
Theories for Subexponential-size Bounded-depth
Frege Proofs∗

Kaveh Ghasemloo and Stephen A. Cook

Department of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, Canada
{[first name],sacook}@cs.toronto.edu

Abstract
This paper is a contribution to our understanding of the relationship between uniform and
nonuniform proof complexity. The latter studies the lengths of proofs in various propositional
proof systems such as Frege and bounded-depth Frege systems, and the former studies the strength
of the corresponding logical theories such as VNC1 and V0 in [7]. A superpolynomial lower bound
on the length of proofs in a propositional proof system for a family of tautologies expressing a
result like the pigeonhole principle implies that the result is not provable in the theory associated
with the propositional proof system.

We define a new class of bounded arithmetic theories nε-ioV∞ for ε < 1 and show that they
correspond to complexity classes AltTime(O(1), O(nε)), uniform classes of subexponential-size
bounded-depth circuits DepthSize(O(1), 2O(nε)). To accomplish this we introduce the novel idea
of using types to control the amount of composition in our bounded arithmetic theories. This
allows our theories to capture complexity classes that have weaker closure properties and are not
closed under composition. We show that the proofs of ΣB0 -theorems in our theories translate to
subexponential-size bounded-depth Frege proofs.

We use these theories to formalize the complexity theory result that problems in uniform NC1

circuits can be computed by uniform subexponential bounded-depth circuits in [1]. We prove that
our theories contain a variation of the theory VNC1 for the complexity class NC1. We formalize
Buss’s proof in [4] that the (unbalanced) Boolean Formula Evaluation problem is in NC1 and use
it to prove the soundness of Frege systems. As a corollary, we obtain an alternative proof of [10]
that polynomial-size Frege proofs can be simulated by subexponential-size bounded-depth Frege
proofs.

Our results can be extended to theories corresponding to other nice complexity classes inside
NTimeSpace(nO(1), no(1)) such as NL. This is achieved by essentially formalizing the containment

NTimeSpace(nO(1), no(1)) ⊆ AltTime(O(1), O(nε))

for all ε > 0.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems - Complexity
of proof procedures, F.4.1 Mathematical Logic – Proof theory

Keywords and phrases Computational Complexity Theory, Proof Complexity, Bounded Arith-
metic, NC1-Frege, AC0-Frege

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.296

∗ Supported by NSERC. The research leading to these results has received funding from the European
Union’s Seventh Framework Programme [FP7/2007-2013] under grant agreement no 238381.

© Kaveh Ghasemloo and Stephen A. Cook;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca ; pp. 296–315

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.296
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

K. Ghasemloo and S.A. Cook 297

1 Introduction

In [7] a general method is presented for associating a theory VC of bounded arithmetic and a
(quantified) propositional proof system C-Frege with a complexity subclass C of the functions
computable in polynomial time FP. The base complexity class is AC0 of functions computable
by a uniform family of polynomial-size bounded-depth Boolean circuits. The associated
theory is V0 and the associated proof system is bounded-depth Frege (bdFrege)1. Another
important example is the complexity class NC1 of functions computable by a uniform family
of polynomial-size O(lgn)-depth circuits (equivalently polynomial-size Boolean formulas),
where the theory is VNC1 and a Frege system serves as the associated proof system2.

In general VC is obtained by adding a comprehension axiom for a function complete for C
to the base theory V0 [7]. Similarly, the proof system C-Frege is obtained by adding the cut
rule for formulas in nonuniform C to the base proof system bdFrege [7, 11]. Moreover there
are witnessing theorems stating that certain proofs in VC can be witnessed using C functions,
and proofs in polynomial-size quantified C-Frege can be witnessed by nonuniform C functions.
The witnessing theorems can be used to relate the functions in C and nonuniform C to the
definable functions in VC and C-Frege [7, 8].

There is a two-fold connection between the theory VC and the propositional proof system
C-Frege:
1. VC proves the soundness of C-Frege.
2. Any ΣB0 theorem (essentially a universal theorem) of VC, translates into a polynomial-size

family of tautologies with polynomial-size C-Frege proofs. For example the pigeonhole
principle is provable in VNC1, therefore its propositional translation has polynomial-size
Frege proofs.

The second connection provides a universality condition that complements the first connection:
C-Frege is maximal among propositional proof systems whose soundness can be proven in
VC. More formally, C-Frege can efficiently prove any tautology family which is efficiently
provable in any propositional proof system whose soundness is provable in VC [16, 6, 7].
Here a tautology family is efficiently provable in a proof system iff it has a polynomial-size
proof family in the proof system, and polynomial size means polynomial size in the length of
formulas being proven.

With this perspective, we consider the ΣB0 fragment of the theory VC as a uniform version
of the associated propositional proof system C-Frege.

One motivation for the present paper is the [FPS’11] result that Frege proofs can be
simulated by subexponential-size bdFrege proofs. We wish to generalize this result and prove
it in a uniform setting. The first step is to find a theory whose provably total functions are
those computable by uniform families of bounded-depth subexponential-size circuits.

But here we run into a fundamental obstacle. A function f is subexponential3 iff
f(n) = 2O(nε) for some ε < 1. But the class of subexponential functions is not closed under
composition, and not closed even under composition with polynomials. For example, if we
compose the subexponential function n 7→ 2O(n

1
2) with the polynomial function n 7→ n2 the

resulting function is n 7→ 2n, which is not subexponential. On the other hand, the provably

1 bdFrege is also referred to as AC0-Frege.
2 Frege is also referred to as NC1-Frege.
3 There are other definitions of subexponential functions in the literature. The definition given here is

the largest class among them. Using this version is required since even in computational complexity
theory it is not known if the bounded-depth circuit classes of smaller size contain NC1.

CSL’13

298 Theories for Subexponential-size Bounded-depth Frege Proofs

total functions in theories which extend the base theory V0 are closed under composition4.
To deal with this issue, we introduce two types of variables: input type and output type.

The idea is that for a fast growing function f , the arguments of f have input types and are
small, while the value of f has output type and might be large. This allows us to control the
compositions of the provably total functions of theories. We refer to these typed theories
as io-typed theories. We can then explicitly allow a limited amount of composition if we
want. For example, since subexponential functions are closed under composition with linear
functions, we can allow this limited amount of composition in a theory corresponding to
subexponential size circuits by conversion axioms defined below in section 2.3.

The propositional proof translations from V0 to bdFrege in [7] can be adapted for trans-
lating proofs from its io-typed version ioV0 to bdFrege. In addition, it is possible to prove the
soundness of these proof systems in ioV0: we have enough comprehension to define the truth
of a sequent in a propositional proof, and we have enough induction to show that sequents in
a proof are true under an arbitrary assignment.

Next, we define an extension nε-ioV∞ of ioV0 (for any ε < 1 of the form 1/d) whose
provably total functions are those computed by AltTime(O(1), O(nε)), a uniform succinct
subclass of size 2O(nε) bounded-depth circuits. We provide a translation from nε-ioV∞ to
polynomial size proofs in the quantified proof system nε-bdG∞, and also to subexponential-
size bdFrege proofs. In addition, nε-ioV∞ can prove the soundness of nε-bdG∞ proofs.

We observe that in general, for proving the soundness of line-based propositional proof
systems like C-Frege we use the following two ingredients:

Evaluate the sequents in a proof, and state their truth under a given truth assignment.
Use induction to prove the sequents in proofs are true under an arbitrary truth assignment.

The comprehension and induction axioms in our theories provide these ingredients.
The central role of soundness tautologies for proof complexity is similar to the central

role of complete problems for computational complexity theory. The complete problems for
complexity classes provide universal problems that can be used to solve any problem in those
classes (over a class of reductions). A similar universal role is played by soundness tautologies
in proof complexity: the soundness tautologies for that propositional proof system can be
made to serve as axioms for the proof system.

Finally, we show that nε-ioV∞ contains ioVNC1 and ioVNL, the io-typed versions of
VNC1 and VNL. It follows that nε-ioV∞ proves the soundness of Frege, and this gives us a
uniform version of result in [10] that we can simulate Frege proofs with subexponential-size
bdFrege proofs. The inclusion ioVNC1 ⊆ nε-ioV∞ (and similar results) is proven essentially
by formalizing inside nε-ioV∞ the following theorem5 from computational complexity theory
(for all ε < 1):

NTimeSpace(nO(1), no(1)) ⊆ AltTime(O(1), O(nε)).

The rest of the paper is organized as follows:
Section 2 We define our io-typed theories. We start with the base theory ioV0, the io-typed

version of V0. We then extend ioV0 to ioVNC1, the io-typed version of VNC1, which
corresponds to the complexity class NC1. Our theories nε-ioV∞ corresponding to (uniform)
subexponential-size bounded-depth circuits are also defined in this section.

Section 3 We provide the background information about propositional proof systems. We
introduce proof classes and define the proof class polynomial-size nε-bdG∞.

4 This obstacle also arises in attempts to design a theory that corresponds to small classes like fixed-depth
circuits and propositional proof systems like Resolution.

5 The result is a similar to Nepomnjaščij’s theorem [15, 5].

K. Ghasemloo and S.A. Cook 299

Section 4 We provide a propositional translation from nε-ioV∞ to nε-bdG∞ and subexponential-
size bdFrege.

Section 5 We discuss the soundness of bdFrege, Frege, and nε-bdG∞ in io-typed theories.
We discuss the provability of Buss’s result [4] that Boolean Formula Evaluation can be
computed in NC1 in our theory ioVNC1 and use it to show that ioVNC1 can prove the
soundness of Frege.

Section 6 We show that nε-ioV∞ contains ioVNC1. Theorem 28 is our proof complexity ver-
sion of the computational complexity theory result that the uniform NC1 can be computed
by AltTime(O(1), O(nε)), a uniform complexity class corresponding to subexponential-size
bounded-depth circuits [1]. It is also a uniform version of [10] that polynomial-size Frege
proofs can be simulated by subexponential-size bdFrege proofs.

Nonuniform Uniform
Computational
Complexity

NC1/poly ⊆ DepthSize(O(1/ε), 2O(nε))
(Folklore)

NC1 ⊆ AltTime(O(1), O(nε))
[1], (Omitted Appendix)

Proof
Complexity

FregeSize(nO(1)) ⊆ O(1/ε)-FregeSize(2O(nε))
[10]

ioVNC1 ⊆ nε-ioV∞
(Theorem 28)

Section 7 We combine the results in the previous sections to show that polynomial-size Frege
proofs are simulated by subexponential-size bdFrege proofs and to provide an alternative
proof of [10].6

2 A Theory for Subexponential-Size Bounded-Depth Circuits

We start by defining an io-typed version of LK and the base theory 2Basic for two-sorted
bounded arithmetic in [7].

2.1 Two-Sorted io-Typed Bounded Arithmetics

Our language L2 have two sorts: num for (unary) numbers, and str for (binary) strings7. In
addition, we will syntactically type the terms of the language as8: i for input type, and o for
output type. The input types are subtypes of the output types, i.e. every object of input
type is also an object of output type: numi ⊆ numo = num, stri ⊆ stro = str.

We refer to the free variables of a formula as its parameters. The idea here is that the
input-type terms are going to be small (of linear size in the parameters) while the output-type
terms can be large (of polynomial size in the parameters, like the original two-sorted theories
of bounded arithmetic).

Lower-case letters denote numbers: a, b, c denote input-type numbers, and x, y, z denote
output-type numbers. Upper-case letters denote strings: A,B,C denote input-type strings,
and X,Y, Z denote output-type strings. We use f, g for number-valued functions; D,F,G
for string-valued functions; s, t for number-values terms; T for string-valued terms; ϕ, ψ, etc.
for formulas; Σ,Γ,∆,Π for set of formulas; S for sequents; and T for sets of sequents, i.e.
theories.

6 A similar result is obtained independently in [14] using model theoretic methods.
7 Or equivalently, finite sets of natural numbers with explicit (strict) upper bounds on the their members.

For example, the string 01100 is equivalent to the finite set {2, 3} with the explicit upper bound 5.
8 We can view our theory as having a two-sorted theory with two types. Each object has a sort and a
type. The sorts are: (unary) numbers and (binary) strings. The types are: input and output. Finally,
the input type is a subtype of the output type. Alternatively, we can define it as a four-sorted language
with appropriate axioms expressing the relation between them.

CSL’13

300 Theories for Subexponential-size Bounded-depth Frege Proofs

The language L2 has function symbols 0, 1, + (addition), · (multiplication), pd (prede-
cessor), | | (length), and relation symbols = (equality), ≤ (comparison), and ∈ (member-
ship/bit). All of these symbols except ∈ and | | apply to terms of number sort and have the
obvious intended interpretations. The membership relation y ∈ X means that the yth bit of
the string X is one9. The length function |X| returns the length of the string X as a number.
We consider the size of a number to be the number itself. The size of a string is its length.

An L2 -stricture has four sets for interpreting num, numi, str, and stri, where numi ⊆ num
and stri ⊆ str. The standard model N2 for L2 is given by interpreting num and numi as
0∗10∗ and str and stri as {0, 1}∗ . Note that we encode unary numbers using binary strings
with a single 1 bit whose location index from right determines the number 10. We use m, and
n for numbers and M and N for strings in the standard model. The operations and relations
of L2 has the usual interpretations as explained above. Note that m ∈ N is 0 for |N | ≤ m.

A linear term is a term built from constants 0 and 1, variables, and +. A function has
provably linear growth if the size of its output is provably bounded with a linear term in the
size of its inputs.

Every term in the language is an output-type term. The input-type terms of the language
are a subset of output-type terms and have provably linear growth. Input-type variables
are input-type terms, and when functions 0, 1, | |, +, pd are applied to input-type terms,
the result is also of input-type. Formally, the input-type terms are defined inductively:
input-type terms include input-type variables and constants 0 and 1; input-type terms are
closed under | |, +, and pd.

Unless stated otherwise, by quantifiers we mean quantifiers of both types. In one-sorted
theories, the bounded formulas with at most i alternations of number quantifiers comprise
the union of the classes Σbi and Πb

i . In two-sorted theories, these classes are defined similarly
and do not have any string quantifiers, but can have free string variables. We will often be
interested in the class of number bounded formulas ΣB0 . A formula is ΣB0 if it does not have
any string quantifiers and all number quantifiers in it are bounded by terms in the language.
We abbreviate |X| = y and |X| ≤ y by X = y and X ≤ y. A bounded string quantifier is a
string quantifier with an explicitly given size e.g. ∃X = y. Bounded formulas with at most i
alternations of string quantifiers comprise the union of the classes ΣB

i and ΠB
i . We define

ΣB
∞ =

⋃
i ΣB

i . Let Φ be a class of formulas. The formula class ∃BΦ consists of formulas
starting with bounded existential string quantifiers followed by a formula in Φ. We will be
using a subclass of bounded formulas which we call ΣB∞(t(n)).

I Definition 1 (ΣB
∞(t(n))). We call a formula ΣB

∞(t(~n)) iff it is ΣB
∞ and all of its string

quantifiers are bounded by number terms of size O(t(~n)) where ~n is the size of its free
variables. We often refer to this class simply as ΣB∞(t(n)) in place of ΣB∞(t(~n)). In such cases
n can be considered to be the total size of free variables.

Note that every formula ΣB0 represents a relation R(~x, ~X) in its free variables in the standard
model. These relations comprise the complexity class AC0 = AltTime(O(1), O(lgn)) [7].

9 Our semantics differs slightly from [7] where the second sort objects are finite subsets of N, and
technically are binary strings starting with 1. Our second sort objects are finite binary strings, where
the most significant bit does not need to be 1.

10 This more complex encoding is needed since otherwise we cannot consider nonconstant number-valued
functions in nonuniform models of computation. We need to be able to represent different unary number
with the same number of bits. The reason for choosing this particular encoding is its efficiency for
performing operations like checking the value of a given unary number. We discard the leading zeros
when considering these strings as numbers. For example, 00010 and 010 both represent number 1 and
are equal.

K. Ghasemloo and S.A. Cook 301

We adopt the sequent calculus LK of [7] with quantifier introduction rules to respect
the types. In the quantifier introduction rules for input types the target term must be an
input-type term. Similarly, if the quantifier variable is of output type, the eigenvariable must
be an output-type variable. The intuition here is that if we are deriving the existence of a
small object with some property, we must have a small object satisfying the property; or if
we are deriving that a property holds for all objects, the property must hold for an arbitrary
object, not just small ones.

More formally, in ∃R and ∀L rules, if the quantification variable is of input type then the
target term must be also of input type. Similarly, in ∀R and ∃L rules, if the quantification
variable is of output type, then the eigenvariable must be also of output type. These
restrictions make sure that we cannot derive ∀a ϕ(a)⇒ ∀x ϕ(x) and ∃x ϕ(x)⇒ ∃a ϕ(a).
The implications in the other direction are still provable as expected: input types are subsets
of output types, so ∀x ϕ(x)⇒ ∀a ϕ(a) and ∃a ϕ(a)⇒ ∃x ϕ(x) are valid.

We write π : T ` ϕ for “π is a LK-proof of ϕ in the theory T”, and T ` ϕ for “ϕ has an
LK-proof in the theory T”. We refer to the free variables of the end-sequent of an LK proof
as its parameters.

Let Φ be a set of formulas (for example take Φ = ∃BΣB0). We say that a set is Φ-definable
(over the standard model) iff there is a formula ϕ ∈ Φ which defines the set over the standard
model. The graph of a function f is defined as {(~n, ~N,m) ∈ N2 | f(~n, ~N) = m}. We say that
a function f is Φ-definable in T iff its graph is Φ-definable using a formula ϕ(~x, ~X, z) ∈ Φ
and T proves that ϕ defines a function, i.e. T ` ∃!y ϕ(~x, ~X, y).

Let F be string-valued. The bit-graph of F is defined as {(~n, ~N,m) ∈ N2 | m ∈ F (~n, ~N)}.
We say a string-valued function F is Φ-bit-definable in a theory T iff there is a formula
ϕ(~x, ~X, z) ∈ Φ and a number term p(~x, ~y) such that11

|F (~n, ~N)| = p(~n, | ~N |),
ϕ defines the bit-graph of the function F (over the standard model), and
T proves that ϕ and p define a total function, i.e.

T ` ∃!Y = p(~x, | ~X|) ∀z < p(~x, | ~X|)
(
z ∈ Y ↔ ϕ(~x, ~X, z)

)
.

Notice that the size of F depends only on the size of its arguments. We say that a
function is provably total in a theory T if the function is Φ-definable in T, for the appropriate
choice of the function class Φ. The choice of Φ depends on the theory T: We want the
provably total functions in T to be those in the complexity class associated with T. For
two-sorted theories associated with complexity classes contained in polynomial time (such as
ioV0 defined below), the right choice is Φ = ∃BΣB0 [7]. For the theory t(n)-ioV∞ defined in
Section 2.4 we choose Φ to be a larger class.

When a function is provably total in a theory T, we can add a new function symbol to the
language for it and include its definition as an axiom to our theory to obtain a conservative
extension of T. This extends the language and possible formulas. We are interested in
whether axiom schemas like comprehension continue to hold for the extended class of formulas.
For cases of interest in this paper the techniques presented in [7] suffice to show this.

When we extend the language by adding a new provably total function symbol, if we can
prove that the function has linear growth, then we can extend input type terms to be closed
under the new function symbol.

11 Note that in circuit complexity, the size of output of a function must only depend on the size of its
inputs.

CSL’13

302 Theories for Subexponential-size Bounded-depth Frege Proofs

Table 1 io2Basic.

B1 x+ 1 6= 0
B2 x+ 1 = y + 1→ x = y

B3 x+ 0 = x

B4 x+ (y + 1) = (x+ y) + 1
B5 x·0 = 0
B6 x·(y + 1) = x·y + x

B7 x ≤ y ∧ y ≤ x→ x = y

B8 x ≤ x+ y

B9 0 ≤ x
B10 x ≤ y ∨ y ≤ x
B11 x ≤ y ↔ x < y + 1
B12 pd(0) = 0 ∧ (x 6= 0→ pd(x) + 1 = x)

L y ∈ X → y < |X|

The class of io-typed provably total functions of a theory T are those functions that T
can prove to be total when the inputs to the functions are of input type. More formally, the
free variables in ϕ corresponding to inputs have input type. In other words, it is sufficient for
the function to be total over input-type objects. This is the class of functions we associate
with a theory. Note that this class is a possibly larger class than the usual class of provably
total functions of a theory since every input-type object is also an output-type object.

Equality for strings, X = Y , is an abbreviation for |X| = |Y | ∧∀x ≤ |X| x ∈ X ↔ x ∈ Y .
The notations X[y, z] and X[i; l] abbreviate the substring of X starting from bit y up of
length z, and ith substring block of X of length l:

x ∈ X[y, z] := x < z ∧ y + x ∈ X, |X[y, z]| := z, X[i; l] := X[i·l, l].

2.2 Theory io2Basic
The axioms of io2Basic are given in table 1.

Note that unlike the original 2Basic in [7], our length function | | gives only an upper
bound on the size of binary numbers. In this sense our axioms are similar to the second-order
theories in [2]. A binary string is determined by its length and its bits. This change doesn’t
make any essential difference in the presence of number induction for ΣB

0 formulas: the
original version of the length function is definable.

Let d be a fixed positive integer. The fractional power bx 1
d c, which we will write simply

as x 1
d , is definable using x 1

d = y ↔ yd ≤ x < (y + 1)d.

2.3 Theory ioV0 for AC0

Our theory ioV0 is an io-typed version of the base theory V0 of [7]. Besides the axioms for
io2Basic, we need an io-typed axiom for induction, an io-typed axiom scheme for comprehen-
sion, and two conversion axioms (one for each sort). All free variables in the axioms below
which are not displayed are of input type12.

Ind: 0 ∈ X,∀y < z (y ∈ X → y + 1 ∈ X)⇒ z ∈ X
ϕ-CA: ⇒ ∃Y = z ∀x < z (x ∈ Y ↔ ϕ(x,A))

Although we do not want to allow arbitrary compositions, we may want to allow some
under specific conditions. The main condition of interest for us here is to avoid increasing
the size of the input strings. Therefore, we will add conversion axioms that would allow us
to create composition when the size of the computed intermediate values are small13.

12 We could have used a stronger version of ΣB0 -CA where the free variables have output type. In that case
the input-type variable free part of the theory will be the same as V0. The simpler axiom is sufficient
and allows a conceptually and technically cleaner treatment.

13 There are other ways of expressing this axiom e.g. a comprehension axiom from output types to input
types, however these variations do not affect our results and we take this simpler from.

K. Ghasemloo and S.A. Cook 303

oiConvnum: ⇒ ∃b ≤ a (b = x ≤ a) ∨ (b = a ≤ x)
oiConvstr: ⇒ ∃B = a ∀z < a (z ∈ B ↔ y + z ∈ X)

We refer to these two axioms together as oiConv. The first axiom tells us that the minimum
of two numbers is small when at least one of them is small. The second axiom tells us that a
small substring of an output type string is small. These axioms allow us to compose definable
functions if the intermediate results are small in some input variables.

The theory ioV0 is obtained from io2Basic by adding the comprehension axiom for ΣB
0

formulas, the induction axiom, and the conversion axioms.

I Definition 2. ioV0 = io2Basic + Ind + ΣB0 -CA + oiConv.

As noted earlier the sets in AltTime(O(1), O(lgn)) = LH = FO = AC0 are precisely the
sets definable by ΣB

0 formulas. Since ioV0 has comprehension for these sets, p-bounded
functions with bit graphs in these sets are ∃BΣB

0 definable functions in the theory. By a
witnessing theorem, they are the only ∃BΣB

0 definable functions in the theory. Thus the
provable total functions in ioV0 coincide with the AC0 functions, where we take the class Φ
associated with this theory to be ∃BΣB0 . As a general rule, the comprehension axiom of any
of our theories will determine its computational power.

2.4 Theory ioVC
We can define io-typed versions of other theories built upon V0. However, simply adding
the same comprehension axiom used for VC in [7] might not be sufficient. The io-typed
version of these theories can be weaker than their original version. The io-types do not
allow arbitrary compositions of the provably total functions of a theory. Therefore, adding
the comprehension axiom for a problem complete with respect to AC0 reductions might not
capture the complexity class. This is intentional and necessary since we are going to deal
with complexity classes which are not closed under composition (they are not closed even
under composition with AC0 reductions from the right, e.g. consider the subexponential-
size bounded-depth circuits where their AC0 closure contains all functions via padding).
Therefore, we cannot define an io-typed theory assuming that the provably total functions
of the theory are closed under composition. For example, the theory VTC0 captures TC0

because every TC0 function can be built by composing a finite number of MAJ14 and AC0

functions, TC0 = MAJ + AC0. This result is not useful for defining the io-typed version of
the theory. Or the theory VNC1 captures NC1 because NC1 = MBBFE ◦ AC0 where MBBFE
is the Monotone Balanced Boolean Formula Evaluation problem.

With this in mind we have to be careful about the representations of complexity classes
we use in the comprehension axiom. The main requirement for a reasonable theory ioVC
for computational complexity class C is that ioVC has enough comprehension to evaluate
problems in C and the provably total functions of ioVC are exactly the functions in C.

2.5 Theory ioVNC1

I Definition 3. The io-typed version of the theory VNC1, ioVNC1 is defined as ioV +
ΣB0 (MBBFE)-CA, where ΣB0 (MBBFE)-CA is

∃Y = 2s ∃Z = 2s [∀x < 2s (x ∈ Z ↔ ϕ(x,A)) ∧ “Y is the computation of Z”]

14 The function MAJ computes the majority for the rows of a given matrix.

CSL’13

304 Theories for Subexponential-size Bounded-depth Frege Proofs

We think of Z as an instance of MBBFE and its second half gives inputs to the formula.
“Y is the computation of Z” is a shorthand for

∀z < s [(z ∈ Z → (z ∈ Y ↔ 2z ∈ Y ∧ 2z + 1 ∈ Y))∧

(z /∈ Z → (z ∈ Y ↔ 2z ∈ Y ∨ 2z + 1 ∈ Y))]

The theory ioVNC1 corresponds to NC1. We will look at ∃BΣB0 theorems where the free
variables have input type and existentially quantified string variables have output-type. For
example, consider the identity function that maps an input string to an output string of the
same value. This can be expressed by the formula ∃X X = A. This formula is provable in
ioV0 using the comprehension axiom. We have the following theorem:

I Theorem 4. The ∃BΣB0 definable functions of ioVNC1 are precisely NC1 functions.

Proof. The proof is similar to the proof for VNC1 in [7]. For one direction we note that the
witnessing theorem still applies.

For the other direction any NC1 function is can be obtained by composing MBBFE with
an AC0 function. We can express this using a ∃BΣB

0 formula: ΣB
0 (MBBFE) without the

leftmost quantifier and with a suitable ϕ defining the AC0 function. By comprehension axiom
for ΣB0 (MBBFE) the function is provably total. J

2.6 Theory t(n)-ioV∞

Next, we define our theory for the complexity classes AltTime(O(1), O(t(n))). We are
interested in t(n) = nε where ε = 1

d < 1 for some fixed d. Functions in AltTime(O(1), O(t(n)))
can be computed by uniform families of subexponential-size bounded-depth circuits. Note
that every function in AltTime(O(1), O(t(n))) is definable by a ΣB

∞(t(n)) formula, i.e. a
formula with string quantifiers bounded by a term of size O(t(n)) where n is a bound on the
size of inputs. The complexity class AltTime(O(1), O(nε)) corresponds to ΣB∞(nε) in a similar
way that the complexity class AltTime(O(1), O(lgn)) = AC0 corresponds to ΣB∞(lgn) = ΣB0 .
The complexity class AltTime(O(1), O(nε)) is a nice uniform version of subexponential-size
bounded-depth circuits. We will include the comprehension axiom ΣB

∞(t(n))-CA for this
class of functions to provide the necessary computational power. Note that t(n) is a term of
number sort and input-type which bounds the quantified string variables in ϕ. The term t(n)
cannot contain any output-type variable. We will consider cases where t(n) is not a term in
the original language but an AC0 function definable in the base theory ioV0 with at most
linear growth. In these cases we can easily extend the language to contain the new function
and add the defining axiom of the function to the theory, e.g. t(n) = n

1
d where n = |A|.

We define our theory t(n)-ioV∞ as follows:

I Definition 5. t(n)-ioV∞ = ioV0 + ΣB∞(t(n))-CA

It is easy to see that ioV0 is equivalent to lgn-ioV∞ since we can convert unary numbers
to binary numbers of logarithmic size and vice versa in AC0. Using ΣB0 -CA and definability
of Bit in ioV0 we can prove ΣB∞(lgn) = ΣB0 .

We take the provably total functions in t(n)-ioV∞ to be the Φ-definable functions, where
Φ = ∃BΣB∞(t(n)).

I Theorem 6 (Provably Total Functions of t(n)-ioV∞). The provably total functions of the
theory t(n)-ioV∞ are exactly those in AltTime(O(1), O(t(n))) of size nO(1), where n is the
size of the arguments.

K. Ghasemloo and S.A. Cook 305

Proof Outline. The proof is similar to the proof for V0: functions in AltTime(O(1), O(t(n)))
are definable and provably total using the comprehension axiom for ΣB

∞(t(n)). On the
other hand, by a witnessing theorem every provably total function of t(n)-ioV∞ is in
AltTime(O(1), O(t(n))). J

3 Proof Systems and nε-bdG∞ Proofs

We use lower-case letters like p and q for propositional variables; and α, β, γ for propositional
function symbols. We use ϕ, ψ, etc. for formulas (propositional, quantified propositional,
and first-order).

We say that a term is free in a formula iff all of its variables are free in the formula.
Expressions like ϕ[p/q] denote the formula resulting from substituting q for p in ϕ. The
usual restrictions on substitution apply, e.g. only free occurrences are replaced, and new
variables must not become bound after substitution.

We allow unbounded
∧

and
∨

connectives in propositional formulas. The (logical) depth
of a propositional formula denoted by ldepth() is defined as the depth of the formula tree.
The size of a propositional formula denoted by size() is the number of nodes in its tree15.
Quantified propositional formulas are defined by allowing quantification over propositional
variables of propositional formulas. We allow a single quantifier to quantify over multiple
propositional variables. For quantified propositional formulas the depth is defined as the
depth of their quantifier-free part. The quantifier depth of a quantified propositional formula
is defined as the maximum depth of formula tree counting only quantifier nodes and is
denoted by qdepth(). The size of a proof is the total size of its formulas. The depth of a
proof is the maximum depth of its formulas. The quantifier depth of a proof is the maximum
quantifier depth of its formulas. The class of quantified propositional formulas with quantifier
depth i starting with an existential quantifier is denoted by Σqi . Σq∞ is their union.

3.1 Proof Systems and Proof Classes
Let L denote a class of formulas, e.g. propositional formulas or quantified propositional
formulas. Let τ be a truth assignment for free variables, i.e. a function from free variables to
{0, 1}. We sometimes call τ an evaluation context. We use τ � ϕ to express that a formula
ϕ ∈ L is true under the truth assignment τ . When ϕ is true under all truth assignments we
write � ϕ and say that ϕ is valid. We refer to the set of valid formulas in L as L-tautologies
and denoted it by TAUTL.

Let Q be a relation with two inputs. We say π is a Q-proof for ϕ iff Q(π, ϕ) accepts, in
which case we write π : Q ` ϕ. We say ϕ is provable in Q iff ϕ has a Q-proof. An relation Q
is a(n) (efficient) proof system for L iff

efficiency: Q is computable in polynomial time,
completeness: every L-tautology is provable in Q,
soundness: every L-formula provable in Q is an L-tautology.

In propositional proof complexity we want to study families of proofs for families of
formulas. We say a proof family {πn}n is a Q-proof for a formula family {ϕn}n iff for all
n, πn : Q ` ϕn. We define proof classes in a similar way to nonuniform computational
complexity classes. Let Q be a proof system. A Q-proof class is a set of Q-proof families.

15 If we encode formulas as binary strings there will be a constant factor of the number of nodes in the
tree.

CSL’13

306 Theories for Subexponential-size Bounded-depth Frege Proofs

Similar to bounded-depth circuits, bounded-depth Frege (bdFrege) proof class is defined
as the set of Frege-proof families where the depth of cut formulas is O(1). Polynomial-size
bdFrege is the subclass of bdFrege where the size of the proofs are polynomial in the size
of the proven formula. If F is a proof class, we write F ` {ϕn}n to state that {ϕn}n has
a F-proof. For example, the pigeon-hole principle PHP = {PHPn}n has polynomial-size
Frege proofs [7, 12] but it does not have polynomial-size bdFrege proofs [12].

The proof class bdFrege is sometimes defined as the union of proof systems d-Frege for
d ∈ N, where d-Frege is a subsystem of Frege obtained by restricting cuts to depth d formulas.
It is easy to see that this gives the same bdFrege proof class we defined above. Note that
bdFrege is not a proof system, The proof system obtained from taking the union of proof
systems d-Frege for d ∈ N is not bdFrege but Frege. In fact, it doesn’t make much sense to
say a single proof has a bounded depth.

3.2 Standard Proof Systems and Proof Classes: bdFrege, Frege, and G
Our reference is [7]. PK is the classical sequent calculus propositional proof system. For
d ∈ N, the propositional proof system d-PK is PK with cuts restricted to depth d formulas.
bdPK is the proof class resulting from taking the union of d-PKs, i.e. proof families with
the depth O(1) cut formulas. Frege denotes any Frege proof system, e.g. PK. Bounded-
depth Frege denoted by bdFrege (a.k.a. AC0-Frege) is the Frege where cuts are restricted to
bounded-depth formulas.

Next, we define proof systems for quantified propositional calculus. The proof system G
is obtained from PK by adding the Boolean quantifier introduction rules. In the rules ∀R and
∃L, p is a free variable called eigenvariable and does not appear in the bottom sequent. In
the rules ∀L and ∃R, ϕ[q/ψ] is the result of substituting ψ for q in ϕ. The formula ψ is called
the target formula of the rule and may be any quantifier-free formula16. The formulas ∃q ϕ

and ∀q ϕ are called the principal formulas and the corresponding ϕ[q/ψ] or ϕ[q/p] formulas
on top are called the auxiliary formulas. Gi is a subsystem of G where the cuts are restricted
to formulas of quantifier depth i. For d ∈ N, the proof class d-Gi is Gi where the depth of
the quantifier free part of cut formulas is bounded by d. bdGi is the union of these proof
systems, i.e. the depth of the cut formulas in the proofs are bounded by a constant. G00 is a
conservative extension of Frege and bdG0 is a conservative extension of bdFrege [7, 12].

In our systems, we allow the introduction of a quantifier over multiple propositional
variables in a single step. For example, we can derive ∃~p ϕ(~p) is a single step from ϕ(~ψ).
Similarly, we allow the introduction of conjunction/disjunction of multiple formulas in a
single step. These modifications do not change the power of the proof systems, but will be
convenient to assume to obtain a nicer correspondence with first-order proofs.

In general, a proof can be a DAG and does not need to be a tree. We use a superscript ∗
to denote proofs which are trees [7, p. 195].

3.3 Proof Systems nε-bdG∞ and H
Let bdΣq∞(t(n)) denote the class of those Σq∞ formula families where the number of quantified
propositional variables is bounded by O(t(n)) and the depth of quantifier-free part is bounded.

16 The exact class of formulas for these rules is not important. By [7, VII.3.6, p.176], we can assume that
the target formulas are arbitrary formulas and need not to be quantifier free. Similarly, we can restrict
them to be only > or ⊥. These modifications does not change the power of the proof system. Following
[7], we use the definition of G (and its subsystems) that does not restrict all formulas but only the cut
formulas.

K. Ghasemloo and S.A. Cook 307

I Definition 7 (t(n)-bdG∞). The proof class t(m)-bdG∞ is the class of bdG∞ proofs for
formula families where cuts are restricted to bdΣq

∞(t(m)) formulas where m is the size of
proven formula. In addition we will assume that17 the total number of eigenvariables in each
sequent of in t(m)-bdG∞ proofs must not exceed t(m).

I Definition 8 (H). The proof system H is an extension of G obtained by allowing proposi-
tional function symbols (denoted by α, β, γ) as atomic formulas and including the following
extensionality axiom for them18 Ext: ~p↔ ~q ⇒ α(~p)↔ α(~q)

We will use the propositional function symbols to remove quantifiers from the axioms and
obtain Skolemized axioms. We will consider proofs with non-logical axioms.

4 From Uniform to Nonuniform

4.1 Translation of Terms and Formulas
In this section, we define a translation from first-order terms and bounded formulas to families
of sequences of propositional formulas and quantified propositional formulas, respectively.

We use (w)i to refer to the ith item in the sequence w. For example, if ~p = (p0, . . . , pk−1)
is a sequence of propositional variables, then (~p)i is pi for i < k (and is ⊥ if i ≥ k). Recall
that s and t denote number terms and T denotes a string term.

Let V ar be the set of variables. Let σ be a function that determines the size of variables,
i.e. σ : V ar → N assigns a numeric value to each variable. We refer to σ as a translation
context. The notation σ[x 7→ n] is used for the function obtained from σ by mapping x to
n. The propositional translation of a term t and a formula ϕ under translation parameters
σ are denoted by [[t]]σ and [[ϕ]]σ. We sometimes use [[t]]~n and [[ϕ]]~n in place of [[t]][~x7→~n] and
[[ϕ]][~x7→~n] when it is clear which variables ~x are being mapped.

The terms are translated recursively. The main difference from the usual propositional
translations is that we have function symbols that we translate to propositional function
symbols. We translate a function symbol into a sequence of propositional function symbols.
Each of these propositional function symbols will correspond to a bit of the original function
symbol. The number of propositional function symbols is the length of the original function
symbol. We can translate functions of the theory that are AC0 computable into reasonable
AC0 circuits computing them (sequences of AC0 formulas).

We first need to extend the translation context σ to all terms in the language. We will
use σ to determine the size of sequences used for the translation of the terms. The number
of bits used for translating a term may only depend on the size of its variables. Note that
every function symbol in our languages has an explicit size in terms of the size of its inputs.
We denote the size of a function symbol by adding a superscript σ. The translation context
σ distributes over sequences, i.e. σ(tk, . . . , t0) = σ(tk), . . . , σ(t0).

I Definition 9 (Extended translation context). Let σ be a translation context. The extended
translation context is given in table 2. For any term t, σ(t) is bounded by a polynomial in σ.
If a variable x occurs in t, then σ(t) ≥ σ(x).

17 This assumption simplifies some arguments significantly. However, we think that the results hold also
without this assumption.

18 A similar system is presented in [9].

CSL’13

308 Theories for Subexponential-size Bounded-depth Frege Proofs
Table 2 Extended Translation Context σ and Translation of Terms.

σ(0) = 0
σ(1) = 1
σ(t+ s) = σ(t) + σ(s)

σ(t·s) = σ(t)·σ(s)

σ(pd(t)) = σ(t)

σ(|T |) = σ(T)
σ(f(~t, ~T)) = fσ(σ(~t), σ(~T))
σ(F (~t, ~T)) = Fσ(σ(~t), σ(~T))

[[x]]σ = (>,

σ(x) times︷ ︸︸ ︷
⊥, . . . ,⊥)

[[X]]σ = (pXσ(X)−1, . . . , p
X
0)

[[0]]σ = (>)
[[1]]σ = (>,⊥)
[[s+ t]]σ = (oσ(s+t), . . . , o0)
where ok = ([[s+ t]]σ)k =

∨
i≤σ(s),j≤σ(t)

i+j=k

([[s]]σ)i ∧ ([[t]]σ)j

[[s·t]]σ = (oσ(s·t), . . . , o0)
where ok = ([[s·t]]σ)k =

∨
i≤σ(s),j≤σ(t)

i·j=k

([[s]]σ)i ∧ ([[t]]σ)j

[[pd(s)]]σ = (oσ(pd(t)), . . . , o0)

where ok = ([[pd(t)]]σ)k =

{
([[t]]σ)0 ∨ ([[t]]σ)1 k = 0
([[t]]σ)k+1 o.w.

[[|T |]]σ = [[σ(T)]]σ
[[f(~t, ~T)]]σ = (fσ(f(~t,~T))([[~t]]σ, [[~T]]σ), . . . , f0([[~t]]σ, [[~T]]σ))
[[F (~t, ~T)]]σ = (Fσ(F (~t,~T))−1([[~t]]σ, [[~T]]σ), . . . , F0([[~t]]σ, [[~T]]σ))

Terms are translated recursively: a number term t is translated to a sequence of size
σ(t) + 1, and a string terms T is translated to a sequence of size σ(T). A unary number n
is represented by >⊥n, i.e. the a sequence of size n+ 1 where only the nth bit19 is >. We
can use any reasonable AC0 formula for the translation of the functions of L2 . The main
requirement is that the translation of the axioms in io2Basic must have simple propositional
proofs. The translation distributes over sequences, i.e. [[tk, . . . , t0]]σ = [[tk]]σ, . . . , [[t0]]σ.

I Definition 10 (Translation of terms). Let σ be a translation context. The translation for
terms is given in table 2. For any term t, size([[t]]σ) is bounded by a polynomial in σ. If a
variable x occurs in t, then size([[t]]σ) ≥ σ(x). In addition, ldepth([[t]]σ) = O(1).

We can translate terms containing a string-valued function F which is defined by a
monotone non-decreasing term p and a formula ϕ (see Section 2.2) as20 |F (~x, ~X)| = p(~x, | ~X|),
and y ∈ F (~x, ~X) ↔ ϕ(~x, ~X, y), using σ(F (~t, ~T)) = p(σ(~t), σ(~T)), and ([[F (~t, ~T)]]σ)k =
[[ϕ(~t, ~T , y)]]σ[y 7→k]. Similarly, for number-valued functions f defined by f(~x) ≤ p(~x), and
f(~x) = y ↔ ϕ(~x, y) we can use σ(f(~t)) = p(σ(~t)), ([[f(~t)]]σ)k = [[ϕ(~t, y)]]σ[y 7→k].

For example, if we include substring function T [s, t] in the language defined in Section
2.1, we can translate it using σ(T [s, t]) = σ(t) and ([[T [s, t]]]σ)k = [[x < t ∧ s+ x ∈ X]]σ[x 7→k].

Formulas are also translated recursively: atomic formulas are translated directly to
AC0 formulas such that the axioms about them have simple propositional proofs. Logical
connective are translated to themselves. Bounded number quantifiers are translated to

∧
and

∨
. Bounded string quantifiers are translated to propositional quantifiers. The number

of quantified propositional variables will be equal to the bound.

I Definition 11 (Translation of formulas). Let σ be a translation context. The translation of
bounded formulas is given in table 3. For any formula ϕ, size([[ϕ]]σ) is bounded by a polynomial
in σ. If a variable x occurs freely in ϕ, then size([[ϕ]]σ) ≥ σ(x). Also ldepth([[ϕ]]σ) = O(1)
and qdepth([[ϕ]]σ) = O(1). The number of quantified propositional variables is determined
by the translation of the bounding terms for the string quantifiers.

19 The index of the rightmost bit is 0.
20 For the translation to work we need the size of the functions to depend only on the size of their inputs.

If we want to include in our translation functions like msb whose size is not determined by the size of
its inputs we need to use a language that has a length operation for numbers.

K. Ghasemloo and S.A. Cook 309
Table 3 Translation of Formulas

[[s = t]]σ =
∨

i≤σ(s),σ(t)
([[s]]σ)i ∧ ([[t]]σ)i

[[s ≤ t]]σ =
∨

i≤σ(s)

∨
i≤j≤σ(t)

([[s]]σ)i ∧ ([[t]]σ)j

[[t ∈ T]]σ =
∨

i≤σ(T)
([[T]]σ)i ∧ ([[t]]σ)i

[[⊥]]σ = ⊥
[[>]]σ = >
[[¬ϕ]]σ = ¬[[ϕ]]σ
[[ψ ∧ ϕ]]σ = [[ψ]]σ ∧ [[ϕ]]σ
[[ψ ∨ ϕ]]σ = [[ψ]]σ ∨ [[ϕ]]σ
[[∃x ≤ t ϕ]]σ =

∨
i≤σ(t)

[[x ≤ t ∧ ϕ]]σ[x 7→i]

[[∀x ≤ t ϕ]]σ =
∧

i≤σ(t)
[[x ≤ t→ ϕ]]σ[x 7→i]

[[∃X = t ϕ]]σ = ∃[[X]]τ [[X = t ∧ ϕ]]τ
[[∀X = t ϕ]]σ = ∀[[X]]τ [[X = t→ ϕ]]τ .
where τ = σ[X 7→ σ(t)]

Recall that bounded string quantifiers of the form ∃X ≤ t ϕ and ∀X ≤ t ϕ are equivalent
to ∃y ≤ t ∃X = y ϕ and ∀y ≤ t ∀X = y ϕ and can be translated as such.

Using induction on the structure of formulas we can prove that [[ϕ]]σ is a tautology iff
~x = σ(~x), | ~X| = σ(~X)⇒ ϕ is true in the standard model.

4.2 Translation of Proofs
In this section, we provide a translation from proofs in the theory nε-ioV∞ to polynomial-size
nε-bdG∞ and subexponential-size bdG0 proofs. We will consider proofs in nε-ioV∞ where
ε = 1

d < 1 is fixed.

I Theorem 12 (Propositional Translation). If ϕ ∈ ΣB0 is provable in nε-ioV∞, then {[[ϕ]]~n}~n
has polynomial-size nε-bdG∞.

Assume that nε-ioV∞ ` ϕ. If ϕ has no free variables its translation is a fixed formula
and has a size O(1) depth O(1) proof and we are done. So assume that ϕ has at least one
free variable.

Without loss of generality, we can assume that all free variables in ϕ have input type: if ϕ
is provable then so is ϕ[~x, ~X/~a, ~A], which has the same translation. We refer to ~n = σ(~a, ~A)
as translation parameters where ~a and ~A are ϕ’s free variables. Let m~n = size([[ϕ]]~n).

Since ϕ has at least one free variable we have m~n = size([[ϕ]]~n) = Ω(~n). Therefore, if
prove that some entity like the size of a proof for ϕ is bounded by a monotone non-decreasing
function of ~n, the bound will also apply with ~n replaced by ~m. With this in mind, we will
study proof size, proof depth, etc. in terms of the translation parameters ~n.

The propositional translation has three steps. In the first step, we Skolemize conversion
and comprehension axioms to remove the initial existential string quantifiers from them.
We denote the Skolemized version of these axioms by adding a ∗ superscript. The Skolem
functions for comprehension axioms return output-type values while the Skolem function for
the conversion axiom returns input-type values. In other words, the type of value returned
by a Skolem function matches the type of quantified variable it is witnessing. Note that
axioms determine the size of the functions symbols.

oiConvstr: ⇒ ∃B = a ∀z < a (z ∈ B ↔ y + z ∈ X),
oiConv∗str: ⇒ |F oiConv(a, y,X)| = a ∧ ∀z < a (z ∈ F oiConv(a, y,X)↔ y + z ∈ X).
ϕ-CA: ⇒ ∃Y = z ∀x < z (x ∈ Y ↔ ϕ(x,A)),
ϕ-CA∗: ⇒ |Fϕ-CA(z,A)| = z ∧ ∀x < z

(
x ∈ Fϕ-CA(z,A)↔ ϕ(x,A)

)
.

Let’s call the resulting theory ̂nε-ioV∞. Note that the theory still has the nice properties
of the original theory. In particular, the size of an input-type term is still bounded by a
linear function of the size of its input-type variables. We have:

CSL’13

310 Theories for Subexponential-size Bounded-depth Frege Proofs

I Lemma 13 (Step 1). If nε-ioV∞ ` ϕ then ̂nε-ioV∞ ` ϕ.

Proof of Step 1. We only need to derive the axioms of nε-ioV∞ in ̂nε-ioV∞. The original
axioms are derivable from the Skolemized versions using a single application of the ∃R. J

Next, we translate proofs in ̂nε-ioV∞ to proof families in H with non-logical axioms.

I Lemma 14 (Step 2). If π : ̂nε-ioV∞ ` ϕ, then there is a H-proof {[[π]]~n}~n of {[[ϕ]]~n}~n
using the translation of the axioms in ̂nε-ioV∞ as non-logical axioms. Moreover, size([[π]]~n) =
O(poly(~n)), ldepth([[π]]~n) = O(1), qdepth([[π]]~n) = O(1), the proof contains only cuts over
Σq∞(nε) formulas, and the number of eigenvariables in each sequent is O(nε).

Proof of Step 2. We first convert the proof π into a proof in free-variable free-cut free
normal form. The resulting proof only contains subformulas of ϕ and the axioms. Since ϕ
does not have any string quantifier, all cut formulas with string quantifiers are subformulas
of the Skolemized comprehension axiom. By lemma 15 below, we can bound the size of free
input-type string variables in the proof by linear size terms in parameters of the proof ~n.
Therefore, all formulas in the proof are ΣB∞(nε).

We translate the proof to a propositional proof in H recursively starting from the end-
sequent. The translation is straightforward. The rules in H correspond to rules in LK. The
only interesting cases are the number quantifier rules which need to be replaced by rules for∨

and
∧

. For ∃L and ∀R, we extend the translation context to assign values to the eigen

variable for all possible values less than the bound. All terms have at most polynomial size
in their free variables. Therefore, we will construct a polynomial number of them.

For example, consider ∀R. The sequent Γ ⇒ ∆,∀x ≤ t ψ is translated to [[Γ]]σ ⇒
[[∆]]σ,

∧
i≤σ(t)[[x ≤ t→ ψ]]σ[x 7→i]. We recursively obtain the proofs for the translations of

Γ⇒ ∆, x ≤ t→ ψ under translation contexts σ[x 7→ i] for all i ≤ σ(t), and use
∧

R to obtain

Γ⇒ ∆, x ≤ t→ ψ
∀R

Γ⇒ ∆,∀x ≤ t ψ

{[[Γ]]σ ⇒ [[∆]]σ, [[x ≤ t→ ψ]]σ[x7→i]}i≤σ(t) ∧R
[[Γ]]σ ⇒ [[∆]]σ,∧i≤σ(t)[[x ≤ t→ ψ]]σ[x 7→i]

The axioms are translated to non-logical quantified propositional axioms. It is easy
to check that the depth and quantifier depth of the proof are O(1) and size of the proof
is O(poly(~n)). Formulas in ΣB

∞(nε) are translated to Σq
∞(nε) formulas, so cuts formulas

are Σq
∞(nε). Each sequent in the translated proof is a translation of a first-order sequent.

Therefore, the number of formulas in each sequent is constant and the total number of
eigenvariables in each sequent is O(nε). J

I Lemma 15 (Linear Type Bounds). The size of free input-type string variables in the proof
can be bounded by linear terms in ~n.

Proof Idea. The proof is similar to Parikh’s theorem. J

In the third step, we remove the function symbols and non-logical axioms from the proof
to obtain a polynomial-size nε-bdG∞ proof.

I Lemma 16 (Step 3). If ̂nε-ioV∞ ` ϕ then {[[ϕ]]~n}~n has a polynomial-size nε-bdG∞ proof.

Proof Step 3. Consider the proof obtained in step 2. To obtain a nε-bdG∞-proof we need
to provide

polynomial-size explicit witnessing formulas for the function symbols, and
polynomial-size nε-bdG∞ proofs for the non-logical axioms.

K. Ghasemloo and S.A. Cook 311

Note that the translations of the axioms of io2Basic have simple polynomial-size bdG0 proofs.
The the translation of the induction axiom becomes

[[0 ∈ X]]σ,
∧

i≤σ(z)

[[y ≤ z]]σ[y 7→i] → ([[y ∈ X]]σ[y 7→i] → [[y + 1 ∈ X]]σ[y 7→i])⇒ [[z ∈ X]]σ

which has a simple proof of polynomial size and bounded depth: We provide proofs for
[[y + 1 ∈ X]]σ[y 7→i] ⇒ [[y ∈ X]]σ[y 7→i+1] and then combine these using ∨L to obtain the proof.

We use substring functions to witness the conversion axiom. To remove the conversion
axiom, we replace [[F oiConvstr (a, y,X)]]n with [[X[y, a]]]n. The axiom becomes

⇒ [[|X[y, a]| = a]]n ∧
∧

i≤σ(a)

[[x ∈ X[y, a]↔ y + x ∈ X]]n,[x 7→i]

which has a bdG0-proof of polynomial size and bounded depth.
We will use the defining formula of the comprehension axioms to witness the comprehension

function symbols. To remove the comprehension function symbols, we replace ([[Fϕ-CA(A)]]σ)n
with [[ϕ(x,A)]]n,[x 7→i]. The comprehension axioms become

⇒
∧

i≤σ(t)

(
[[ϕ(x,A)]]n,[x 7→i] ↔ [[ϕ(x,A)]]n,[x 7→i]

)
which have bdG0 cut-free proofs of polynomial size. J

Finally, we expand the ΣB∞(nε) formulas to bounded-depth formulas of size 2O(nε). As a
result, we get size 2O(nε) bdG0 proofs.

I Theorem 17 (Subexpoential-Size Bounded-Depth G0 Proofs). If {[[ϕ]]~n}~n has a polynomial-
size nε-bdG∞ proof then {[[ϕ]]~n}~n has a size 2O(nε) bdG0 proof.

Proof of Corollary 17. We convert the proof by replacing propositional quantifiers with
∧

and
∨

and quantifier introduction rules by their
∧

and
∨

counterparts. The result is a valid
proof with no quantifiers. The depth of the formulas in the proof is still O(1). Sine the
number of quantified variables in any formula was O(nε) the size of new formulas is 2O(nε).
Moreover, since the number of eigen variables in each sequent is O(nε), we only need to
make 2O(nε) copies of them in total for replacing the quantifier introduction rules. Therefore,
the size of the resulting proof is 2O(nε). J

5 From Nonuniform to Uniform

The other half of the relation between a bounded arithmetic theory and a propositional proof
system is given by the provability of the soundness of the propositional proof system (or proof
class) inside the corresponding theory. The soundness statement for a proof system Q states
that for every ϕ, π, and τ , if π is a Q-proof of the formula ϕ, and τ is a truth assignment for
ϕ, then τ satisfies ϕ: ∀ϕ, π, τ (π : Q ` ϕ⇒ τ � ϕ). For a proof class that is obtained from
taking the union of an indexed family of proof systems the soundness statement is defined as
the set of soundness statements for each proof system in the family. For example, we say
that a theory proves the the soundness of bdFrege iff it proves {Sound(d-Frege) | d ∈ N}.

The importance of soundness statements are their universal role in proof complexity
similar to complete problems in complexity theory, i.e. proof classes can be characterized
as the set of tautology families derivable from the soundness tautology families in a weak
propositional proof system like resolution.

CSL’13

312 Theories for Subexponential-size Bounded-depth Frege Proofs

Let T be a theory extending ioV0 and F be a proof class containing polynomial-size
bdFrege and closed under cuts over bdΣq

0 formulas. Assume that F proves the translation of
ΣB0 theorems of T. We have

I Theorem 18. If T proves the soundness of F′, then F′ ⊆ F.

Proof. First, if {πn}n : F′ ` {ϕn}n, then this family has a polynomial-size bdFrege proof.
Second, {(τ � ϕn)⇒ ϕn(τ)}n has a polynomial-size bdFrege proof. Now, since the soundness
of F′ is provable in T, the translation of the soundness of F′, {πn ` ϕn ⇒ τ � ϕn}n , is
provable in F. F is closed under bdΣq0 cuts, and proves {πn : F′ ` ϕn}n, therefore {τ � ϕi}i is
provable in F. Which means {ϕn(τ)}n is provable in F. To make the argument complete, we
need discuss the accepting computations of the proof system containing F and the evaluation
of formulas. See [13, 12] for details. J

I Theorem 19. Let F be a Q-proof class satisfying conditions mentioned above. If the
soundness of a proof system Q′ is provable in F, then Q simulates Q′ with F proofs. If the
F-proofs are soundness of Q′ are effectively given, then the simulation is effective.

Proof. The proof is similar to the proof of Theorem 18. J

5.1 ioV0 Proves Soundness of bdFrege
I Theorem 20 ([7]). The soundness of the proof class bdFrege is provable in V0.

In soundness statements, the proof is given to us as an input. Since the size of the formulas
in the proof are bounded by the size of the proof, we can easily evaluate these formulas in
ioV0 using the comprehension axiom. Similarly, the size of the proof is an input-type number,
so we can use the induction axiom to prove that all sequents in the proof are true under a
given assignment. At no point in the argument do we need to compute large values, so the
provability of soundness of bdFrege works in ioV0. Therefore

I Theorem 21. The soundness of bdFrege is provable in ioV0.

5.2 ioVNC1 Proves Soundness of (Unbalanced) Frege
The comprehension axiom of ioVNC1 can be used to evaluate balanced formulas and therefore
ioVNC1 can prove the soundness of Frege proofs where formulas in the proof are balanced.

I Theorem 22. ioVNC1 ` Sound(BalancedFrege).

But that does not necessarily imply that ioVNC1 can prove the soundness of (unbalanced)
Frege proofs. We need to balance formulas and provably so in ioVNC1. It turns out that
ioVNC1 can prove the Buss’s result [3, 4] that (unbalanced) Boolean formulas can be evaluated
in ALogTime (which is equivalent to uniform NC1). The Buss’s proof [4] is formalized in
VNC1, see [7, pp. 410-424].

I Theorem 23. ioVNC1 proves the totality and correctness of Buss’s ALogTime algorithm
[4] for unbalanced Boolean formula evaluation problem.

Proof. The goal is to prove that we can evaluate unbalanced formulas, i.e. for a formula and
a truth assignment given in A and B, there is a Y which is a computation of A on B. Note
that the computation doesn’t need to encode the values obtained for gates, the evaluation
is correct, i.e. it distributes over logical operations and correctly computes the value of >

K. Ghasemloo and S.A. Cook 313

and ⊥. We can use an AC0 function to build a balanced formula Z from A using Buss’s
algorithm, and then apply MBBFE to Z and obtain a computation Y of it. Note that the
ΣB0 (MBBFE)-CA axiom allows this. The game tree of Buss’s algorithm only depends on the
size of the formula. The part of the balanced formula that depends on the formula is a TC0

functions that given a game play and a formula decides the winner. We attach a balanced
Boolean formula computing this TC0 function to the leaves of the game tree.

Note that for correctness we don’t need to compute any global function of output-type
objects. So the argument in [7] still works. J

I Corollary 24. The (unbalanced) Boolean formula evaluation is provably total in ioVNC1.

Now, following the standard argument we can prove the soundness of (unbalanced) Frege
in ioVNC1.

I Theorem 25. ioVNC1 proves the soundness of (unbalanced) Frege

Proof. Let π : Frege ` ϕ be a Frege proof of ϕ. We show that ϕ is true. Let τ be an arbitrary
truth assignment for the formulas in π. We show by induction on the size of π that the
sequents in π are true under τ . For the base case, we have to verify that the axioms are true
which is straight forward. For the induction step, we have to show that the rules preserver
truth of sequents. The correctness of all rules can be verified by case analysis. We use
Theorem 24 to show the correctness of the cut rule. J

5.3 nε-ioV∞ Proves Soundness of nε-bdG∞

First note that as a corollary of Theorem 21 we have

I Corollary 26. The soundness of bdFrege is provable in nε-ioV∞.

I Theorem 27. The soundness of nε-bdG∞ is provable in nε-ioV∞.

Proof Idea. The argument follows the same structure of provably of soundness results. J

6 ioVNC1 ⊆ nε-ioV∞

In this section, we prove that nε-ioV∞ ` ioVNC1 which is essentially formalizing and proving
correctness of NC1 ⊆ AltTime(O(1),O(nε)). The argument also applies to other nice classes
in NTimeSpace(nO(1), no(1)) like NL.

I Theorem 28. The theories nε-ioV∞ contain the theory ioVNC1.

Proof of Theorem 28. We only need to derive ΣB
0 (MBBFE)-CA in nε-ioV∞. Our goal is

to show that there is a ΣB
∞(nε) formula ψ(x,A) which provably gives the bit graph of

the computation Y of circuit Z in ΣB
0 (MBBFE)-CA. In other words, ψ(x,A) iff the value

computed for gate x of the circuit Z is one. Therefore by ΣB
∞(nε)-CA the computation of

circuit Z exists and we are done. Let’s fix ϕ and s in ΣB0 (MBBFE)-CA Note that s is bounded
by a polynomial term in the size of free variables of the formula.

We think of ϕ as representing the graph of an AC0 function. Abusing the notation, we use
ϕ(A) to denote this function. Consider a given A of length n. We can prove the existence of
the Z = ϕ(A) using the comprehension axiom in ioV0. Let;s assume that Z and x are given.

Formula ψ is similar to Buss’s algorithm. We describe it as a game between two players
with k rounds. The first player claims that the correct value of gate x is 1 while the second
player claims that is not the case. We refer to them as P (Prover) and C (Challenger).

CSL’13

314 Theories for Subexponential-size Bounded-depth Frege Proofs

Let Z be a balanced Boolean formula of size s and x a gate in Z. We divide Z into k levels.
This results in subformulas of size O(s1/k). We look at each of these small subformulas as a
possible round in the game. The game tree has depth k and branching O(s1/k). Each of these
small formulas can be described by a path from the root to it. We index the subformulas,
their inputs, and their computation using sequences of number w = (i1, i2, · · · , il) where
0 ≤ l < k and each number is less than s1/k. For example, the subformula in the root is
indexed as Z(). The subformulas below it are index as Z(1), Z(2), Each round is played
in one of these subformulas, starting at the root subformula. After each step we will move to
one of the subformulas below the current one. The game is finished when we reach a leave.

The game starts by the P giving a computation of the top subformula including the
inputs to that subformula. If the computation is not correct P loses. Otherwise C challenges
one of the inputs to the subformula whose output is the challenged input for the previous
subformula. The games continues by moving to that subformula. The game ends when we
reach the original input bits. At which point we can check if all claims (the claimed values
for gates in each subcircuit are consistent and the value of the output gate of each subcircuit
is equal to the value of the challenged input bit of the upper subcircuit) by P are correct, in
which case P wins. Otherwise C wins.

The player P represents existential string quantifiers of size O(s1/k). The player C
represents universal number quantifiers of size O(s1/k). Note that given a circuit, an input,
and a computation, the fact that computation is correct is expressible as a ΣB0 formula. We
have k blocks of these quantifier followed by a ΣB

0 formula that checks if the claims are
correct: 1. for each subformula in a game; the computation given for that subformula is
compatible with the gates for that subformula; 2. the value of root for each subformula is
equal the value of the leaf challenged in the previous round by C; 3. gate x belongs to one of
the subformulas in the game; 4. the value of gate x is 1. If we pick k = lg s

ε lgn then s1/k ≤ nε

and ψ is a ΣB∞(nε) formula. Note that φ is a σB0 formula giving the bit graph of Z and we
can easily replace membership in and length of Z by ϕ and s.

Now that we have defined our ΣB0 formula for ϕ and s, we have to show that it gives the
bits of the computation of Z according to the definition in ΣB

0 (MBBFE)-CA, i.e. the value
for each gate should be compatible with the type of the gate and the values for its children.
This is mainly case analysis: either the gate is inside a subformula, in which case it is the
case, or it is on the boarder between two level, in which case it is assigned the same values
in both subformula computations. This completes the proof. J

7 Simulation of Frege proofs with bdFrege proofs

In this section, we combine the results from previous sections to provide an alternative proof
of [10] that Frege proofs can be simulated by bdFrege proofs with a 2O(nε) increase in proof
size , i.e. size 2O(nε)bdFrege simulates polynomial-size Frege. These results also hold for size
2O(nε)bdFrege replaced with size 2O(nε)bdG0.

Combining nε-ioV∞ ` ioVNC1 from theorem 28 and ioVNC1 ` Sound(Frege) from theorem
25 we obtain the following corollary:

I Corollary 29. The proof class nε-ioV∞ proves the soundness of the Frege proof system.

Now, by Theorems 18 and 19 we have:

I Corollary 30. The proof class polynomial size nε-bdG∞ contains the proof class polynomial-
size Frege. The proof system G effectively simulates proof system Frege by polynomial-size
nε-bdG∞ proofs.

K. Ghasemloo and S.A. Cook 315

As a corollary of Theorem 17 that size 2O(nε) bdFrege contains nε-bdG∞ we get

I Corollary 31. The proof class size 2O(nε)bdFrege contains the proof class polynomial-
size Frege. Size 2O(nε)bdFrege simulates polynomial-size Frege. The proof system bdFrege
effectively simulates Frege by proofs of size 2O(nnε

).

Acknowledgements. We would like to thank Phuong The Nguyen for many helpful discus-
sions during the last two years. The idea for a uniform version of [10] came up during a
discussion with Yuval Filmus, Toniann Pitassi, and Rahul Santhanam. We would like to
thank the anonymous referees for their pointing out several sections which were unclear, and
for their detailed and constructive comments and suggestions. The proofs of some lemmas
are omitted because of length restrictions. Some sections of the current version may need
further clarification. An earlier version of this work was presented in Fall 2011 by the first
author while attending MALOA’s special semester on Logic and Complexity in Prague. He
would like to thank the organizers and participants, in particular Jan Krajíček, for creating
a lovely environment for research and exchange of ideas.

References
1 Eric Allender and Michal Koucký. Amplifying lower bounds by means of self-reducibility.

J. ACM, 57(3):14:1 – 14:36, 2010.
2 Samuel R. Buss. Bounded Arithmetic. Bibliopolis, 1986.
3 Samuel R. Buss. The boolean formula value problem is in alogtime. In Alfred V. Aho,

editor, STOC, pages 123–131. ACM, 1987.
4 Samuel R. Buss. Algorithms for boolean formula evaluation and for tree-contraction. In

P. Clote and J. Krajicek, editors, Proof Theory, Complexity, and Arithmetic, pages 95–115.
Oxford University Press, 1993.

5 Samuel R. Buss and Ryan Williams. Limits on alternation-trading proofs for time-space
lower bounds. In IEEE Conference on Computational Complexity, pages 181–191. IEEE,
2012.

6 Stepehn A. Cook. Feasibly constructive proofs and propositional calculus. In Annual ACM
Symposium on Theory of Computing, volume 7, pages 83–97, 1975.

7 Stepehn A. Cook and Phoung Nguyen. Logical Fouondations of Proof Complexity. Cam-
bridge University Press, 2010.

8 Stephen Cook and Tsuyoshi Morioka. Quantified propositional calculus and a second-order
theory for NC1. Archive for Mathematical Logic, 44(6):711–749, 2005.

9 Stephen A. Cook. Relativized propositional calculus. Manuscript, 2012.
10 Y. Filmus, T. Pitassi, and R. Santhanam. Exponential lower bounds for ac-frege imply

superpolynomial frege lower bounds. Proceedings ICALP, 2011:618–629, 1.
11 Emil Jeřábek. Dual weak pigeonhole principle, Boolean complexity, and derandomization.

Annals of Pure and Applied Logic, 129:1–37, 2004.
12 Jan Krajíček. Bounded Arithmetic, Propositional Logic, and Complexity Theory. Cambridge

University Press, 1995.
13 Jan Krajíček. A note on sat algorithms and proof complexity. Information Processing

Letters, 112(12):490–493, June 2012.
14 Sebastian Müller. Polylogarithmic cuts in models of V 0. LMCS, 9:2013, 2013.
15 V.A. Nepomnjascij. Rudimentary predicates and turing calculations. Doklady AN SSSR,

195, 1970.
16 J. Paris and A. Wilkie. Counting problems in bounded arithmetic. In CarlosAugusto Prisco,

editor, Methods in Mathematical Logic, volume 1130 of Lecture Notes in Mathematics, pages
317–340. Springer Berlin Heidelberg, 1985.

CSL’13

	Introduction
	 io-typed Theories
	Two-Sorted io-Typed Bounded Arithmetics
	Theory io2Basic
	Theory ioV0 for AC0
	Theory ioVC
	Theory ioVNC1
	Theory t-ioVinf

	Proof Systems and Uniform SubExp bdFrege Proofs
	Proof Systems and Proof Classes
	 bdFrege, Frege, and G
	Proof Systems tbdGinf and H

	From Uniform to Nonuniform
	Translation of Terms and Formulas
	Translation of Proofs

	From Nonuniform to Uniform
	 ioV0 Proves Soundness of bdFrege
	 ioVNC1 Proves Soundness of (Unbalanced) Frege
	 tioVinf Proves Soundness of tbdGinf

	neps-ioVinf Contains ioVNC1
	 Simulation of Frege proofs with bdFrege proofs

