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Abstract
We study two-player zero-sum games over infinite-state graphs equipped with ωB and finitary
conditions.

Our first contribution is about the strategy complexity, i.e the memory required for winning
strategies: we prove that over general infinite-state graphs, memoryless strategies are sufficient
for finitary Büchi, and finite-memory suffices for finitary parity games.

We then study pushdown games with boundedness conditions, with two contributions. First
we prove a collapse result for pushdown games with ωB-conditions, implying the decidability of
solving these games. Second we consider pushdown games with finitary parity along with stack
boundedness conditions, and show that solving these games is EXPTIME-complete.
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1 Introduction

Games on graphs. Two-player games played on graphs is a powerful mathematical frame-
work to analyze several problems in computer science as well as mathematics. In particular,
when the vertices of the graph represent the states of a reactive system and the edges represent
the transitions, then the synthesis problem (Church’s problem) asks for the construction of a
winning strategy in a game played on the graph [12, 30]. Game-theoretic formulations have
also proved useful for the verification, refinement, and compatibility checking of reactive
systems [4]; and has deep connection with automata theory and logic, e.g the celebrated
decidability result of monadic second-order logic over infinite trees due to Rabin [33].
Omega-regular conditions: strengths and weaknesses. In the literature, two-player games
on finite-state graphs with ω-regular conditions have been extensively studied [21, 22, 25, 26].
The class of ω-regular languages provides a robust specification language for solving control
and verification problems (see, e.g, [32]). Every ω-regular condition can be decomposed into
a safety part and a liveness part [2]. The safety part ensures that the component will not
do anything “bad” (such as violate an invariant) within any finite number of transitions.
The liveness part ensures that the component will do something “good” (such as proceed, or
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respond, or terminate) in the long-run. Liveness can be violated only in the limit, by infinite
sequences of transitions, as no bound is stipulated on when the “good” thing must happen.
This infinitary, classical formulation of liveness has both strengths and weaknesses. A main
strength is robustness, in particular, independence from the chosen granularity of transitions.
Another important strength is simplicity, allowing liveness to serve as an abstraction for
complicated safety conditions. For example, a component may always respond in a number
of transitions that depends, in some complicated manner, on the exact size of the stimulus.
Yet for correctness, we may be interested only that the component will respond “eventually”.
However, these strengths also point to a weakness of the classical definition of liveness: it
can be satisfied by components that in practice are quite unsatisfactory because no bound
can be put on their response time.

Stronger notion of liveness: finitary conditions. For the weakness of the infinitary for-
mulation of liveness, alternative and stronger formulations of liveness have been proposed.
One of these is finitary liveness [3]: it is satisfied if there exists a bound N such that every
stimulus is followed by a response within N transitions. Note that it does not insist on a
response within a known bound N (i.e, every stimulus is followed by a response within N
transitions), but on response within some unknown bound, which can be arbitrarily large;
in other words, the response time must not grow forever from one stimulus to the next. In
this way, finitary liveness still maintains the robustness (independence of step granularity)
and simplicity (abstraction of complicated safety conditions) of traditional liveness, while
removing unsatisfactory implementations.

All ω-regular languages can be defined by a deterministic parity automaton; the parity
condition assigns to each state an integer representing a priority, and requires that in the
limit, every odd priority is followed by a lower even priority. Its finitary counterpart, the
finitary parity condition, strenghtens this by requiring the existence of a bound N such that
in the limit every odd priority is followed by a lower even priority within N transitions.

Games with finitary conditions. Games over finite graphs with finitary conditions have
been studied in [15], leading to very efficient algorithms: finitary parity games can be solved in
polynomial time. In this paper, we study games over infinite graphs with finitary conditions,
and then focus on the widely studied class of pushdown games, which model sequential
programs with recursion. This line of work belongs to the tradition of infinite-state systems
and games, (see e.g [1, 11]). Pushdown games with the classical reachability and parity
conditions have been studied in [5, 37]. It has been established in [37] that the problem of
deciding the winner in pushdown parity games is EXPTIME-complete. However, little is
known about pushdown games with boundedness conditions; one notable exception is parity
and stack boundedness conditions [10, 24]. The stack boundedness condition naturally arises
with the synthesis problem in mind, since bounding the stack amounts to control the depth
of recursion calls of the sequential program.

Bounds in ω-regularity. The finitary conditions are closely related to the line of work
initiated by Bojańczyk in [7], where the MSO + B logic was defined, generalizing MSO over
infinite words by adding a bounding quantifier B. The satisfiability problem for this logic
has been deeply investigated (see for instance [7, 8, 9]), but the decidability for the general
case is still open. A fragment of MSO + B over infinite words was shown to be decidable
in [8], by introducing the model of ωB-automata, which manipulate counters. They perform
three kind of actions on counters: increment (i), reset (r) or nothing (ε). The relation
with finitary conditions has been investigated in [13], where it is shown that automata with
finitary conditions exactly correspond to star-free ωB-expressions.
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Regular cost-functions. A different perspective for bounds in ω-regularity was developed
by Colcombet in [16] with functions instead of languages, giving rise to the theory of regular
cost-functions and cost-MSO. The decidability of cost-MSO over finite trees was established
in [20], but its extension over infinite trees is still open, and would imply the decidability of
the index of the non-deterministic Mostowski hierarchy [19], a problem open for decades. A
subclass of cost-MSO called temporal cost logic was introduced in [18] and is the counterpart
of finitary conditions for regular cost-functions [13].
Quantification order. The essential difference between the approaches underlying the logics
MSO + B and cost-MSO is a quantifier switch. We illustrate this in the context of games: a
typical property expressed in MSO + B is “there exists a strategy, such that for all plays,
there exists a bound on the counter values”, while cost-MSO allows to express properties like
“there exists a strategy, there exists a bound N , such that for all plays, the counter values
are bounded by N”. In other words, MSO + B expresses non-uniform bounds while bounds
in cost-MSO are uniform.
Memoryless determinacy for infinite-state games. Colcombet pointed out in [17] that
the remaining difficulty to establish the decidability of cost-MSO over infinite trees is a
good understanding of cost-games, and more specifically the cornerstone is to extend the
memoryless determinacy of parity games over infinite arenas, following [21, 22, 26].

This paper investigates the subcase of finitary conditions.
Our contributions. We study two questions about infinite-state games with finitary con-
ditions: the memory requirements of winning strategies and the decidability of solving a
pushdown game.
Strategy complexity. We give (non-effective) characterizations of the winning regions for
finitary games over countably infinite graphs, implying a complete picture of the strategy
complexity. Most importantly, we show that for finitary Büchi conditions memoryless
strategies suffice, and that for finitary parity conditions, memory of size d/2 + 1 suffices,
where d is the number of priorities of the parity condition.
Pushdown games. We present two contributions.

First we consider pushdown games with ωB-conditions and prove the equivalence between
the following: “there exists a strategy, such that for all plays, there exists a bound on the
counter values” and “there exists a strategy, there exists a bound N , such that for all plays,
eventually the counter values are bounded by N”. We refer to this as a collapse result, as it
reduces a quantification with non-uniform bounds (in the fashion of MSO + B) to one with
uniform bounds (à la cost-MSO). Using this, we obtain the decidability of determining the
winner in such games relying on previous results [6, 7].

Second we consider pushdown games with finitary parity along with stack boundedness
conditions, and establish that solving these games is EXPTIME-complete.
All proofs are omitted, but can be found in the technical report [14].

2 Definitions

Arenas and games. The games we consider are played on an arena A = (V, (VE , VA), E),
which consists of a (potentially infinite but countable) graph (V,E) and a partition (VE , VA)
of the vertex set V . A vertex is controlled by Eve and depicted by a circle if it belongs to
VE and controlled by Adam and depicted by a square if it belongs to VA. Playing consists in
moving a pebble along the edges: initially placed on a vertex v0, the pebble is sent along an
edge chosen by the player who controls the vertex. From this infinite interaction results a play
π, which is an infinite sequence of vertices v0, v1, . . . where for all i, we have (vi, vi+1) ∈ E, i.e

CSL’13



184 Infinite-state games with finitary conditions

π is an infinite path in the graph. We denote by Π the set of all plays, and define conditions
for a player by sets of winning plays Ω ⊆ Π. The games are zero-sum, which means that
if Eve’s condition is Ω, then Adam’s condition is Π \ Ω, usually denoted by “CoΩ” (the
conditions are opposite). Formally, a game is given by G = (A,Ω) where A is an arena and
Ω a condition. A condition Ω is prefix-independent if it is closed under adding and removing
prefixes.
Strategies. A strategy for a player is a function that prescribes, given a finite history of the
play, the next move. Formally, a strategy for Eve is a function σ : V ∗ · VE → V such that for
a finite history w ∈ V ∗ and a current vertex v ∈ VE , the prescribed move is legal, i.e along
an edge: (v, σ(w · v)) ∈ E. Strategies for Adam are defined similarly, and usually denoted
by τ . Once a game G = (A,Ω), a starting vertex v0 and strategies σ for Eve and τ for Adam
are fixed, there is a unique play denoted by π(v0, σ, τ), which is said to be winning for Eve if
it belongs to Ω. The sentence “Eve wins from v0” means that she has a winning strategy
from v0, that is a strategy σ such that for all strategies τ for Adam, the play π(v0, σ, τ)
is winning. By “solving the game”, we mean (algorithmically) determine the winner. We
denote by WE(G) the set of vertices from which Eve wins, also referred to as winning set,
or winning region, and analogously WA(G) for Adam. A very important theorem in game
theory, due to Martin [29], states that Borel games (that is, where the condition is Borel) are
determined, i.e we have WE(G) ∪WA(G) = V , i.e from any vertex, exactly one of the two
players has a winning strategy. Throughout this paper, we only consider Borel conditions,
hence our games are determined.
Memory structures. We define memory structures and strategies relying on memory struc-
tures. A memory structure M = (M,m0, µ) for an arena A consists of a set M of memory
states, an initial memory state m0 ∈M , and an update function µ : M ×E →M . A memory
structure is similar to an automaton synchronized with the arena: it starts from m0 and
reads the sequence of edges produced by the arena. Whenever an edge is taken, the current
memory state is updated using the update function µ. A strategy relying on a memory
structureM, whenever it picks the next move, considers only the current vertex and the
current memory state: it is thus given by a next-move function ν : VE ×M → V . Formally,
given a memory structureM and a next-move function ν, we can define a strategy σ for
Eve by σ(w · v) = ν(v, µ∗(w · v)), where µ is extended to µ∗ : V + → M . A strategy with
memory structureM has finite memory if M is a finite set. It is memoryless, or positional
if M is a singleton: in this case, the choice for the next move only depends on the current
vertex, and can be described as a function σ : VE → V .
Attractors. Given F ⊆ V , define Pre(F ) as the union of {u ∈ VE | ∃(u, v) ∈ E, v ∈ F} and
{u ∈ VA | ∀(u, v) ∈ E, v ∈ F}. The attractor sequence is the step-by-step computation of
the least fixpoint of the monotone function X 7→ F ∪ Pre(X):{

AttrE
0 (F ) = F

AttrE
k+1(F ) = AttrE

k (F ) ∪ Pre(AttrE
k (F ))

The sequence (AttrE
k (F ))k≥0 is increasing with respect to set inclusion, so it has a limit,

denoted AttrE(F ), the attractor to F . An attractor strategy to F ⊆ V for Eve is a memoryless
strategy that ensures from AttrE(F ) to reach F within a finite number of steps. Specifically,
an attractor strategy to F from AttrE

N (F ) ensures to reach F within the next N steps.
ω-regular conditions. We define the Büchi and parity conditions. We equip the arena with
a coloring function c : V → [d] where [d] = {0, . . . , d} is the set of colors or priorities. For
a play π, let Inf(π) ⊆ [d] be the set of colors that appear infinitely often in π. The parity
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condition is defined by Parity(c) = {π | min(Inf(π)) is even}, i.e it is satisfied if the lowest
color visited infinitely often is even. Here, the color set [d] is interpreted as a set of priorities,
even priorities being “good” and odd priorities “bad”, and lower priorities preferable to
higher ones. As a special case, the class of Büchi conditions are defined using the color set
[1] = {0, 1} (i.e d = 1). Setting F as c−1(0) ⊆ V , we define Büchi(F ) = {π | 0 ∈ Inf(π)}, i.e
the Büchi condition Büchi(F ) requires that infinitely many times vertices in F are reached.
We usually call F the Büchi set and say that a vertex is Büchi if it belongs to F . The dual
is CoBüchi(F ) condition, which requires that finitely many times vertices in F are reached.
ωB-conditions. We equip the arena with k counters and an update function C : E →
{ε, i, r}k, associating to each edge an action for each counter. The value of a counter along a
play is incremented by the action i, reset by r and left unchanged by ε. We say that a counter
is bounded along a play if the set of values assumed is finite, and denote by Bounded the set
of plays where all counters are bounded, and Bounded(N) if bounded by N . Conditions of
the form Bounded ∩ Parity(c) are called ωB-conditions.

Note that the bound requirement is not uniform: a strategy is winning if for all plays,
there exists a bound N such that the counters are bounded by N and the parity condition is
satisfied. In other words, the bound N depends on the path. The sentence “Eve wins for
the bound N” means that Eve has a strategy which ensures the bound N uniformly: for all
plays, the counters are bounded by the same N . Similarly, the sentence “the strategy (for
Adam) breaks the bound N” means that it ensures that for all plays, either some counter
reaches the value N or the parity condition is not satisfied.
Finitary conditions. Finitary conditions add bounds requirements over ω-regular condi-
tions [3]. Given a coloring function c : V → [d], and a position k we define:

distk(π, c) = inf
k′≥k

{
k′ − k | c(πk′) is even, and

c(πk′) ≤ c(πk)

}
;

i.e distk(π, c) is the “waiting time” by means of number of steps from the kth vertex
to a preferable priority (that is, even and lower). The finitary parity winning condition
FinParity(c) was defined as follows in [15]: FinParity(c) = {π | lim supk distk(π, c) < ∞},
i.e the finitary parity condition requires that the supremum limit of the distance sequence is
bounded. In the special case where d = 1, this defines the finitary Büchi condition: setting
F = c−1(0), we denote distk(π, F ) = inf{k′ − k | k′ ≥ k, πk′ ∈ F}, i.e distk(π, F ) is the
number of transitions followed from the kth vertex before reaching the next Büchi vertex.
Then FinBüchi(F ) = {π | lim supk distk(π, F ) <∞}. In the context of finitary conditions,
the sentence “the strategy (for Adam) breaks the bound N” means that the strategy ensures
that for all plays, there exists a position k such that distk(π, c) > N .
I Remark. As defined, finitary conditions do not form a subclass of ωB-conditions; how-
ever, one can easily show that there exists a deterministic ωB-automaton which recognize
FinParity(c) (see e.g [13]), so finitary parity games easily reduce to ωB games by composing
with this deterministic automaton.

I Example 1. We conclude this section by an example witnessing the difference between
playing a Büchi condition and a finitary Büchi condition over an infinite arena. This is in
contrast to the case of finite arenas, where winning for Büchi and finitary Büchi conditions
are equivalent. Figure 1 presents an infinite arena where only Adam has moves; he loses the
Büchi game but wins for the finitary Büchi game. We give two representations: on the left
as a pushdown game (defined in Section 4), and on the right as an infinite-state game.

A play consists in rounds, each starting whenever the pebble hits the leftmost vertex.
In a round, Adam follows the top path, remaining in Büchi vertices; he may decide at any
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F

⊥

push(a) pop(a)

F

F F F . . .

. . .

Figure 1 Adam loses the Büchi game but wins the finitary Büchi game.

point to follow an edge down, following the bottom Büchi-free path before geting back to
the leftmost vertex. Whatever Adam does, infinitely many Büchi vertices will be visited, so
Adam loses the Büchi game. However, by going further and further to the right (e.g for i
steps in the ith round), Adam ensures longer and longer paths without Büchi vertices, hence
wins the finitary Büchi game.

3 Strategy complexity for finitary conditions over infinite-state games

In this section we give characterizations of the winning regions for finitary conditions over
infinite arenas, and use them to establish the strategy complexity.

Our motivation to prove the existence of finite-memory strategies comes from automata
theory, where several constructions rely on the existence of memoryless winning strategies
(for parity games): for instance to complement tree automata [22], or to simulate alternating
two-way tree automata by non-deterministic ones [36]. For this, one needs to prove the
existence of finite-memory strategies whose size only depends on the condition. We present
such a result in the following theorem.

I Theorem 2 (Strategy complexity for finitary games). The following assertions hold:
1. For all finitary Büchi games, there exists a memoryless winning strategy for Eve from

her winning set.
2. For all finitary parity games, there exists a winning strategy for Eve from her winning set

that uses at most d/2 + 1 memory states, where d is the number of colors.

3.1 Bounded and uniform conditions
To obtain Theorem 2, we take five steps, summarized in Figure 2, which involve two variants
of finitary conditions: uniform and bounded.

bounded
uniform
Büchi

uniform
Büchi

finitary
Büchi

bounded
parity

finitary
parity

Figure 2 Results implications.

Uniform conditions. The bound N ∈ N is made explicit; for instance the uniform Büchi
condition is Büchi(F,N) = {π | lim supk distk(π, F ) ≤ N}.
Bounded conditions. The requirement is not in the limit, but from the start of the play, i.e
the distance function is bounded rather than eventually bounded; for instance the bounded
parity condition is BndParity(c) = {π | supk distk(π, c) <∞}.

The two variants can be combined, for instance the bounded uniform Büchi condition
is BndBüchi(F,N) = {π | supk distk(π, F ) ≤ N}. Let us point out that in the special case
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of Büchi conditions, we have BndBüchi(F ) = FinBüchi(F ), hence we can refer to these
conditions either as bounded Büchi or as finitary Büchi.

3.2 Strategy complexity for bounded uniform Büchi games
Our first step is the study of bounded uniform Büchi games.

I Theorem 3 (Strategy complexity for bounded uniform Büchi games). For all bounded uniform
Büchi games with bound N , there exists a memoryless winning strategy for Eve from her
winning set.

We show that Eve’s winning set can be described using a greatest fixpoint, which allows
to define a winning memoryless strategy. We define a sequence (Zk)k≥0 of subsets of V :{

Z0 = V

Zk+1 = AttrE
N (F ∩ Pre(Zk))

As this sequence is decreasing with respect to set inclusion, it has a limit1, equivalently
defined as the greatest fixpoint of the monotone function X 7→ AttrE

N (F ∩ Pre(X)): we
denote it by Z.

I Lemma 4. Z =WE(BndBüchi(F,N))

The crucial point is the left-to-right inclusion, which consists in constructing a winning
strategy for Eve from Z. Roughly speaking, the strategy is obtained by nesting attractor
strategies on the slices defined by the sets (Zk)k≥0, and this strategy is memoryless.

3.3 From bounded uniform Büchi games to finitary Büchi games
We sketch the second step. The bounded uniform Büchi conditions are the prefix-dependent
counterpart of the uniform Büchi conditions: Büchi(F,N) = V ∗ ·BndBüchi(F,N). However,
this equality does not imply the equality between WE(Büchi(F,N)) and the attractor of
WE(BndBüchi(F,N)). The following properties hold:
1. WE(BndBüchi(F,N)) ⊆ WE(Büchi(F,N)),
2. if WE(BndBüchi(F,N)) is empty then WE(Büchi(F,N)) is empty.
We sketch the proof of the second item. Assume that Eve wins nowhere for BndBüchi(F,N),
then WA(BndBüchi(F,N)) is the set of all vertices: from everywhere Adam can break the
bound N once. Repeating such a strategy, he can break the bound N infinitely often, so
Adam wins everywhere for the condition Büchi(F,N), which implies WE(Büchi(F,N)) = ∅.

The two properties above imply that the uniform Büchi winning set is obtained by a
least fixpoint iteration using the bounded uniform Büchi winning set. In particular, the
memoryless determinacy transfers from bounded uniform Büchi to uniform Büchi.

This technique will be used several times in the paper (see e.g [27] for similar fixpoint
iterations). It consists in decomposing the uniform Büchi winning set into a sequence of
disjoint subarenas called “slices”, and define a positional strategy for each slice. Aggregating
all those strategies yields a positional winning strategy for the uniform Büchi condition. The
first slice is the attractor of the bounded uniform Büchi winning set, for which Eve has a

1 This follows from our assumption that the arenas have a countable set of vertices. Here we could
drop this assumption and define the sequence indexed by ordinals, which we avoided for the sake of
readability.
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F

F F . . . F . . .

F
F

F . . .

n

Figure 3 An infinite arena where Eve cannot predict the bound.

positional winning strategy for the uniform Büchi condition. We remove the first slice and
proceed inductively with the remaining arena. The key observation is that a play consistent
with the obtained strategy can only go down the slices, so eventually remains in one slice.
We sketch the third step. Denote by U the operator that associates to an arena the set of
vertices AttrE (

⋃
NWE(Büchi(F,N))). For the sake of readability, we also see U as a set of

vertices once an arena is fixed. We first show how to obtain a memoryless strategy that
wins for the condition FinBüchi(F ) from U . This requires us to compose several memoryless
strategies into one:

I Lemma 5 (Union and memoryless strategies [24]). Let (Ωn)n∈N be a family of Borel
conditions, and assume ∪nΩn is prefix-independent. If for all n, Eve wins positionally for
the condition Ωn from Vn, then she wins positionally for the condition ∪nΩn from ∪nVn.

Intuitively, U is the set of vertices where Eve has a strategy to attract in a region won
for some uniform Büchi condition. That is, from some point onwards, Eve can announce a
bound N and claim “I will win for the condition Büchi(F,N)”. However, it may be that even
if Eve wins, she is never able to announce a bound: such a situation happens in Example 6.

I Example 6. Figure 3 presents an infinite one-player arena, where Eve wins yet is not able
to announce a bound. A loop labeled n denotes a loop of length n, where a Büchi vertex is
visited every n steps. In this game, as long as Adam decides to remain in the top path, Eve
cannot claim that she will win for some uniform Büchi condition.

The following properties hold:
1. U ⊆ WE(FinBüchi(F )),
2. if U is empty then WE(FinBüchi(F )) is empty.
We sketch the second item. Assume that for all N , the winning set WE(Büchi(F,N)) is
empty, so Adam wins for the condition CoBüchi(F,N) from everywhere: let τN be a winning
strategy for Adam. From any vertex, the strategy τN ensures that at some point, there will
be a sequence of N consecutive non-Büchi vertices. Playing in turns τ1 until such a sequence
occurs, then τ2, and so on, ensures that the condition FinBüchi(F ) is spoiled. Hence Adam
wins everywhere for the condition CoFinBüchi(F ), which implies WE(FinBüchi(F )) = ∅.

As for the second step, the winning region for finitary Büchi is obtained as the least
fixpoint of the operator U , implying the memoryless determinacy for finitary Büchi.

We summarize in the following theorem the winning sets characterizations obtained for
the three variants of Büchi conditions, using mu-calculus formulae with infinite disjunction.

I Theorem 7 (Characterizations of the winning set).

WE(BndBüchi(F,N)) = νZ ·AttrE
N (F ∩ Pre(Z))

WE(Büchi(F,N)) = µY · νZ ·AttrE
N ((F ∪ Y ) ∩ Pre(Z))

WE(FinBüchi(F )) = µX ·

( ⋃
N∈N

µY · νZ ·AttrE
N ((F ∪ Y ∪X) ∩ Pre(Z))

)
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vn

1

3

0

2

n

to vn+1

Figure 4 An infinite arena where Eve needs memory to win BndParity(c).

3.4 From finitary Büchi to finitary parity games
We sketch the fourth step, which is a reduction from bounded parity games to bounded
Büchi games. We consider a coloring function c : V → [d], and assume d is even. Define the
memory structureM = ({1, 3, . . . , d− 1} ∪ {d},m0, µ), where:

µ(m, (v, v′)) =


m if c(v′) ≥ m
c(v′) if c(v′) < m and c(v′) is odd
d if c(v′) < m and c(v′) is even

The initial memory state m0 is c(v0) if c(v0) is odd, and d otherwise. Intuitively, this memory
structure keeps track of the most urgent pending request.

Let F = {(v, d) | c(v) is even}. We argue that G = (A,BndParity(c)) is equivalent to
G ×M = (A×M,BndBüchi(F )). This follows from the equivalence:

π ∈ BndParity(c) if and only if π̃ ∈ BndBüchi(F ),

where π̃ is the play in G ×M corresponding to π. Since Eve has a memoryless winning
strategy in any bounded Büchi game, which implies that she has a winning strategy using
M as memory structure in the original bounded parity game G.

I Example 8. Figure 4 presents an infinite arena, where for condition BndParity(c), Eve
needs two memory states to win. This is in contrast with finite arenas, where she has
memoryless winning strategies [15]. The label n on an edge indicates that the length of the
path is n. A play is divided in rounds, and a round is as follows: first Adam makes a request,
either 1 or 3, and then Eve either answers both requests and proceeds to the next round, or
stops the play visiting color 2. Assume Eve uses a memoryless strategy, and consider two
cases: either she chooses always 0, then Adam wins by choosing always 3, ensuring that
the response time grows unbounded, or at some round she chooses 2, then Adam wins by
choosing 1 at this particular round, ensuring that this last request will never be responded.
However, if Eve answers correctly – that is choosing color 0 for the request 1, and color 2 for
the request 3 – the bounded parity condition is satisfied; this requires two memory states.

The fifth step is very similar to the second, and is omitted here.

4 Pushdown ωB games

In this section we consider pushdown ωB games and prove a collapse result. Along with
previous results [6, 7], this implies that determining the winner in such games is decidable.

Pushdown arenas. A pushdown process is a finite-state machine which features a stack:
it is described as (Q,Γ,∆) where Q is a finite set of control states, Γ is the stack alphabet
and ∆ is the transition relation. There is a special stack symbol denoted ⊥ which does not
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belong to Γ; we denote by Γ⊥ the alphabet Γ ∪ {⊥}. A configuration is a pair (q, u⊥) (the
top stack symbol is the leftmost symbol of u). There are three kinds of transitions in ∆:

(p, a,push(b), q): allowed if the top stack element is a ∈ Γ⊥, the symbol b ∈ Γ is pushed
onto the stack.
(p,pop(a), q): allowed if the top stack element is a ∈ Γ, the top stack symbol a is popped
from the stack.
(p, a, skip, q): allowed if the top stack element is a ∈ Γ⊥, the stack remains unchanged.

The symbol ⊥ is never pushed onto, nor popped from the stack. The pushdown arena of a
pushdown process is defined as (Q× Γ∗⊥, (QE × Γ∗⊥, QA × Γ∗⊥), E), where (QE , QA) is a
partition of Q and E is given by the transition relation ∆. For instance if (p, a,push(b), q) ∈ ∆,
then ((p, aw⊥), (q, baw⊥)) ∈ E, for all words w in Γ∗.

Conditions. The parity conditions for pushdown arenas are specified over the control states,
i.e do not depend on the stack content. Formally, a coloring function is given by c : Q→ [d],
and extended to c : Q× Γ∗⊥ → [d] by c(q, u⊥) = c(q).

We begin this section by giving an example witnessing an interesting phenomenon of
pushdown games with ωB-conditions.

I Example 9. Figure 5 presents a pushdown ωB game where Eve wins but with arbitrarily
large value of the counter, depending on Adam. Let us first look at the two bottom states:
in the left-hand state at the bottom, Adam can push as many b’s as he wishes, and moves
the token to the state to its right, where all those b’s are popped one at a time, incrementing
the counter each time. In other words, each visit of the two bottom states allows Adam to
announce a number N and to increment the counter by N . We now look at the states on the
top line: the initial state is the leftmost one, where Adam can push an arbitrary number of
a’s. We see those a’s as credits: from the central state, Adam can use one credit (i.e pop an
a) to pay a visit to the two bottom states. When he runs out of credit, which will eventually
happen, he moves the token to the rightmost state, where nothing happens anymore.

F

F

Fpush(a)

push(b)
pop(b)

i

pop(a) ⊥

Figure 5 A pushdown ωB game where Eve wins but with arbitrarily large counter value.

P-automata. We will use alternating P-automata to recognize sets of configurations: an
alternating P-automaton B = (S, δ, F ) for the pushdown process (Q,Γ,∆) is a classical
alternating automaton over finite words: S is a finite set of control states, δ : S ×Γ→ B+(S)
is the transition function (the notation B+(S) denotes the positive boolean formulae over S)
and F is the subset of S of final states. We assume that the set of states S contains Q. A
configuration (q, u⊥) is accepted by B if it is accepted with q ∈ Q ⊆ S as initial state and
the classical alternating semantics. A set of configurations is called regular if it is accepted
by an alternating P-automaton.
The following theorem shows that the winning region is regular for a wide class of condi-
tions [34, 35].
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I Theorem 10 ([35]). For all pushdown games, for all winning conditions Ω ⊆ Qω that are
Borel and prefix-independent, the set WE(Ω) is a regular set of configurations recognized by
an alternating P-automaton of size |Q|.

4.1 The collapse result
We denote that LimitBounded(N) the set of plays which contain a suffix for which the
counters are bounded by N .

I Theorem 11 (The forgetful property). For all pushdown ωB games, for all initial configur-
ations, the following are equivalent:
∃σ strategy for Eve, ∀π plays, ∃N ∈ N, π ∈ Bounded(N) ∩ Parity(c),
∃σ strategy for Eve, ∃N ∈ N, ∀π plays, π ∈ LimitBounded(N) ∩ Parity(c).

The intuition behind the name forgetful property is the following: even if a configuration
carries an unbounded amount of information (since the stack may be arbitrarily large), this
information cannot be forever transmitted along a play. Indeed, to increase the counter values
significantly, Adam has to use the stack, consuming or forgetting its original information.
Example 9 shows that the content of the stack can be used as “credit” for Adam, but also
that if Eve wins then from some point onwards this credit vanishes.

We sketch the proof of the forgetful property. We abbreviate WE(LimitBounded(N) ∩
Parity(c)) by WE(N) and WE(Bounded ∩ Parity(c)) by WE . The following properties hold:
1. WE(0) ⊆ WE(1) ⊆ WE(2) ⊆ · · · ⊆ WE .
2. There exists N such that WE(N) =WE(N + 1) = · · · .
3. For such N , we have V \WE(N) ⊆ WA, hence WE =WE(N).

The first item is clear. For the second we rely on Theorem 10. For every N there exists
BN an alternating P-automaton of size |Q| recognizing WE(N). Since there are finitely
many alternating P-automata of size |Q|, the increasing sequence of the set of configurations
they recognize is ultimately constant, i.e there exists N such that BN = BN+1 = . . .. We
now argue that the third item holds. From the complement of WE(N), Adam can ensure to
break the bound N , but also N + 1, and so on, yet remaining there. Iterating such strategies
ensures that the ωB-condition is spoiled, which concludes the proof.
I Remark. The above proof does not give a bound on N ; indeed, the sequence (BN )N∈N is
ultimately constant, but the fact that two consecutive automata recognize the same set of
configurations does not imply that from there on the sequence is constant. It follows that N
can be a priori arbitrarily large.

We refer to [14] for examples showing that the bound N is at least doubly-exponential in
the number of vertices, and exponential in the stack alphabet.

4.2 Decidability of pushdown ωB games
We give two proofs of decidability of solving pushdown games:

First, we prove the decidability of solving pushdown finitary games, relying on the
finite-memory results of Section 3 (Theorem 2), the collapse result (Theorem 11), and [7].
Second, we prove the decidability of solving pushdown ωB games, generalizing the first
item. This relies on the collapse result (Theorem 11) and [6].

We begin by proving the decidability of pushdown finitary games. Note that the second
property in Theorem 11, namely:

∃σ strategy for Eve,∃N ∈ N,∀π plays, π ∈ LimitBounded(N) ∩ Parity(c) ,
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can be written as an existential bounding formula over infinite trees, whose satisfiability
was proved decidable in [7]. This relies on an MSO interpretation of pushdown graphs into
infinite trees, following [31]. Indeed, thanks to Theorem 2, Eve has a memoryless winning
strategy in G ×M = (A×M,FinParity(c)) from her winning set, and such a strategy can
be described as a set of edges, hence as a monadic second-order variable.

The second proof relies on [6], where it is shown that the membership problem for two-way
alternating parity cost-automata over regular trees is decidable; we reduce our problem
to this. The first step is to reduce the problem of solving a pushdown ωB game to the
membership problem for two-way alternating ωB automata over regular trees, following [28].
Let A be the two-way alternating ωB automaton obtained and t the regular tree. Now
Theorem 11 implies that Eve wins the pushdown ωB game if and only if:

∃N ∈ N,∃σ strategy for Eve,∀π plays, π ∈ LimitBounded(N) ∩ Parity(c) .

We construct a two-way alternating cost-automaton A′ from A such that A′ accepts t
(as a cost-automaton) if and only if A accepts t (as an ωB automaton). The automaton
A′ is obtained by adding at each step the ability to reset all counters at the price of
visiting a very bad color for the parity condition, which takes care of the difference between
LimitBounded(N) and Bounded(N).

The main result of this section follows:

I Theorem 12. Solving a pushdown ωB-game is decidable.

5 Pushdown games with finitary and stack boundedness conditions

In this section, we consider pushdown games with finitary parity along with stack boundedness
conditions, following [10, 24]. We prove that solving such games is EXPTIME-complete.
This is achieved by a reduction which relies on two ideas, that we present separately; the
first is a reduction from finitary parity to bounded parity, and the second a collapse result
for finitary Büchi along with stack boundedness conditions. We then show how to combine
them to obtain a complete reduction, with an optimal complexity.

We denote by BndSt the stack boundedness condition:

BndSt = {π | ∃N, all configurations in π have
stack height less than N } .

5.1 A reduction from finitary parity to bounded parity
The reduction relies on a restart gadget. We consider a pushdown finitary parity game, given
by the coloring function c : Q→ [d], where we assume d to be odd. Between every transition
we add a restart gadget, where Eve can choose either to follow the transition, or to restart:
this entails that first a state with priority 0 is visited, where Adam can push on the stack a
new symbol ] an arbitrary number of times, and then go to a state with priority d, where he
pops all the ] symbols from the stack, before following the original transition. The intuition
is the following: whenever Eve chooses to restart, visiting the vertex with priority 0 answers
all previous requests, but this comes with the cost that Adam will be able to stay for an
arbitrary long time on a state of odd priority. Therefore, Eve can restart only finitely many
times. The gadget is represented in Figure 6.

I Lemma 13. Eve wins the finitary parity game if and only if she wins the reduced bounded
parity game.
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p q

cq

0 d

push(♯) pop(♯)

Figure 6 The restart gadget.

5.2 The special case of Büchi conditions
In the study of finitary games over finite graphs [15], the following observation is made:
finitary Büchi coincide with Büchi, while finitary parity differs from parity as soon as three
colors are involved. Over pushdown arenas, even finitary Büchi differs from Büchi, as noted
in Example 1. Yet when intersected with the stack boundedness condition, we show that the
case of finitary Büchi specializes again and collapses to Büchi.

I Lemma 14. For all pushdown games,

WE(FinBüchi(F ) ∩ BndSt) =WE(Büchi(F ) ∩ BndSt) .

The left-to-right inclusion is clear, since FinBüchi(F ) ⊂ Büchi(F ). We prove the converse
inclusion relying on memoryless determinacy for the condition Büchi(F )∩BndSt [10]: assume
that σ is a memoryless strategy ensuring Büchi(F ) ∩ BndSt, and let π be a play consistent
with σ. First note that between two visits of the same configuration, there must be a Büchi
configuration, otherwise iterating this loop would be a play consistent with σ yet losing.
The second observation is that since the stack height remains smaller than a bound N , the
number of different configurations visited in π is finite and bounded by a function of N . The
combination of these two arguments imply that π satisfies FinBüchi(F ).

5.3 The complete reduction
We show how to use both ideas to handle pushdown games with finitary parity and stack
boundedness conditions. We present a three-step reduction, illustrated in Figure 7.

FinParity(c)
and

BndSt

BndParity(c)
and

BndSt(Q)

FinBüchi(F )
and

BndSt(Q)

Büchi(F )
and

BndSt(Q)

restart ×M collapse

Figure 7 Sequence of reductions.

The first step is to adapt the reduction from finitary parity to bounded parity, now
intersected with the stack boundedness condition. To this end, we need to modify the stack
boundedness condition so that it ignores the configurations in the restart gadget; we define
its restriction to Q:

BndSt(Q) = {π | ∃N,
all configurations in π
with control state in Q

have stack height less than N
} .
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Now the reduction is from finitary parity and stack boundedness to bounded parity and
restricted stack boundedness.

The second step is to compose with the memory structure from the fourth step of Section 3,
giving an equivalent pushdown game with the condition finitary Büchi and restricted stack
boundedness.

The third step is the collapse of finitary Büchi to Büchi. Note that the collapse stated in
Lemma 14 deals with stack boundedness, not restricted to a subset of states. Indeed, the
result does not hold in general for this modified stack boundedness condition, but it does
hold here due to the special form of the restart gadget, that is used only finitely many times.

This three-step reduction produces in linear time an equivalent pushdown game with the
condition Büchi and stack boundedness restricted to Q. It has been shown in [10, 24] that
deciding the winner in a pushdown game with condition Büchi and stack boundedness is
EXPTIME-complete; a slight modification of their techniques extends this to the restricted
definition of stack boundedness.

I Theorem 15. Determining the winner in a pushdown game with finitary parity and stack
boundedness conditions is EXPTIME-complete.

Conclusion. We studied boundedness games over infinite arenas, and investigated two
questions. First, the strategy complexity over general infinite arenas; we proved that finite-
memory winning strategies exist for finitary parity games. It remains open to extend this
to cost-parity games [23]. Second, the decidability of pushdown games; we proved that
pushdown ωB-games are decidable, and pushdown games with finitary parity along with
stack boundedness conditions are EXPTIME-complete.
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