
The Fixed-Parameter Tractability of Model
Checking Concurrent Systems ∗

Stefan Göller

LIAFA/CNRS, Paris 7, France
Universität Bremen, Fachbereich Mathematik und Informatik, Germany
goeller@informatik.uni-bremen.de

Abstract
We study the fixed-parameter complexity of model checking temporal logics on concurrent sys-
tems that are modeled as the product of finite systems and where the size of the formula is the
parameter. We distinguish between asynchronous product and synchronous product. Sometimes
it is possible to show that there is an algorithm for this with running time (

∑
i |Ti|)

O(1) · f(|ϕ|),
where the Ti are the component systems and ϕ is the formula and f is computable function, thus
model checking is fixed-parameter tractable when the size of the formula is the parameter.

In this paper we concern ourselves with the question, provided fixed-parameter tractability
is known, whether it holds for an elementary function f . Negative answers to this question are
provided for modal logic and EF logic: Depending on the mode of synchronization we show the
non-existence of such an elementary function f under different assumptions from (parameterized)
complexity theory.

1998 ACM Subject Classification F.4.1 Mathematical Logic, F.2.0 Analysis of Algorithms and
Problem Complexity: General

Keywords and phrases Model Checking, Concurrent Systems, Parameterized Complexity

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.332

1 Introduction

Model checking is one of the most successful approaches in formal verification; it asks to verify
if a given specification is satisfied in a given system [5, 2]. The computational complexity of
model checking finite systems is very well understood (beginning with the pioneer work [15]),
but model checking the modal µ-calculus is an exception: The best-known upper bound in
UP ∩ co-UP and the lower bound is P. In general it turns out that typically the source of
hardness of model checking lies in the size of the formula and not in the size of the input
system. Indeed, the complexity of model checking the modal µ-calculus lies in P for every
fixed formula. Another such famous example is model checking of linear temporal logic LTL
that is generally PSPACE-complete but which can be solved in time |T |O(1) · 2|ϕ|, where T is
the (transition) system and ϕ is the formula [12]. Measuring the complexity only in the size
of the system and not in the size of the specification is indeed justified since typically the
specification is small and the system is big.

Yet, model checking tools have to deal with a combinatorial blowup of the state space
of the input system, commonly known as the state explosion problem, that can be seen as
one of the biggest challenges in real-world problems. Different sources of explosion arise, for

∗ The research leading to these results has received funding from the European Union’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement n◦ 259454.

© Stefan Göller;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 332–347

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.332
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Göller 333

instance the number of program variables or clocks, the number of concurrently running
components, or the number of different subroutines, just to mention few of them. Technically
speaking, this can be seen that the input consists of systems T1, . . . , Td (the components), but
the actual system of interest is the product of these systems; independent on the underlying
synchronization mechanism, we refer to such systems as concurrent systems in the following.

Parameterized complexity theory allows for a fine-grained complexity investigation of
problems where certain sizes of the input are declared as a parameter. A central class in
this theory is the class FPT consisting of all problems that can be solved in time nO(1) · f(k)
for some computable function f , where n is the input size and k is the parameter. For
instance, the above-mentioned model checking problem of LTL is in FPT when the size of
the formula is the parameter. Although their exact definitions are not relevant here, we list
the parameterized complexity classes that are subject of this paper

FPT ⊆ AW[∗] ⊆ AW[SAT],

where none of the inclusions is known but believed to be strict. The class AW[∗] can be
seen as fixed parameter tractability plus parameter bounded alternating nondeterminism
[4] and AW[SAT] is the set of all problems that are (FPT)-reducible to a variant of QBF,
where quantification is restricted to a partition of the variables and in which the number of
variables that are assigned to true in each quantifier block plus the number of partitions of
the variables is the parameter. We refer to [8] for more details on parameterized complexity
theory.

The parameterized complexity of model checking synchronous concurrent systems has
intensively been studied by Demri, Laroussinie and Schnoebelen [7]. Among their results it is
shown that already very simple questions like reachability or model checking modal logic are
not fixed-parameter tractable when the number of components and the size of the formula
is the parameter, respectively. More precisely in [7] it is shown that (i) already when the
number of components d is the parameter it is AWT[SAT]-hard to decide reachability of a
synchronous product of d transition systems, already when transitions can only synchronize
over a binary alphabet and (ii) when the size of the formula is the parameter, model checking
the synchronous product of systems with respect to modal logic is AW[∗]-complete. Since the
above-mentioned parameterized complexity classes are believed to be strict, we have that (i)
and (ii) show that already these two basic model checking problems are not fixed-parameter
tractable unless FPT coincides with them.

It is important to mention that in [7] the technical reason for AW[∗]-hardness for model
checking modal logic on the synchronous product lies in the fact the transitions can synchronize
over a transition alphabet that is independent of the size of the formula. Thus, the question
arises whether fixed-parameter tractability can be gained when the transition alphabet is
bounded by the size of the formula (which is natural if one considers multi-modal logic, for
instance). Too, the question arises whether fixed-parameter tractability can be gained when
we restrict the synchronization mechanism to be the asynchronous product.

Unfortunately still, in both cases under the assumption FPT 6= AWT[SAT], already for
powerful branching-time logics like CTL, the answer to both questions is negative since
reachability of synchronous product [7] can easily be encoded. However, the compositional
method à la Feferman and Vaught, which has recently been developed for the fragments
modal logic and EF logic by Rabinovich [14], gives positive answers to the above questions: In
certain cases, one can show that for model checking the product of given systems T1, . . . , Td
against a given formula ϕ there is an algorithm with running time (

∑
i |Ti|)O(1) · f(|ϕ|) for

a primitive recursive function f , thus being fixed-parameter tractable. Unfortunately, the

CSL’13

334 The Fixed-Parameter Tractability of Model Checking Concurrent Systems

compositional method yields an algorithm whose running time is bounded by a nonelementary
function f ; moreover this is not avoidable as recently proven [11, 10].

In this paper we concern ourselves with the question, provided fixed-parameter tractability
for model checking concurrent systems is known, whether one can hope for any algorithm
witnessing fixed-parameter tractability with an elementarily growing function f . The main
results of this paper answer this question negatively under different assumptions from
(parameterized) complexity theory depending on the logic and the synchronization mode
under consideration.

Our contribution. We revisit briefly that the compositional method allows to model check
given systems T1, . . . , Td and a formula ϕ in time (

∑
i |Ti|)O(1) · f(|ϕ|) in case either (i) ϕ is

a formula of modal logic and the asynchronous product of the T1, . . . , Td is considered, (ii) ϕ
is a formula of EF logic and the asynchronous product of the T1, . . . , Td is considered, or (iii)
ϕ is a formula of modal logic and the synchronous product of the T1, . . . , Td is considered.
For (i) we show that there is no algorithm for this that runs in time (

∑
i |Ti|)O(1) · f(|ϕ|)

for any elementary function f unless FPT = AW[∗]. For (ii) and (iii) we prove that there is
no algorithm for this that runs in time (

∑
i |Ti|)O(1) · f(|ϕ|) for any elementary function f

unless P = NP. We remark that the assumption FPT 6= AW[∗] is a stronger assumption than
P 6= NP. The overall picture of the fixed-parameter tractability of model checking modal
logic and EF logic on concurrent systems is summarized in Table 1.

Related work. The parameterized complexity of various problems in formal verification
has been investigated in [7, 13] and we refer to the reference therein and to [8] for more
information on parameterized complexity. The parameterized complexity of model checking
first-order logic and monadic second-order logic over words has been studied in [9] and in fact
we give a reduction from model checking first-order logic over words to model checking modal
logic on the asynchronous product of systems in this paper. The parameterized complexity
of satisfiability of modal logic under various parameters of the input formulas has been
investigated in [1].

Organization of this paper. Preliminaries, the compositional method and upper bounds
are content of Section 2. Section 3 provides technical tools that allow us to compare trees
that encode large numbers with small formulas. In Section 4 we discuss the proof strategies of
our main results. In Section 5 we show that fixed-parameter tractability is not possible with
an elementary running time in the size of the formula for model checking modal logic on the
asynchronous product unless FPT = AW[∗]. We show in Section 6 that for model checking
modal logic on the synchronous product and for model checking EF on the asynchronous
product fixed-parameter tractability is not possible with an elementary running time in the
size of the formula unless P = NP. We conclude in Section 7. Missing proofs due to space
restrictions can be found in the appendix.

2 Preliminaries

The exact definitions of the parameterized complexity classes that appear in this paper
are not important, we refer the reader to [8] for more details. For two integers i and j,
we define the interval [i, j] def= {i, i + 1, . . . , j}. By N def= {0, 1, 2, . . . , } we denote the set of
non-negative integers. The tower function Tower : N×N→ N is defined as Tower(0, n) def= n

and Tower(` + 1, n) def= 2Tower(`,n) for each ` ∈ N and each n ∈ N. We also introduce the
tower function in one parameter as Tower(`) def= Tower(`, 2) for each ` ∈ N. Define the

S. Göller 335

Table 1 The fixed-parameter tractability of model checking the product of finite systems T1, . . . , Td

against a formula ϕ of modal logic or of EF logic, where |ϕ| is the parameter.

Asynchronous product (
⊗

) Synchronous Product (
∏

)

ML upper
(
∑

i∈[1,d] |Ti|)O(1) · f(|ϕ|) for some
primitive recursive f by Theorem 2

([14])

(
∑

i∈[1,d] |Ti|)O(1) · f(|ϕ|) for some
primitive recursive f by Theorem 2

([14])

lower
not in (

∑
i∈[1,d] |Ti|)O(1) · f(|ϕ|)

for any elementary f unless
FPT = AW[∗] by Theorem 8

not in (
∑

i∈[1,d] |Ti|)O(1) · f(|ϕ|)
for any elementary f unless

P = NP by Theorem 9

EF upper
(
∑

i∈[1,d] |Ti|)O(1) · f(|ϕ|) for some
primitive recursive f by Theorem 2

([14])

lower
not in (

∑
i∈[1,d] |Ti|)O(1) · f(|ϕ|)

for any elementary f unless
P = NP by Theorem 10

not in FPT unless
FPT = AW[SAT] by Theorem 3

(Theorem 5.1 in [7])

inverse function log∗ as log∗(n) def= min{` ∈ N | Tower(`) ≥ n}. Let f, g : N → N be
functions. We say f is bounded by g if f(n) ≤ g(n) for all but finitely many n ∈ N. A
function f : N→ N is elementary if it can be formed from the successor function, addition,
subtraction, and multiplication using compositions, projections, bounded additions and
bounded multiplications (of the form

∑
z≤y g(x, z) and

∏
z≤y g(x, z)). For our purposes it

will only be important that a function f : N→ N is bounded by an elementary function if
and only if there is some ` ∈ N such that f is bounded by the function n 7→ Tower(`, n).

Throughout the paper, let us fix a countable set of atomic propositions P and a countable
set of atomic actions A. A signature is a pair (P,A), where P ⊆ P is a finite set of atomic
propositions and where A ⊆ A is a finite set of atomic actions. A transition system is a
tuple T = (S, {Sp | p ∈ P}, { a−→| a ∈ A}), where (P,A) is some signature, S is a set of states,
Sp ⊆ S is a valuation of the atomic propositions for each p ∈ P, and a−→⊆ S × S is a binary
transition relation for each a ∈ A. All transition systems that appear in this paper have
finite state sets, thus we denote by |T | def= |S|+ |P|+ |A| the size of T . A pointed transition
system is a pair (s, T), where T is a transition system and s is a state of T that we also
denote by the point of T . We sometimes write T to denote (s, T) whenever s has been fixed
from the context.

Formulas ϕ of the logic EF are given by the following grammar, where p ∈ P and a ∈ A:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈a〉ϕ | EFϕ

The size |ϕ| of a formula ϕ is inductively defined as |p| def= 1 for each p ∈ P, |¬ϕ| def= |EFϕ| def=
|〈a〉ϕ| def= |ϕ| + 1, and |ϕ1 ∧ ϕ2|

def= |ϕ1| + |ϕ2| + 1. We introduce the usual abbreviations
ϕ1 ∨ ϕ2

def= ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 → ϕ2
def= ¬ϕ1 ∨ ϕ2, ϕ1 ↔ ϕ2

def= (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1),
[a]ϕ def= ¬〈a〉¬ϕ for each a ∈ A and finally AGϕ def= ¬EF¬ϕ. (Multi-) Modal logic (ML) is the
fragment of EF, where the EF-operator does not occur. Given a signature (P,A) and an
EF-formula ϕ, we say that ϕ is defined over (P,A) if P (resp. A) contains the set of atomic
propositions (resp. atomic actions) that appear in ϕ.

Given a transition system T = (S, {Sp | p ∈ P}, { a−→| a ∈ A}), a state s ∈ S, and an
EF-formula ϕ over (P,A), we define (s, T) |= ϕ by structural induction on the formula ϕ
as follows (1) (s, T) |= p if and only if s ∈ Sp, (2) (s, T) |= ¬ϕ if and only if (s, T) 6|= ϕ,
(3) (s, T) |= ϕ1 ∧ ϕ2 if and only if (s, T) |= ϕ1 and (s, T) |= ϕ2, (4) (s, T) |= 〈a〉ϕ if and

CSL’13

336 The Fixed-Parameter Tractability of Model Checking Concurrent Systems

only if (s′, T) |= ϕ for some s′ ∈ S with s a−→ s′ and finally (5) (s, T) |= EFϕ if and only if
(s′, T) |= ϕ for some s′ ∈ S with s→∗ s′, where →=

⋃
a∈A

a−→.

Products and the compositional method. Let d ≥ 1 and let us assume a transition system
Ti = (Si, {Sp,i | p ∈ Pi}, {

a−→i| a ∈ Ai}) over the signature (Pi,Ai) for each i ∈ [1, d], where Pi
and Pj (resp. Ai and Aj) could possibly have non-empty intersection for different i, j ∈ [1, d].
Assume P to be the union of all the Pi and assume A to be the union of all the Ai.

We define their asynchronous product as
⊗

i∈[1,d] Ti
def= (S, {Sp | p ∈ P}, { a−→| a ∈ A}),

where S def=
∏
i∈[1,d] Si, for each (s1, . . . , sd) ∈ S and each p ∈ P we have (s1, . . . , sd) ∈ Sp if

and only if si ∈ Sp,i for some i ∈ [1, d], for each (s1, . . . , sd), (s′1, . . . , s′d) ∈ S and each a ∈ A
we have (s1, . . . , sd)

a−→ (s′1, . . . , s′d) if and only if there is some i ∈ [1, d] such that si
a−→i s

′
i

in Ti and sj = s′j for each j ∈ [1, d] with j 6= i.
We define their synchronous product1 as

∏
i∈[1,d] Ti

def= (S, {Sp | p ∈ P}, { a−→| a ∈ A}),
where S and the Sp are defined as for the asynchronous product, but where the transition
relation is defined as follows: For each (s1, . . . , sd), (s′1, . . . , s′d) ∈ S and each a ∈ A we have
(s1, . . . , sd)

a−→ (s′1, . . . , s′d) if and only if for all i ∈ [1, d] we have si
a−→i s

′
i in Ti.

Let us state the compositional method for ML and EF as proven in [14]. Here, we state
it for EF logic and the asynchronous product. Also note that in [14] it has been proven for
more general interpretations of the atomic propositions and more general products.

I Theorem 1 ([14],Theorem 21). The following is primitive recursive:
INPUT: An EF formula ϕ over (P,A), where P =

⋃d
i=1 Pi and A =

⋃d
i=1 Ai for a d ≥ 1.

OUTPUT: A tuple (Ψ1, . . . ,Ψd, β), where Ψi = {ψji | j ∈ Ji} is a finite set of EF formulas
over (Pi,Ai), and a boolean formula β with variables from X

def= {xji | i ∈ [1, d], j ∈ Ji} such
that for every transition system Ti = (Si, {Sp,i | p ∈ Pi}, {

a−→i| a ∈ Ai}) over (Pi,Ai) and
every state si of Ti (i ∈ [1, d]) it holds:(

〈s1, . . . , sd〉,
d⊗
i=1
Ti

)
|= ϕ ⇐⇒ µ |= β

Here, µ : X → {0, 1} is defined by µ(xji) = 1 if and only if (si, Ti) |= ψji . Moreover, we have
|D(ϕ, d)| ≤ g(d+|ϕ|) for some primitive recursive function g, where D(ϕ, d) def= (Ψ1, . . . ,Ψd, β)
is the decomposition of ϕ and its size is |D(ϕ, d)| def= |β|+

∑
i∈[1,d]

∑
j∈Ji
|ψji |.

I Remark. In [14] an analog of Theorem 1 has also been shown for the following cases: (i) ϕ
and each formula in

⋃
i∈[1,d] Ψi is an ML formula, or (ii) ϕ and each formula in

⋃
i∈[1,d] Ψi is

an ML formula and the asynchronous product
⊗

is replaced by the synchronous product∏
. Moreover, in [14] it is shown that for EF and the synchronous product such desirable

decompositions as stated in Theorem 1 do not exist in general (even when the computability
requirement is dropped).

Since model checking of EF and ML is decidable in polynomial time, Theorem 1 (whenever
applicable) delivers a running time for model checking the product of finite systems in time

(
∑
i∈[1,d]

|Ti|)O(1) · f(d+ |ϕ|)

1 also known as strong synchronization, e.g. [7]

S. Göller 337

for a primitive recursive function f and is thus fixed-parameter tractable when d + |ϕ| is
the parameter. The following theorem states that it is even fixed-parameter tractable when
only |ϕ| is the parameter. Although not explictly stated in [14] (Corollary 22 of [14] requires
d+ |ϕ| to be the parameter), its proof can be deduced from a refined analysis of Theorem 21
in [14] by using the notions of generalized product that were defined in [14].

I Theorem 2 (A consequence from [14]). Let op ∈ {
⊗
,
∏
} either stand for the asynchronous

or synchronous product. Given a formula ϕ over (P,A) (where P =
⋃d
i=1 Pi and A =

⋃d
i=1 Ai)

and transition systems (Ti)i∈[1,d] and a state s of opdi=1Ti, one can decide
(
s, opdi=1Ti

)
|= ϕ

in time (
∑
i∈[1,d] |Ti|)O(1) · f(|ϕ|) for some primitive recursive function f in either of the

following cases: (i) ϕ is some ML formula and op =
∏
, or (ii) ϕ is some ML formula and

op =
⊗

, or (iii) ϕ is some EF formula and op =
⊗

.

The question of fixed-parameter tractability of model checking EF for synchronous product
has already been answered negatively for reachability in [7] (unless FPT = AWT[SAT]) and
moreover reflects the non-decomposability of EF for synchronous product as mentioned in
the end of Remark 2.

I Theorem 3 (Theorem 5.1 in [7]). Given transition systems T1, . . . , Td over a common
signature (A,P) and two states s, t in

∏d
i=1 Ti, there is no algorithm that decides s→∗ t in∏d

i=1 Ti in time (
∑d
i=1 |Ti|)O(1) ·f(d) for any computable function f unless FPT = AWT[SAT].

3 Encoding huge numbers via sibling-ordered trees

In this section we show how one can represent numbers of size O(n) by sibling-ordered trees
of size O(n) of depth O(log∗(n)).

The idea of using wide trees of small height for proving nonelementary lower bounds has
already been considered before in the literature: such wide trees, as discussed in [8], have
been used in [1, 6, 9] to prove nonelementary lower bounds for parameterized complexity
of satisfiability for modal logic, nonelementary lower bounds on the sizes of several normal
forms of first-order logic formulas, and for the parameterized complexity of model checking
first-order logic. More discussion on the particular choice of our sibling-ordered trees follows
in Section 4.

In the following, let P`
def= {bi | i ∈ [0, `+ 1]} and A`

def= {ai | i ∈ [0, `]} ∪ {⇒,⇐} for each
` ∈ N. For each ` ∈ N a pointed `-sotree (for sibling-ordered tree) that is either 0-pointed (i.e.
the point does not satisfy proposition b`+1) or 1-pointed (i.e. the point satisfies proposition
b`+1) and that has a value from [0,Tower(`)− 1] is a pointed transition system over (P`,A`)
that is defined inductively on `:

Base case when ` = 0: A pointed 0-sotree is one of the following four pointed transition
systems each with point • over (P0,A0):

•

•

The 0-pointed 0-sotree

of value 0.

a0

•

•b0

a0

The 0-pointed 0-sotree

of value 1.

•b1

•

a0

The 1-pointed 0-sotree

of value 0.

•b1

•b0

a0

The 1-pointed 0-sotree

of value 1.

CSL’13

338 The Fixed-Parameter Tractability of Model Checking Concurrent Systems

Inductive step for ` + 1: A pointed (` + 1)-sotree is a pointed transition system
(r`+1, T`+1) over (P`+1,A`+1) that can be obtained as follows:

(1) The point r`+1 does not satisfy any of the propositions b0, . . . , b`.
(2) The states of T`+1 are obtained by the union of {r`+1} and for each j ∈ [0,Tower(`)−1]

exactly one of the possible two `-sotrees of value j (either 0-pointed or 1-pointed), let
us denote it by (r`(j), T`(j)).

(3) Add the a`-labeled transitions {(r`+1, r`(j)) | j ∈ [0,Tower(`)− 1]} to T`+1.
(4) Add the ⇐-labeled transitions {(r`(j), r`(j′)) | j, j′ ∈ [0,Tower(`)− 1], j > j′} and the

⇒-labeled transitions {(r`(j), r`(j′)) | j, j′ ∈ [0,Tower(`)− 1], j < j′} between siblings.
(5) Define the value of (r`+1, T`+1) as

val(r`+1, T`+1) def=
∑{

2j | j ∈ [0,Tower(`)− 1] : (r`(j), T`(j)) is 1-pointed
}
.

Note that val(r`+1, T`+1) ∈ [0,Tower(`+ 1)− 1].
(6) In case r`+1 satisfies b`+1 we say (r`+1, T`+1) is 1-pointed, otherwise we say (r`+1, T`+1)

is 0-pointed.
Again recall that, up to isomorphism, for each j ∈ [0,Tower(`+ 1)− 1] there are exactly
two `+ 1-sotrees of value j, one being 0-pointed and one being 1-pointed.

Figure 1 shows an example 2-sotree. Let size(`) denote the number of nodes of each
`-sotree. Note size(`) can be expressed by the recurrence

size(0) = 2 and size(`+ 1) = Tower(`) · size(`) + 1.

I Lemma 4. For each ` ≥ 3 we have size(`+ 1) ≤ Tower(`)2.

Recall that the value of each `-sotree lies in the interval [0,Tower(`)− 1] and for every value
in this interval there is an `-sotree with this value. In the following, for each j, ` ∈ N with
j ∈ [0,Tower(`)− 1] we define Υ`(j)

def= (r`(j), T`(j)) to be the (unique) 0-pointed `-sotree of
value j.

Next, we aim at defining formulas that allow us to compare the values of `-sotrees with
small formulas.

Let (s, T) be a pointed transition system with T = (S, {Sp | p ∈ P}, { a−→| a ∈ A}) and let
α be some label. We define the asynchronous α-extension of T to be the pointed transition
system with point s over the signature ({α} × P, {α} × A) that can be obtained from T
by setting S(α,p)

def= Sp and by setting (α,a)−−−→def= a−→. Likewise, we define the synchronous α-
extension of T to be the pointed transition system with point s over the signature ({α}×P,A)
that can be obtained from T by setting S(α,p)

def= Sp and keeping a−→ as it is. The value val of
each asynchronous/synchronous α-extension of a pointed `-sotree (r, T) is inherited from
val(r, T).

The following lemma states that one can construct ML formulas of size O(log∗(n)) that
allow us to compare the value of the asynchronous product of an asynchronous α-extension
and an asynchronous β-extension of `-sotrees of value O(n). The formulas are inspired from
[10], but, as will be discussed in Section 4, we require the additional transitions ⇐ and ⇒
for expressing order.

I Lemma 5 (Formulas for the asynchronous product of `-sotrees). For each ` ∈ N and labels
α, β there are formulas (eq⊗` (α, β))`∈N =(eq⊗`)`∈N and (less⊗` (α, β))`∈N = (less⊗`)`∈N, each
over the signature ({α, β}×P`, {α, β}×A`) and each of size 2O(`) such that the asynchronous
α-extension (r, T) of each pointed `-sotree the asynchronous β-extension (r′, T ′) of each
pointed `-sotree the following holds:

S. Göller 339

•

•

a0

•

b0•

a0

•
a1 a1

b1•

•

a0

•

b0•

a0

•
a1 a1

•

•

a0

b1•

b0•

a0

b2•
a1 a1

b1•

•

a0

b1•

b0•

a0

b2•
a1 a1

b3 •
a2 a2

a2 a2

Figure 1 The 1-pointed 2-sotree of value 12, where the horizontal transitions ⇒ and ⇐ between
siblings are omitted.

(1) (r, T)⊗ (r′, T ′) |= eq⊗` if and only if val(r, T) = val(r′, T ′),
(2) (r, T)⊗ (r′, T ′) |= less⊗` if and only if val(r, T) < val(r′, T ′), and
(3) (r, T)⊗ (r′, T ′) |= succ⊗` if and only if val(r, T) + 1 = val(r′, T ′).

Proof. We define the formulas by induction on `. For the induction base ` = 0 we put:
(1) eq⊗0

def= 〈α, a0〉〈β, a0〉 ((α, b0)↔ (β, b0)).
(2,3) less⊗0

def= succ⊗0
def= 〈α, a0〉〈β, a0〉 (¬(α, b0) ∧ (β, b0)).

For the induction step, we define:

(1) eq⊗`+1
def= [α, a`+1][β, a`+1]

(
eq⊗` −→ ((α, b`)↔ (β, b`))

)
.

(2) less⊗`+1
def= 〈α, a`+1〉〈β, a`+1〉ϕ⊗`+1, where

ϕ⊗`+1
def=
(
eq⊗` ∧ ¬(α, b`) ∧ (β, b`) ∧ [α,⇒][β,⇒]

(
eq⊗` → ((α, b`)↔ (β, b`))

))
,

thus expressing that there is an i ∈ [0,Tower(`)− 1] such that the ith bit of val(r, T) is
not set, the ith bit of val(r′, T ′) is set and moreover val(r, T) and val(r′, T ′) agree on
the jth bit for all i < j ≤ Tower(`)− 1.

(3) succ⊗`+1
def= 〈α, a`+1〉〈β, a`+1〉(ϕ⊗`+1 ∧ [α,⇐](α, b`) ∧ [β,⇐]¬(β, b`)), thus expressing that

there is an i ∈ [0,Tower(`)− 1] such that the ith bit of val(r, T) is not set, the ith bit of
val(r′, T ′) is set, val(r, T) and val(r′, T ′) agree on the jth bit for all i < j ≤ Tower(`)− 1
and finally the jth bit of val(r, T) is set whereas the jth bit of val(r′, T ′) is not set for
each 0 ≤ j < i. J

Similar formulas as in Lemma 5 can be shown for the synchronous product.

I Lemma 6 (Formulas for the synchronous product of `-sotrees). For each ` ∈ N and labels
α, β there are formulas (eq×` (α, β))`∈N = (eq×`)`∈N, (succ×` (α, β))`∈N = (succ×`)`∈N, and
(less×` (α, β))`∈N = (less×`)`∈N, each over the signature ({α, β} × P`,A`) and each of size 2O(`)

such that for the synchronous α-extension (r, T) of each pointed `-sotree and the synchronous
β-extension (r′, T ′) of each pointed `-sotree the following holds:
(1) (r, T)× (r′, T ′) |= eq×` if and only if val(r, T) = val(r′, T ′),
(2) (r, T)× (r′, T ′) |= less×` if and only if val(r, T) < val(r′, T ′), and
(3) (r, T)× (r′, T ′) |= succ×` if and only if val(r, T) + 1 = val(r′, T ′).

4 Overview of the proofs

The reason for choosing our particular encoding via sibling-ordered trees from Section 3 is
that we would like to provide possibly short proofs for our main results. Let us discuss this
in more detail.

CSL’13

340 The Fixed-Parameter Tractability of Model Checking Concurrent Systems

For showing, unless FPT = AW[∗], that for given systems T1, . . . , Td and an ML formula ϕ
there is no algorithm that decides whether ϕ holds in the asynchronous product of T1, . . . , Td
and runs in time (

∑
i |Ti|)O(1) · f(|ϕ|) for any elementary function f , we reduce from model

checking first-order logic on finite words with order from [9] (which has been shown not be
decidable in time |W|O(1) · f(|ϕ|) for any elementary function unless FPT = AW[∗] in [9]).
In fact, it might be possible to prove our result directly by working with the asynchronous
product of trees from [8] but this would have involved a complicated encoding of 3-CNF
formulas as in [9] and hence result in a proof that is technically much more involved than
our current proof. Moreover it would not shed new light into the problem.

In our reduction from model checking first-order logic over words we encode each position
of the input word by one of our sibling-ordered trees (from Section 3) and present the whole
word by an asynchronous product of these sibling-ordered trees such that ML formulas of size
O(log∗(n)) can test whether two such marked trees are related by the order. For encoding
this we cannot use trees that were used in [10] for proving nonelementary lower bounds for
satisfiability checking two-dimensional modal logic since it is not at all clear how to simulate
the above-mentioned order relation between an asynchronous product between two of them
(in [10] only the successor relation was simulated with involved technical machinery).

We are able to prove under the weaker assumption P 6= NP that there is neither such
an algorithm that runs in time (

∑
i |Ti|)O(1) · f(|ϕ|) for elementary function f for model

checking ML on the synchronous product of systems nor one for model checking EF on the
asynchronous product of systems. To obtain this, one possibility could have been to reduce
from the model checking problem of monadic second-order logic over finite words (which has
been shown not to be decidable in time |W|O(1) · f(|ϕ|) for any elementary function f unless
P = NP in [9]) but for this result it turned out that a direct proof is simpler than to encode
monadic second-order quantification. We reduce from the NP-complete n× n-tiling problem.

Let us point out the crucial differences to model checking the asynchronous product
and why we are able to weaken our complexity-theoretic assumption from FPT 6= AW[∗] to
P 6= NP when considering the synchronous product. The asynchronous product of systems
T1, . . . , Td is generally also exponentially big in the input size, but the out-degree in ⊗iTi is
only polynomially bounded. When encoding the NP-hard n× n-tiling problem as instances
of model checking modal logic on the synchronous product (and thus assuming the weaker
P 6= NP assumption), the idea is to use for each of the n2 coordinates (x, y) one sibling-ordered
tree Tx,y for representing this coordinate to be colored with a tile type. Guessing one coloring
(of the exponentially many) to the tiling problem can be achieved in one step by an ML
formula in the synchronous product, whereas it would take exponentially many steps in
the asynchronous product (thus, the lower bound cannot be applied to the asynchronous
product). Hence, as mentioned above, for proving lower bounds for the asynchronous product,
we had to make a stronger complexity theoretic assumption, namely FPT 6= AW[∗].

5 Model Checking ML on the asynchronous product

In this section we prove that model checking ML for asynchronous product is not fixed-
parameter tractable with an elementary function in the size of the formula unless FPT = AW[∗].
We reduce from an orthogonal hardness result for model checking first-order logic on words
from [9].

Given a finite alphabet Σ the signature of first-order (FO) formulas for words over Σ
is (Σ, <), where each a ∈ Σ is a unary symbol (the letter predicate) and < (the order on
positions). We use the following lower bound result from model checking first-order logic on
words.

S. Göller 341

I Theorem 7 ([9]). Let f be an elementary function. Then there is no algorithm that decides
INPUT: A word W and some FO sentence ϕ each over some alphabet Σ.
QUESTION: W |= ϕ?

in time |W|O(1) · f(|ϕ|) unless FPT = AW[∗].

We can now present the main result of this section.

I Theorem 8. Let f be an elementary function. Then there is no algorithm that decides
INPUT: Transition systems T1, . . . , Td, a state s of

⊗d
i=1 Ti and an ML formula ψ.

QUESTION: (s,
⊗

i∈[1,d] Ti) |= ψ?
in time (

∑d
i=1 |Ti|)O(1) · f(|ψ|) unless FPT = AW[∗].

Proof. The idea is to show that the existence of such an elementary function f contradicts
Theorem 7. So for the sake of contradiction, let us assume that there were an elementary
function f and an algorithm that decides the model checking problem for a given ML
formula ψ and a state s in the asynchronous product of d finite systems T1, . . . , Td in time
(
∑
i∈[1,d] |Ti|)O(1) · f(|ψ|). Let us show that this algorithm can be used for model checking

FO over words. For this, let W = a0 · · · an−1, where ai ∈ Σ for each i ∈ [0, n − 1] and
let ϕ = ∃x1∀x2 · · · ∃x2k−1∀x2kψ(x1, . . . , x2k) be an FO sentence over Σ in prenex normal
form with alternating quantifiers without loss of generality. We will compute some d ≥ 1,
transition systems T1, . . . , Td, some state s of T def=

⊗d
i=1 Ti and some ML formula ψ such

that
(i) W |= ϕ if and only if (s, T) |= ψ,
(ii) d ≤ O(|ϕ|),
(iii) |Ti| ≤ |W|O(1) for each i ∈ [1, d],
(iv) |ψ| ≤ O(|ϕ|) · 2O(log∗(|W|)), and
(v) each Ti, s and ψ is computable in time |W|O(1) · g(|ϕ|) for an elementary g.
Before we show how to compute the Ti, s and ψ, let us start with the desired contradiction.
Note that an elementary computation of such Ti, s and ψ as stated above would lead to an
algorithm that decides W |= ϕ in time |W|O(1) · g(|ϕ|) (for the reduction, Point (v) from
above) plus

(
∑
i∈[1,d]

|Ti|)O(1) · f(|ψ|)

(iii),(iv)
≤ (d · |W|O(1))O(1) · f(O(|ϕ|) · 2O(log∗(|W|)))
≤ |W|O(1) · dO(1) · f(O(|ϕ|) · 2O(log∗(|W|)))
(ii)
≤ |W|O(1) · |ϕ|O(1) · f(O(|ϕ|) · 2O(log∗(|W|)))

by the binomial theorem. Furthermore, it is easy to see that there exist elementary functions
f1, f2 such that the latter is bounded by

|W|O(1) · f1(|ϕ|) · f2(2O(| log∗(|W|))) ≤ |W|O(1) · f1(|ϕ|)

since f2(2O(log∗(|W|))) is bounded by a sublinearly growing function in |W| (and is thus in
particular bounded by |W|O(1)). The latter contradicts Theorem 7. This concludes the
analysis of the overall running time of our reduction.

Let us conclude to show that we can compute transition systems T1, . . . , Td, state s of
T def=

⊗d
i=1 Ti and some ML formula ψ such that moreover Points (i) to (v) from above

CSL’13

342 The Fixed-Parameter Tractability of Model Checking Concurrent Systems

hold. Recall that W = a0 · · · an−1. Let us first compute the smallest ` ≥ 1 such that
Tower(`− 1) < n ≤ Tower(`). Note that ` ≤ O(log∗(n)) ≤ O(log∗(|W|)). Let us compute the
0-pointed `-sotrees Υ`(0), . . . ,Υ`(n− 1), with their points r`(0), . . . , r`(n− 1), respectively.

Recall that each pointed `-sotree was defined over the signature (P`,A`). Without loss of
generality we assume that Σ ∩ P` = ∅.

Let U be the pointed transition system over (P` ∪ Σ,A` ∪ {γ}) that one obtains from the
disjoint union of Υ`(0), . . . ,Υ`(n− 1) and some fresh state s (which will be the point of U)
and by adding the atomic proposition aj ∈ Σ to U ’s state r`(j) and connecting s with r`(j)
with a γ-labeled transition for each j ∈ [0, n − 1]. Recall that ϕ = ∃x1∀x2 · · · ∃x2k−1∀x2k

ψ(x1, . . . , x2k) is our input FO formula. We set d def= 2k, hence d ≤ O(|ϕ|) and thus Point (ii)
is shown. We define Ti to be the asynchronous i-extension of U for each i ∈ [1, 2k]. Recall
that size(`) denotes the size of each Υ`(j). Hence

|Ti| ≤ O(n · size(`))
Lemma 4
≤ O(n · Tower(`− 1)2) ≤ O(n3) ≤ |W|O(1)

for each i ∈ [1, d] and thus (iii) is shown. We define the pointed transition system T def=⊗
i∈[1,2k] Ti with point s def= (s, . . . , s). The intuition is that each position j ∈ [0, n− 1] of W

will be presented by Υ`(j) and U will correspond to W . The transition system T consists of
the asynchronous product of d = 2k copies of U since ϕ consists of 2k quantifiers. Thus, the
pointed transition system Ti will handle the position where variable xi will be bound to, for
each i ∈ [1, 2k].
Finally, we define the ML-formula ψ as follows

ψ
def= 〈1, γ〉[2, γ] · · · 〈2k − 1, γ〉[2k, γ] ψ̂,

where the ML formula ψ̂ is obtained from ϕ by replacing each occurrence of a(xi) by (i, a)
and by replacing each occurrence of xi < xi′ by less⊗` (i, i′), where each formula less⊗` (i, i′) is
taken from Lemma 5 for α = i and β = i′. It is straightforward to verify that we haveW |= ϕ

if and only if
(
s,
⊗d

i=1 Ti
)
|= ψ, which delivers Point (i). Recall that ` ≤ O(log∗(|W|))

and the size of each formula less⊗` (i, i′) is bounded by 2O(`) by Lemma 5, thus Point (iv)
holds. Point (v) is easy to see by the fact that each Ti is computable in time |Ti|O(1) and the
formula ψ is computable in time |ψ|O(1) and by using Points (ii), (iii) and (iv) and analogous
arguments as for the above running time analysis. J

An adaption of the latter proof can be carried out for model checking ML on the syn-
chronous product. Remarkably, for model checking the synchronous product the complexity-
theoretic assumption can be indeed be weakened to P 6= NP as will be shown in the next
section.

6 Model checking ML on the synchronous product and model
checking EF on the asynchronous product

In this section we prove that the fixed-parameter tractability of model checking ML for syn-
chronous product and EF for asynchronous product is cannot be witnessed by an elementary
running time in the size of the formula unless P = NP.

We recall tiling systems for this. A tiling system is a tuple S = (Θ,H,V), where Θ is a
finite set of tile types, H ⊆ Θ×Θ is a horizontal matching relation, and V ⊆ Θ×Θ is a vertical
matching relation. A mapping σ : [0, n− 1]2 → Θ (where n ≥ 0) is an n× n-solution for S if
for all x, y ∈ [0, n− 1] the following holds: (i) if x < n− 1, σ(x, y) = θ, and σ(x+ 1, y) = θ′,

S. Göller 343

•
•

T (θ1, x, y)

•

· · ·
T (θk, x, y)

a a

Figure 2 The pointed transition system Tx,y for each x ∈ [0, n− 1] and each y ∈ [1, n− 1].

then (θ, θ′) ∈ H, and (ii) if y < n− 1, σ(x, y) = θ, and σ(x, y + 1) = θ′, then (θ, θ′) ∈ V. Let
W = θ0 · · · θn−1 ∈ Θn be a word. By Soln(S,W) we denote the set of all n× n-solutions σ
for S such that σ(x, 0) = θx for all x ∈ [0, n− 1]. For a fixed tiling system S, its n× n-tiling
problem asks for a given word W ∈ Θn, whether Soln(S,W) 6= ∅ holds. It is folklore that
there exists a fixed tiling system S0 whose n× n-tiling problem is NP-hard; see also [3]. Let
us fix such a tiling system S0 = (Θ0,H0,V0) for the rest of this section.

I Theorem 9. Let f be an elementary function. Then there is no algorithm that decides
INPUT: Transition systems T1, . . . , Td, a state s of

∏d
i=1 Ti and an ML formula ψ.

QUESTION: (s,
∏d
i=1 Ti) |= ψ?

in time (
∑d
i=1 |Ti|)O(1) · f(|ψ|) unless P = NP.

Proof. The idea is to show that the existence of such an elementary function f implies that
the n× n-tiling problem for S0 is in P and thus P = NP. So for the sake of contradiction,
let us assume that there were an elementary function f and an algorithm that decides
the model checking problem for a given ML formula ψ and a state s in the synchronous
product of d finite systems T1, . . . , Td in time (

∑d
i=1 |Ti|)O(1) · f(|ψ|). Let us show that

this algorithm can be used for deciding the n× n-tiling problem for S0 in polynomial time.
Recall S0 = (Θ0,H0,V0). Let us assume Θ0 = {θ1, . . . , θk}. Let W = W0 · · ·Wn−1 ∈ Θn

0
be an input word to the n× n-tiling problem for S0. We will compute transition systems
{Tx,y | x, y ∈ [0, n − 1]}, some state s of

∏
x,y∈[0,n−1] Tx,y and some ML formula ψ such

that
(i) Soln(S0,W) 6= ∅ if and only if (s,

∏
x,y∈[0,n−1] Tx,y) |= ψ,

(ii) |Tx,y| ≤ |W|O(1) for each x, y ∈ [0, n− 1],
(iii) |ψ| ≤ 2O(log∗(|W|)), and
(iv) each Tx,y, s and ψ is computable in time |W|O(1).
The proof that Points (i) to (iv) lead to an overall algorithm that decides the non-emptiness
of Soln(S0,W) in time |W|O(1) works analogously as the proof of Theorem 8 and is therefore
omitted. Recall that W =W0 · · ·Wn−1 ∈ Θn and let us assume without loss of generality
that n ≥ 3.

Let us first compute the smallest ` ≥ 1 such that Tower(`− 1) < n ≤ Tower(`). Note that
` ≤ O(log∗(n)) ≤ O(log∗(|W|)). Recall that Υ`(j) denotes the 0-pointed `-sotree of value j
for each j ∈ [0,Tower(`)− 1]. Let Υα

` (i) (resp. Υβ
` (i)) denote the synchronous α-extension

(resp. synchronous β-extension) of Υ`(j) for each j ∈ [0,Tower(`)− 1].
We will call each pointed transition system Tx,y a component of the product transition

system T def=
∏
x,y∈[0,n−1] Tx,y. Let us mention the purpose of the pointed transition systems

Tx,y. With points denoted by•, Figure 2 shows the pointed transition system Tx,y whenever
1 ≤ y ≤ n−1 and Figure 3 shows them whenever y = 0, where the pointed transition systems

CSL’13

344 The Fixed-Parameter Tractability of Model Checking Concurrent Systems

•

•

T (Wx, x, y)

a

Figure 3 The pointed transition system Tx,y for each x ∈ [0, n− 1] and y = 0.

Υα
ℓ (x) Υα

ℓ (y)

(α, pH)• (α, pV)•

(α, θ) •

λ λ

Υβ
ℓ (x) Υβ

ℓ (y)

(β, pH)• (β, pV) •

(β, θ)•

λ λ

♠

p1•

p2•

p3•

κ
κ
κ

γ γ

• µ

♥

µ

•κ

•

λ, a0, . . . , aℓ

γ

Figure 4 The pointed transition system T (θ, x, y) for each θ ∈ Θ0 and each x, y ∈ [0, n− 1].

T (θ, x, y) for each θ ∈ Θ0 and each x, y ∈ [0, n− 1] will be described in more detail below.
Note that we have hereby specified the point s of T =

∏
x,y∈[0,n−1] Tx,y. Each a-successor

of s in T hence corresponds to a choice function from [0, n − 1] × [0, n − 1] to Θ0, thus
selecting for each (x, y) ∈ [0, n− 1]× [0, n− 1], some tile type θx,y from Θ0 (by taking in the
component Tx,y the a-successor to the point of T (θx,y, x, y)); however for each (x, y) with
y = 0 we only allow to choose θx,y =Wx, since we would like to restrict ourselves to choice
functions ρ with ρ(x, 0) =Wx for each x ∈ [0, n− 1].

Having selected a choice function that respects our input word W, let us now comment
on the pointed transition systems T (θ, x, y) with point • as depicted in Figure 4. Let
assume, for the moment, that for each T (θ, x, y) we are either in state ♥ or in state ♠.
Then in the corresponding pointed synchronous product transition system the formula
ϕtwo

def= 〈κ〉(p1 ∧ p2) ∧ ¬〈κ〉(p1 ∧ p2 ∧ p3) holds if and only if exactly two components are

in state ♠. Note that since k = |Θ0| is a fixed constant we have |Tx,y| ≤ O(size(`))
Lemma 4
≤

O(Tower(`− 1)2) ≤ O(n2) ≤ |W|O(1) for each x, y ∈ [0, n− 1] and thus (ii) is shown.

Let us define the auxiliary formulas ϕα
def=
∨
θ∈Θ0

(α, θ) and ϕβ
def=
∨
θ∈Θ0

(β, θ). Let us
list our final formula ψ before we comment on it below.

S. Göller 345

〈a〉[µ]
[
ϕtwo → [γ]

(
ϕα ∧ ϕβ

∧ 〈λ〉((α, pH) ∧ (β, pH) ∧ eq×` (α, β))

∧ 〈λ〉((α, pV) ∧ (β, pV) ∧ succ×` (α, β))
)
→ ϕV

]

∧
[
ϕtwo → [γ]

(
ϕα ∧ ϕβ

∧ 〈λ〉((α, pH) ∧ (β, pH) ∧ succ×` (α, β))

∧ 〈λ〉((α, pV) ∧ (β, pV) ∧ eq×` (α, β))
)
→ ϕH

]
where

ϕV
def=

∨
(θ,θ′)∈V0

(α, θ) ∧ (β, θ′) and ϕH
def=

∨
(θ,θ′)∈H0

(α, θ) ∧ (β, θ′).

When evaluating it from (s,
∏
x,y∈[0,n−1] Tx,y), the formula ψ can be read as follows: There

is a choice function ρ ∈ Θ[0,n−1]×[0,n−1]
0 that respects our input word W (this corresponds to

the part 〈a〉) such that whenever we choose (this corresponds to [µ]) precisely two (this is
realized by going to ♥ and ♠ and is is controlled by the formula ϕtwo) different elements
(x, y) and (x′, y′) from [0, n− 1]× [0, n− 1] and exactly one of these two is “colored” with α
and the other with β (by going along the transition γ and checking the formula ϕα ∧ ϕβ) we
have that, firstly, x = x′ and y′ = y + 1 implies that (ρ(x, y), ρ(x′, y′)) ∈ V0 and, secondly,
x′ = x + 1 and y = y′ implies that (ρ(x, y), ρ(x′, y′)) ∈ H0. Thus Sol(S0,W) 6= ∅ if and
only if (s,

∏
x,y∈[0,n−1] Tx,y) |= ψ, thus Point (i) holds. The definition of ψ shows that

|ψ| ≤ 2O(`) ≤ 2O(log∗(|W|)) by Lemma 6 and thus Point (iii) follows. The reader easily verifies
that the transition systems Tx,y, the state s of T and the formula ψ can in total be computed
in time |W|O(1), which delivers Point (iv) and completes the proof of the theorem. J

The following theorem states an analogous result for model checking EF on the asynchron-
ous product. One can recycle the proof of Theorem 9, replace the synchronous α/β-extension
by asynchronous α/β-extension, respectively, replacing the succ×` (α, β) by succ⊗` (α, β), repla-
cing 〈e〉 by EF and [e] by AG in a relativized fashion by introducing fresh atomic propositions
that allow us to correctly mimick one transition in the synchronous product by a sequence of
transitions in the asynchronous product. Recall that each transition system Tx,y is essentially
a tree (almost) except for the substructures of the form Υα/β

` (x/y). Simulating each modality
〈z〉, where z ∈ {a, µ, κ, γ, δ}, in the synchronous product can be simulated by the modality EF
in the asynchronous product in addition to some formula that expresses (1) each asynchronous
component can no longer execute z and (2) we have not moved too far down in the tree than
just along one z-labeled transition.

I Theorem 10. Let f be an elementary function. Then there is no algorithm that decides
INPUT: Transition systems T1, . . . , Td, a state s of

⊗d
i=1 Ti and an EF formula ϕ.

QUESTION: (s,
⊗d

i=1 Ti) |= ϕ?
in time (

∑d
i=1 |Ti|)O(1) · f(|ϕ|) unless P = NP.

CSL’13

346 The Fixed-Parameter Tractability of Model Checking Concurrent Systems

7 Conclusion

In this paper we considered the fixed-parameter tractability of model checking modal logic
and EF logic on concurrent systems that are modeled as the asynchronous or synchronous
product of finite systems when the size of the input formula is the parameter. We showed that
although these model checking problems are often fixed-parameter tractable one cannot hope
for any FPT algorithm that runs elementary in the size of formula. It turned out that for
model checking modal logic the mode of synchronization plays a role: for the asynchronous
product we had to assume FPT 6= AWT[∗], whereas we were able to weaken our assumption
for the synchronous product to P 6= NP. Let us conclude with some questions that we would
like to answer in the full version of this paper. In analogy to [9] it would be interesting to
study the question if even weaker complexity theoretic assumptions such as P 6= PSPACE can
be assumed. Moreover, we remark that some of our lower bound proofs also hold even when
d+ |ϕ| (instead of |ϕ|) is the parameter; it seems worth investigating when this strengthening
is possible. Too, the question arises what (elementary) bounds one can prove for transition
systems of bounded degree.

References
1 Antonis Achilleos, Michael Lampis, and Valia Mitsou. Parameterized Modal Satisfiability.

In ICALP (2), volume 6199 of Lecture Notes in Computer Science, pages 369–380. Springer,
2010.

2 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
3 Egon Börger, Erich Grädel, and Yuri Gurevich. The classical decision problem. Universitext.

Springer-Verlag, Berlin, 2001.
4 Yijia Chen, Jörg Flum, and Martin Grohe. Bounded nondeterminism and alternation in

parameterized complexity theory. In IEEE Conference on Computational Complexity, pages
13–29. IEEE Computer Society, 2003.

5 E. M. Clarke and E. A. Emerson. Model Checking. MIT Press, 1999.
6 Anuj Dawar, Martin Grohe, Stephan Kreutzer, and Nicole Schweikardt. Model Theory

Makes Formulas Large. In Proc. of ICALP, volume 4596 of Lecture Notes in Computer
Science. Springer, 2007.

7 Stéphane Demri, François Laroussinie, and Ph. Schnoebelen. A parametric analysis of the
state-explosion problem in model checking. J. Comput. Syst. Sci., 72(4):547–575, 2006.

8 Jörg Flum and Martin Grohe. Parametrized Complexity Theory. Springer, 2006.
9 Markus Frick and Martin Grohe. The complexity of first-order and monadic second-order

logic revisited. Ann. Pure Appl. Logic, 130(1-3):3–31, 2004.
10 Stefan Göller, Jean Christoph Jung, and Markus Lohrey. The Complexity of Decomposing

Modal and First-Order Theories. In LICS, pages 325–334. IEEE, 2012.
11 Stefan Göller and Anthony Widjaja Lin. Concurrency Makes Simple Theories Hard. In

STACS, volume 14 of LIPIcs, pages 148–159. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2012.

12 Orna Lichtenstein and Amir Pnueli. Checking that finite state concurrent programs satisfy
their linear specification. In POPL, pages 97–107. ACM Press, 1985.

13 M. Praveen. Parametrized Complexity of some Problems in Concurrency and Verification.
PhD thesis, Homi Bhabha National Institute, 2011.

14 Alexander Rabinovich. On compositionality and its limitations. ACM Trans. Comput. Log.,
8(1), 2007.

15 A. Prasad Sistla and Edmund M. Clarke. The complexity of propositional linear temporal
logics. J. ACM, 32(3), 1985.

S. Göller 347

A Proof of Lemma 4

Proof. One easily proves via induction on n that n2 + 1 ≤ 2n for each n ≥ 5. We prove the
lemma by induction on ` ≥ 3. For the induction base ` = 3 we have

size(4) = Tower(3) · size(3) + 1 = Tower(3) · (Tower(2) · size(2) + 1) + 1

Figure 1= 216 · (16 · 21 + 1) + 1 = 216 · 337 < (216)2 = Tower(3)2.

For the induction step, we have for each ` ≥ 3

size(`+ 1) = Tower(`) · size(`) + 1
IH
≤ Tower(`) · Tower(`− 1)2 + 1
≤ Tower(`) · (Tower(`− 1)2 + 1)

Tower(`−1)≥5
≤ Tower(`) · 2Tower(`−1)

= Tower(`)2.

J

B Proof of Lemma 6

Proof. We define the formulas by induction on `. For the induction base ` = 0 we put:
(1) eq×0

def= 〈a0〉 ((α, b0)↔ (β, b0)).
(2) less×0

def= 〈a0〉 (¬(α, b0) ∧ (β, b0)).
(3) succ×0

def= less×0 .
For the induction step, we define:
(1) eq×`+1

def= [a`+1]
(
eq×` −→ ((α, b`)↔ (β, b`))

)
.

(2) less×`+1
def= 〈a`+1〉ϕ×`+1, where

ϕ×`+1
def= (eq×` ∧ ¬(α, b`) ∧ (β, b`) ∧ [⇒](eq×` → ((α, b`)↔ (β, b`))).

(3) succ×`+1
def= 〈a`+1〉(ϕ×`+1 ∧ [⇐](α, b`) ∧ [⇐]¬(β, b`)).

J

CSL’13

	Introduction
	Preliminaries
	Encoding huge numbers via sibling-ordered trees
	Overview of the proofs
	Model Checking ML on the asynchronous product
	Model checking ML on the synchronous product and model checking EF on the asynchronous product
	Conclusion
	Proof of Lemma 4
	Proof of Lemma 6

