
and applied to higher-order program verification. Despite recent efforts, obtaining a scalable
model checker for HORS remains a big challenge. We propose a new model checking algorithm
for HORS, which combines two previous, independent approaches to higher-order model check-
ing. Like previous type-based algorithms for HORS, it directly analyzes HORS and outputs
intersection types as a certificate, but like Broadbent et al.’s saturation algorithm for collapsible
pushdown systems (CPDS), it propagates information backward, in the sense that it starts with
target configurations and iteratively computes their pre-images. We have implemented the new
algorithm and confirmed that the prototype often outperforms TRecS and CSHORe, the state-of-
the-art model checkers for HORS.
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1 Introduction

The model checking of higher-order recursion schemes (higher-order model checking for
short) [10, 22] is a generalization of finite-state and pushdown model checking, and has
recently been applied to automated verification of higher-order programs [13, 23, 19]. Higher-
order recursion schemes (HORS) are higher-order grammars describing possibly infinite
trees, and can also be seen as simply-typed functional programs with recursion and tree
constructors. Thus they serve as natural models for higher-order programs, and various
verification problems for functional programs can be easily reduced to higher-order model
checking [13, 11, 23, 26].

Despite the very bad worst-case complexity of higher-order model checking (k-EXPTIME
complete for order-k HORS [22, 18]), several practical model checking algorithms [11, 14, 21, 4]
have been developed, which do not immediately suffer from the hyper-exponential bottleneck.
The state-of-the-art model checker TRecS can handle a few hundred lines of HORS generated
from various program verification problems. It is, however, not scalable enough to support
automated verification of thousands or millions of lines of code. Thus, obtaining a better
higher-order model checker is a grand challenge in the field, and that is also the general goal
of the present work.

The previous algorithms for higher-order model checking can be roughly classified into
two radically different approaches, as shown in Table 1. The algorithms of Kobayashi [11, 14]
and Neatherway et al. [21] directly work on HORS and check properties expressed by trivial
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130 Saturation-Based Model Checking of HORS

Table 1 Classification of higher-order model checking algorithms.

algorithms models properties state representation propagation
Type-based approach [11, 14, 21] HORS trivial types forward
Saturation-based approach [4, 5] CPDS co-trivial stack automata backward
HorSat HORS co-trivial types/automata backward
HorSatT HORS trivial types/automata backward

tree automata [1] (Büchi tree automata where all the states are accepting, which can be used
for describing safety properties stating that certain (bad) states are unreachable). They use
intersection types [13, 17] to finitely represent infinite states. Information is propagated in
the forward direction, in the sense that they start from the requirement that the start symbol
must have the initial state of the trivial automaton as its type, and compute the “post-image”
to collect type information needed to conclude that bad states are unreachable. On the other
hand, the recent algorithm of Broadbent et al. [4, 5] works on collapsible pushdown systems
(CPDS) (which are equi-expressive with HORS although the mutual translations are rather
complex [9, 6]) and deals with properties expressed by co-trivial tree automata (Büchi tree
automata where no states are accepting, which can be used for describing the complement of
a safety property, stating that certain (bad) states are reachable). Their algorithm generalizes
the saturation algorithm for pushdown system model checking [2, 7]. It finitely represents
infinite states of CPDS by using stack automata, and propagates information in the backward
direction, in the sense that it starts with final (bad) states, computes the “pre-image”, and
checks whether the start state is in the pre-image. Broadbent et al. [5] recently report that
with an optimization based on forward static analysis, a saturation-based model checker
CSHORe can compete with TRecS [11, 12]. Due to the huge gap as summarized in Table 1,
however, the two approaches have been of independent use, and it was difficult to transfer or
integrate the techniques.

The present paper fills the gap between the two approaches, and proposes a new model-
checking algorithm HorSat and its variation HorSatT for HORS. As indicated in Table 1,
the new algorithms are classified somewhere between the two approaches. Like the previous
algorithms of Kobayashi and Neatherway et al., HorSat works directly on HORS. Like
Broadbent et al.’s saturation algorithm for CPDS [4, 5], however, HorSat deals with co-trivial
automata, and propagates information backwards, starting from final states and iteratively
computing the pre-image. We use intersection types to represent the pre-image, but they
can equally be interpreted as alternating tree automata accepting (tree representations of)
the terms in the pre-image, which are somehow related to the stack automata representation
used in Broadbent et al.’s saturation algorithm. We have implemented the new algorithms
and obtained promising experimental results.

Besides filling the gap, the main advantage of the new algorithms over the previous
algorithms for HORS model checking is the efficiency (both in theory and in practice). Unlike
TRecS [11] or TravMC [21], they satisfy the fixed-parameter polynomial time complexity;
thus it is expected to scale to large inputs better than TRecS. The previous fixed-parameter
polynomial time algorithms GTRecS [14] for HORS did not scale well due to a large constant
factor. According to the experiments, the new algorithm clearly outperforms GTRecS.

Compared with the saturation algorithm for CPDS [4, 5], the new algorithms have the
following advantages:
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– The new algorithms are much easier to understand, implement, and optimize. For
example, the saturation algorithm for CPDS [4] uses non-standard automata called stack
automata to represent a set of CPDS states, while we can use standard tree automata (or
equivalently intersection types) to represent a set of states (which are just applicative terms).

– It is much easier to verify the result of model checking HORS. It is partly because
our algorithm works directly on HORS without a detour to CPDS, but also because the
variant HorSatT of our algorithm can generate intersection types as a certificate, which is
completely compatible with the certificate used by other model checking algorithms [11, 14],
and whose validity can be easily checked (by an independent tool) based on the type-based
characterization of trivial automata model checking [13].

In Section 2 we recall the nomenclature and foundational results of model checking
with intersection types. Section 3 introduces the HorSat algorithm and its application to
co-trivial automata model-checking. We then proceed in Section 4 to the variant HorSatT,
which can be used in the trivial case and generates a certificate when the HORS is safe. We
follow up with some experimental results in Section 5.

2 Preliminaries

In this section, we review HORS, and tree automata (for infinite trees). We then define
trivial/co-trivial automata model checking of HORS, and provide their characterizations in
terms of intersection types.

We write dom(f) and codom(f) for the domain and co-domain of a map f . A ranked
alphabet, denoted often by Σ, is a mapping from symbols to their arities. An (unlabeled) tree D
is a subset of {1, . . . ,m}∗ such that ε ∈ D, and for every π ∈ {1, . . . ,m}∗ and k ∈ {1, . . . ,m},
πk ∈ D implies {π} ∪ {πi | 1 ≤ i ≤ k} ⊆ D. For a set S of symbols, an S-labeled tree is a
map from a tree to S. For a ranked alphabet Σ, a Σ-labeled ranked tree T is a dom(Σ)-labeled
tree such that for every π ∈ dom(T ), {k | πk ∈ dom(T )} = {k | 1 ≤ k ≤ Σ(T (π))}.

Next we define applicative terms. The set of sorts is:

κ (sorts) ::= o | κ1 → κ2

Here, the sort o describes ranked trees. The order and arity of a sort κ, written ord(κ) and
ar(κ) respectively, are:

ord(o) = 0 ord(κ1 → κ2) = max(ord(κ1) + 1, ord(κ2))
ar(o) = 0 ar(κ1 → κ2) = ar(κ2) + 1

A sort environment is a finite map from variables to sorts. The set ATermsΓ,Σ,κ of
applicative terms having sort κ under a sort environment K is defined inductively by: (i)
a ∈ ATermsK,Σ,o→ · · · → o︸ ︷︷ ︸

Σ(a)

→ o, (ii) x ∈ ATermsK,Σ,κ if K(x) = κ, and (iii) t1t2 ∈

ATermsK,Σ,κ if t1 ∈ ATermsK,Σ,κ′→κ and t2 ∈ ATermsK,Σ,κ′ for some κ′.

I Definition 1 (HORS). A (deterministic) higher-order recursion scheme (HORS), written
G, is a quadruple (Σ,N ,R, S), where

1. Σ is a ranked alphabet. The elements of dom(Σ) are called terminals.
2. N is a map from a finite set of symbols called non-terminals to sorts. dom(Σ) and

dom(N ) must be disjoint.

CSL’13
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Figure 1 Tree(G1) (left) and a run-tree of A1 over Tree(G1) (right).

3. R is a map from the set of non-terminals (i.e. dom(N )) to terms of the form λx1. · · ·λx`.t,
where t is an applicative term. For each F ∈ dom(N ), if R(F ) = λx1. · · ·λx`.t, then
N (F ) must be of the form κ1 → · · · → κ` → o, and t ∈ ATermsN∪{x1 7→κ1,...,x` 7→κ`},Σ,o.

4. S is a non-terminal called the start symbol. We require that S ∈ dom(N ) and N (S) = o.
The order of a non-terminal F , written ord(F ), is the order of its sort, i.e. ord(N (F )). The
order of a HORS G = (Σ,N ,R, S), written ord(G), is the highest order of its non-terminals.

Intuitively, a HORS G = (Σ,N , {F1 7→ t1, . . . , Fk 7→ tk}, F1) is a tree-generating, simply-
typed call-by-name functional program, given by the recursive function definitions F1 =
t1, . . . , Fk = tk with the main function F1 and the tree constructors Σ. We sometimes write
ΣG ,NG ,RG , SG for the four components of G. The reduction relation −→R on terms of sort
o is defined by:

F t1 · · · tk −→R [t1/x1, . . . , tk/xk]t if R(F ) = λx1. · · ·λxk.t
a t1, · · · ti · · · tk −→R a t1, · · · t′i · · · tk if ti −→R t′i

Here, [t1/x1, . . . , tk/xk]t denotes the term obtained from t by replacing all the (free) oc-
currences of x1, . . . , xk with t1, . . . , tk respectively. When G = (Σ,N ,R, S), we also write
s −→G t for s −→R t.

For an applicative term t of sort o, the (Σ ∪ {⊥ 7→ 0})-labeled tree t⊥ (in the term
representation) is defined by: (i) (a t1 · · · tk)⊥ = a t⊥1 · · · t⊥k and (ii) (F t1 · · · tk)⊥ = ⊥. The
value tree [22] of G, written Tree(G), is the Σ ∪ {⊥ 7→ 0})-labeled ranked tree obtained as
the least upper bound of the set {t⊥ | S −→G t} with respect to the least precongruence v
that satisfies ⊥ v T for every tree T .

I Example 2. Consider G1 = (Σ = {a 7→ 2, b 7→ 1, c 7→ 0},N ,R, S) where:

N = {S 7→ o, F 7→ o→ o} R = {S 7→ F c, F 7→ λx.ax (F (bx))}

S is reduced as follows, generating the tree in Figure 1.

S −→G1 F c −→G1 a c (F (b c)) −→G1 · · · J

Next, we introduce tree automata, which are used for describing properties on trees.
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I Definition 3 (trivial/co-trivial ATA). An alternating tree automaton (ATA) is a quadruple
A = (Σ, Q,∆, qI), where Σ is a ranked alphabet, Q is a set of states, qI ∈ Q is the initial
state, and ∆ ⊂ Q × dom(Σ) × 2{1,...,m}×Q is a transition function where m is the largest
arity in Σ. We require that if (q, a, S) ∈ ∆, then S ⊆ {1, . . . ,Σ(a)} × Q. For a (possibly
infinite) Σ-labeled ranked tree T , a (dom(T )×Q)-labeled tree R is a run-tree of A over T
if (i) R(ε) = (ε, qI), and (ii) if R(π) = (π′, q), then there exists S = {(j1, qk1), . . . , (j`, qk`

)}
such that (q, T (π′), S) ∈ ∆ and {i | πi ∈ dom(R)} = {1, . . . , `} with R(πi) = (π′ji, qki

) for
each i ∈ {1, . . . , `}. A (possibly infinite) Σ-labeled ranked tree T is accepted by A in trivial
mode if there is a (possibly infinite) run-tree of A over T , and T is accepted by A in co-trivial
mode if there is a finite run-tree of A over T . An ATA is called trivial (resp. co-trivial) if it
accepts input trees in trivial (resp. co-trivial) mode. For an ATA A = (Σ, Q,∆, qI) (with
⊥ 6∈ dom(Σ)), we write A> for the ATA (Σ ∪ {⊥ 7→ 0}, Q,∆ ∪ {(q,⊥, ∅) | q ∈ Q}, qI), and
A⊥ for (Σ ∪ {⊥ 7→ 0}, Q,∆, qI),

I Example 4. Let A1 = (Σ, {q0, q1},∆1, q0) where Σ = {a 7→ 2, b 7→ 1, c 7→ 0} and

∆1 = {(q0, a, {(1, q0)}), (q0, a, {(2, q0)}), (q0, b, {(1, q1)}),
(q1, b, ∅), (q1, a, {(1, q0)}), (q1, a, {(2, q0)})}.

In the co-trivial mode, A1 accepts trees that have a path containing two consecutive
occurrences of b. Figure 1 shows a run-tree of A1 over Tree(G1). In the trivial mode, A1
additionally accepts trees having an infinite path. J

I Remark 5. A trivial (co-trivial) ATA is a special case of alternating parity tree auto-
maton [8], where all the states have priority 0 (resp. 1). Therefore, from a trivial automaton
A, one can construct a co-trivial automaton A that accepts the complement of the trees
accepted by A, and vice versa.

I Example 6. Recall ATA A1 in Example 4. A tree is accepted by A1 in the co-trivial (resp.
trivial) mode if and only if it is not accepted by the following ATA A1 = (Σ, {q0, q1},∆1, q0)
in the trivial (resp. co-trivial) mode.

∆1 = {(q0, a, {(1, q0), (2, q0)}), (q0, b, {(1, q1)}), (q0, c, ∅), (q1, a, {(1, q0), (2, q0)}), (q1, c, ∅)}

In the present paper, we are interested in the following model checking problems.

I Definition 7 (trivial/co-trivial ATA model checking). A trivial (resp. co-trivial) ATA model
checking problem for HORS is the decision problem: “Given a HORS G and an ATA A as
input, is Tree(G) accepted by A> (resp. A⊥) in trivial (resp. co-trivial) mode?”

By Remark 5, the decidability of trivial/co-trivial ATA model checking follows immediately
from that of alternating parity tree automata (APT) model checking for HORS [22], and a
trivial ATA model checking problem can be reduced to a co-trivial ATA model checking, and
vice versa.

Following Kobayashi and Ong’s type systems for HORS [13, 17], we provide below a
type-based characterization of trivial/co-trivial ATA model checking for HORS. Fix an ATA
A = (Σ, Q,∆, qI). The set of types is given by:

τ (types) ::= q | σ → τ σ (intersections) ::=
∧
{τ1, . . . , τk}

Intuitively, the type q ∈ Q describes a tree accepted by A from the state q (i.e., accepted by
(Σ, Q,∆, q)). The type σ → τ describes a function that takes an element of (intersection) type

CSL’13
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σ as input, and returns an element of type τ . The intersection
∧
{τ1, . . . , τk} (where k may

be 0) describes an element of the intersection of the sets denoted by τ1, . . . , τk. When k = 0,
we write > for

∧
{τ1, . . . , τk}. We often write τ1 ∧ · · · ∧ τk or

∧
i∈{1,...,k} τi for

∧
{τ1, . . . , τk}.

We assume that
∧

binds tighter than →, so that q0 ∧ q1 → q2 means (q0 ∧ q1)→ q2.
A type τ is called a refinement of a sort κ, written τ :: κ if τ :: κ is derivable by the

following rules:
q ∈ Q
q :: o

τ :: κ τi :: κ′ for each i ∈ I
(
∧
i∈I τi → τ) :: κ′ → κ

A type environment is a set of type bindings of the form x : τ . For a type environment
Γ, We write dom(Γ) for the set {x | x : τ ∈ Γ}. Unlike ordinary type systems, a type
environment may contain multiple type bindings for the variable, like {x : q0, x : q1}. We
sometimes omit curly brackets and just write x1 : τ1, . . . , xn : τn for {x1 : τ1, . . . , xn : τn}.
When σ =

∧
{τ1, . . . , τn}, we also write x : σ for x : τ1, . . . , x : τn.

The rules for a type judgment Γ `A,G t : τ are:

Γ ∪ {x : τ} `A,G x : τ
(T-Var)

(q, a, {(i, qj) | 1 ≤ i ≤ Σ(a), j ∈ Ii}) ∈ ∆A
Γ `A,G a :

∧
j∈I1 qj → · · · → · · ·

∧
j∈IΣ(a)

qj → q

(T-Con)

Γ `A,G t1 :
∧
i∈I τi → τ

Γ `A,G t2 : τi (for each i ∈ I)
Γ `A,G t1t2 : τ

(T-App)

{xi : τj | 1 ≤ i ≤ k, j ∈ Ii} `A,G t : q
RG(F ) = λx1. · · ·λxk.t

(
∧
j∈I1 τj → · · · →

∧
j∈Ik

τj → q) ::NG(F )
Γ `A,G F :

∧
j∈I1 τj → · · · →

∧
j∈Ik

τj → q
(T-NT)

We sometimes omit the subscripts A and G when they are clear from the context.
The following are special cases of the soundness and completeness of Kobayashi and

Ong’s type system for APT model checking [17] (where the priorities are restricted to 0 and
1 respectively for Clauses (i) and (ii) of Theorem 8.1

I Theorem 8. (i) Tree(G) is accepted by A> in the trivial mode if and only if there is a
possibly infinite derivation tree for ∅ `A,G S : qI . (ii) Tree(G) is accepted by A⊥ in the
co-trivial mode if and only if there is a finite derivation tree for ∅ `A,G S : qI .

The existing practical2 model checking algorithms for HORS [11, 14, 21] deal with trivial
ATA model checking, and try to construct an infinite derivation tree for ∅ `A,G S : qI [21], or
infer a set of types of non-terminals occurring in such a derivation tree [11, 14]. All of the
algorithms run in the forward direction, in the sense that they start with S : qI , and expand
non-terminals to construct types/derivation trees while checking that invalid trees cannot be
generated from S.

3 Co-Trivial ATA Model Checking

This section presents a co-trivial ATA model checking algorithm that runs in the backward
manner. We first note the following property (see Appendix B for a proof).

1 Kobayashi and Ong [17] do not consider HORS’s that generate trees containing ⊥; see Section A in
Appendix on how to derive the result below for ⊥-generating HORS.

2 Since the worst-case complexity of trivial/co-trivial ATA model checking is n-EXPTIME complete [22, 18],
we call a model checking algorithm practical if it terminates in a realistic time (say, in a few minutes,
rather than in several years) for typical inputs.
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I Lemma 9. Let G = (Σ,N ,R, S) be a HORS. Tree(G) is accepted by a co-trivial ATA A⊥
if and only if there exists a term t such that S −→∗G t and t⊥ is accepted by A⊥.

By the lemma above, for co-trivial ATA model checking, it suffices to start with the set
of terms T0 = {t ∈ ATermsN ,Σ,o | t⊥ is accepted by A⊥ in the co-trivial mode}, expand it
to the set T of all the terms that can be reduced to a term in T0, and check whether S ∈ T .
Since T may be infinite in general, we represent a (possibly infinite) set of terms by using a
finite type environment Γ for non-terminals. We write TermsΓ for the set {t | Γ `−A t : qI}
of terms. Here, Γ `−A t : τ means that there is a finite derivation for Γ `A,G t : τ that
does not use rule T-NT (so that G does not matter), where non-terminals are treated as
variables. Then, the initial set T0 above is represented by the empty type environment ∅, i.e.,
Terms∅ = T0, as stated by the following lemma: see Appendix B for a proof.

I Lemma 10. ∅ `−A t : qI if and only if t⊥ is accepted by A⊥ in the co-trivial mode.

We shall construct below a monotonic function F on type environments that satisfies the
following conditions:

(I) {t ∈ ATermsN ,Σ,o | ∃t′.t −→G t′ ∈ TermsΓ}⊆ TermsF(Γ); and
(II) TermsFi(∅) ⊆ {t | ∃t′.t −→∗G t′ ∈ T0} for every i.

Then, we have Terms⋃
i∈ω
Fi(∅) = T . Since F is monotonic and a type environment

ranges over a finite set {Γ | dom(Γ) ⊆ dom(N ) and ∀F : τ ∈ Γ.τ ::N (F )}, we can obtain⋃
i∈ω F i(∅) by computing F(∅), F2(∅), F3(∅), . . . until it converges; we can then check

whether S : qI ∈
⋃
i∈ω F i(∅) holds to decide whether Tree(G) is accepted by A⊥ in the

co-trivial mode, as stated below.

I Lemma 11. Suppose that a monotonic function F on type environments satisfies the two
conditions above. Then, S : qI ∈

⋃
i∈ω F i(∅) if and only if Tree(G) is accepted by A.

Proof. By the first condition of F , we have {t | ∃t′.t −→i
G t
′ ∈ Terms∅} ⊆ TermsFi(∅).

Thus, we have T = Terms⋃
i∈ω
Fi(∅). The required result follows by Lemma 9. J

It remains to construct F that satisfies the conditions (I) and (II) above. The following
lemma provides a clue as to how to construct F . It states that typing is closed under the
inverse of substitutions: see Section B for a proof.

I Lemma 12. Suppose s ∈ ATermsK∪{x1:κ1,...,x`:κ`},Σ,o and ti ∈ ATermsK,Σ,κi
for each

i ∈ {1, . . . , `}. If Γ `−A [t1/x1, . . . , t`/x`]s : q with Γ :: K, then there exist (possibly empty)
sets Ii and {τj | j ∈ Ii} for each i ∈ {1, . . . , `} such that: (i) Γ ∪ {xi : τj | i ∈ {1, . . . , `}, j ∈
Ii} `−A s : q; (ii) Γ `−A ti : τj for each i ∈ {1, . . . , `} and j ∈ Ii; and (iii) τj :: κi for every
j ∈ Ii.

The above lemma implies that if F t1 · · · t` −→G [t1/x1, . . . , t`/x`]s and
Γ `−A [t1/x1, . . . , t`/x`]s : q, then Γ ∪ {F :

∧
j∈I1 τ1 → · · · →

∧
j∈I`

τj → q} `A F t1 · · · t` : q
holds, where Ii and τj are as given by the lemma above. This motivates us to define FG,A,R
(where R ⊆ RG) as follows.

FG,A,R(Γ) = Γ ∪ {F : Γ′(x1)→ · · · → Γ′(x`)→ q | R(F ) = λx1. · · ·λx`.t,
N (F ) = κ1 → · · · → κ` → o, and x1 : κ1, . . . , x` : κ`; Γ `A t : q ⇒ Γ′}.

Here, Γ(x) is an abbreviation of
∧
{τ | x : τ ∈ Γ}. The relation K; ΓN `A t : τ ⇒ ΓV

(where ΓN and ΓV are meta-variables for type environments on non-terminals and variables
respectively) is defined by:

CSL’13
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Γ := ∅;
while not(FG,A(Γ)=Γ) do (Γ := FG,A(Γ); if S : qI ∈ Γ then return TRUE);
return FALSE

Figure 2 Co-trivial ATA model checking algorithm HorSat.

x : τ ∈ Inhabited(K,ΓN )
K; ΓN `A x : τ ⇒ x : τ

∅ `A,G a : τ
K; ΓN `A a : τ ⇒ ∅ K; ΓN ∪ {F : τ} `A F : τ ⇒ ∅

K; ΓN `A t1 :
∧
i∈I τi → τ ⇒ Γ0 K; ΓN `A t2 : τi ⇒ Γi (for each i ∈ I)

Γ0 ∪
⋃
i∈I Γi ∈ Inhabited(K,Γ)

K; ΓN `A t1t2 : τ ⇒ Γ0 ∪
⋃
i∈I Γi

Here, Inhabited(K,ΓN ) is the set of type environments for which the corresponding term
environments can be constructed from non-terminals in ΓN , i.e.:

{Γ | Γ ::K and ∀x ∈ dom(Γ).∃s ∈ ATermsN ,Σ,K(x).∀x : τ ∈ Γ.ΓN `−A s : τ}.

The relation K; ΓN `A t : τ ⇒ ΓV intuitively means that ΓN ,ΓV ` t : τ holds and that ΓV
is inhabited, as stated by the following lemma (which follows by straightforward induction).

I Lemma 13. If K; ΓN ` t : τ ⇒ ΓV , then ΓN ∪ ΓV ` t : τ and ΓV ∈ Inhabited(K,ΓN ).
Conversely, if ΓN ∪ ΓV `−A t : τ and ΓV ∈ Inhabited(K,ΓN ), then K; ΓN ` t : τ ⇒ Γ′V for
some Γ′V such that Γ′V ⊆ ΓV .

Reading the rules for K; ΓN `A t : τ ⇒ ΓV in a bottom-up manner, we can interpret them
as an algorithm which, given K,ΓN and τ as input, outputs ΓV such that ΓN ,ΓV `−A t : τ
and ΓV ∈ Inhabited(K,ΓN ). For checking the inhabitance condition Γ ∈ Inhabited(K,ΓN ),
we can use Rehof and Urzyczyn’s reduction to the emptiness problem of alternating tree
automata [25]: see Appendix C.

We write FG,A for FG,A,RG , and also omit the subscripts when they are clear from the
context. The following lemma justifies the definition of FG,A,R.

I Lemma 14. Suppose G = (Σ,N ,R′, S) and R ⊆ R′. If Γ `−A t : q and s −→R t, then
FG,A,R(Γ) `−A s : q.

Proof. The proof proceeds by induction on the derivation of t −→R t′. Since the induction
step is trivial, we show only the base case, where t = F t1 · · · t` and t′ = [t1/x1, . . . , t`/x`]s
with λx1. · · ·λx`.s = R(F ). Let N (F ) = κ1 → · · · → κ` → o. By Lemma 12, we have:

Γ ∪ {xi : τj | i ∈ {1, . . . , `}, j ∈ Ii} `−A s : q Γ `−A ti : τj for each i ∈ {1, . . . , `}, j ∈ Ii

and τj :: κi for every j ∈ Ii. By Lemma 13, there exists ΓV such that

{x1 : κ1, . . . , x` : κ`}; Γ `−A s : q ⇒ ΓV Γ `−A ti : τ for each xi : τ ∈ ΓV .

Thus, we have F : ΓV (x1)→ · · · → ΓV (x`)→ q ∈ FG,A,R(Γ), which implies FG,A,R(Γ) `−A
F t1 · · · t` : q as required. J

The whole algorithm is given in Figure 2. The following theorem guarantees the soundness
and completeness of the algorithm.
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I Theorem 15. Let the function FG,A be as defined above. Then, S : qI ∈
⋃
i∈ω F iG,A(∅) if

and only if Tree(G) is accepted by A⊥ in the co-trivial mode.

Proof. By Lemma 11, it suffices to show that F = FG,A satisfies the two conditions (I) and
(II). Condition (I) follows immediately from Lemma 14.

To check condition (II), suppose t ∈ TermsFm(∅), i.e., Fm(∅) `−A t : qI . We construct
the following HORS G(m) as an approximation of G:

G(m) = (Σ ∪ {⊥ 7→ 0},N (m),R(m), F
(m)
1 ) N (m) = {F (j)

i | i ∈ {1, . . . , n}, j ∈ {0, . . . ,m}}
R(m) = {F (0)

i 7→ λx1. · · ·λx`.⊥ | ar(N (Fi)) = `}
∪{F (j)

i 7→ [F (j−1)
1 /F1, . . . , F

(j−1)
n /Fn]R(Fi) | j ≥ 1}

G(m) is a HORS without recursion, obtained by unfolding non-terminals of G. We write t(m)

for the term obtained by replacing each non-terminal F in t with F (m). By the assumption
Fm(∅) `−A t : qI , we have ∅ `A⊥,G(m) t(m) : qI : see Lemma 27 in Appendix B. By the strong
normalization of the simply-typed λ-calculus, we have t(m) −→∗G(m) u for some (Σ∪{⊥ 7→ 0})-
labeled tree (in the term representation) u. By the type preservation property (Lemma 29
in Appendix B), we have ∅ `A⊥,G(m) u : qI . By Lemma 10, u is accepted by A⊥. By the
construction of t(m), there exists a term t′ such that t −→∗G t′ and t′

⊥ = u. Thus, we have
t ∈ {s | ∃t′.s −→∗G t′ ∈ T0} as required. J

I Example 16. Let G be G1 in Example 2 and A be A1 in Example 4. Then, since
∅ `A ax (F (bx)) : q0 ⇒ x : q0 and ∅ `A ax (F (bx)) : q1 ⇒ x : q0, we have:

F(∅) = {F : q0 → q0, F : q0 → q1}.

Similarly, F2(∅),F3(∅), . . . are computed as follows.

F2(∅) = F(∅) ∪ {F : q1 → q0, F : q1 → q1} F3(∅) = F2(∅) ∪ {F :> → q0, F :> → q1}
F4(∅) = F3(∅) ∪ {S : q0, S : q1} = F5(∅)

Thus,
⋃
i∈ω F i(∅) = F4(∅) contains S : q0, which implies that Tree(G1) is accepted by A1 in

the co-trivial mode. J

I Remark 17. The inhabitance check needed for computing F(Γ) can be quite costly: in fact,
the inhabitance problem is EXPTIME-complete [25]. In order to avoid the drawback, we can
actually replace Inhabited(K,ΓN ) in the rules for the relation K; ΓN `A t : τ ⇒ ΓV with an
over-approximation Inhabited ′(K,ΓN ), such that

Inhabited(K,ΓN ) ⊆ Inhabited ′(K,ΓN ) ⊆ {Γ | Γ ::K}.

By the proof of Theorem 15, our co-trivial model checking algorithm remains sound and
complete for any such over-approximation.

I Remark 18. Like Kobayashi’s GTRecS algorithm [14], the co-trivial ATA model checking
algorithm above runs in time polynomial in the size of HORS under the assumption that the
other parameters (the size of the co-trivial automaton, the order of HORS, and the largest
arity of non-terminals in HORS) are fixed. First, the number of iterations is also linear in
the size of HORS since the largest size of type environments is linear in the size of HORS
(under the fixed-parameter assumption above). The cost for computing F(Γ) is also linear
in the size of HORS, as the inhabitance check can be performed in a constant time (again,
under the fixed-parameter assumption above): see Appendix C.
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4 Trivial ATA Model Checking

This section presents a saturation-based algorithm for trivial ATA model checking. Co-
trivial model checking is more natural for the saturation-based method, but many typical
program verification problems are reduced to trivial ATA model checking problems for
HORS [13, 11, 19], so that a program is safe if and only if the tree generated by a corresponding
HORS is accepted by a trivial ATA. Although trivial ATA model checking can be reduced
to co-trivial model checking by negating the trivial ATA (so that the co-trivial ATA accepts
“error configurations” of a program), that approach is not good at certifying that a co-trivial
property is not satisfied. When a co-trivial property is satisfied, then based on Theorem 8,
one can generate a derivation tree for ∅ `A,G S : qI or the types of non-terminals required in
the derivation tree as a certificate. When a co-trivial property is not satisfied, however, the
possible witness is a fixedpoint of F , which can be very large. It is also difficult to validate
the witness independently of the model checking algorithm, especially when the saturation
algorithm is combined with other static analyses as in [5] and our implementation reported
in Section 5. This is in contrast with the existing trivial automata model checking algorithms
for HORS [11, 14, 21], which can output the types of non-terminals as a certificate when a
property is satisfied. Checking the certificates amounts to type checking for an intersection
type system, which can be performed independently of the model checking algorithms. This
section modifies the saturation-based algorithm so that it can deal with trivial model checking
directly (rather than negating the property) and generate certificates.

We first clarify the notion of “certificates”. Define the function ShrinkG on type environ-
ments by:

ShrinkG(Γ) =
{F : σ1 → · · · → σk → q ∈ Γ | R(F ) = λx1. · · ·λx`.t and Γ, x1 : σ1, . . . , x` : σ` `A t : q}.

Intuitively, ShrinkG(Γ) picks each type binding F : σ1 → · · · → σk → q in Γ, checks whether
it is valid in the sense that the body of F has the same type, and filters out invalid ones.
We omit the subscript G when it is clear from context. We write ` G : Γ if ShrinkG(Γ) = Γ,
We also write Γ ` (G, t) : τ if ` G : Γ and Γ ` t : τ hold. The following theorem is due to
Kobayashi [13]. It also follows immediately from Theorem 8: see Appendix B.

I Theorem 19. Tree(G) is accepted by A> in trivial mode if and only if Γ ` (G, S) : qI for
some Γ.

Based on Theorem 19, a type environment Γ such that Γ ` (G, S) : qI serves as a certificate
for Tree(G) being accepted by A.

I Example 20. Recall G1 in Example 2. Let A2 = ({a 7→ 2, b 7→ 1, c 7→ 0}, {q0, q1},∆2, q0)
where ∆2 = {(q0, a, {(1, q0), (2, q0)}), (q0, b, {(1, q1)}), (q0, c, ∅), (q1, b, {(1, q1)}), (q1, c, ∅)}.
A2 describes the property that a cannot occur below b. Tree(G1) is accepted by A2, and
the type environment {S : q0, F : q0 ∧ q1 → q0} serves as a certificate. J

The existing algorithms for trivial automata model checking [11, 14] first compute an
overapproximation Γ′ of a possible certificate, compute the fixedpoint Γ =

⋂
j∈ω Shrinkj(Γ′),

and check whether S : qI ∈ Γ. We show below that such an overapproximation Γ′ can be
computed by using F . For that purpose, we just need to replace the initial type environment
∅ with the type environment Γ0 = {F :> → · · · → >︸ ︷︷ ︸

ar(N (F ))

→ q | F ∈ dom(N )}. TermsΓ0 is the

set of terms t such that t⊥ is accepted by A>. Thus, for Γ′ =
⋃
i∈ω F i(Γ0), TermsΓ′ is
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Γ′ := Γ0;
while not(FG,A(Γ′)=Γ′) do

(Γ′ := FG,A(Γ′); Γ := Γ′; (while not(Shrink(Γ)=Γ) do Γ := Shrink(Γ));
if S : qI ∈ Γ then return Γ );

return FALSE

Figure 3 Trivial ATA model checking algorithm HorSatT.

the set {t | t −→∗G t′ and t′
⊥ is accepted by A>}. The type environment Γ′ itself is not a

certificate: in fact, any term t that has a non-terminal as its head is an element of TermsΓ′ ,
since t⊥ = ⊥ and ⊥ is accepted by A>. As the following theorem shows, however, Γ′ serves
as an overapproximation of a possible certificate.

I Theorem 21. S : qI ∈
⋂
j∈ω Shrinkj(

⋃
i∈ω F i(Γ0)) if and only if Tree(G) is accepted by

A> in the trivial mode.

Based on the theorem, we obtain the trivial ATA model checking algorithm shown in
Figure 3. The outer loop repeatedly computes F(Γ0),F2(Γ0), . . ., until it converges to a
fixedpoint, or finds a certificate. The inner loop computes Γ =

⋂
j∈ω Shrinkj(F i(Γ0)). If

S : qI ∈ Γ then the algorithm terminates and returns Γ as a certificate. Otherwise, the
algorithm eventually returns FALSE when a fixedpoint of F is reached but S : qI ∈ Γ does not
hold. Like the co-trivial ATA model checking algorithm in Figure 2, the algorithm terminates
as soon as a certificate is found.

I Example 22. Recall G1 in Example 2 and A2 in Example 20. Γ0,F(Γ0),F2(Γ0), . . . are
computed as follows.

Γ0 = {S : q0, S : q1, F :> → q0, F :> → q1}
F(Γ0) = Γ0 ∪ {F : q0 → q0} F2(Γ0) = F(Γ0) ∪ {F : q0 ∧ q1 → q0} = F3(Γ0)

For Γ′ = F2(Γ0), Shrinki(Γ′)(i = 1, 2, . . .) are:

Shrink(Γ′) = {S : q0, S : q1, F : q0 → q0, F : q0 ∧ q1 → q0}
Shrink2(Γ′) = {S : q0, F : q0 ∧ q1 → q0} = Shrink3(Γ′).

Since S : q0 ∈ Shrink2(Γ′) =
⋂
j∈ω Shrinkj(Γ′), we can conclude that Tree(G) is accepted by

A2 in trivial mode.

I Remark 23. GTRecS algorithm [14] is obtained by replacing F in Figure 3 with the
function Expand in [14]. The functions Expand and F are quite different, however; the
former uses a game-semantic idea [14, 24] to propagate the requirement that S should have
type qI in the forward direction, while the latter propagates information backwards using
purely type-based techniques. Although both algorithms enjoy the fixed-parameter linear time
complexity [14], according to experiments (see Section 5), GTRecS tends to be much slower.
This is attributed to the game-semantics interpretation of intersection types. For example, a
function of type q1 → · · · → qn → q may have any type of the form σ1 → · · · → σn → q for
σi ∈ {>, qi} in the interpretation of [14]; thus the number of possible types blows up.

5 Experiments

We have implemented a new higher-order model checker incorporating both the co-trivial
HorSat and trivial HorSatT model checking algorithms described respectively in Sections 3
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and 4. As in [5], we have optimized the algorithms by using forward flow analysis, to exclude
irrelevant type bindings; more precisely, the definition of Inhabited(K,ΓN ) in Section 3 has
been replaced by

{Γ | Γ ::K and ∀x ∈ dom(Γ).∃s ∈ ATermsN ,Σ,K(x)∩Flow(x).∀x : τ ∈ Γ.ΓN `−A s : τ}.

where Flow(x) is an overapproximation of the terms that may flow to x in a reduction
sequence from the start symbol S. We use 0CFA to compute Flow(x). The implementation
was compared to other type-based model checkers for HORS: TRecS [11], GTRecS2 [15]
(which is a successor of GTRecS [14]) and TravMC [21], and a saturation-based model
checker CSHORe [5] for CPDS. Since GTRecS2 has different variants of the algorithm for
proving safety properties and their complements (eventually giving up if it cannot prove the
property) we only ran the appropriate version of GTRecS2 on each example.

The benchmark suite consists of five categories of inputs (separated by horizontal lines),
which have been collected from different applications of trivial automata model checking of
HORS [20, 23, 19, 26, 16]: the first one from the HMTT verification tool [20], the second
from software model checker MoCHi [19], the third from the PMRS model checker [23], the
fourth from exact flow analysis [26], and the fifth from applications to data compression [16].
The inputs have been automatically generated from program verification problems except for
those in the fifth category. We have chosen relatively large programs from each category,
so the benchmarks represent “hard instances”. The benchmarks marked by “(neg)” expect
the output of model checking to be “No”; “Yes” is expected for the others. Some tools such
as TRecS and TravMC can take certain extensions of HORS as input; benchmarks with
such extensions were reformulated as a pure HORS in every case, which might result in a
longer run-time than on the original. The implementation and benchmarks are available at
http://www-kb.is.s.u-tokyo.ac.jp/~koba/horsat/.

We ran the experiments on an Acer Aspire TimeLineX 4820T laptop computer with an
Intel Core i5 M430 CPU and 4GB of RAM. The operating system was GNU/Linux (Fedora
17) with kernel version 3.6.2-4. TRecS, GTRecS2 and HorSat were compiled with OCaml
version 3.12.1, CSHORe was run with OpenJDK IcedTea version 1.7.0 and TravMC using
Mono version 3.0.2. A memout of 2GB and a timeout of 300s was given to each tool for each
run. The order and size of the HORS are respectively listed in the O and Sz columns (where
the size of a HORS is defined as the total number of occurrences of symbols in the righthand
side of the rewriting rules). The T, G, TMC and C columns give the total run-times (in
seconds) for the TRecS, GTRecS2, TravMC and CSHORe tools as each tool reports for
itself. The HS and HST columns give the run-times as reported by HorSat and HorSatT.

Overall the benchmark results are favorable to our new algorithms HorSat and HorSatT.
They are the best two tools in terms of the number of time-outs, although the state-of-the-art
model checker TRecS is often better in terms of the run-times when it terminates. (The
only time-out of HorSat is for fibstring, which is a pathological case where a huge string
is concisely expressed by a HORS.) HorSat outperforms another saturation-based model
checker CSHORe except for one instance (fold_right); this confirms the advantage of directly
working on HORS without a detour to CPDS. According to further experiments (by Steven
Ramsay) using the benchmark Gm,n [14], the running time of HorSat is not linear in the
size of Gm,n, even if we exclude out the time for 0CFA (whose worst case complexity is
cubic time) to compute Flow(x). We believe that this is due the naiveness of the current
implementation, and that an improved implementation would make the running time almost
linear in the size of Gm,n.

http://www-kb.is.s.u-tokyo.ac.jp/~koba/horsat/
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Table 2 Comparison of model-checking tools.

Benchmark file Ord Sz T G TMC C HS HST
jwig-cal_main 2 7627 0.090 0.902 0.081 — 13.137 5.306
specialize_cps 3 2731 — — — 5.145 1.702 0.956
xhtmlf-div-2 (neg) 2 3003 0.327 51.8 — — 12.392 2.697
xhtmlf-m-ch 2 3027 0.331 18.558 — — 9.282 2.496
fold_fun_list 7 1346 0.724 — — 4.152 0.180 0.729
fold_right 5 1310 — — — 2.996 34.796 7.958
search-e-ch (neg) 6 837 0.011 — 0.489 9.547 0.403 0.921
zip 4 2952 — — — 19.299 3.501 —
filepath 2 5956 — — — 1.059 0.586 6.860
filter-nonzero (neg) 5 482 0.008 0.486 0.206 3.337 0.067 0.147
filter-nonzero-1 5 888 0.272 — — 11.116 0.223 1.203
map-plusone-2 5 704 1.227 — 20.080 5.518 0.113 0.609
cfa-life2 14 7648 — — — — 2.860 —
cfa-matrix-1 8 2944 — — — — 0.450 5.345
cfa-psdes 7 1819 — — — 6.761 0.185 1.410
tak (neg) 8 451 — — 7.763 — 1.570 0.429
dna 2 411 0.029 0.072 0.467 — 0.126 0.335
g45 4 55 — 2.576 — — 0.019 0.017
fibstring 4 29 — 0.179 102.583 — — —
l 3 35 — 0.010 23.322 0.439 0.002 0.006

6 Related Work

Early model-checking algorithms for HORS [10, 1, 22, 9] were mainly used for showing
the decidability of model checking problems, and suffer from the k-EXPTIME worst-case
complexity [22] for almost all inputs. To our knowledge, Kobayashi [11] proposed the first
practical algorithm for trivial automata model checking, and implemented a model checker
TRecS [12]. His algorithm reduces the start symbol S in a finite number of steps, and infers
the types of non-terminals by observing how each non-terminal symbol is used in the partial
reduction sequence. The inferred type environment is then used as an over-approximation of
the fixedpoint of Shrink in Section 4. Some other practical algorithms [14, 21] have since been
developed. Except GTRecS in a pathological case (the fifth category in the benchmark),
however, they failed to show a clear practical advantage over TRecS. Those algorithms
are all based on a type-based characterization of the problem, and propagate information
forwards, starting with the goal to prove that S has type qI . Broadbent et al. [4, 5] have
recently proposed a quite different algorithm for CPDS, which uses backward propagation.

As already noted in Section 1, our new algorithms HorSat and HorSatT bridge the
gap between the two families of model checking algorithms mentioned above. On the one
hand, HorSat and HorSatT are strongly related to the type-based algorithms in that
they use Kobayashi’s type-based characterization of model checking [13], and the algorithms
can be viewed as an (optimized) fixed-point computation for a function on intersection
type environments. On the other hand, HorSat is also related to the saturation algorithm
for CPDS, in that both propagate information backwards, starting from the set of error
configurations. Our representation of a set of terms as a type environment is superficially
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quite different from Broadbent et al.’s stack automata used to represent CPDS configurations
(which are variations of alternating automata). Based on Rehof and Urzyczyn’s result [25],
however, a type environment can also be regarded as an alternating tree automaton that
accepts the set TermsΓ of terms well-typed under Γ (see Section C in Appendix). Thus,
both approaches essentially represent the set of states reachable to accepting configurations
by using (variants of) alternating automata. A more precise connection on this point will be
discussed in a companion paper [3], by using a streamlined version of CPDS.

As mentioned in Section 1, the model checking of HORS has recently been applied to
automated program analysis and verification [13, 11, 23, 26]. Those applications should
benefit from the performance advantage of HorSat; in fact, we have recently replaced the
underlying model checker TRecS with HorSat in the work on exact flow analysis [26] and
observed a speed up by an order of magnitude in several cases.

7 Conclusion

We have presented the first algorithm for model-checking HORS using intersection types
that employs a backward mode of inference, à la saturation algorithm for CPDS [4]; previous
type-based algorithms use forward inference. We have also implemented a prototype model
checker and confirmed that it often outperforms previous model checkers for HORS.

This paper lays the foundation for further work on backward mode saturation-like
algorithms using types. It is worth mentioning that the set of (forwards)-reachable terms
is irregular (when viewed as a language consisting of abstract syntax trees) and existing
forward-mode algorithms must in some sense approximate the set of reachable terms. On
the other hand, Rehof and Urzyczyn’s construction [25] applied to the type environment
computed by saturation shows that the set of terms backward-reachable from error-terms is
regular. In this respect backward algorithms are arguably more natural.
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A On Theorem 8

Kobayashi and Ong’s result [17] directly imply the following special cases of Theorem 8.

I Theorem 24. Suppose Tree(G) does not contain ⊥. Then, Tree(G) is accepted by A in
the trivial mode if and only if there is a possibly infinite derivation tree for ∅ `A,G S : qI .

I Theorem 25. Suppose Tree(G) does not contain ⊥. Then, Tree(G) is accepted by A in
the co-trivial mode if and only if there is a finite derivation tree for ∅ `A,G S : qI .

We sketch how to derive Theorem 8 from Theorems 24 and 25. Suppose Tree(G) may
contain ⊥. Let G′ be a HORS that is obtained by adding a special terminal loop of arity
1, and replacing each rule F x1 · · · xk → t of G with F x1 · · · xk → loop(t). Then, Tree(G′)
does not contain ⊥, and Tree(G) is obtained from Tree(G′) by removing every infinite
sequence loop with ⊥ and removing other occurrences of loop. Let A′ be the ATA obtained
from A by adding the transition rule (q, loop, {(1, q)}) for every state q. Then, we have:

Tree(G) is accepted by A in the co-trivial mode
⇔ Tree(G′) is accepted by A′ in the co-trivial mode
⇔ there is a finite derivation for ∅ `A′,G′ S : qI .
⇔ there is a finite derivation for ∅ `A,G S : qI .

Similarly, we have:

Tree(G) is accepted by A in the trivial mode
⇔ Tree(G′) is accepted by A′ in the trivial mode
⇔ there is a possibly infinite derivation for ∅ `A′,G′ S : qI .
⇔ there is a possibly infinite derivation for ∅ `A,G S : qI .

B Proofs

B.1 Proofs for Section 3
Proof of Lemma 9

Suppose that Tree(G) is accepted by A. Then there exists a finite run-tree R of A over
Tree(G). Let D be the relevant part of the domain of Tree(G), i.e., D = {π | (π, a) ∈
codom(R)}. By the definition of Tree(G)(=

⊔
{t⊥ | S −→∗G t}), there exists t such that

S −→∗G t and U ⊆ dom(t⊥) with Tree(G)(π) = t⊥(π) for every π ∈ U . Then, R is also a
run-tree of A⊥ over t⊥. Thus, t satisfies the required property.

Conversely, suppose that S −→∗G t and t⊥ is accepted by A⊥. Since A⊥ has no transition
rule on ⊥, a run-tree of A⊥ over t⊥ must also be a run-tree of A over Tree(G). Thus,
Tree(G) is accepted by A. J

Proof of Lemma 10

Let A = (Σ, Q,∆, qI). We show that ∅ `−A t : q if and only if t⊥ is accepted by (Σ, Q,∆, q),
by induction on the structure of t. If ∅ `−A t : q, then t must be of the form a t1 · · · tk and:

(q, a, {(i, qj) | i ∈ {1, . . . , k}, j ∈ Ii}) ∈ ∆ ∅ `−A ti : qj for each i ∈ {1, . . . , k}, j ∈ Ii

By the induction hypothesis, ti⊥ is accepted by (Σ, Q,∆, qj) for each i ∈ {1, . . . , k}, j ∈ Ii.
Thus, t⊥ = a t1

⊥ · · · tk⊥ is accepted by (Σ, Q,∆, q).
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Conversely, suppose that t⊥ is accepted by (Σ, Q,∆, q). Then t must be of the form
a t1 · · · tk. So, we have: (q, a, {(i, qj) | i ∈ {1, . . . , k}, j ∈ Ii}) ∈ ∆ for some I1, . . . , Ik and
ti
⊥ is accepted by (Σ, Q,∆, qj) for each i ∈ {1, . . . , k}, j ∈ Ii. By the induction hypothesis,
∅ `−A ti : qj for each i ∈ {1, . . . , k}, j ∈ Ii. Thus, we have ∅ `−A t : q as required. J

I Lemma 26. Let s and t be applicative terms. If Γ `−A [t/x]s : τ , then there exist a (possibly
empty) set I and {τi | i ∈ I} (where ` may be 0) such that Γ ∪ {x : τi | i ∈ I} `−A s : τ and
Γ `−A t : τi for each i ∈ I.

Proof. The proof proceeds by induction on the structure of s.
Case s = a or s = y 6= x: The required result holds for I = ∅.
Case s = x: The result holds for I = {1} and τ1 = τ .
Case s = s1s2: In this case, we have

Γ `−A [t/x]s1 :
∧
j∈J τ

′
j → τ Γ `−A [t/x]s2 : τ ′j for each j ∈ J

By the induction hypothesis, we have:

Γ ∪ {x : τi | i ∈ I0} `−A s1 :
∧
j∈J τ

′
j → τ Γ ∪ {x : τi | i ∈ Ij} `−A s2 : τ ′j for each j ∈ J

Γ `−A t : τi for each i ∈ I ∪
⋃
j∈J Ij .

Let I = I0 ∪
⋃
j∈J Ij . Then, we have Γ ∪ {x : τi | i ∈ I} `−A s : τ as required.

J

Proof of Lemma 12

This follows by repeated applications of Lemma 26. J

I Lemma 27. Let G(m) and t(m) as defined in the proof of Theorem 15. If Fm(∅)∪Γ `−A t : τ
then Γ `A⊥,G(m) t(m) : τ .

Proof. This follows by double induction on m and the derivation of Fm(∅) `−A t : τ , with
case analysis on the last rule used for deriving Fm(∅) ∪ Γ `−A t : τ . Since the other cases are
trivial, we show only the case where t = F , with F : τ 6∈ Γ. In this case, F : τ ∈ Fm(∅) holds
for some m ≥ 1. By the definition of F and Lemmas 13, we have

τ = ΓV (x1)→ · · · → ΓV (xk)→ q R(F ) = λx1. · · ·λx`.s Fm−1(∅) ∪ ΓV `−A t : q

By the induction hypothesis, we have ΓV `A⊥,G t
(m−1) : q. By using T-NT, we obtain

Γ `A⊥,G F
(m) : τ as required. J

I Lemma 28 (substitution). If Γ ∪ {x : τi | i ∈ I} `A,G s : q and Γ `A,G t : τi for every i ∈ I,
with x 6∈ dom(Γ), then Γ `A,G [t/x]s : q.

Proof. This follows by straightforward induction on the structure of s. J

I Lemma 29 (type preservation). If ∅ `A,G t : q and t −→G t′, then ∅ `A,G t′ : q.

Proof. This follows by induction on the derivation of t −→G t′. Since the induction step
is trivial, we show only the case where t = F t1 · · · tk and t′ = [t1/x1, . . . , tk/xk]s with
R(F ) = λx1. · · ·λxk.s. In this case, we have:

{xi : τj | i ∈ {1, . . . , k}, j ∈ Ii} `−A Gs : q ∅ `−A Gti : τj for each i ∈ {1, . . . , k}, j ∈ Ii

By the substitution lemma (Lemma 28), we have ∅ `−A G[t1/x1, . . . , tk/xk]s : q as required. J
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B.2 Proofs for Section 4
Proof of Theorem 19

This follows immediately from Theorem 8. Note that there is a fixedpoint Γ of ShrinkG such
that S : qI ∈ Γ if and only if there is a possibly infinite derivation tree for ∅ `A S : qI . To
see this, note that if there is a possibly infinite derivation tree for ∅ `A S : qI , then the set
{F : τ | ∅ `A F : τ occurs in the derivation tree} is a fixed-point of Shrink, and conversely,
one can construct an infinite derivation tree for ∅ `A S : qI from a fixedpoint of Shrink. J

The rest of this subsection is devoted to the proof of Theorem 21.

I Lemma 30. Suppose G = (Σ,N ,R′, S) and R ⊆ R′. If Γ ` (G, t) : q and s −→R t, then
FG,A,R(Γ) ` (G, s) : q.

Proof. By Lemma 14, we have FG,A,R(Γ) ` s : q. So, it remains to show Shrink(FG,A,R(Γ))
= FG,A,R(Γ). Suppose F : σ1 → · · · → σk → q ∈ FG,A,R(Γ) \ Γ and R(F ) = λx1. · · ·λx`.t.
By the definition of F and Lemma 13, we have Γ, x1 : σ1, . . . , x` : σ` `A t : q. Thus, we have
FG,A,R(Γ), x1 : σ1, . . . , x` : σ` `A t : q as required. J

I Lemma 31. If Tree(G) is accepted by A> in the trivial mode, then S : qI is an element of⋂
j∈ω Shrinkj(

⋃
i∈ω F i(Γ0)).

Proof. Let G be (Σ,N ,R, S), where dom(N ) = {F1, . . . , Fn} and S = F1. Let Γmax be
the largest type environment that conforms to N , i.e., {F : τ | τ :: N (F )}. Let m be the
number of type bindings |Γmax|. Let G(m) be the HORS (Σ ∪ {⊥ 7→ 0},N (m),R(m), F

(m)
1 )

constructed as an approximation of G in the proof of Theorem 15. Let R′(m) be the following
subset of R(m):

R′(m) = {F (j)
i 7→ [F (j−1)

1 /F1, . . . , F
(j−1)
n /Fn]R(Fi)}

By the strong normalization of the simply-typed λ-calculus, F (m)
1 −→∗R′(m) t 6−→R′(m) for some

t, and there is a corresponding reduction sequence F1 −→∗G t′ of G such that t′⊥ = t⊥. Thus,
t⊥ is accepted by A>. By Lemma 10, we have ∅ `−A t⊥ : qI . Thus, we have Γ(0)

0 `−A t : qI ,
where Γ(0)

0 = {F (0) : τ | F : τ ∈ Γ0}. By Lemma 30, we have Γ′ ` (G(m), F
(m)
1 ) : qI for

Γ′ =
⋃
i∈ω F iG(m),A>,R′(m)(Γ

(0)
0 ). Let Γ′j be: {Fi : τ | F (j′)

i : τ ∈ Γ′ ∧ j′ ≥ j}. By the
condition Γ′ =

⋃
i∈ω F iG(m),APT>,R′(m)(Γ

(0)
0 ), we have Γ′0 ⊆

⋃
i∈ω F iG,A,R(Γ0). Furthermore,

Γ′j forms a monotonically decreasing sequence: Γ′0 ⊇ Γ′1 ⊇ · · · ⊇ Γ′m. Since |Γ′0| ≤ m and
|Γ′m| ≥ |{F

(m)
1 : qI}| = 1, there exists k (< m) such that Γ′k = Γ′k+1. By the condition

Γ′ ` (G(m), F
(m)
1 ) : qI , we have ` G(m) : Γ′, which implies:

Γ↓{F (k)
1 ,...,F

(k)
n }, x1 : σ1, . . . , x` : σ` `−A [F (k)

1 /F1, . . . , F
(k)
n /Fn]t : τ

for every F (k+1) : τ ∈ Γ′ and R(F ) = λx1. · · ·λx`.t. Here, Γ↓S denotes {F : τ ∈ Γ | F ∈ S}.
Since Γ′k = Γ′k+1, the above condition implies: Γ′k, x1 : σ1, . . . , x` : σ` `−A t : τ for every
F : τ ∈ Γ′k and R(F ) = λx1. · · ·λx`.t, i.e., ShrinkG(Γ′k) = Γ′k. Therefore, we have:

S : qI ∈ Γ′m
⊆ Γ′k =

⋂
j∈ω Shrinkj(Γ′k) ⊆

⋂
j∈ω Shrinkj(Γ′0) ⊆

⋂
j∈ω Shrinkj(

⋃
i∈ω F i(Γ0))).

J
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Proof of Theorem 21

The “only if” direction follows immediately from Theorem 19. The “if” direction follows
from Lemma 31. J

C An algorithm to check the inhabitance condition

C.1 The construction
Computing F(Γ) requires a procedure to check Γ

?
∈ Inhabited(K,ΓN ). Following Rehof and

Urzyczyn [25], we can reduce it the emptiness problem for an alternating tree automaton. This
also serves to demonstrate how our algorithm can be interpreted as manipulating alternating
tree automata (the stack automata manipulated by the CPDS algorithm can also be seen as
a kind of alternating tree automaton). Given ΓN , define an ATA A′ = (Σ′, Q′,∆′, q′I) by:

Σ′ = {a 7→ 0 | a ∈ dom(Σ)} ∪ {F 7→ 0 | F ∈ dom(N )}
∪{@ 7→ 2}

Q′ = {(τ, κ) | τ :: κ, and τ occurs (as a sub-expression)
in ΓN or a type of a constant}

∆′ = {((τ, κ), a, ∅) | ∅ `−A a : τ and κ = o→ · · · → o︸ ︷︷ ︸
Σ(a)

→ o}

∪{((τ,N (F )), F, ∅) | F : τ ∈ ΓN}
∪{((τ, κ),@,
{(1, (

∧
i∈I τi → τ, κ′ → κ))} ∪ {(2, (τi, κ′)) | i ∈ I})

| (
∧
i∈I τi → τ, κ′ → κ) ∈ Q}

q′I = (qI , o)

By the construction, t] is accepted by (Σ′, Q′,∆′, (τ, κ)) if and only if t ∈ ATermsN ,Σ,κ
and ΓN `−A t : τ , where t] is the tree representation of term t, with an application t1t2 is
expressed by a tree:

@

t]1 t]2

Thus, to check Γ∈Inhabited(K,ΓN ), it suffices to check that for every x ∈ dom(Γ), the
intersection:⋂

x:τ∈Γ
L(Σ′, Q′,∆′, (τ,K(x)))

is non-empty, where L(A) denotes the set of trees accepted by A (in the co-trivial mode).
During the computation of Fm(∅) (wherem = 1, 2, . . .), the automatonA′ for ΓN = Fm(∅)

can be constructed incrementally.

C.2 A remark on the complexity of the emptiness check
For the purposes of HORS model-checking, we are interested in the complexity of our
algorithms when the arity of sorts (and hence types) and the sizes of the property automaton
(and in particular Q) are bounded. This is because these tend to be small compared to the
size of the HORS itself.

In this subsection we explain why the inhabitance check used in the HorSat algorithm can
be regarded (under the assumptions above) as a constant-time operation when considering the
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theoretical worst-case complexity. However, this is not intended as a practical algorithm (the
constant is still generally very large) but just to demonstrate that theoretically inhabitance
checking does not negate the fixed parameter tractability of the algorithm.

First observe that, for the purposes of inhabitance checking, it is only necessary to have a
single non-terminal bound to any given type. More precisely, let ΓN be a set of type bindings
for non-terminals, and K a kind-environment such that ΓN :: K. Suppose for each sort κ and
each set T ⊆ ITypesκ we have a fresh non-terminal Fκ,T . Define:

UK,ΓN
:= {Fκ,T : κ | ∃G.∀τ ∈ T.G : τ ∈ ΓN with τ :: κ}
∪ {Fκ,T : κ | ∃a ∈ dom(Σ).∀τ ∈ T.∅ `A,G a : τ with τ :: κ}

∆K,ΓN
:= {Fκ,T : τ | Fκ,T ∈ dom(UK,ΓN

) and τ ∈ T}

It should be clear that

Inhabited(K,ΓN ) = Inhabited(UK,ΓN
,∆K,ΓN

)

After all, given a term t witnessing {x : τ | τ ∈ T} ∈ Inhabited(K,ΓN ) we can construct
a term t′ witnessing {x : τ | τ ∈ T} ∈ Inhabited(UK,ΓN

,∆K,ΓN
) by replacing each non-

terminal G occurring in t with Fκ,R where R is the maximal set satisfying {G : τ | τ ∈
R} ⊆ Γ and R :: κ, and replacing every terminal a with Fκ,R where R is the maximal
set satisfying ∅ `A,G a : τ for every τ ∈ R, with R :: κ. Conversely, given a term t′

witnessing {x : τ | τ ∈ T} ∈ Inhabited(UK,ΓN
,∆K,ΓN

), we can construct a term t witnessing
{x : τ | τ ∈ T} ∈ Inhabited(K,ΓN ) by replacing every occurrence Fκ,R in t′ by either a G
such that G : τ ∈ Γ for every τ ∈ R or a ∈ dom(Σ) such that ∅ `A,G a : τ for every τ ∈ R
(one of which must exist by definition).

Note that the size of ∆K,ΓN
is bounded by a constant, namely the number of different well-

sorted sets of intersection types. Thus in particular the emptiness of
Inhabited(UK,ΓN

,∆K,ΓN
) can be determined in constant time (for example by the algorithm

sketched in the previous section whose run-time depends only on |∆K,ΓN
| and the number of

intersection types). So assuming that ∆K,ΓN
has already been computed, Inhabited(K,ΓN )

can be computed in constant time.
We now observe how ∆K,ΓN

can be grown incrementally together with ΓN as the algorithm
progresses (rather than being recomputed on each inhabitance check). Since ΓN := ∅ at the
start of the algorithm, ∆K,ΓN

is correspondingly initialized to ∆∅,∅.
As an aid the HorSat algorithm could maintain a table H with dom(N ) as keys where:

H(G) = {P ⊆ ITypesκ | G : κ ∈ K and ∀τ ∈ P.G : τ ∈ Γ}

This table grows as ΓN is grown with the progression of the HorSat algorithm. Whenever
a new set P ′ is added to H(G) for some G ∈ dom(N ) ∪ dom(Σ), P ′ is also added to ∆K,ΓN

.
Whenever a new type binding for a non-terminal G : τ is added to ΓN , this must be

processed against every member P of H(G) with P ∪ {τ} then being added to H(G).
Since the number of intersection types is fixed (and so the number of sets of intersection

types is fixed) this must involve only constantly many comparisons. Thus assuming that
H(G) can be looked up in constant time, the overhead to HorSat for maintaining H(G)
would also only be constant for each addition to ΓN (and it is only upon each addition to
ΓN that the inhabitance check is performed).
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