
The Structure of Interaction∗

Stéphane Gimenez and Georg Moser

Institute of Computer Science
University of Innsbruck, Austria
{stephane.gimenez,georg.moser}@uibk.ac.at

Abstract
Interaction nets form a local and strongly confluent model of computation that is per se paral-
lel. We introduce a Curry–Howard correspondence between well-formed interaction nets and a
deep-inference deduction system based on linear logic. In particular, linear logic itself is easily ex-
pressed in the system and its computational aspects materialise though the correspondence. The
system of interaction nets obtained is a typed variant of already well-known sharing graphs. Due
to a strong confluence property, strong normalisation for this system follows from weak normal-
isation. The latter is obtained via an adaptation of Girard’s reducibility method. The approach
is modular, readily gives rise to generalisations (e.g. second order, known as polymorphism to
the programmer) and could therefore be extended to various systems of interaction nets.

1998 ACM Subject Classification F.1.2 Modes of Computation, F.4.1 Mathematical Logic

Keywords and phrases Interaction Nets, Linear Logic, Curry–Howard Correspondence, Deep
Inference, Calculus of Structures, Strong Normalisation, Reducibility

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.316

1 Introduction

We introduce a deep-inference deduction system based on multiplicative-exponential linear
logic (MELL for short) [4] and provide a direct correspondence with interaction nets sys-
tems [11], among which sharing graphs [12, 5, 6] play a key role. Our calculus was directly
inspired by, and is in large parts identical to, an earlier presentation of MELL in the calculus
of structures given by Guglielmi and Straßburger [16, 15]. We thus unveil a Curry–Howard
correspondence between deep-inference formalisms of linear logic and the simple, almost
canonical, parallel computation model portrayed by interaction nets. On the one hand,
the deep-inference deduction system fulfills the role of a long-awaited enhanced type sys-
tem for nets: the additional structure conferred to nets through typing ensures correctness,
and can furthermore, under some reasonable assumptions, guarantee termination. On the
other hand, interaction nets provide an answer to the unsettled topic of a computational
interpretation for proof normalization steps in deep-inference systems.

Interaction nets, introduced by Lafont in [11], form an abstract model of computation
based on graph rewriting [18]. Reduction of interaction nets is strongly confluent: pairs of
interacting agents can not only be contracted locally but also independently, and therefore
any peak can be joined immediately. This gives rise to an elegant formalism to express par-
allel computations. These and other merits make interaction nets a promising programming
paradigm, either as an execution platform for functional programs, or as a conceptional
device for the (optimal) implementation of the λ-calculus [6, 13, 7]. However, the elegance

∗ This work is partially supported by FWF (Austrian Science Fund) project I-603-N18.

© Stéphane Gimenez and Georg Moser;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 316–331

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.316
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Gimenez and G. Moser 317

of nets has always been undermined by the lack of a versatile framework to guarantee basic
correctness assumptions.

I Example 1.1. As an illustration, we reuse the difference lists example from [11], an
implementation of lists that allows constant time concatenation. The two nets pictured
below describe the concatenation of integer lists [1, 2] and [3, 4], before and after evaluation.
Node cons is used as a standard list constructor, and bind creates a difference list from links
to the tail and to the head of a standard list.

d-cat

bind bind

cons cons

1 3cons cons

2 4

bind

cons

1 cons

2 cons

3 cons

4

The computation is performed by means of the following rewriting rules:

d-cat

bind

dlist

dlistdlist

list list

−→
bind unbd

listlist list

dlist dlist

unbd

bind

dlist

listlist

list list

−→

list

list

After two reduction steps, reduction of the initial net yields the given normal form.

Such simple examples suffice to understand that interaction nets crucially miss struc-
ture, making reasoning about them difficult. Individual portions of nets found in left and
right hand side of reduction rules are not standardly considered valid, even though they are
subnets of valid nets. The reason being that usual net-construction rules available for this
system, which are inherited from sequent-calculus inference rules, are too coarse-grained.
Without preserving additional typing information, the inherent well-foundness of such re-
writing rules could not be formulated directly [11]; a proof of a correctness preservation
property would have to be conducted globally for the full reduction relation. The corres-
pondence proposed in this paper allows for a finer analysis of nets, keeping track of their
substantial structure, and is able to do so even in the most delicate case of sharing graphs.

Deep-inference deduction systems allow inference rules to modify formulas inside an
arbitrary context. For most logics deep-inference presentations have been established [16, 9,
17, 8]. Their flexibility enables us to type and to ensure proper combination of individual
cell-components of a net. We can fuse through this type system the essential properties
of interaction nets and MELL. From nets we inherit strong confluence and from MELL

CSL’13

318 The Structure of Interaction

we inherit weak normalisation. Technically we adapt Girard’s reducibility method to the
context of deep-inference formalism to obtain weak normalisation. The proof is modular
and can easily be extended, for instance, to additive connectives (which are used to type
conditionals) or to second-order (polymorphism).

This work is related to very recent work on computational interpretations of deep-
inference systems. In [10] Gundersen, Heijltjes and Parigot introduce the atomic lambda
calculus as a typed λ-calculus that admits some particular form of sharing and preserves
strong normalisation. The atomic lambda calculus provides (among others) a computational
interpretation of the medial rule of calculi of structures [17]. Furthermore, recently, Pagani
and Tortora de Falco established in [14] the very tedious and technical standardisation
theorem required to prove strong normalisation of second-order linear logic. Its “delicate
but boring” proof had been postponed but Girard’s reducibility method however suffices in
showing weak normalisation. When adapted to our framework, thanks to strong confluence,
weak normalisation automatically promotes to a strong normalisation theorem.

This paper is structured as follows. In Section 2 we provide the proposed deep-inference
presentation of MELL together with an embedding of its standard sequent calculus present-
ation. Section 3 defines the system of interaction nets which is of interest, picturing the
direct correspondance with this presentation of MELL. In Section 4, we define reduction
steps on the logic side, in a way that preserves strong confluence from nets. Section 5 ad-
apts Girard’s reducibility method to this setting and establishes weak normalisation (and
thus strong normalisation). Finally, we conclude in Section 6 and mention potential future
work.

2 A Convenient Presentation of Linear Logic with Structures

Structures. We define structures as follows:

σ ::= ?
∣∣ σ ; σ

∣∣ ◦ ∣∣ σ , σ
∣∣ @σ

∣∣ ♦σ ∣∣ A

This syntax is then quotiented so that binary connectives ‹ ; › and ‹ , › are associative,
commutative, respectively admit ‹ ? › and ‹ ◦ › as neutral elements, and so that ? = @?
and ◦ = ♦◦. Connectives ? and ◦ can conveniently be thought of and referred to as “true”
and “false” respectively. Last, A ranges over linear logic formulas:

A ::= 1
∣∣ A⊗A

∣∣ ⊥ ∣∣ A`A
∣∣ !A

∣∣ ?A
∣∣ α

∣∣ ᾱ

where α ranges over some arbitrary set of base types.
Negation σ⊥ of a structure σ is an involutive operation defined on linear logic formulas

according to the usual de Morgan laws, and naturally extended to structures with:

?⊥ = ◦ (σ ; τ)⊥ = σ⊥ , τ⊥ (@σ)⊥ = ♦(σ⊥)

Our approach is similar in concept to other calculus of structures presentations [16, 1, 9,
10]. Among modifications introduced, a “computational layer” now appears underneath the
“structural layer”. This will allow for a direct correspondence with interaction nets systems.

Derivations. A derivation π from σ to τ , written π : σ → τ , is a sequence of structures
whose first element is σ and last element is τ , such that every succession of two structures
in this sequence is associated with a derivation rule. Basic derivation rules are split into
three main categories.

S. Gimenez and G. Moser 319

Core structural rules

?
axiom

σ⊥ , σ

σ ; σ⊥
cut

◦
ω ; (σ , τ)

switch
(ω ; σ) , τ

@σ ; @τ
merge

@(σ ; τ)

Administrative rules

@σ
erase�

?

@σ
duplicate�

@σ ; @σ
@σ

open�
σ

@σ
nest�

@@σ

Computational rules (we restrict here ourselves to the following set of rules which is
sufficient to externalise linear logic)

?
one�

1
◦

bottom�
⊥

A ; B
tensor�

A⊗B
A , B

par�
A`B

@A
of-course�

!A
♦A

why-not�
?A

For reasons that follow, the following rule is admissible:

@(σ , τ)
select

@σ , ♦τ
:=

@(σ , τ)
− ;axiom

@(σ , τ) ; (@τ⊥ , ♦τ)
switch

(@(σ , τ) ; @τ⊥) , ♦τ
merge ,−

@((σ , τ) ; τ⊥) , ♦τ
@switch ,−

@(σ , (τ ; τ⊥)) , ♦τ
@(− ,cut) ,−

@σ , ♦τ

Deep inference. All basic deduction rules can be applied inside a structural context. If
ρ : σ → τ is a basic deduction rule and ν is a structural context (a structure with one hole),
then ν[ρ] : ν[σ] → ν[τ] is also accepted as a deduction rule. For example, tensor� can be
applied inside disjunctive, conjunctive or exponential contexts, as well as any combination
thereof, as follows:

σ , (A ; B)
− ,tensor�

σ , A⊗B
σ ; A ; B

− ;tensor�
σ ; A⊗B

@(A ; B)
@tensor�

@(A⊗B)

Symmetry. Besides, all rules can be turned upside-down: each rule ρ : σ → τ is to be
paired with a matching ρ⊥ : τ⊥ → σ⊥ rule (calculus of structures implements contraposition
natively). Core structural rules are paired with core structural rules, in particular axiom
and cut are paired together and switch happens to be self-symmetric. Introduction rules
(labeled with an arrow oriented downwards) are turned into elimination rules (labeled with
an arrow oriented upwards) and vice versa. For example, symmetric variants of tensor�,
duplicate� and merge write as follows:

A`B
tensor�

A , B

♦σ , ♦σ
duplicate�

♦σ

♦(σ , τ)
merge

♦σ , ♦τ

Given any structure ω, an empty sequence derives ω to ω itself. Such derivations are
denoted by idω . Composition of two derivations π1 : σ → ω and π2 : ω → τ is written
π1 · π2 : σ → τ . This defines a category whose objects are structures and whose morphisms
are derivations.

CSL’13

320 The Structure of Interaction

Relaxed derivations. We quotient previously defined derivations by a few trivialities (and
their symmetric variants, which are not listed), which are natural consequences of the quo-
tient on structures.

?
axiom

? , ◦
≡ ?

id
?

? ; (σ , τ)
switch

(? ; σ) , τ
≡ σ , τ

id
σ , τ

@? ; @ω
merge

@(? ; ω)
≡ @ω

id
@ω

@?
erase�

?
≡ @?

duplicate�
@? ; @?

≡ @?
open�

?
≡ @?

nest�
@@?

≡ ?
id

?

We moreover allow rules with disjoint scopes to freely pass each other. For example,
given ρ1 : σ1 → τ1 and ρ2 : σ2 → τ2:

σ1 ; σ2
ρ1 ;−

τ1 ; σ2
− ;ρ2

τ1 ; τ2

≡
σ1 ; σ2

− ;ρ2
σ1 ; τ2

ρ1 ;−
τ1 ; τ2

This, extended to arbitrary derivations π1 : σ1 → τ1 and π2 : σ2 → τ2, enables us to
define contextual conjunction of derivations π1 ; π2 : σ1 ; σ2 → τ1 ; τ2, as well as disjunction
π1 , π2 : σ1 , σ2 → τ1 , τ2 unambiguously. Given π : σ → τ , we use similarly @π : @σ → @τ
and ♦π : ♦σ → ♦τ to denote the use of a derivation π inside an exponential context.

Other equivalences occur when the scope of one rule is captured within one structural
variable of an adjacent core structural rule. We provide the following, given an arbitrary
rule ρ : σ → τ , as an illustration:

ω ; (σ , ω′)
− ;(ρ,−)

ω ; (τ , ω′)
switch

(ω ; τ) , ω′
≡

ω ; (σ , ω′)
switch

(ω ; σ) , ω′
(− ;ρ) ,−

(ω ; τ) , ω′

Given that the use of structural variables in rules axiom and cut is also linear in some
sense, similar commutations are considered. Those are however slightly less straightforward
as they reverse orientation of rules.

?
axiom

σ , σ⊥
ρ,−

τ , σ⊥

≡
?

axiom
τ , τ⊥

− ,ρ⊥
τ , σ⊥

σ ; τ⊥
ρ ;−

τ ; τ⊥
cut

◦

≡
σ ; τ⊥

− ;ρ⊥
σ ; σ⊥

cut
◦

In fact, all definitions and properties about derivations mentioned in the sequel are
compatible with these equivalences. From now on, the term derivation will be used to refer
to equivalence classes, which abstract away the irrelevant sequentiality found in concrete
syntactic derivations.

An embedding of the sequent calculus. Any sequent calculus proof Π of formula A in
MELL can be translated to a derivation π : ?→ A, which we consider a proof of formula A
in calculus of structures. The basic idea is to combine all formulas found inside hypothesis
or conclusion sequents using ‹ , › connectives and combine hypothesis sequents themselves
with ‹ ; › connectives. Inference rules from the one-sided sequent calculus are of shape (a):

(a) ` A1, . . . , An . . . ` B1, . . . , Bm

` C1, . . . , Ck
(b)

(A1 , · · · , An) ; · · · ; (B1 , · · · , Bm)
...

C1 , · · · , Ck

S. Gimenez and G. Moser 321

Every specific inference rule will be encoded as a derivation of shape (b). Since derivations
associated to branches of an arborescent proof may be combined by means of structural
contexts, the tree structure of sequent-calculus proofs is then easily embedded inside a
sequential derivation.

The encoding of individual rules goes as follows (whenever Γ or ∆ is used to denote a
disjunction of formulas in sequents, γ or δ denotes the same disjunction in structures):

Multiplicatives

` Γ, A ` B,∆
` Γ, A⊗B,∆

tensor 7→
(γ , A) ; (B , δ)

switch(×2)
γ , (A ; B) , δ

− ,tensor� ,−
γ , A⊗B , δ

` 1
one 7→ ?

one�
1

` A,B,Γ
` A`B,Γ

par 7→ A , B , γ
par� ,−

A`B , γ

` Γ
` ⊥,Γ

bottom 7→ γ
bottom� ,−

⊥ , γ

Identities

` A,A⊥
axiom 7→ ?

axiom
A , A⊥

` A,Γ ` A⊥,∆
` Γ,∆

cut 7→
(γ , A) ; (A⊥ , δ)

switch(×2)
γ , (A ; A⊥) , δ

− ,cut ,−
γ , δ

Exponentials

` Γ
` ?A,Γ

weakening 7→
γ

erase� ,−
♦A , γ

why-not� ,−
?A , γ

` ?A, ?A,Γ
` ?A,Γ

contraction 7→

?A , ?A , γ
of-course� ,of-course� ,−

♦A , ♦A , γ
duplicate� ,−

♦A , γ
why-not� ,−

?A , γ

` A,Γ
` ?A,Γ

dereliction 7→
A , γ

open� ,−
♦A , γ

why-not� ,−
?A , γ

` ??A,Γ
` ?A,Γ

digging 7→

??A , γ
of-course� ,−

♦?A , γ
♦of-course� ,−

♦♦A , γ
nest� ,−

♦A , γ
why-not� ,−

?A , γ

Last, we give an encoding of functorial promotion; any non-functorial promotion can as
usual be encoded as a composition of one functorial promotion and diggings. A functorial
promotion is encoded in one step together with the whole proof of its premise Π. Assuming
(inductively) that Π 7→ π, the promoted branch is encoded as follows:

CSL’13

322 The Structure of Interaction

` A,B1, . . . , Bn
Π

` !A, ?B1, . . . , ?Bn
functorial-
promotion

7→

?
@π

@(A , B1 , · · · , Bn)
select

@A , ♦(B1 , · · · , Bn)
− ,merge(×n)

@A , ♦B1 , · · · , ♦Bn
of-course� ,why-not� , ··· ,why-not�

!A , ?B1 , · · · , ?Bn

I Lemma 2.1. A linear-logic formula A admits a proof Π in the standard sequent-calculus-
style presentation of MELL if and only if there exists a derivation π : ?→ A in the present
calculus of structures.

Proof. One direction follows directly from the provided encoding. For the other direction,
one can reuse the (simple) inductive argument in [16]. J

Provability-wise this system is also equivalent to previous calculus of structure systems
for linear logic which were studied by Straßburger [16].

3 The Underlying Computational Model

Translation from structures to interaction nets. Any derivation π : σ → τ projects into
a net, as shown in (a):

(a) N

A1 ... An

B1 ... Bm

(b)
N1

N2

A1 ... An

B1 ... Bm

Input wires are typed with formulas A1, . . . , An found in σ and output wires are typed
with formulas B1, . . . , Bm found in τ . The composition of any two derivations π1 : σ → ω

and π2 : ω → τ , whose respective projections are assumed to be N1 and N2, projects as (b).
Computational rules are translated by single-cell nets, as described below. These rules

may be used inside structural contexts, in which case one wire has to be added to their
translations for every formula that appears in the context.

A ; B
tensor�

A⊗B
7→ ⊗

A ⊗ B

A B

?
one�

1
7→

1

1

A`B
tensor�

A , B
7→

⊗

A ` B

A B

⊥
one�

◦
7→

1

⊥

A , B
par�

A`B
7→ `

A ` B

A B

◦
bottom�

⊥
7→

⊥

⊥

S. Gimenez and G. Moser 323

A⊗B
par�

A ; B
7→

`

A ⊗ B

A B

1
bottom�

?
7→

⊥

1

We use a special notation for exponential cells, to distinguish them from standard derel-
iction (and co-dereliction) notation. A special marker is added to ports which were originally
typed with a structural exponential connective.

@A
of-course�

!A
7→ !

A

!A

♦A
why-not�

?A
7→ ?

A

?A

?A
of-course�

♦A
7→ !

?A

A

!A
why-not�

@A
7→ ?

!A

A

Rules from the identity fragment allow reversing the direction of wires:

?
axiom

σ⊥ , σ
7→ ︸ ︷︷ ︸

σ⊥
︸ ︷︷ ︸

σ

σ ; σ⊥
cut

◦
7→

σ︷ ︸︸ ︷ σ⊥︷ ︸︸ ︷

Other core structural rules are simple wirings that reflect implicit permutations of for-
mulas. For example:

τ ; σ
id

σ ; τ
7→

τ︷ ︸︸ ︷ σ︷ ︸︸ ︷
︸ ︷︷ ︸

σ
︸ ︷︷ ︸

τ

(σ , τ) ; ω
switch

(σ ; ω) , τ
7→

σ︷ ︸︸ ︷ τ︷ ︸︸ ︷ ω︷ ︸︸ ︷
︸ ︷︷ ︸

σ
︸ ︷︷ ︸

ω
︸ ︷︷ ︸

τ

Only the translation of administrative rules duplicate, erase, open and nest requires
particular cells, which are indexed by the number k of structural exponential connectives
these derivation rules are applied beneath:

♦ω , ♦ω
duplicate�

♦ω
7→ δk δk δk

ω︷ ︸︸ ︷ ω︷ ︸︸ ︷

︸ ︷︷ ︸
ω

◦
erase�

♦ω
7→

εk εk εk

︸ ︷︷ ︸
ω

CSL’13

324 The Structure of Interaction

ω
open�

♦ω
7→ ok ok ok

ω︷ ︸︸ ︷

︸ ︷︷ ︸
ω

♦♦ω
nest�

♦ω
7→ ιk ιk ιk

ω︷ ︸︸ ︷

︸ ︷︷ ︸
ω

All structural connectives are lost during the projection. Formulas that appear inside
structures can however be used to label wires in accordance with traditional “shallow” typing
practices in interaction nets. Derivations appear as an “enriched” form of typing for nets
and expose additional information about their structure.

A reduction for the interaction nets system we thus obtained could be defined directly and
would be very similar to sharing graphs’ reduction. The choice of an appropriate reduction
rule when two δ-cells (which correspond to “fan” cells in sharing-graphs terminology) interact
would rely on their assigned indexes, which are in fact the only piece of data extracted from
the structure of nets that is really needed for computation purposes. But, more conveniently,
all the necessary reduction rules can be enriched with structure and written within the deep-
inference framework itself, as presented in Section 4. In particular, this automatically ensures
the preservation of “enriched” type information after every reduction step.

Type systems for specialised interaction nets. Interaction nets from Example 1.1 can
similarly be assigned a type system. This system is simple in the sense that concatenation
of difference lists does not require duplication of data. Typing will therefore in this case
not rely on structural exponential connectives. Adapting [11], it can be enriched with the
following structure (where dlist , list and int are used as base types):

dlist
unbd�

¯list , list
dlist

d-cat�
dlist , ¯dlist

¯list , list
bind�

dlist
int ; list

cons�
list

?
n�

int

The initial net from our example types as follows:

?
axiom ;axiom

(¯list , list) ; (¯list , list)
(− ,cons_2�);(− ,cons_4�)

(¯list , list) ; (¯list , list)
(− ,cons_1�);(− ,cons_3�)

(¯list , list) ; (¯list , list)
bind� ;bind�

dlist ; dlist
d-cat� ;−

(dlist , ¯dlist) ; dlist
switch

dlist , (¯dlist ; dlist)
− ;cut

dlist

where:

list
cons_n�

list
:=

list
n� ;−

int ; list
cons�

list

Projections of derivations built with the multiplicative structural fragment and the above-
provided five rules are correctly built, meaning they are subnets of nets standardly considered
as valid. Moreover, it can be shown that any valid net accepts such a derivation.

The fact that reduction preserves correctness of nets is automatically deduced from the
fact that known reduction rules for this system of interaction nets can be enriched with

S. Gimenez and G. Moser 325

structure as well. For example, the first reduction rule types as follows:

¯list , list
bind�

dlist
d-cat�

dlist , ¯dlist

−→

¯list , list
− ;axiom

(¯list , list) ; (¯list , list)
switch(×2)¯list , list , (list ; ¯list)

bind� ,unbd�
dlist , ¯dlist

4 Reduction within the Deep-Inference Formalism

Considering Curry–Howard correspondences between natural-deduction proof formalisms
and several λ-calculus variants, it is natural to understand introduction rules as data con-
structions and elimination rules as data deconstructions; also to notice that computation
arises from the interaction of the former with the latter.

Computation steps. Reduction can be defined in a similar fashion within our calculus by
solving every potential interaction between an introduction (a downward-oriented rule) and
a matching elimination (an upward-oriented rule) according to rewriting rules of this shape:

σ
�

ω
�

τ

−→
σ
...
τ

In particular, interfaces (hypothesis and conclusion) of derivations are preserved during
reduction, which means that computation can be performed deep inside a structural context
as well as inside a derivation context.

Our system for linear logic includes the following simple computation steps (symmetric
variants are, and will always be, omitted):

?
one�

1
bottom�

?

−→ ?
id

?

A ; B
tensor�

A⊗B
par�

A ; B

−→ A ; B
id

A ; B

@A
of-course�

!A
why-not�

@A

−→ @A
id

@A

Administrative reduction steps. In order to concretise any potential interaction between
two computational rules, we will force introduction rules downwards and elimination rules
upwards, relying on a few reduction rules which are described hereafter and which are to be
considered additionally to commutations already assumed by the equivalence on derivations.

First, we explicit direct interactions of administrative deduction rules with merge:

@σ ; @τ
merge

@(σ ; τ)
erase�

?

−→ @σ ; @τ
erase� ;erase�

?

CSL’13

326 The Structure of Interaction

@σ ; @τ
merge

@(σ ; τ)
duplicate�

@(σ ; τ) ; @(σ ; τ)
−→

@σ ; @τ
duplicate� ;duplicate�

@σ ; @σ ; @τ ; @τ
id

@σ ; @τ ; @σ ; @τ
merge ;merge

@(σ ; τ) ; @(σ ; τ)

@σ ; @τ
merge

@(σ ; τ)
open�

σ ; τ

−→ @σ ; @τ
open� ;open�

σ ; τ

@σ ; @τ
merge

@(σ ; τ)
nest�

@@(σ ; τ)
−→

@σ ; @τ
nest� ;nest�

@@σ ; @@τ
merge

@(@σ ; @τ)
@merge

@@(σ ; τ)

Remaining administrative steps take care of promoted content found under exponential
contexts. We use the symbol ρ̌ : σ → τ to range over blocks of several structural rules whose
projections as nets do not link together two inputs with a wire (for instance a single cut rule
is excluded) or to range over a single introduction rule. Labels @ρ̌ used in left-hand sides
of the following reduction steps denote any such deduction pattern used in a context that
admits a box connective as top-level connective:

@σ
@ρ̌

@τ
erase�

?

−→ @σ
erase�

?

@σ
@ρ̌

@τ
duplicate�

@τ ; @τ

−→
@σ

duplicate�
@σ ; @σ

@ρ̌ ;@ρ̌
@τ ; @τ

@σ
@ρ̌

@τ
open�

τ

−→
@σ

open�
σ

ρ̌

τ

@σ
@ρ̌

@τ
nest�

@@τ

−→
@σ

nest�
@@σ

@@ρ̌
@@τ

When σ = ?, the above reduction steps applied to blocks of core structural rules corres-
pond, in the interaction-net formalism, to final steps of administrative reductions performed
on nets that are purely made of wires.

Normal forms. A derivation in normal form is a derivation which can be written π̂ · π̄ · π̌,
where π̂, π̄ and π̌ respectively contain eliminations, core structural rules and introductions
only (all other configurations can be reduced).
I Remark. Although potential interaction between rules axiom and cut may be considered
an artefact (because it leaves the underlying computation model unaffected, wirings are
normal forms in interaction nets), we have reasons to believe they could be substituted
with oriented variants axiom� and cut� to induce a call for further-simplified derivations.
Those two rules were however left in the core structural fragment as we unfortunately do not
know yet how to properly resolve those interactions when other structural rules interpose.
For example, in the following simple case, reduction is possible given that both hand sides
project to the same net:

ω
− ;axiom�

ω ; (ω⊥ , ω)
switch

(ω ; ω⊥) , ω
cut� ,−

ω

−→ ω
id

ω

S. Gimenez and G. Moser 327

But generalisation seems difficult and it would require introduction of additional core struc-
tural rules, would we ever want to perform the reduction through local steps. Specifically,
the following pairs (and their symmetric variants) cannot be commuted directly:

ω ; (ω⊥ , τ)
switch

(ω ; ω⊥) , τ
cut� ,−

τ

@ω ; @ω⊥
merge

@(ω ; ω⊥)
@cut�

◦

Daimons. For technical purposes, we introduce a new pair of basic deduction rules used
to wrap up computations, together with an associated computation residual. Those may be
understood computationally as an input/output mechanism.

?
daimon�

τ

σ
daimon�

◦
?

done
◦

They obviously break the consistency of the logic and are therefore not expected to be
found in any acceptable proof. They are only used as a tool to prove normalisation of our
system. Reduction-wise, daimons “collect” interacting rules as follows:

σ
ρ̌

τ
daimon�

◦

−→ σ
daimon�

◦

?
daimon�

ω
daimon�

◦

−→ ?
done

◦

Ultimately, given any derivation π : σ → τ , if the reduction process terminates, daimon�·
π · daimon� is expected to reduce to done, a normal form which marks the completion of
the evaluation.

Strong confluence. Notice that in this system, redexes for administrative reductions may
overlap with one another (for example, a single duplication or a daimon rule may have
distinct interactions with each of several rules that commute), however, just like in the
interaction-net formalism, peaks can be joined immediately and this system therefore enjoys
the diamond property as well. In such a strong confluence setting, existence of a reduction
path from a given derivation to a normal form (weak normalisation property) is equivalent
to all rewriting paths from this derivation leading to a normal form (strong normalisation
property). The normal form is moreover unique.

I Lemma 4.1. Assuming π : ?→ ω admits π′ as normal form:
@π · duplicate� reduces to normal form @π′ ; @π′

@π · erase� reduces to normal form id?
@π · open� reduces to normal form π′

@π · nest� reduces to normal form @@π′

Proof. Inner reduction of π is followed by successive reduction steps on π′ which, as a
normal form, can be written π̄ · π̌, where π̄ : ? → σ contains core structural rules only and
π̌ : σ → ω contains introduction rules only. Introduction rules are handled inductively. The
final reduction against π̄ is an instance of an administrative reduction step applied to a
block of core structural rules without hypothesis formulas. J

CSL’13

328 The Structure of Interaction

5 An Extensible Normalisation Proof via the Reducibility Technique

Let O be the set of normalisable derivations. A set of derivations from ? to ω is called
an ω-initialiser set and a set of derivations from ω to ◦ is called an ω-finaliser set. The
orthogonal of a given ω-initialiser set I is the ω-finaliser set defined as follows:

I∨ := {ψ : ω → ◦ | ∀π ∈ I, π · ψ ∈ O }

Symmetrically, to any ω-finaliser set F , we associate an orthogonal ω-initialiser set F∧:

F∧ := {φ : ?→ ω | ∀π ∈ F , φ · π ∈ O }

These definitions come with the following properties:

I∨∧∨ = I∨ F∧∨∧ = F∧

I ⊆ I∨∧ F ⊆ F∧∨

By definition, an ω-initialiser behaviour is an ω-initialiser set I such that I = I∨∧, and
an ω-finaliser behaviour is an ω-finaliser set F such that F = F∧∨. Initialiser candidates
bωc and finaliser candidates dωe are respectively ω-initialiser and ω-finaliser behaviours
which are defined inductively, altogether, over ω. Hereafter, we provide inductive definition
bodies for initialiser candidates in the case of top-level positive connectives.

Structural layers

b?c := {daimon� }∨∧ bσ1 ; σ2c := {π1 ; π2 | π1 ∈ bσ1c, π2 ∈ bσ2c }∨∧

b@σc := {@π | π ∈ bσc }∨∧

Computational layers

b1c := {π · one� | π ∈ b?c }∨∧ bA⊗Bc := {π · tensor� | π ∈ bA ; Bc }∨∧

b!Ac := {π · of-course� | π ∈ bAc }∨∧

Base types

bαc := {daimon� }∨∧

Finaliser candidates definitions for negative connectives (and base types) are handled
symmetrically. Initialiser candidates for negative connectives and finaliser candidates for
positive connectives are then defined as orthogonals to the former, so that bωc = dωe∧ and
dωe = bωc∨ globally holds. This inductive definition is well founded.

I Definition 5.1. A derivation π : σ → τ is said to be reducible when:

∀φ ∈ bσc, ∀ψ ∈ dτe, φ · π · ψ ∈ O

Notice that equivalently, π : σ → τ is reducible iff ∀φ ∈ bσc, φ · π ∈ bτc, or, symmetrically,
iff ∀ψ ∈ dτe, π · ψ ∈ dσe.

I Lemma 5.2. For any structure ω, candidates dωe and bωc contain normalisable nets only,
and moreover daimon� ∈ dωe and daimon� ∈ bωc.

Proof. Valid at base types, this combination of statements propagates to all structures by
induction. J

I Lemma 5.3. Every derivation is reducible.

S. Gimenez and G. Moser 329

Proof. By induction on the derivation; we address all derivation constructions separately.
The definition of reducibility being symmetric, the number of cases to consider is reduced.

Identity. Given φ ∈ bσc and ψ ∈ dσe, the derivation φ · idσ · ψ = φ · ψ normalises as a
composition of two derivations which belong to dual candidates.

Composition. Given two reducible derivations π1 : σ → ω and π2 : ω → τ , using properties
∀φ ∈ bσc, φ ·π1 ∈ bωc and ∀ψ ∈ dτe, π2 ·ψ ∈ dωe, we obtain that any derivation φ ·π1 ·π2 ·ψ
such that φ ∈ bσc and ψ ∈ dτe normalises. We have thus shown reducibility of π1 · π2.

Contexts
Conjunctions. Given reducible derivations π1 : σ1 → τ1 and π2 : σ2 → τ2, we show
that π1 ; π2 : σ1 ; σ2 → τ1 ; τ2 is reducible, written as follows: for all ψ ∈ dτ1 ; τ2e we
have (π1 ; π2) · ψ ∈ dσ1 ; σ2e. Given that dσ1 ; σ2e = {π1 ; π2 | π1 ∈ bσ1c, π2 ∈ bσ2c }∨,
according to orthogonality’s definition, this is equivalent to showing that for all φ1 ∈ bσ1c
and φ2 ∈ bσ2c we have (φ1 ; φ2) · (π1 ; π2) = (φ1 · π1) ; (φ2 · π2) ∈ bτ1 ; τ2c. This holds
by definition since by reducibility of π1 and π2 we have φ1 · π1 ∈ bτ1c and φ2 · π2 ∈ bτ2c.
Box. Given a reducible derivation π : σ → τ , we show that @π : @σ → @τ is reducible,
written as follows: for all ψ ∈ d@τe we have @π · ψ ∈ d@σe. Given that d@σe =
{@π | π ∈ bσc }∨, this is equivalent to showing that for all φ0 ∈ bσc, we have @φ0 ·@π =
@(φ0 · π) ∈ b@τc. This holds by definition since φ0 · π ∈ bτc, by reducibility of π.

Core structural rules
Axiom. We show for all φ ∈ b?c that φ ·axiom ∈ bσ⊥ , σc, or equivalently that derivation
axiom · (ψ⊥1 , ψ2) normalises for all ψ1 ∈ bσc and ψ2 ∈ dσe. This derivation equivalently
writes ψ1 · ψ2, which normalises.
Switch. We show for all φ ∈ bω ; (σ , τ)c that φ · switch ∈ b(ω ; σ) , τc, or equivalently
that switch · (ψ1 , ψ2) ∈ dω ; (σ , τ)e for all ψ1 ∈ dω ; σe and ψ2 ∈ dτe, which in turn
is equivalent to showing that (φ1 ; φ2) · switch · (ψ1 , ψ2) normalises for all φ1 ∈ bωc,
φ2 ∈ bσ , τc, ψ1 ∈ dω ; σe and ψ2 ∈ dτe. Given that φ1 : ?→ ω and ψ2 : τ → ◦, this last
derivation equivalently writes π1 · π2 where π1 = φ2 · (idσ , ψ2) and π2 = (φ1 ; idσ) · ψ1;
it normalises because π1 ∈ bσc and π2 ∈ dσe.
Merge. We show for all ψ ∈ d@(σ ; τ)e that merge · ψ ∈ d@σ ; @τe, or equivalently that:

(φ1 ; φ2) ·merge · ψ normalises for all φ1 ∈ b@σc, φ2 ∈ b@τc, ψ ∈ d@(σ ; τ)e
(φ1 ; id@τ) ·merge · ψ ∈ d@τe for all φ1 ∈ b@σc, ψ ∈ d@(σ ; τ)e
(φ1 ; @φ′2) ·merge · ψ normalises for all φ1 ∈ b@σc, φ′2 ∈ bτc, ψ ∈ d@(σ ; τ)e
(id@σ ; @φ′2) ·merge · ψ ∈ d@σe for all φ′2 ∈ bτc, ψ ∈ d@(σ ; τ)e
(@φ′1 ; @φ′2) ·merge · ψ normalises for all φ′1 ∈ bσc, φ′2 ∈ bτc, ψ ∈ d@(σ ; τ)e.

The last derivation writes @(φ′1 ; φ′2) · ψ and normalises since @(φ′1 ; φ′2) ∈ b@(σ ; τ)c.

Administrative rules
Duplicate. We show for all ψ ∈ d@σ ; @σe that duplicate� ·ψ ∈ d@σe, or equivalently that
@φ0 · duplicate� · ψ normalises for all φ0 ∈ bσc. By Lemma 4.1, this derivation reduces
to (@φ0 ; @φ0) · ψ, which normalises since @φ0 ; @φ0 ∈ b@σ ; @σc.
Erase, Open, Nest. Similar to the Duplicate case.

CSL’13

330 The Structure of Interaction

Computational rules
Tensor. We obtain φ · tensor� ∈ bA⊗Bc for all φ ∈ bA ; Bc directly from the candidate
definition. This shows reducibility of tensor� derivations.
One, Of-course. Similar to the Tensor case.
Par. Reducibility of par� holds iff for all φ ∈ bA , Bc, we have φ · par� ∈ bA ` Bc.
Unfolding the candidate definition, it suffices to show that φ ·par� · tensor� ·ψ normalises
for all ψ ∈ dA , Be. This holds because reduced derivations φ · ψ normalise.
Bottom, Why-not. Similar to the Par case. J

I Theorem 5.4. All derivations normalise.

Proof. By the previous lemma, any derivation π : σ → τ is reducible, hence daimon� · π ·
daimon� normalises and so does π. J

Discussion about modularity and possible extensions. In the present development, we
handled base types as purely abstract types which cannot be introduced or eliminated,
these could only be passed around. In practice, we may want to use base types to represent
primitive types which come together with associated primitive operations. Our develop-
ments could be extended to take those into account by adding related data constructions to
respective candidate definitions. Normalisation remains of course ultimately dependent on
primitives’ behaviour, since associated inductive cases appear in the proof. Base types can
also implement type variables used in second-order quantifiers (the reader is referred to the
original proof by Girard [4] as for how to handle these).

6 Conclusion

In this paper we have introduced a Curry–Howard correspondence between well-formed
interaction nets and a deep-inference deduction system based on multiplicative-exponential
linear logic. Linear logic itself can be expressed in the system and its computational aspects
materialise though the correspondence as a system of sharing graphs. The enriched type
system for nets that stems from this correspondence not only sheds additional light upon the
structure of multiplicatives [2], but moreover encompasses the exponential layer and could
easily be extended further.

Our approach fuses the essential properties of strong confluence (interaction nets) and
weak normalisation (via Girard’s reducibility method) to obtain a consice, modular and ex-
tensible proof of strong normalisation. However, it currently relies on a somewhat unortho-
dox notion of normal form, which does not consider interactions between identity rules. As
the sought computational interpretation is unaffected this seems to be negligible, but we
will study this peculiarity in more detail in future work.

Furthermore, we are interested in extending the method to stronger logics: additive,
second-order, inductive constructions, etc. Extensions towards differential linear logic, which
was introduced by Ehrhard and Regnier and features further symmetry [3], will also be
investigated in these studies.

References
1 Kai Brünnler. Deep inference and its normal form of derivations. In CiE, volume 3988 of

LNCS, pages 65–74, 2006.
2 Vincent Danos and Laurent Regnier. The structure of multiplicatives. Arch. Math. Logic,

28:181–203, 1989.

S. Gimenez and G. Moser 331

3 Thomas Ehrhard and Laurent Regnier. Differential interaction nets. Theor. Comput. Sci.,
364(2):166–195, 2006.

4 Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.
5 G. Gonthier, M. Abadi, and J.-J. Lévy. The geometry of optimal lambda reduction. In

Proc. 19th POPL, pages 15–26. ACM Press, 1992.
6 Georges Gonthier, Martín Abadi, and Jean-Jacques Lévy. Linear logic without boxes. In

Proc. 7th LICS, pages 223–34, 1992.
7 S. Guerrini, S. Martini, and A. Masini. Coherence for sharing proof-nets. Theor. Com-

put. Sci., 294(3):379–409, 2003.
8 A. Guglielmi. A system of interaction and structure. ACM Trans. Comput. Log., 8(1),

2007.
9 A. Guglielmi and L. Straßburger. Non-commutativity and MELL in the calculus of struc-

tures. In Proc. 10th CSL, volume 2142 of LNCS, pages 54–68, 2001.
10 T. Gundersen, W. Heijltjes, and M. Parigo. Atomic lambda calculus – a typed lambda

calculus with explicit sharing. In Proc. 28th LICS, 2013. To appear.
11 Yves Lafont. Interaction nets. Proc. 17th POPL, pages 95–108, 1990.
12 J. Lamping. An algorithm for optimal lambda calculus reduction. In Proc. 7th POPL,

pages 16–30. ACM Press, 1990.
13 I. Mackie. Interaction nets for linear logic. Theor. Comput. Sci., 247(1-2):83–140, 2000.
14 Michele Pagani and Lorenzo Tortora de Falco. Strong normalization property for second

order linear logic. Theor. Comput. Sci., 411(2):410–444, 2010.
15 Lutz Straßburger and Alessio Guglielmi. A system of interaction and structure IV: The

exponentials and decomposition. ACM Trans. Comput. Log., 12(4):23, 2011.
16 Lutz Straßburger. MELL in the calculus of structures. Theor. Comput. Sci., 309:213–285,

2003.
17 A. Tiu. A local system for intuitionistic logic. In Proc. 13th LPAR, volume 4246 of LNCS,

pages 242–256, 2006.
18 C.P. Wadsworth. Semantics and Pragmatics of the Lambda-Calculus. PhD thesis, Univer-

sity of Oxford, 1971.

CSL’13

	Introduction
	A Convenient Presentation of Linear Logic with Structures
	The Underlying Computational Model
	Reduction within the Deep-Inference Formalism
	An Extensible Normalisation Proof via the Reducibility Technique
	Conclusion

