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Abstract
One of the authors introduced in [16] a calculus of circular proofs for studying the computab-
ility arising from the following categorical operations: finite products, finite coproducts, initial
algebras, final coalgebras. The calculus presented [16] is cut-free; even if sound and complete
for provability, it lacked an important property for the semantics of proofs, namely fullness w.r.t.
the class of intended categorical models (called µ-bicomplete categories in [18]).

In this paper we fix this problem by adding the cut rule to the calculus and by modifying
accordingly the syntactical constraint ensuring soundness of proofs. The enhanced proof system
fully represents arrows of the canonical model (a free µ-bicomplete category). We also describe
a cut-elimination procedure as a a model of computation arising from the above mentioned
categorical operations. The procedure constructs a cut-free proof-tree with possibly infinite
branches out of a finite circular proof with cuts.
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1 Introduction

Many researchers have studied fixed-point logics with, explicitly or implicitly, a proof-theoretic
approach. Such a spread interest for the proof-theory of these logics stem from different
fields of theoretical computer science: model-checking and the logics of computation such as
modal µ-calculi [9, 12, 19, 20], logic programming and proof search [1, 3], computer aided
verification via proof-assistants and its mathematical counterpart, mainly type theory with
inductive and coinductive types [2, 7, 11], coalgebras [14] and categorical programming [6].

The calculus of circular proofs was introduced in [16] with, as main aim, that of lifting
from provability to the level of proof-theory the game-theoretic machinery developed in the
context of the lattice µ-calculus [17]. From a semantic and algebraic perspective, moving
from provability to proof-theory meant sliding the focus from posetal structures to categorical
structures; and as far as theoretical computer science is concerned, the reason for taking this
step was to investigate fixed-point theory from the point of view of semantics of computation
in the style of the Curry-Howard-Lawvere isomorphisms. We aim therefore with the present
research at investigating the kind of computability arising from the following categorical
operations: finite products and coproducts, initial algebras and final coalgebras. This can be
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roughly rephrased in type theoretic terms, by saying that we aim at investigating product
and sum types, as well as inductive and coinductive types.

In our first proposal [16] we exhibited a cut-free calculus. A circular proof was a finite
pointed graph labeled by left or right introduction rules (the rules for additives of linear
logic, as well as the fixed point rules, regenerating variables to their bindings) satisfying some
constraints on cycles. The cut rule was no part of the calculus and the constraints on cycles
were suggested from the theory of parity games in verification. A circular-proof could also
be thought as a regular cut-free infinite proof-tree. The proposed calculus enjoyed some nice
and non-obvious properties: a sound algebraic semantics and a way to compose two circular
proofs into a new circular proof, a construction that could be assimilated to a cut-elimination
procedure. However the calculus was not full—a fact of which we were conscious already in
[16]—meaning that it was not expressive enough to denote all the arrows in the intended
model, a free µ-bicomplete category, cf. [18]. Unfulness could be interpreted as evidence that
we could not really dispense of the cut rule.

We fix, with the present work, the lack observed some years ago. We add the cut rule
to the set of Gentzen-type rules; such a modification implies rethinking in some coherent
way the condition on cycles for being a circular proof. A first main result presented here
is the soundness of the proof-system: this amounts to rigorously define the semantics via a
theorem asserting the existence and uniqueness of solutions for a certain class of systems of
equations. We then prove the fullness of the refined calculus.

A second part of this work provides a cut-elimination procedure for circular proofs. The
cut elimination procedure constructs a cut-free, infinite (not necessarily regular), finitely
branching proof-tree, thus with infinite branches. This result can be read now as stating
that we can actually dispense of the cut rule, but at the cost of giving away regularity of the
infinite proof-tree.

2 Preliminaries and notation

Transition systems. A transition system is a tuple G = 〈V,A, ς〉 where V is a set called
the support of G, A is a set called the alphabet and ς ⊆ V ×A× V is called the transition
relation. By abuse language, the support V is thereby named G like the transition system
itself and its elements are called vertices.

Transition systems are often seen as labelled oriented graphs. The notation u
a→ v

means (u, a, v) ∈ ς. The out-degree of u ∈ G, denoted deg(u), is the cardinality of the set
{v ∈ G : ∃a ∈ A such that u a→ v}. We say that G is deterministic if u a→ v and u

a→ v′

implies v = v′. In that case, we can also write v = ςau. If, moreover, deg(u) = 1, then we
shall write u→ v and v = ςu without ambiguity. Paths and cycles are defined in the obvious
way and the composition of two paths Γ0,Γ1, when defined, is denoted Γ0 ·Γ1. For u ∈ G, let
Vu denote the set of all targets of some path from u in G and let G, u = 〈Vu, A, ς�Vu×A×Vu〉.
G, u is called the reachable graph from u.
Categories. The reader might consult [10] for basic notions about categories. For f : a −→ b

and g : b −→ c arrows of some category, we shall mostly use f · g to denote their composition;
notice however that, with respect to usual notation, we have f · g = g ◦ f .

3 The calculus of circular proofs

Terms are constructed from a fixed set of variables V using the binary function symbols
×,+ and the constants 1, 0; the set of terms will be denoted by TERMS. The set of
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Identity,
Cut, Assumption

Id
t ` t

s ` u u ` t
Cut

s ` t
A

s ` t

L R

Products RAx
t ` 1

si ` t
L×i i = 0, 1

s0 × s1 ` t

s ` t0 s ` t1
R×

s ` t0 × t1

Coproducts LAx
0 ` t

s0 ` t s1 ` t
L+

s0 + s1 ` t

s ` ti
R +i i = 0, 1

s ` t0 + t1

Fixpoints
τ(x) ` t

Lµx
x ` t

s ` τ(x)
Rµx

s ` x

τ(x) ` t
Lνx

x ` t

s ` τ(x)
Rνx

s ` x

Figure 1 Inference rules over a system S.

subterms of (resp. variables appearing in) a term t will be denoted ST(t) (resp. VAR(t)).
A directed systems of equations is a tuple S = 〈X, τ, π〉, where X is a finite subset of
V, τ : X −→ TERMS, and π : X −→ N. For such a system S, we let BD(S) := X and
FV(S) :=

⋃
x∈X VAR(τ(x)) \ BD(S).

Intuitively, we think of the tuple S as the system of equations {x =θ(π(x)) τ(x) | x ∈ X }
where θ(n) = µ (least solution) if n is odd and θ(n) = ν (greatest solution) otherwise. The
priority function π shall also specify the order by which we solve this system of equations (cf.
Section 4).

A sequent is here a pair (s, t) of terms. As usual we shall use the turnstile symbol, that is
we write the sequent as s ` t, to separate its left part s from its right part t. We shall use SEQ
to denote the set of sequents. For a fixed directed system of equations S, the inference rules
over S are (instances of) the formal expressions appearing in Figure 1. Notice that the rules
in the column L act on the left part of a sequent while those R act on the right. Accordingly,
we group (labels of) the rules in two families L and R and set Σ := L ∪R ∪ {Id, Cut, A}.

I Definition 1. A pre-proof over S is a tuple Π = 〈G, ρ, σ〉 where G is a deterministic
transition system over the alphabet {0, 1}, ρ : G → Σ, and σ = (σL, σR) : G → SEQ;
moreover, for each v ∈ G, deg(v) ≤ 2 and the expression (1) is an inference rule over S.

σ(ς0v) . . . σ(ςdeg(v)−1v)
ρ(v)

σ(v)
(1)
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In order to be called a proof, a pre-proof must satisfy an additional syntactic constraint.
The constraint is originally inspired by the theory of parity games: it actually codes, in a
proof-theoretic setting, the winning condition on infinite paths. Scientists with a background
in type theory might perceive the similarity with the productivity constraint of [7, §2.3]. The
syntactic constraint turns out to be the key ingredient to ensure soundness of the proof
system and local termination of the cut elimination procedure.

Let Π = 〈G, ρ, σ〉 be a pre-proof. We say that a path Γ in G is left-traceable if, for
all n, if ρ(Γ(n)) = Cut, then Γ(n + 1) = ς0(Γ(n)). Similarly, Γ is right-traceable if, for all
n, if ρ(Γ(n)) = Cut, then Γ(n + 1) = ς1(Γ(n)). We say that Γ has a left µ-trace if Γ is
left-traceable, it contains a left fixpoint rule, and the highest priority of its left fixpoint rules
is odd. Similarly, we say that Γ has a right ν-trace if Γ is right-traceable, it contains a right
fixpoint rule, and the highest priority of its right fixpoint rules is even.

I Condition 2 (The Guard condition on cycles). Every cycle in G either has a left µ-trace or
a right ν-trace.

I Condition 3 (The Guard condition on infinite paths). Every infinite path Γ in G can be
written Γ = Γ0 ·Γ1 where Γ0 is finite, Γ1 either has a left µ-trace or a right ν-trace and every
fixpoint rule in Γ1 occurs infinitely often.

It is easily seen that if G is a finite graph, then conditions 2 and 3 are equivalent.

I Definition 4. A circular proof is a pre-proof Π = 〈G, ρ, σ〉 satisfying the guard conditions,
with G a finite graph.

The assumption rule A is a technical tool that is needed to prove soundness of the
system—the reader might have noticed that any sequent can be justified using this rule.
Therfore, let AΠ := {v ∈ G : ρ(v) = A} and CΠ := G \AΠ: AΠ is the set of assumptions of
Π, while CΠ is the set of its conclusions. A circular proof is ground if AΠ = ∅. Even if we
often draw a circular proof in the form of a tree with back-edges having a specified root (cf.
Figure 3), we consider all the vertexes of the proof as potential conclusions. On the other
hand, we can also easily define circular proofs with a root: a rooted circular proof is a pair
〈Π, v〉 where Π is a ground circular proof and v ∈ G.

4 Semantics of the calculus

The intended use of circular proofs is to describe functions between (possibly nested) inductive
and coinductive types. Before going into the technical details, let us give a few examples.

Recall that a natural numbers object is the object part of an initial algebra of the functor
F (x) = 1 + x (such an object can be seen as the least categorical solution of the functorial
equation x = 1 + x); of course, in Set, such an initial algebra is given by the usual data,
1 + N {0,suc}−−−−→ N. The function double : N→ N that sends n to 2n is represented as the root
of the proof in Figure 2. The L+ instruction can be understood as destructively reading an
input and branching according to its constructor (0 or suc). The right rules, on the other
hand, represent the choices of constructors for the output. The back edge marks the recursive
call of the function to itself.

The fact that reading the input is destructive is a problem that can be partially dismissed
with the cut rule. For instance, the interpretation of the circular proof in Figure 3 in Set
is the diagonal mapping ∆ : N→ N2 defined by ∆(n) = (n, n). It was constructed by the
method given below (see Fullness and Figure 5) since ∆ is the initial algebra morphism
to the algebra {(0, 0), suc× suc} : 1 + N2 → N2. It was mentioned in [15] that there is no
cut-free circular proof with this interpretation.
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RAx
1 ` 1

R+0
1 ` 1 + x

Rµx
1 ` x

x ` x
R+1

x ` 1 + x
Rµx

x ` x
R+1

x ` 1 + x
Rµx

x ` x
L+

1 + x ` x
Lµx

x ` x

double(n) ={
0 if n = 0;
suc(suc(double(n′))) if n = suc(n′).

Figure 2 Rooted circular proof denoting the function double : N→ N.

S :=
{
y =1 x+ y

x =1 1 + x

}

RAx
1 ` 1

R+0
1 ` 1 + y

x ` y
R+1

x ` 1 + y
L+

1 + x ` 1 + y

RAx
1 ` 1

R+1
1 ` x+ 1

Rµx
1 ` x

R+0
1 ` x+ y

Rµy
1 ` y

RAx
1 ` 1

R+0
1 ` 1 + x

Rµx
1 ` x

R+1
1 ` 1 + x

Rµx
1 ` x

x ` x
R+1

x ` 1 + x
Rµx

x ` x
L+

1 + x ` x
Lµx

x ` x
R+0

x ` x+ y
Rµy

x ` y
R+1

x ` x+ y
Rµy

x ` y

y ` y
R+1

y ` x+ y
Rµy

y ` y
L+

x+ y ` y
Lµy

y ` y
L+

1 + y ` y
Cut

1 + x ` y
Lµx

x ` y

Figure 3 Rooted circular proof denoting the diagonal mapping ∆ : N −→ N2.

Interpreting the terms. µ-bicomplete categories were defined in previous work on the
subject, mainly in [18]. In this paper it was also argued about the equivalence among
possible definitions of this notion, via a scalar µ-calculus or via a vectorial one. Roughly
speaking µ-bicomplete categories are categories with finite products and finite coproducts
(i.e. bicartesian categories) with enough initial algebras and final coalgebras to solve directed
systems of equations. Examples of µ-bicomplete categories include the locally presentable
categories such as the category of sets, categories of algebras for a finitary signature, and
categories of presheaves and sheaves.

LetM be a µ-bicomplete category and S be a directed system of equations. The definition
of the semantics is achieved in three steps: first we define the obvious functorial semantics of
terms; then we define the semantics of S as a canonical solution to the system of equations
it represents; finally, we evalute terms inM by means of the bound variables of S.

Given t ∈ TERMS and a finite subset X with VAR(t) ⊆ X, the semantics of t, denoted
|t|X , is a functor fromMX toM. Let us denote byMX the category of functors fromMX

to M with natural transformations as arrows. Recall that this is a bicartesian category,
limits being computed pointwise, see [10, Chapter V]. The formal definition of |t|X is by
induction on the structure of t as follows:

if t = x ∈ X, then |x|X is the projection functor on the x component (thus |x|X = prXx );
|0|X (resp. |1|X) is the initial (resp. terminal) object in the categoryMX ;
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if t = t1 × t2 (resp. t = t1 + t2), then |t|X is the product |t1|X × |t2|X (resp. coproduct
|t1|X + |t2|X) in the categoryMX .

Given n ≥ 0 and a system S, let Xn = {x ∈ BD(S) | π(x) ≤ n } and let Sn be the
restriction of S to Xn, namely Sn = 〈Xn, τ�Xn , π�Xn〉. In particular, if M = max{π(x) | x ∈
BD(S) }, then we define MAX(S) := {x ∈ BD(S) | π(x) = M }, LOW(S) := XM−1, and let
P (S), the predecessor system, be SM−1.

Assuming that X is finite and that FV(S) ⊆ X and BD(S) ∩X = ∅, the semantics of S,
noted by JSKX , is a functor fromMX toMBD(S). The definition is as follows:

I Definition 5. If BD(S) = ∅, then MBD(S) is the terminal category (with just one
object and its identity arrow), so that we let JSKX be the unique functor from MX to
the terminal category. Otherwise, consider the predecessor system P (S) and observe that
FV(P (S)) ⊆ MAX(S) ∪ FV(S) ⊆ MAX(S) ∪ X and (MAX(S) ∪ X) ∩ BD(P (S)) = ∅; as
card(BD(P (S))) < card(BD(S)), JP (S)KX∪MAX(S) is defined as a functor fromMX∪MAX(S)

toMBD(P (S)). Let G and H be the functors so defined:

G := 〈|τ(x)|BD(S)∪X | x ∈ MAX(S)〉 :MBD(S)∪X −→MMAX(S) ,

H := 〈 G , JP (S)KMAX(S)∪X ◦ prBD(S)∪X
MAX(S)∪X 〉 :

MBD(S) ×MX =MBD(S)∪X −−−→MMAX(S) ×MBD(P (S)) =MBD(S) .

If π(MAX(S)) is odd, then we let JSKX be the parametrized initial algebra of H; and if
π(MAX(S)) is even, then we let JSKX be the parametrized final coalgebra of H.

I Remark. The existence of an initial algebra and of a final coalgebra in the previous
definition is ensured by the assumption thatM is a µ-bicomplete category.
Finally, given a system S, a term t, and a finite subset X with FV(S)∪(VAR(t)\BD(S)) ⊆ X,
the value of t w.r.t. S, noted JtKX , is the functor fromMX toM defined below:

JtKX :=
(
MX

〈id,JSKX〉 //MX ×MBD(S) =MX∪BD(S)
|t|X∪BD(S) //M

)
.

We leave the reader to verify that if X ⊆ Y , then |t|Y (resp. JSKY , JtKY ) is obtained from
|t|X (resp. JSKX , JtKX) by precomposing the latter with the projection fromMY toMX .
The previous observation allows us to be sloppy with the notation and to omit the subscript
X, which shall be understood from the context as the least set of variables satisfying some
required constraints. For example, if we are considering a set of terms E = { t1, . . . , tn }
with t ∈ E, then we shall have JtK := JtKX with X = FV(S)∪ (

⋃
i=1,...,n VAR(ti) \BD(S)). It

might be necessary, on the other hand, to evaluate a term with respect to different systems
S and T ; we shall then write the system in superscript, so to have JtKS and JtKT .

Let M = π(MAX(S)); let us remark that if M is odd, then for all x ∈ BD(S) there is (by
definition of JSK) a canonical invertible arrow ζx : Jτ(x)K −→ JxK; however, if π(x) < M , then
we can assume that ζx is the identity while JxK(Y ) = JxKS�π(x)(JZK, Y ) where Y = FV(S)
and Z = { z ∈ BD(S) | π(z) > π(z) } (see Proposition 2.2 in [18] with F := JP (S)K, G := G,
C :=MMAX(S), and D :=MLOW(S)). Similarly, if x ∈ BD(S) and π(MAX(S)) is odd, then
there exists a canonical invertible arrow ξx : JxK −→ Jτ(x)K; if π(x) < M , then we can assume
that ξx is the identity and that JxK(Y ) = JxKS�π(x)(JZK, Y ). An easy induction shall therefore
prove the following statement:

I Proposition 6. For each x ∈ BD(S), if π(x) is odd, then there exists a canonical invertible
arrow ζx : Jτ(x)K −→ JxK; if π(x) is even, then there exists a canonical invertible arrow
ξx : JxK −→ Jτ(x)K.
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Identity,
Cut

Id
JtK

idJtK−−−→ JtK

JsK f−→ JuK JuK g−→ JtK
Cut

JsK f ·g−−→ JtK

Products RAx
JtK

!JtK−−→ J1K

JsiK
f−→ JtK

L×i i = 0, 1
Js0 × s1K

pri·f−−−→ JtK

JsK f−→ Jt0K JsK g−→ Jt1K
R×

JsK
〈f,g〉−−−→ Jt0 × t1K

Coproducts LAx
J0K

?JtK−−→ JtK

Js0K
f−→ JtK Js1K

g−→ JtK
L+

Js0 + s1K
{f,g}−−−→ JtK

JsK f−→ JtiK
R +i i = 0, 1

JsK f ·ini−−−→ Jt0 + t1K

Fixpoints
Jτ(x)K f−→ JtK

Lµx

JxK
ζ−1

x ·f−−−−→ JtK

JsK f−→ Jτ(x)K
Rµx

JsK f ·ζx−−−→ JxK

Jτ(x)K f−→ JtK
Lνx

JxK ξx·f−−−→ JtK

JsK f−→ Jτ(x)K
Rνx

JsK
f ·ξ−1

x−−−→ JxK

Figure 4 Semantics of rules.

Interpreting the rules. From now on our goal shall be that of associating to a circular proof
Π over a system S its semantics; this shall be a collection of arrows (one for each conclusion
of Π) in some µ-bicomplete category. If Π is ground and does not have cycles, then this
task is easily achieved using induction; namely, we start from the leaves and, by interpreting
the rules of the calculus as specifying how to construct new arrows from given ones via the
categorical operations, we build more complex arrows. Such interpretation of rules is given
in Figure 4. For each vertex v ∈ Π with σ(v) = s ` t, the construcion gives an arrow fv
from JsKX to JtKX in the categoryMX ; that is, fv is a natural transformation from JsKX to
the functor JtKX .

Thus, if we writeMX(F,G) for the set of arrows from F to G in the categoryMX , each
rule Rule, with assumptions si ` ti and conclusion s ` t, can be intertpreted as a function
from

∏
i=1,...,nMX(JsiK, JtiK) to MX(JsK, JtK). We notice, however, that for F,G ∈ MX ,

the similar expressionM(F,G) denotes the following functor:

(MX)op ×MX F op×G−−−−−→Mop ×M M(_,_)−−−−−→ Set .

With exception of Id and Cut, all the rules can also be interpreted as defining natural
transformations of these generalized hom-functors:

dRuleeX,X′ :
∏

i=1,...,n
M(JsiK, JtiK) −→M(JsK, JtK) : (MX)op ×MX −→ Set . (2)
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The following Lemma relates the two possible semantical interpretations of rules.

I Lemma 7. Let α :
∏
i=1,...,nM(Fi, Gi) −→ M(F,G) be a natural transformation and

suppose that, for each i = 1, . . . n, we are given a natural transformation βi ∈MX(Fi, Gi).
Then the collection of arrows αc,c(β1

c , . . . , β
n
c ) : Fc −→ Gc, c an object ofMX , is a natural

transformation from F to G.

We notice next that even the cut rule can be given a semantics as a natural transformation
of hom-functors. Namely, given a natural transformation β : JuK −→ JtK, we can define the
semantics of a cut as the natural transformation

dCut, βe :M(JsK, JuK) −→M(JsK, JtK) (3)

sending f : JsK(c) −→ JuK(d) to f · βd : JsK(c) −→ JtK(d). Similarly, given γ : JsK −→ JsK, we
can define the semantics of a cut as follows:

dγ, Cute :M(JuK, JtK) −→M(JsK, JtK) , dγ, Cute(f) = γc · f : JsK(c) −→ JtK(d) . (4)

Interpreting some derived inference rules. Motivated by the previous observations about
the semantics of certain rules, we shall make sense of a large collection of circular-proofs as
derived inference rules whose interpretation is a natural transformation between hom-set
functors.

I Definition 8. A circular proof Π is homogeneous if it does not contain the rule Id and, for
each v ∈ Π with ρ(v) = Cut, at least one among ς0v and ς1v is an assumption of Π.

It was argued in [16] that we can associate to an identity-free and cut-free circular proof Π a
system of equations dΠe; it was then shown that Π has a unique solution dΠe†, thus defining
the semantics of Π via this unique solution. We generalize here this result to homogeneous
circular proofs. For each v ∈ Π with ρ(v) = Cut, let χ(v) ∈ { 0, 1 } such that ςχ(v)v ∈ AΠ; let
therefore Ac

Π := { ςχ(v)v ∈ AΠ | ρ(v) = Cut } and As
Π := AΠ \Ac

Π (w.l.o.g., we assume that if
v ∈ AΠ, then v has just one predecessor in G). Given a collection of natural transformations
β = {βv : JσL(v)K −→ JσR(v)K | v ∈ Ac

Π }, the system dΠβe is defined as

dΠβe :=
{
v = dρ(v)βe(CΠ, A

s
Π)
}
v∈CΠ

. (5)

In the definition of dΠβe above, if ρ(v) 6= Cut, then dρ(v)βe := dρ(v)e is as in (2); if
ρ(v) = Cut, then: if ς1v ∈ AΠ, then dρ(v)βe = dCut, βς1ve as in (3); if ς0v ∈ AΠ, then
dρ(v)βe = dβς0v, Cute as in (4). Furthermore the defining equation (5) emphasizes that each
dρ(v)βe depends on two kinds of variables, those coming from CΠ and those coming from
As

Π. Therefore, the system has the conclusions of Π as bound variables and depends on
parameters coming from As

Π. We identify such a system with the natural transformation

dΠβe :
∏
v∈CΠ

M(JσL(v)K, JσR(v)K)×
∏
v∈As

Π

M(JσL(v)K, JσR(v)K)→
∏
v∈CΠ

M(JσL(v)K, JσR(v)K) ,

which is an arrow of the category of functors from (Mop)X ×MX to Set. Notice that, to a
certain degree, we are abusing of language, as some circular proof might be considered to be
over different systems S and T . If it we need to specify the system S, we can write the more
explicit dΠeS (and dΠeS† ) in place of dΠe.
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I Theorem 9. For each homogeneous circular proof Π and each collection of natural trans-
formations {βv : JσL(v)K → JσR(v)K | v ∈ Ac

Π }, the system dΠβe admits a unique natural
solution

dΠβe† :
∏
v∈As

Π

M(JσL(v)K, JσR(v)K) −−−−−→
∏
v∈CΠ

M(JσL(v)K, JσR(v)K) .

The proof of the Theorem mostly depends on the Bekić Lemma, as well as on the following
kind of categorical fixed point Lemma. The Lemma can be understood as giving a categorical
interpretation to Mendler’s style recursion, see [11, §2].

I Lemma 10. Let W,C,D be three categories, of which C has products; let F : C×W −→ C,
G : D −→ C, Q : Cop×Wop×D −→ Set be functors; let ζw : F (xw, w) −→ xw be a parametrized
initial algebra of F . Consider an arbitrary natural transformation

α : C(_, G)×Q −→ C(F,G) : Cop ×Wop × D −→ Set .

For each w ∈W , d ∈ D and q ∈ Q(xw, w, d), there exists a unique fw,d : xw −→ Gd which is
a solution of the equation

f = ζ−1
w · αxw,w,d(f, q) .

Moreover, the map sending q ∈ Q(xw, w, d) to fw,d ∈ C(F (xw, w), Gd) is natural in w and d.

Semantics of rooted circular proofs (soundness). Let 〈Π, v〉 be a rooted circular proof with
σ(v) = s ` t; we can now define JΠ, vK : JsK −→ JtK, the natural transformation interpreting
〈Π, v〉 (with respect to a system S), by induction, almost as usual. The induction is now
on the well-founded structure of maximal strongly connected components of the underlying
graph of Π. The key observation is that if C is such a non trivial component of Π (i.e. there
exists v, u ∈ C and a non-null path from v to u), then the restriction of Π to C can be made
into an homogeneous circular proof. More formally, we can define Π � C by choosing v0 ∈ C
and putting

AC := { ςiv | v ∈ C, ςiv 6∈ C } , Π � C := Π, v0
AC
, v0 .

The inductive definition is as follows. If v belongs to a trivial component, then we can define
the semantics of 〈Π, v〉 as in the non-circular case. Otherwise, we dispose by induction of two
collections β = { JΠ, vK | v ∈ Ac

Π�C } and γ = { JΠ, vK | v ∈ As
Π�C }; by Theorem 9 we dispose

of a natural transformation d(Π � C)βe† between the appropriate hom-functors; Lemma 7
ensure that we can pointwise apply d(Π � C)βe† to the natural transformations in γ to obtain
a new collection of natural transformations indexed by elements of C. We define therefore

JΠ, vK :=
(
d(Π � C)βe†(γ)

)
· prv .

Fullness. We show that this interpretation of rooted circular proods is full. That means
that ifM is a free µ-bicomplete category over a set of generators, then, for every arrow f of
M, there is a rooted circular proof 〈Π, v〉 such that JΠ, vK = f .

The proof of this fact is a lengthy induction. However, the only non-trivial case is the
closure of the class of definable arrows under canonical maps from initial algebras (and
dually, behaviour maps to final coalgebras); let us exemplify this point. Suppose S is a
system with just one bound variable x of maximal priority; if this priority is odd, then
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F (JxK) F (JtK)

JxK JtK

ζx

F (f)

f

η

f = ζ−1
x · F (f) · η

⇒

x ` t
····

Γ[t/y]
τ(x) ` τ(x)[t/x]

····
Π[t/x]

τ(x)[t/x] ` t
Cut

τ(x) ` t
Lµx

x ` t

Figure 5 Construction of maps from the initial algebra.

F = Jτ(x)KP (S) :M−→M while JxKS is the initial F -algebra. Suppose now that we are given
a system T which contains an exact copy of P (S), with the exception that the variable x is
bound to some term t. If we dispose of a rooted circular proof 〈Π, v〉 on T with σ(v) = τ(x) ` t,
then Jτ(x)KT = Jτ(x)KP (S)(JtKT ) = F (JtKT ), that is η := JΠ, vK : F (JtKT ) −→ JtKT is an F -
algebra. We notice that the canonical natural transformation Fx,y :M(x, y) −→M(Fx, Fy)
is definable via a cut-free circular proof Γ (using a language of game theory, Γ is the copycat
strategy). Let T ′ be a system which is a disjoint copy of S and T , with the variable x of T
being renamed to y. The circular proof on the right of Figure 5, on the system T ′, shall then
denote the unique algebra morphism from the initial one.

5 Cut elimination

We give in this section an algorithm that, given as input a pointed circular proof 〈Π, v〉,
outputs a cut-free pre-proof with possibly infinite branches (yet, a finitely branching tree).
A refinement of the technique used to prove Theorem 12 below can also be used to prove
that the output tree satisfies the Guard condition 3. This justifies saying that the output
tree is an infinite proof-tree.

Just like in the classical case for Gentzen’s system (see [8], for instance) the procedure
consists in “pushing” every cut away from the root. However, in our case, the output tree
must be computed with a lazy (outermost) rather than eager (innermost) strategy; this is
because not every path in Π leads to a leaf, so that we have to eliminate cuts by performing
a breadth-first search of Π from the root. A problem that arises by using this strategy is
that we might need to permute a cut with another cut. We temporarily dismiss the problem
by merging consecutive cuts together into a sort of n-ary cut.

t0 ` t1 t1 ` t2 . . . tn−1 ` tn
Cut

t0 ` tn

Therefore, the algorithm grows an output tree whose pending leaves contain objects that can
be thought of as n-ary cuts between vertices of Π, waiting to be pushed forward. We call
these objects tapes.

I Definition 11. A tape is a finite list M := [u1, . . . , un] of vertices of Π such that for all
i = 1 . . . n− 1, σR(ui) = σL(ui+1).

Analogously to the behaviour of higher order pushdown automata, the algorithm can also
be understood as a non-deterministic automaton disposing of a tape as its internal data
structure; the tape can be thought of as a generalized stack. The automaton tries to build
up a branch of the proof-tree; when the proof-tree branches, the automaton forks into several
automata so to construct all the branches; equivalently, we can think that the automaton
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undeterministically chooses which branch to continue constructing. The automaton grows up
the branch by means of commutative cut reductions (called here flips) at the extremities of
the tape; if all the cuts in the tape are principal, the automaton undeterministically chooses
one and reduces it, without constructing a new node on the branch. While in principle the
construction of a complete branch might fail, due to the fact that we cannot operate flips,
we shall see that this does not actually happen.

5.1 Primitive operations
Internal operations. What we call internal operations on tapes are functions that take
(M, i) as input (with some assumptions on M and i) and return a new tape.

Elimination of identities. The first thing we can do is to eliminate identities since they
bring nothing to the semantics. Thus, if ρ(ui) = Id, we define IdElim(M, i) as the tape
obtained by removing ui from M .

. . . ti−1 ` s
Id

s ` s s ` ti+2 . . .
Cut

t0 ` tn

IdElim=⇒
. . . ti−1 ` s s ` ti+2 . . .

Cut
t0 ` tn

Merging cuts. Since the tape represents the fusion of some consecutive cuts, we need an
operation for merging new cuts into the tape, thus expanding its size. So if M = [. . . , ui, . . .]
and ρ(ui) = Cut, we define Merge(M, i) = [. . . , ς0ui, ς1ui, . . .]. Schematically:

. . .

ti ` s s ` ti+1
Cut

ti ` ti+1 . . .
Cut

t0 ` tn

Merge=⇒
. . . ti ` s s ` ti+1 . . .

Cut
t0 ` tn

Essential reductions. The last internal operation is a bit more subtle. Suppose ρ(ui) ∈ R

and ρ(ui+1) ∈ L for some i. Note that ti := σR(ui) = σL(ui+1) and that this common term is
either a product, a sum, a bound variable or a constant. But ρ(ui) ∈ R implies ti 6= 0 and
ρ(ui) ∈ R implies ti 6= 1, so ti is not a constant. Hence there are actually three possible
scenarios for the values of ρ(ui) and ρ(ui+1): they can be both product rules, both coproduct
rules or both fixpoint rules of the same variable. In each case, we can find successors of ui
and ui+1 with compatible sequents. We can then reduce ui with ui+1 and substitute them in
M with their appropriate successors. More precisely:

If ρ(ui) = R×, ρ(ui+1) = L×k, k ∈ {0, 1}, then Reduce(M, i) = [. . . , ςui, ςkui+1, . . .].

. . .

ti−1 ` s0 ti−1 ` s1
R×

ti−1 ` s0 × s1

sk ` ti+1
L×k

s0 × s1 ` ti+1 . . .
Cut

t0 ` tn

Reduce=⇒
. . . ti−1 ` sk sk ` ti+1 . . .

Cut
t0 ` tn

If ρ(ui) = R+k, ρ(ui+1) = L+, k ∈ {0, 1}, then Reduce(M, i) = [. . . , ςkui, ςui+1, . . .].

. . .

ti−1 ` sk
R+k

ti−1 ` s0 + s1

s0 ` ti+1 s1 ` ti+1
L+

s0 + s1 ` ti+1 . . .
Cut

t0 ` tn

Reduce=⇒
. . . ti−1 ` sk sk ` ti+1 . . .

Cut
t0 ` tn

If ρ(ui) = Rθx, ρ(ui+1) = Lθx, x ∈ BD(S), then Reduce(M, i) = [. . . , ςui, ςui+1, . . .].

. . .

ti−1 ` τ(x)
Rθx

ti−1 ` x

τ(x) ` ti+1
Lθx

x ` ti+1 . . .
Cut

t1 ` tn

Reduce=⇒
. . . ti−1 ` τ(x) τ(x) ` ti+1 . . .

Cut
t0 ` tn
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Productions (external operations, flips). We call productions functions that take a tape
M as input and return a tuple (r, s, L) where r is a rule name, s is a sequent that will be used
to create a new vertex of the output tree, and L is a list of tapes that will be the successors
of that new vertex.

The simplest case is when M = [u] with ρ(u) = Id. In that case, let IdOut(M) =
(Id, σ(u), []). Otherwise, productions can only happen when there is a left rule on the left of
M or a right rule on its right. In these cases, we can perform a commutative reduction, or
flip just like in the classical case.

If ρ(u0) = LAx, then LFlip(M) = (LAx, 0 ` tn, []).

LAx
0 ` t1 t1 ` t2 . . .

Cut
0 ` tn

LFlip=⇒ LAx
0 ` tn

If ρ(u0) = L×k for k ∈ {0, 1}, then LFlip(M) = (L×k, t0 ` tn, [[ςu0, u1 . . .]]).
sk ` t1

L×k
s0 × s1 ` t1 t1 ` t2 . . .

Cut
s0 × s1 ` tn

LFlip=⇒
sk ` t1 t1 ` t2 . . .

Cut
sk ` tn

L×k
s0 × s1 ` tn

If ρ(u0) = L+, then LFlip(M) = (L+, t0 ` tn, [[ς0u0, u1, . . .], [ς1u0, u1 . . .]]).
s0 ` t1 s1 ` t1

L+
s0 + s1 ` t1 t1 ` t2 . . .

Cut
s0 + s1 ` tn

LFlip=⇒
s0 ` t1 t1 ` t2 . . .

Cut
s0 ` tn

s1 ` t1 t1 ` t2 . . .
Cut

s1 ` tn
L+

s0 + s1 ` tn
If ρ(u0) = Lθx, x ∈ BD(S), θ ∈ {µ, ν}, then LFlip(M) = (Lθx, x ` tn, [[ςu0, u1 . . .]]).

τ(x) ` t1
Lθx

x ` t1 t1 ` t2 . . .
Cut

x ` tn

LFlip=⇒
τ(x) ` t1 t1 ` t2 . . .

Cut
τ(x) ` tn

Lθx
x ` tn

Right flips are defined dually to left flips, so we present them without the schemas.
If ρ(un) = RAx, then RFlip(M) = (RAx, t0 ` 1, []).
If ρ(un) = R×, then RFlip(M) = (R×, t0 ` tn, [[. . . , un−1, ς0un], [. . . un−1, ς1un]]).
If ρ(un) = R+k for k ∈ {0, 1}, then RFlip(M) = (R+k, t0 ` tn, [[. . . un−1, ςun]]).
If ρ(un) = Rθx, x ∈ BD(S), θ ∈ {µ, ν}, then RFlip(M) = (Rθx, t0 ` x, [[. . . un−1, ςun]]).

5.2 The cut-elimination algorithm
In order to produce a segment of the output tree, we need a tape with a left rule on the left
or a right rule on the right (call such a tape reduced). The treatment phase of a tape M
consists in executing internal operations until the tape is reduced.

Algorithm 1 defines a tree with transitions labelled by {0, 1} along with two mappings
ρ : Λ → Σ, and σ = Λ → SEQ that make it into a possibly infinite proof-tree. In the
algorithm, v ∈ Π is fixed and Q is a queue whose elements are of the form (w,M) where
w ∈ Λ was previously computed and M is a tape.

It may not be clear that the computation of Treat(M) always halts. After all, once
a pair of consecutive nodes in the tape is reduced, it is replaced by another pair of nodes
that could, in principle, still be labelled by right and left rules, respectively. Even worse:
when a new cut is encountered, the tape grows, thus the number of pairs left to be reduced
may enlarge. So why does it stop? It is a consequence of the fact that Π satisfies the Guard
condition.
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Function Treat(M)
while ρ(fst(M)) 6∈ L and ρ(lst(M)) 6∈ R

do
if |M | > 1 and ∃i : ρ(ui) = Id then

M ← IdElim(M, i);
else if ∃i : ρ(ui) = Cut then

M ←Merge(M, i);
else if ∃i : ρ(ui−1) ∈ R and ρ(ui) ∈ L

then
M ← Reduce(M, i);

return M ;

Algorithm 1: Cut-elimination
Initialization: Λ← ∅; Q← [(ε, [v])];
while Q 6= [] do

(w,M)← pull(Q);
Λ← Λ ∪ {w};
M ← Treat(M);
if |M | = 1 and ρ(fst(M)) = Id then

(ρ(w), σ(w), L)← IdOut(M);
else if ρ(fst(M)) ∈ L then

(ρ(w), σ(w), L)← LFlip(M);
else if ρ(lst(M)) ∈ R then

(ρ(w), σ(w), L)← RFlip(M);
if L = [M ′] then

push((w0,M ′), Q);
else if L = [M ′0,M ′1] then

push((w0,M ′0), Q);
push((w1,M ′1), Q);

Figure 6 The cut-elimination algorithm.

I Theorem 12. For every input tape M , the computation of Treat(M) halts.

Proof. We suppose, for a contradiction, that there is an entry tape M on which the
computation of Treat(M) loops forever. For all i ≥ 1, let Mi be the tape in memory before
the i-th turn of the loop (so that M = M1). Consider that tapes are words and that they
are generated from one another according to some context dependent grammar; we wish
therefore to consider a sort of infinite parse tree. To that end, we define the full trace of
the algorithm as the reachable graph T = T ′, (0, 0), where T ′ is a transition system over the
alphabet N ∪ {⊥} with support N× N and the following transitions:

For 1 ≤ i ≤ |M1|, (0, 0) i→ (1, i).
If Mn+1 = IdElim(Mn, i), then for k < i, (n, k) ⊥→ (n + 1, k) and for k > i, (n, k) ⊥→
(n+ 1, k − 1).
If Mn+1 = Merge(Mn, i), then for k < i, (n, k) ⊥→ (n + 1, k) and for k > i, (n, k) ⊥→
(n+ 1, k + 1). Moreover (n, i) 1→ (n+ 1, i) and (n, i) 2→ (n+ 1, i+ 1).
If Mn+1 = Reduce(Mn, i), then for k ∈ {i, i + 1}, (n, k) 0→ (n + 1, k) and otherwise
(n, k) ⊥→ (n+ 1, k).

For (n, k) ∈ T \ (0, 0), let g(n, k) ∈ Π denote the k-th element of Mn. Basically, the paths
in T represent the history of the vertices of Π that occur in the tapes. Transitions labelled
by ⊥ mean that such a vertex has not evolved at a given stage, while the other labels encode
the operation that made them evolve. In order to exploit the Guard condition, we shall
collapse the transitions labelled by ⊥ to get a correspondence with paths in Π. We then get
the real trace Ψ of the algorithm.

It should be clear that Ψ is an infinite, finitely branching labelled tree. The prefix order
on such a tree is denoted v and the lexicographical order is denoted � (see [13]). A maximal
(finite or infinite) path in Ψ is called a branch and it can be shown that the set of branches
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of Ψ ordered lexicographically is a complete lattice. Note that by Kőnig’s lemma, the set of
infinite branches is nonempty and it is easy to see that its infimum is an infinite branch itself.

Given an infinite branch β, we say that β is a µ-branch (resp. ν-branch) if the path Γ in
Π formed by the transitions between vertices of β can be written Γ = Γ0 · Γ1 where Γ0 is
finite, Γ1 has a left µ-trace (resp. right ν-trace) and every fixpoint rule in Γ1 occurs infinitely
often. Since Π satisfies the Guard condition 3, it follows that every infinite branch β is either
a µ-branch or a ν-branch. We shall use the lexicographical order to compare them. Note
that by the Guard condition, a µ-branch (resp. ν-branch) can only admit finitely many right
(resp. left) cuts.

I Lemma 13.
1. The least infinite branch of Ψ is a ν-branch.
2. Let E be a nonempty collection of ν-branches and let γ =

∨
E. Then γ is a ν-branch.

3. If β is a ν-branch, then there exists another ν-branch β′ � β.

The key observation to prove Lemma 13 is the following. Recall that each time
Mn+1 = Reduce(Mn, i), a pair (u, v) of elements of Ψ is created, such that u ≺ v and
ρ(g(u)) ∈ R , ρ(g(v)) ∈ L are rules of the same nature (product, coproduct or fixpoint on
the same variable). u and v are then called twins of each other. Conversely, every u ∈ Ψ
that is not the root, a leaf or a cut occurs in such a pair.

Now, let β0 be the least infinite branch of Ψ. If β0 were a µ-branch, then it would admit
infinitely many left rules. The twins of those rules would then generate an infinite subtree
on the left β0, contradicting the minimality and proving part 1. For part 2, the case γ ∈ E
is trivial, and otherwise, one must analyze how the supremum is computed to observe that
infinitely many right cuts are necessary. Therefore, γ must be a ν-branch. Finally, for
part 3, it suffices to prove that if β is a ν-branch and β′ is a µ-branch, such that β ≺ β′ are
consecutive, then after a finite time, all the forementioned pairs (u, v) are such that u @ β if
and only if v @ β′. Therefore, the variables x ∈ BD(S) for which the fixpoint rule is applied
infinitely often in those two branches are the same. But then, the highest priority of such a
variable should be both even and odd, a contradiction.

To conclude, we reach the fundamental contradiction of the proof. Let E be the collection
of all the ν-branches. By part 1 of Lemma 13, E is nonempty. Let γ =

∨
E. By part 2 of

the same Lemma, γ is a ν-branch. Hence by part 3 of the Lemma, there is another ν-branch
γ′ � γ. But then, by definition of E, we should have γ′ ∈ E and therefore γ′ �

∨
E = γ. J

6 Conclusions and perspectives

We consider this work as a starting point for future research—the more we develop it, the
more are the questions. A main motivation for this work was the following problem about the
computability by means of initial and final coalgebras: since that all the primitive recursive
functions are definable by circular proofs [5] and some function space can be constructed
via final coalgebras, can we also define more complex set-theoretic functions such as the
Ackermann function? The growing knowledge about hierarchies of infinite trees [4] suggested
a concrete way to tackle the problem and encouraged us to pursue this work. A concrete
step to be taken is now to compare the expressive power of the calculus with respect to
these existing hierarchies. For example, can we simulate higher order pushdown automata
by means of our tape automaton?
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