
Kleene Algebra with Products and Iteration
Theories

Dexter Kozen and Konstantinos Mamouras

Computer Science Department, Cornell University, Ithaca, NY 14853, USA
{kozen,mamouras}@cs.cornell.edu

Abstract
We develop a typed equational system that subsumes both iteration theories and typed Kleene
algebra in a common framework. Our approach is based on cartesian categories endowed with
commutative strong monads to handle nondeterminism.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases Kleene algebra, typed Kleene algebra, iteration theories

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.415

1 Introduction

In the realm of equational systems for reasoning about iteration, two chief complementary
bodies of work stand out. One of these is iteration theories (IT), the subject of the extensive
monograph of Bloom and Ésik [4] as well as many other authors (see the cited literature).
The primary motivation for iteration theories is to capture in abstract form the equational
properties of iteration on structures that arise in domain theory and program semantics,
such as continuous functions on ordered sets. Of central interest is the dagger operation †, a
kind of parameterized least fixpoint operator, that when applied to an object representing
a simultaneous system of equations gives an object representing the least solution of those
equations. Much of the work on iteration theories involves axiomatizing or otherwise
characterizing the equational theory of iteration as captured by †. Complete axiomatizations
have been provided [7, 9, 10] as well as other algebraic and categorical characterizations [2, 3].

Bloom and Ésik claim that “. . . the notion of an iteration theory seems to axiomatize the
equational properties of all computationally interesting structures. . . ” [6]. This is true to a
certain extent, certainly if one is interested only in structures that arise in domain theory
and programming language semantics. However, it is not the entire story.

Another approach to equational reasoning about iteration that has met with some success
over the years is the notion of Kleene algebra (KA), the algebra of regular expressions. KA
has a long history going back to the original paper of Kleene [12] and was further developed
by Conway, who coined the name Kleene algebra in his 1971 monograph [8]. It has since been
studied by many authors. KA relies on an iteration operator ∗ that characterizes iteration in
a different way from †. Its principal models are not those of domain theory, but rather basic
algebraic objects such as sets of strings (in which ∗ gives the Kleene asterate operation),
binary relations (in which ∗ gives reflexive transitive closure), and other structures with
applications in shortest path algorithms on graphs and geometry of convex sets. Complete
axiomatizations and complexity analyses have been given; the regular sets of strings over
an alphabet A form the free KA on generators A in much the same way that the rational
Σ⊥-trees form the free IT on a signature Σ.

© Dexter Kozen and Konstantinos Mamouras;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca ; pp. 415–431

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.415
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

416 Kleene Algebra with Products and Iteration Theories

Although the two systems fulfill many of the same objectives and are related at some
level, there are many technical and stylistic differences. Whereas iteration theories are based
on Lawvere theories, a categorical concept, Kleene algebra operates primarily at a level of
abstraction one click down. For this reason, KA may be somewhat more accessible. KA
has been shown to be useful in several nontrivial static analysis and verification tasks (see
e.g. [16, 23]). Also, KA can model nondeterministic computation, whereas IT is primarily
deterministic.

Nevertheless, both systems have claimed to capture the notion of iteration in a fundamental
way, and it is interesting to ask whether they can somehow be reconciled. This is the
investigation that we have undertaken in this paper. We start with the observation that ITs
use the objects of a category to represent types. Technically the objects of interest in ITs are
morphisms f : n→ m in a category whose objects are natural numbers, and the morphism
f : n→ m is meant to model functions f : Am → An (the arrows are reversed for technical
reasons). Thus ITs might be captured by a version of KA with types. Although the primary
version of KA is untyped, there is a notion of typed KA [21], although it only has types of
the form A→ B, whereas to subsume IT it would need products as well. The presence of
products allow ITs to capture parameterized fixpoints through the rule

f : n→ n+m

f† : n→ m
giving the parameterized least fixpoint f† : Am → An of a parameterized function f :
Am × An → An. This would be possible to capture in KA if the typed version had
products, which it does not. On the other hand, KA allows the modeling of nondeterministic
computation, which IT does not, at least not in any obvious way. Thus to capture both
systems, it would seem that we need to extend the type system of typed KA, or extend the
categorical framework of IT to handle nondeterminism, or both.

The result of our investigation is a common categorical framework based on cartesian
categories (categories with products) combined with a monadic treatment of nondeterminism.
Types are represented by objects in the category, and we identify the appropriate axioms
in the form of typed equations that allow equational reasoning on the morphisms. Our
framework captures iteration as represented in ITs and KAs in a common language. We
show how to define the KA operations as enrichments on the morphisms and how to define †
in terms of ∗. Our main contributions are as follows.

Commutative strong monads. To accommodate nondeterminism, we need to lift
the computation to the Kleisli category of a monad representing nondeterminate values.
However, the ordinary powerset monad does not suffice for this purpose, as it does not
interact well with non-strictness. We axiomatize the relevant properties for an arbitrary
commutative strong monad, where (i) the property of commutativity captures the idea that
the computation of a pair can be done in either order, and (ii) strength refers to tensorial
strength, which axiomatizes the interaction of pairs with the nondeterminism monad.

Lazy pairs. We need to model non-strict (lazy) evaluation of programs in the presence
of products. Ordinarily, a pair 〈x,⊥〉 would be ⊥ by strictness. This requires the development
of the concept of lazy pairs and its categorical axiomatization. Intuitively, in the case of
eager pairs, the computation of a pair 〈v,⊥〉, where v is a value and ⊥ denotes a diverging
computation, would also be diverging, i.e., 〈v,⊥〉 = ⊥. This makes it impossible to recover
the left component v of the pair: 〈v,⊥〉;π1 = ⊥.

Simplified axiomatization of commutative strong monads and lazy pairs.
We have given a simplified axiomatization of commutative monads with lazy pairs in terms
of a certain operator ψ that captures the interaction of these concepts in a very concise form,
much simpler than the axiomatizations of the two of them separately. This is an adaptation

D. Kozen and K. Mamouras 417

of a construction that can be found in the work of Kock in the 1970s [13, 15]. We use this
extensively in our development to simplify arguments.

Deterministic arrows. Certain properties work only for deterministic computations.
We show how to capture the necessary properties of determinism in the Kleisli category. A
separate syntactic arrow provides a convenient notation for reasoning about deterministic
computation in the underlying category when working in the Kleisli category, and we provide
an axiomatization of the necessary properties.

Lifting the cartesian structure. We show how the cartesian structure (pairing
and projections) in the underlying category can be lifted in a smooth way to corresponding
operations in the Kleisli category.

Capturing nondeterminism. We give three equivalent ways of capturing (angelic)
nondeterminism in the homsets of the Kleisli category of a monad. These characterizations
make essential use of cartesian structure of the base category.

Capturing IT and KA. We show how to enrich the homsets of the Kleisli category
with the KA operations, including ∗, to obtain typed KA with products, and that all the
axioms of KA (except the strictness axiom) are satisfied. Sequential composition is modeled
by Kleisli composition. We also show that Park theories [9] are subsumed by KA with
products. This is our main result.

Model theory. Finally, we show that two particular monads, the lowerset monad and
the ideal completion monad, provide natural concrete models in that they are commutative
strong monads with lazy pairs. The ideal completion monad involves ideal completion in
ω-complete partial orders (ω-CPOs) and models nondeterminism in those structures.

2 Commutative Strong Monads with Lazy Pairs

As a first step in the development of our category-theoretic framework, we define axiomatically
the base cartesian category of “non-strict functions and values”, where the notion of divergence
is made explicit. We handle nondeterminism with a commutative strong monad, for which
the formation of lazy pairs is implemented with just one very natural axiom that intuitively
says: “forming a pair of a non-diverging computation with a diverging computation allows
one to recover the non-diverging component”. The Kleisli category of the monad, which we
think of as a category of “non-strict programs and computations”, is symmetric monoidal. In
fact, it possesses more structure, which we will exploit by making the notion of deterministic
arrow explicit.

In order to model non-strict (lazy) evaluation of programs and lazy pairs we consider
our base category to be a cartesian category C with bottom elements. For an object X, we
write the identity for X as idX : X → X. The composition operation is written as ; and the
operands are given in diagrammatic order: the composite of the two arrows f : X → Y and
g : Y → Z is written f ; g : X → Z. For objects X and Y , we denote by X × Y their product
with corresponding left and right projections πXY1 : X × Y → X and πXY2 : X × Y → Y

respectively. The pairing operation 〈·, ·〉 takes two arrows f : X → Y and g : X → Z with
the same domain and produces an arrow 〈f, g〉 : X → Y ×Z. The terminal object is denoted
by 1. We write ⊥X : X → 1 for the unique arrow from X to 1. The equational axioms

〈f, g〉;π1 = f 〈f, g〉;π2 = g 〈h;π1, h;π2〉 = h f = ⊥X
say that the operations ×, π1, π2, 〈·, ·〉,1,⊥ endow C with cartesian structure. For every
object X, the bottom element of X is written as ⊥1X : 1 → X. Define the bottom
morphism ⊥XY from X to Y by ⊥XY := ⊥X ;⊥1Y . The bottom morphisms satisfy the
axiom f ;⊥Y Z = ⊥XZ : X → Z. An arrow f : X → Y satisfying the equation ⊥1X ; f = ⊥1Y

CSL’13

418 Kleene Algebra with Products and Iteration Theories

X × PY

P (X × Y) PY

t

π2

Pπ2

X × Y X × PY

P (X × Y)

id× η

η
t

(X × Y)× PZ

X × (Y × PZ)

X × P (Y × Z)

P ((X × Y)× Z)

P (X × (Y × Z))

t

α

id× t
t

Pα

X × P 2Y X × PY

P (X × PY)

P 2(X × Y) P (X × Y)

id× µ

t

Pt µ

t

Figure 1 Axioms for tensorial strength t : X × PY → P (X × Y) of the monad (P, η, µ).

PX × PY P (PX × Y) P 2(X × Y)

P (X × PY) P 2(X × Y) P (X × Y)

tP X,Y

τX,P Y

PτX,Y

µX×Y

PtX,Y
µX×Y

ψX,Y

X × PY X

P (X × Y) PX

t

π1

η
Pπ1

PX × Y Y

P (X × Y) PY

τ

π2

η
Pπ2

Figure 2 Commutativity axiom for the strong monad (P, η, µ), t (diagram on the left), and lazy
pairs axiom in terms of t and equivalently in terms of τ (two diagrams on the right).

is called strict.
A monad (P, η, µ) over C consists of an endofunctor P : C → C, and natural transforma-

tions ηX : X → PX and µX : P 2X → PX, called the unit and multiplication of the monad
respectively, that satisfy: PµX ;µX = µPX ;µX , ηPX ;µX = idPX , and PηX ;µX = idPX .

A monad (P, η, µ) is strong with tensorial strength tX,Y : X × PY → P (X × Y) if t is a
natural transformation satisfying the axioms of Figure 1. The arrow αX,Y,Z : (X×Y)×Z →
X × (Y × Z) is the natural isomorphism defined as α := 〈π1;π1, 〈π1;π2, π2〉〉. We define the
dual tensorial strength τX,Y : PX × Y → P (X × Y) as τX,Y = sPX,Y ; tY,X ;P sY,X , where
sX,Y : X × Y → Y ×X is the natural isomorphism given by sX,Y = 〈π2, π1〉. The properties
satisfied by t imply that τ is also a natural transformation and it satisfies the obvious
dual axioms. For all objects X,Y define the morphism ψX,Y : PX × PY → P (X × Y) as
ψX,Y = tPX,Y ;PτX,Y ;µX×Y . Using the fact that t and τ are natural transformations, it can
be shown that ψ is also a natural transformation.

A strong monad (P, η, µ), t is commutative if the diagram on the left side of Fig. 2
commutes. Intuitively, the commutativity condition says that when computing a pair it does
not matter in which order the components are computed. We are interested in strong monads
that model lazy pairs. In the case of eager pairs, the computation of a pair 〈v,⊥〉, where v is
a value and ⊥ denotes a diverging computation, would also be diverging, i.e., 〈v,⊥〉 = ⊥.
Therefore, it is not possible to recover the left component v of the pair: 〈v,⊥〉;π1 = ⊥. So,
for lazy pairs we need an additional axiom, which can be given equivalently in terms of t or
τ . The “lazy pairs” axiom says that the two diagrams on the right side of Fig. 2 commute.

I Definition 1. We say that (P, η, µ), t is a commutative strong monad with lazy pairs over C
if (P, η, µ) is a monad with tensorial strength t so that the commutativity axiom of Figure 2
and the lazy pairs axiom of Figure 2 hold.

A commutative monad with lazy pairs can be equivalently given in terms of ψ. In
Figure 3 we give properties that ψ satisfies, when it is defined in terms of t (see [13]).
Conversely, we consider a monad (P, η, µ) over C together with a natural transformation
ψ : PX × PY → P (X × Y) satisfying the axioms of Figure 3. Then, we can define t as
tX,Y = (ηX × idPY);ψX,Y and recover all the axioms we had given for (P, η, µ), t (see [15]).
It has been proved by Anders Kock in [14] (Theorem 2.1) that for a commutative strong
monad the axiom ψ; 〈Pπ1, Pπ2〉 = id is equivalent to P1 ∼= 1, which says that P preserves
final objects. We have opted for the former axiom in our definition, because it corresponds
immediately to the intuition for the formation of lazy pairs.

The Kleisli category CP has the same objects as C. For all objects X,Y the homset
CP (X,Y) is equal to the homset C(X,PY). We use the notation f : X ⇀ Y for an arrow in

D. Kozen and K. Mamouras 419

PX × PY P (X × Y)

PX × PY

ψ

id
〈Pπ1, Pπ2〉

(PX × PY)× PZ P (X × Y)× PZ P ((X × Y)× Z)

PX × (PY × PZ) PX × P (Y × Z) P (X × (Y × Z))
α

ψ × id ψ

Pαid× ψ ψ

X × Y PX × PY

P (X × Y)

η × η

η
ψ

P 2X × P 2Y

PX × PY

P (PX × PY) P 2(X × Y)

P (X × Y)
µ× µ

ψ Pψ

µψX,Y

PX × PY PY × PX

P (Y ×X)P (X × Y)

s

ψ ψ
P s

Figure 3 Commutative strong monad with lazy pairs (given in terms of ψ).

CP (X,Y). The composition operation in CP is the Kleisli composition operation, denoted ; ,
and defined as f ; g := f ;Pg;µZ : X ⇀ Z. For object X, the identity in CP is ηX : X ⇀ X.
The equations ηX ; f = f = f ; ηY and (f ; g);h = f ; (g;h) state that CP is a category and
they can be shown from the definitions and the monad axioms.

We define the map H = (−; η) from the category C to the Kleisli category CP by HX := X

and Hf := f ; ηY : X ⇀ Y . We verify that H is a functor. First, note that it sends the
identity idX : X → X of C to the identity HidX = ηX : X ⇀ X of CP . Moreover, the
equation H(f ; g) = Hf ;Hg : X ⇀ Z holds, which says that H commutes with composition.
So, H is a functor from C to CP , which we will call here the unit functor of the monad. The
functor H is the left adjoint of the Kleisli adjunction for the monad.

We say that an arrow f : X ⇀ Y of CP is a deterministic arrow if there exists an arrow
f ′ : X → Y of C such that f = f ′; ηY = Hf ′ : X → PY . So, the deterministic arrows of
the Kleisli category are exactly the image of the arrows of C under the unit functor H. We
indicate that f is a deterministic arrow of CP by writing f : X _ Y . The Kleisli composite of
two deterministic arrows is also deterministic. In our notation, if f : X _ Y and g : Y _ Z

then f ; g : X _ Z. The identity ηX : X _ X is a deterministic arrow because ηX = HidX .
For the rest of this section, we assume that (P, η, µ), t is a commutative strong monad

over C with lazy pairs. We will define “Kleisli versions” of projections, the pairing operation,
and the product functor. We will prove useful properties that they satisfy. The notion of
deterministic arrow turns out to be relevant.

We define the Kleisli pairing operation 〈〈·, ·〉〉 in CP and the Kleisli projections (left and
right) as follows: 〈〈f, g〉〉 := 〈f, g〉;ψ : X ⇀ Y × Z for f : X ⇀ Y , g : X ⇀ Z, and
$1 := Hπ1 : X×Y _ X, $2 := Hπ2 : X×Y _ Y . The Kleisli projections are deterministic
arrows. If f : X _ Y and g : X _ Z are deterministic arrows, then so is 〈〈f, g〉〉. This is an
immediate consequence of the equation H〈f, g〉 = 〈〈Hf,Hg〉〉 : X ⇀ Y ×Z, which states that
H commutes with the pairing operation.

I Theorem 2. The following typed equations for Kleisli projections/pairing hold:
〈〈f, g〉〉;$1 = f : X ⇀ Y 〈〈h;$1, h;$2〉〉 = h : X _ Y × Z
〈〈f, g〉〉;$2 = g : X ⇀ Z f ; 〈〈g1, g2〉〉 = 〈〈f ; g1, f ; g2〉〉 : X ⇀ Z1 × Z2

For the bottom-right equation, there is the extra hypothesis that f : X _ Y is deterministic.

We define the operation ⊗ on CP , which we call Kleisli product functor, by f1 ⊗ f2 :=
(f1 × f2);ψ : X1 × X2 ⇀ Y1 × Y2. Equivalently, we can define the Kleisli product as
f1 ⊗ f2 = 〈〈$1; f1, $2; f2〉〉. We observe that H commutes with the product functor, that is,
H(f × g) = Hf ⊗Hg. An easy consequence of the above results is that the Kleisli category
CP has symmetric monoidal structure given by ⊗ (tensor or monoidal product), 1 (identity
object), Hα : (X ⊗ Y) ⊗ Z _ X ⊗ (Y ⊗ Z) (associator), $2 : 1 ⊗ X _ X (left unitor),
$1 : X ⊗ 1 _ X (right unitor), and HsX,Y : X ⊗ Y _ Y ⊗X (commutativity constraint).

CSL’13

420 Kleene Algebra with Products and Iteration Theories

(PX × PX)× PX

PX × (PX × PX)

PX × PX

PX × PX

PX

u× id

α

id× u u

u

1× PX PX × PX PX × 1

PX

⊥⊥× id

π2

id×⊥⊥

π1
u

PX × PX PX × PX

PX

s

u
u

PX PX × PX

PX

〈id, id〉

id
u

P 2X × P 2X

PX × PX

P 2X

PX

uP X

µ× µ u
µ

P (PX × PX)

P 2X × P 2X

P 2X

P 2X

PX

Pu

〈Pπ1, Pπ2〉

uP X µX

µX

(X ×X)×X

X × (X ×X)

PX × PX

P 2X

PX × PX

P 2X

PX

d× η

α

η × d

dP X µ

dP X

µ

1× PX PX × PX PX × 1

P 2X

PX

⊥⊥× id

π2

id×⊥⊥

π1

dP X

µ

X ×X X ×X

PX

s

d
d

X X ×X

PX

〈id, id〉

η d

P (X ×X) PX × PX P 2X

P 2X PX

Pd

〈Pπ1, Pπ2〉 dP X

µ
µ

Figure 4 Axioms for uX : PX × PX → PX (left side) and for dX : X ×X → PX (right side).

3 Nondeterministic Monads

In this section we look at three equivalent ways of endowing with (angelic) nondeterministic
structure the homsets of the Kleisli category of a monad. See also [11], where the similar
notion of additive monad is considered. The proofs of equivalence we present make essential
use of the cartesian structure of the base category. The axiomatizations are simple and
intuitive in that they correspond to familiar properties of the elementary operations of
“binary union” and “formation of unordered pair”, thus allowing us to easily identify models.

I Definition 3. Let (P, η, µ) be a monad over the category C, let ⊥⊥XY : X → PY be a family
of morphisms, and + be a binary operation on C(X,PY) which we call (nondeterministic)
choice. We say that (P, η, µ),+,⊥⊥ is a nondeterministic monad if the axioms

(f + g) + h = f + (g + h) f +⊥⊥ = f f ; (g1 + g2) = f ; g1 + f ; g2 f ;⊥⊥ = ⊥⊥
f + g = g + f f + f = f (f1 + f2); g = f1; g + f2; g

are satisfied. The above axioms state that every homset C(X,PY) is a commutative
idempotent monoid w.r.t. + and ⊥⊥. Additionally, + distributes over Kleisli composition,
and ⊥⊥ is a right annihilator for ; .

Assuming the category C is cartesian, we will give an equivalent definition of the nonde-
terministic monad in terms of a natural transformation uX : PX×PX → PX, which we can
intuitively think of as binary union. Then, we will also derive another equivalent definition of
the nondeterministic monad in terms of a natural transformation dX : X ×X → PX, which
we think of as an operation that forms an unordered pair of two elements.

I Theorem 4. Let C be a category with cartesian structure given by ×, π1, π2, 〈·, ·〉,1,⊥.
Suppose (P, η, µ),+,⊥⊥ is a nondeterministic monad. Define uX := π1 + π2 : PX ×

PX → PX. Then, uX is natural and the diagrams on the left side of Figure 4 commute.
Conversely, suppose that (P, η, µ) is a monad, uX : PX × PX → PX is natural, and

⊥⊥1X : 1→ PX is a family of morphisms, so that the axioms on the left side of Figure 4 are
satisfied. Define the operation + on the homset C(X,PY) by f + g := 〈f, g〉; uY : X → PY ,
and ⊥⊥XY := ⊥X ;⊥⊥1Y : X → PY . Then, (P, η, µ),+,⊥⊥ is a nondeterministic monad.

It is easy to see that the two constructions described in Theorem 4 are mutually inverse.
From the choice operation + we obtain uX = π1 + π2 : PX × PX → PX and then a new

D. Kozen and K. Mamouras 421

choice operation ∨ given by f ∨ g = 〈f, g〉; uX . But we have that f ∨ g = 〈f, g〉; (π1 + π2) =(
〈f, g〉; η

)
; (π1 + π2) = 〈f, g〉;π1 + 〈f, g〉;π2 = f + g. For the other direction, we notice that

from uX : PX × PX → PX we obtain a choice operation + and then a new binary union
natural transformation ûX = π1 + π2 = 〈π1, π2〉; uX = id; uX = uX .

I Theorem 5. Let C be a category with cartesian structure given by ×, π1, π2, 〈·, ·〉,1,⊥. Let
(P, η, µ) be a monad over C, and ⊥⊥1X : 1→ PX be a family of morphisms.

Suppose that uX : PX × PX → PX is natural and the diagrams on the left side of
Figure 4 commute. Define dX := (ηX × ηX); uX : X ×X → PX. Then, dX is natural
and satisfies the axioms on the right side of Figure 4.
Conversely, suppose that dX : X ×X → PX is natural and the diagrams on the right
side of Figure 4 commute. Define uX := dPX ;µX : PX ×PX → PX. Then, u is natural
and satisfies the axioms on the left side of Figure 4.

Again, the constructions described in Theorem 5 are mutually inverse. In one direction,
we have uX 7→ dX = (ηX × ηX); uX 7→ ûX = dPX ;µX , where ûX = (ηPX × ηPX); uPX ;µX =
(ηPX × ηPX); (µX × µX); uX = uX using one of the axioms for u. In the other direction, we
have dX 7→ uX = dPX ;µX 7→ d̂X = (ηX ×ηX); uX and therefore d̂X = (ηX ×ηX); dPX ;µX =
dX ;PηX ;µX = dX , since d is a natural transformation.

4 Nondeterministic Strong Monad with Iteration

In §3 we investigated the nondeterministic structure of the Kleisli category of a monad in
isolation from products. This is not sufficient for our purposes, because we also want to
capture the interaction between nondeterminism and products. For example, we would expect
to be able to derive the property 〈a+ b, c〉 = 〈a, c〉+ 〈b, c〉 for pairs with a nondeterminate
component. So, we consider an additional axiom that relates the tensorial strength with the
nondeterministic structure (Theorem 6). Then, we proceed to give our main definition of a
nondeterministic strong monad with iteration, which puts together the axioms for all the
symbols of our algebraic signature, including those for iteration (taken from [18]). The rest
of the section is devoted to identifying models. We first consider the lowerset monad over
pointed posets, which generalizes the familiar relational semantics of programs to the setting
of lazy evaluation with lazy pairs. Then, we investigate the ideal completion monad over
ω-CPOs, which is a kind of lower powerdomain construction. We derive several properties
for this monad that will be essential for the main technical result of this paper: embedding
the theory of † in KA with products.

I Theorem 6. Let C be a category with cartesian structure given by ×, π1, π2, 〈·, ·〉,1,⊥. Let
(P, η, µ), t be a commutative strong monad over C with tensorial strength tX,Y : X × PY →
P (X × Y). Assume additionally that (P, η, µ) is a nondeterministic monad together with +
and ⊥⊥, and also that the axiom 〈id, f + g〉; t = 〈id, f〉; t+ 〈id, g〉; t holds. Then, the equations
〈〈f1 + f2, g〉〉 = 〈〈f1, g〉〉+ 〈〈f2, g〉〉 and 〈〈f, g1 + g2〉〉 = 〈〈f, g1〉〉+ 〈〈f, g2〉〉 hold.

The stipulated axiom 〈id, f + g〉; t = 〈id, f〉; t + 〈id, g〉; t in Theorem 6 relates the non-
deterministic structure, as given by the choice operation +, with the tensorial strength
t : X × PY → P (X × Y). An equivalent characterization can be given in terms of
the natural transformation uX : PX × PX → PX as shown in Figure 5, where κ =
〈id × π1, id × π2〉 : X × (Y × Z) → (X × Y) × (X × Z). In the set-theoretic models that
we will consider, the equation corresponding to the right diagram of Figure 5 simply states
that A × (B ∪ C) = (A × B) ∪ (A × C) for sets A,B,C. Similarly, we can also give an

CSL’13

422 Kleene Algebra with Products and Iteration Theories

X × (PY × PY)

(X × PY)× (X × PY)

P (X × Y)× P (X × Y)

X × PY

P (X × Y)

id× u

κ

t× t u

t

PX × (PY × PY)

(PX × PY)× (PX × PY)

P (X × Y)× P (X × Y)

PX × PY

P (X × Y)

id× u

κ

ψ × ψ u

ψ

Figure 5 Axiom relating the binary union natural transformation uX : PX × PX → PX with
the tensorial strength t : X × PY → P (X × Y) or, equivalently, with ψ : PX × PY → P (X × Y).

Table 1 Kleisli category of a nondeterministic strong monad with iteration.

ηX ; f = f 〈〈f1, f2〉〉;$i = fi f = ⊥⊥X1

f ; ηY = f 〈〈h;$1, h;$2〉〉 = h (h det.) f ;⊥⊥Y Z = ⊥⊥XZ

(f ; g);h = f ; (g;h) f det.: f ; 〈〈g1, g2〉〉 = 〈〈f ; g1, f ; g2〉〉
(f1 ⊗ f2); (g1 ⊗ g2) = (f1; g1)⊗ (f2; g2)

(f + g) + h = f + (g + h) f ; (g1 + g2) = f ; g1 + f ; g2 ηX + f ; f∗ ≤ f∗

f + g = g + f (f1 + f2); g = f1; g + f2; g ηX + f∗; f ≤ f∗

f +⊥⊥ = f 〈〈h;$1, h;$2〉〉 ≥ h f ; g ≤ g ⇒ f∗; g ≤ g
f + f = f 〈〈f1 + f2, g〉〉 = 〈〈f1, g〉〉+ 〈〈f2, g〉〉 g; f ≤ g ⇒ g; f∗ ≤ g

〈〈f, g1 + g2〉〉 = 〈〈f, g1〉〉+ 〈〈f, g2〉〉

equivalent characterization in terms of dX : X × X → PX according to the equation
(idX × dY); tX,Y = κ; dX×Y : X × (Y × Y)→ P (X × Y).

I Definition 7. Let C be a category with cartesian structure and bottom elements. We say
that (P, η, µ), ψ, u,∗ is a nondeterministic strong monad with iteration if:
(i) (P, η, µ), ψ is a commutative strong monad with lazy pairs.
(ii) (P, η, µ), u,⊥⊥ is a nondeterministic monad, where ⊥⊥XY = ⊥XY ; ηY : X → PY .
(iii) For all f, g : X → PY , the equation 〈id, f + g〉; t = 〈id, f〉; t+ 〈id, g〉; t holds, where t is

the tensorial strength induced by ψ and + is the choice operation induced by u.
(iv) The axiom idP (X×Y) ≤ 〈Pπ1, Pπ2〉;ψ holds, where ≤ is the order induced by +.
(v) The iteration operation ∗ sends f : X → PX to f∗ : X → PX. The axioms

f : X ⇀ X

ηX + f ; f∗ ≤ f∗
f : X ⇀ X

ηX + f∗; f ≤ f∗
f : X ⇀ X g : X ⇀ Y

f ; g ≤ g ⇒ f∗; g ≤ g
g : X ⇀ Y f : Y ⇀ Y

g; f ≤ g ⇒ g; f∗ ≤ g
are satisfied. These are the axioms for the Kleene star operation introduced in [18, 19].

I Theorem 8. Let C be a category with cartesian structure and bottom elements. Let
(P, η, µ), ψ, u,∗ be a nondeterministic strong monad with iteration. The Kleisli category CP
with composition ; and identities η, together with the operations $1, $2, 〈〈·, ·〉〉,⊥⊥,+,∗ (Kleisli
projections, pairing, bottoms, choice, and iteration) satisfies the axioms of Table 1.

A reasonable question to consider is whether there is any interaction between the iteration
operation ∗ and the tensorial strength. Even though it is not necessary for our purposes here,
we note that two extra very natural axioms for the interaction between (non)determinism
and Kleisli products together with the ∗ axioms are sufficient to capture the interaction
between ∗ and ψ considered in [11]. We elaborate on this in the appendix.

4.1 The Lowerset Monad
In the usual relational interpretation of programs, a (strict) nondeterministic program
f : X ⇀ Y is interpreted as a morphism in the category Rel of sets and binary relations.
The category Rel is isomorphic to the Kleisli category Set℘ of the powerset monad ℘ over
the category Set of sets and total functions. In order to model lazy evaluation, the category
Set℘ (together with the operations of Kleisli composition and cartesian product) is not
appropriate, since we need an explicit notion of divergence, non-strictness, and lazy pairs.

D. Kozen and K. Mamouras 423

Instead, we consider the category Pposet of pointed posets (partial orders with a bottom
element) and monotone functions, in which we can interpret non-strict deterministic programs
that form lazy pairs. The bottom element ⊥X of a pointed poset X denotes divergence. The
arrows in Pposet can be partial, in the sense that they can send a non-bottom element
to bottom. For an object (X,≤) of Pposet, we understand the partial order ≤ as follows:
x ≤ y intuitively means that x “has more diverging components” than y.

Pposet is a cartesian category with bottom elements. The product X × Y of two
objects X,Y is the cartesian product together with the pointwise partial order. So, the
bottom element of X × Y is ⊥X×Y = 〈⊥X ,⊥Y 〉. The projections π1 and π2 are given by
πi(x1, x2) = xi. The pairing operation 〈·, ·〉 is defined as 〈f, g〉 = λx ∈ X.〈f(x), g(x)〉 for
f : X → Y and g : X → Z. The terminal object is some singleton poset 1 = {⊥1}. The
bottom global element ⊥1X : 1→ X is the map that sends ⊥1 to the bottom ⊥X of X. So,
⊥XY = ⊥X ;⊥1Y is the function that always diverges. We define the pointwise partial order
≤ on every homset Pposet(X,Y). Then, ⊥XY is the bottom element of Pposet(X,Y).

I Definition 9 (lowerset monad). Let (X,≤) be a pointed poset, the bottom element of
which is denoted ⊥X . For a subset S ⊆ X define ↓S = {y ∈ X | y ≤ x for some x ∈ S}
to be the lowerset of X generated by S. For x ∈ X, we write ↓x to mean ↓{x}. Define
℘↓X to be the set of all non-empty lowersets of X. We observe that ℘↓X is a complete
lattice w.r.t. set inclusion. The top element is X and the bottom is {⊥X}. The join is
set-theoretic union and the meet is set-theoretic intersection. It follows that the homset
Pposet(X,℘↓Y) (w.r.t. the pointwise order induced by ℘↓Y,⊆) is also a complete lattice.
We extend ℘↓ to an endofunctor Pposet→ Pposet by putting (℘↓f)(S) := ↓{f(x) | x ∈ S}
for every S ∈ ℘↓X. Together with the families of maps ηX : x ∈ X 7→ ↓x ∈ ℘↓X and
µX : S ∈ ℘2

↓X 7→
⋃
S ∈ ℘↓X it forms a monad over Pposet. We call (℘↓, η, µ) the lowerset

monad over Pposet. Kleisli composition is given by (f ; g)(x) =
⋃
y∈f(x) g(y).

I Theorem 10. Define ψX,Y : ℘↓X × ℘↓Y → ℘↓(X × Y) by (S1, S2) 7→ S1 × S2 and
uX : ℘↓X × ℘↓X → ℘↓X by (S1, S2) 7→ S1 ∪ S2. For f : X → ℘↓X, define f i : X → ℘↓X

by induction: f0 = ηX and f i+1 = f i; f . Put f∗ :=
∨
i<ω f

i = λx ∈ X.
⋃
i<ω f

i(x), where∨
is the join of the complete lattice Pposet(X,℘↓X). The lowerset monad (℘↓, η, µ) over

Pposet, together with ψ, u,∗, is a nondeterministic strong monad with iteration.

4.2 The Ideal Completion Monad
An ω-complete partial order (ω-CPO) is a partially ordered set (X,≤) that has a least element
⊥X and is ω-complete in the sense that every ω-chain (countable chain) x0 ≤ x1 ≤ · · ·
has a supremum supi xi. A function f : X → Y between ω-CPOs is called ω-continuous
if it preserves suprema of ω-chains. That is, for every ω-chain x0 ≤ x1 ≤ · · · in X,
f(supi xi) = supi f(xi). An ω-continuous function is monotone. An ω-continuous function is
strict if f(⊥) = ⊥. If X,Y are ω-CPOs, then so is their cartesian product X × Y under the
componentwise order: (x1, x2) ≤ (y1, y2) iff x1 ≤ y1 ∧ x2 ≤ y2. The least element is ⊥X×Y =
(⊥X ,⊥Y). For an ω-chain (x0, y0) ≤ (x1, y1) ≤ · · · in X × Y , supi(xi, yi) = (supi xi, supi yi).
We denote by [X → Y] the ω-CPO of all ω-continuous functions from X to Y ordered
pointwise: f ≤ g iff ∀x ∈ P. f(x) ≤ g(x). The bottom element is ⊥XY = λx ∈ X.⊥Y . The
supremum of a chain f0 ≤ f1 ≤ · · · in [X → Y] is supi fi = λx ∈ X. supi fi(x) and it is
ω-continuous. The operations ; and 〈·, ·〉 are monotone in all arguments. The ω-continuous
functions on ω-CPOs are closed under well-typed composition and pairing and contain
all identities and projections. Thus, ω-CPOs and ω-continuous functions form a cartesian
category with bottom elements denoted CPO.

CSL’13

424 Kleene Algebra with Products and Iteration Theories

Table 2 Typing rules for KA with products.

f : X _ Y

f : X ⇀ Y

f : X ⇀ Y g : Y ⇀ Z

f ; g : X ⇀ Z

f : X ⇀ Y g : X ⇀ Z

〈f, g〉 : X ⇀ Y × Z
f, g : X ⇀ Y

f + g : X ⇀ Y

f : X _ Y g : Y _ Z

f ; g : X _ Z

f : X _ Y g : X _ Z

〈f, g〉 : X _ Y × Z
f : X ⇀ X

f∗ : X ⇀ X

Let (X,≤) be an ω-CPO. A subset I ⊆ X is called an ideal of X if it is a non-empty
lower set and is closed under suprema of ω-chains. The set of all ideals of X is denoted IX.
We denote by clX(S) the smallest ideal containing S ⊆ X. This is an operation of type
clX : ℘X → IX. We also write cl(S) instead of clX(S) when no confusion arises. We say
that cl(S) is the ideal generated by S. The set ↓x is an ideal and we call it the principal ideal
generated by x. If x1 ≤ x2 ≤ . . . is an ω-chain in X, then cl[{x1, x2, . . .}] = ↓ supi xi. The
set IX of all ideals of an ω-CPO X is a complete lattice w.r.t. set-theoretic inclusion. The
meet

∧
is set-theoretic intersection and the join

∨
is the ideal generated by the set-theoretic

union. The bottom element is {⊥X} and the top element is X. If I, J are ideals of X, then
so is I ∪ J . In particular, cl(S1 ∪ S2) = cl(S1)∪ cl(S2). Let X,Y be ω-CPOs. If I is an ideal
of X and J is an ideal of Y , then I × J is an ideal of the ω-CPO X × Y . If K is an ideal of
X × Y , then the left and right projections of K are ideals of X and Y respectively.

I Definition 11 (the ideal completion monad). We extend I to an endofunctor CPO→ CPO
by putting (If)(S) := clY [f(S)] = clY {f(x) | x ∈ S}, for every S ∈ IX, where f : X → Y .
We define the family of functions ηX : X → IX by ηX(x) := ↓x, and µX : I2X → IX by
µX(S) :=

∨
S. Now, we claim that (I, η, µ) is a monad, called the ideal completion monad

of CPO. Kleisli composition can be given as (f ; g)(x) =
∨
y∈f(x) g(y).

I Theorem 12. Define ψX,Y : IX×IY → I(X×Y) as (I, J) 7→ I×J and uX : IX×IX →
IX as (I, J) 7→ I ∪ J . Also define the iteration operation by f∗ :=

∨
i<ω f

i = λx ∈
X.

∨
i<ω f

i(x). The ideal completion monad (I, η, µ) over the category CPO, together with
ψ, u,∗, is a nondeterministic strong monad with iteration.

5 Typed Kleene Algebra with Products

Let Ω be a set of atomic types. Let 1 /∈ Ω be a special constant called the unit type. The set
of types over Ω, denoted Types(Ω), is the set of terms freely generated by Ω and 1 under
the binary product type constructor ×. The terms of the language are typed. The types of
terms are expressions of the form X ⇀ Y , where X,Y ∈ Types(Ω). We indicate the type
of a term by writing f : X ⇀ Y . Some of the terms will be designated as deterministic by
writing f : X _ Y . We think of X _ Y as a subtype of X ⇀ Y and hence we include the
typing rule given in the first column of Table 2.

Let H be a set of atomic arrows, each endowed with a fixed type h : X ⇀ Y . We write
h : X _ Y for a deterministic atomic arrow of H. Let id, π1, π2, ⊥ be special deterministic
polymorphic constants called identities, left projections, right projections, and bottoms,
respectively. Where necessary, we use subscripts or superscripts to denote the specialization
at a particular type; e.g., idX : X _ X, πXY1 : X × Y _ X, or ⊥XY : X _ Y . Let ; and
〈·, ·〉 be polymorphic constructors called composition and pairing, respectively, satisfying the
typing rules shown in Table 2. Note that compositions f ; g are written in diagrammatic order.
Composition and pairing preserve determinism. We add to the language the polymorphic
constructors + and ∗, called (nondeterministic) choice and iteration respectively, with the
typing rules given in Table 2. Choice and iteration introduce nondeterminism.

D. Kozen and K. Mamouras 425

Table 3 Axioms of Park and KA.

Park KA
f ≤ g ∧ g ≤ h⇒ f ≤ h f + (g + h) = (f + g) + h
f ≤ g ∧ g ≤ f ⇒ f = g f + g = g + f
⊥ ≤ f and f ≤ f f +⊥ = f = f + f
f ; (g;h) = (f ; g);h f ; (g;h) = (f ; g);h
id; f = f = f ; id f ; id = f = f ; id
g1 ≤ g2 ⇒ f ; g1 ≤ f ; g2 f ; (g1 + g2) = f ; g1 + f ; g2
f1 ≤ f2 ⇒ f1; g ≤ f2; g (f1 + f2); g = f1; g + f2; g

f ;⊥ = ⊥
〈f†, idY 〉; f ≤ f† id + f ; f∗ ≤ f∗ f ; g ≤ g → f∗; g ≤ g
〈g, idY 〉; f ≤ g ⇒ f† ≤ g id + f∗; f ≤ f∗ g; f ≤ g → g; f∗ ≤ g
g; f† ≤ [(idX × g); f]†
f = ⊥X : X → 1 〈h;π1, h;π2〉 = h f = ⊥X : X → 1 〈h;π1, h;π2〉 = h (det. h)
〈f1, f2〉;πi = fi 〈f1, f2〉;πi = fi

(f1 × f2); (g1 × g2) = (f1; g1)× (f2; g2)
h ≤ 〈h;π1, h;π2〉
f ; 〈g1, g2〉 = 〈f ; g1, f ; g2〉 (det. f)

f1 ≤ f2 ⇒ 〈f1, g〉 ≤ 〈f2, g〉 〈f1 + f2, g〉 = 〈f1, g〉+ 〈f2, g〉
g1 ≤ g2 ⇒ 〈f, g1〉 ≤ 〈f, g2〉 〈f, g1 + g2〉 = 〈f, g1〉+ 〈f, g2〉

I Definition 13. A typed Kleene algebra with products is a multi-sorted algebraic structure
K =

(
K0,×,1,K1,Kd1, dom, cod,+, ; ,∗ ,⊥, id, 〈·, ·〉, π1, π2

)
, where K0 is the set of objects, K1

is the set of arrows or elements, and Kd1 ⊆ K1 is the set of deterministic arrows.
The operations dom and cod (called domain and codomain) map arrows to objects.
The type of an element f of K is the expression X ⇀ Y , where X = domf and Y = codf .
We write f : X ⇀ Y to denote this. If f ∈ Kd1, we write f : X _ Y .
The distinguished product operation × is a function × : K0 × K0 → K0. The object
1 ∈ K0 is the distinguished terminal object of the structure.
The polymorphic operations and constants +, ;, ∗, ⊥, id, 〈·, ·〉, π1, and π2 satisfy the
expected typing rules.
Additionally, the structure is a model of the well-typed instances of the axioms given in
the second column of Table 3. The partial order ≤ is induced by +: f ≤ g iff f + g = g.
The product × is defined by: f × g = 〈π1; f, π2; g〉.

We have included all the axioms of KA [18, 19] except for the strictness axiom ⊥; f = ⊥.

We will denote by KA the quasi-equational system of typed Kleene algebra with products.
Notice that (up to a slight change in notation to make it less cumbersome), the axioms
satisfied by a typed Kleene algebra with products are exactly those given in Table 1. So, any
small subcategory of the Kleisli category of a nondeterministic strong monad with iteration
that is closed under the appropriate operations is a typed Kleene algebra with products.

6 Iteration Theories

The language of iteration theories consists of atomic typed actions h : n→ m, where n,m
are natural numbers, and polymorphic operation symbols ; (composition), id (identity),
ι (injection), [−,−, · · · ,−] (cotupling), ⊥ (bottom), † (dagger). The typing rules for the
language are the following: idn : n→ n, ιni : 1→ n, ⊥nm : n→ m, and

f : n→ m g : m→ p

f ; g : n→ p

fi : 1→ m i = 1, . . . , n
[f1, f2, . . . , fn] : n→ m

f : n→ n+ p

f† : n→ p
The typed terms f : n → m of the language are built from the atomic actions and the
operation symbols according to the typing rules.

CSL’13

426 Kleene Algebra with Products and Iteration Theories

Consider now the category CPO of ω-CPOs and ω-continuous maps, which will provide
the standard interpretation for the language of iteration theories. An interpretation J·K
in CPO consists of an ω-CPO A and a mapping of every atomic symbol h : n → m to
a morphism JhK : Am → An in CPO, where Ak denotes the k-fold associative cartesian
product of A. The identity symbol idn : n → n is interpreted as the identity function
JidnK : An → An. The injection symbol ιni : 1 → n is interpreted as the i-th projection
Jιni K : An → A. The bottom symbol ⊥nm : n → m is interpreted as the least function
J⊥nmK : Am → An of CPO(Am, An). Now, ; and [−,−, · · · ,−] are interpreted as function
composition and tupling respectively. For functions fi : 1 → m, i = 1, . . . , n, the function
denoted by [f1, . . . , fn] : n → m is given by J[f1, . . . , fn]K(x̄) := 〈Jf1K(x̄), . . . , JfnK(x̄)〉, for
every x̄ ∈ Am. Every ω-continuous function φ : X → X in CPO has a least fixpoint, which
is the supremum of the ω-chain ⊥ ≤ φ(⊥) ≤ φ2(⊥) ≤ · · · ≤ φn(⊥) ≤ · · · , where φ0 = id and
φn+1 = φn;φ. We denote the least fixpoint of φ by µ(φ) = supi φi(⊥). For an ω-continuous
function φ : X×Y → X, we define the function φ† : Y → X by φ†(y) := µ(φy) = supi φiy(⊥),
where φy = λx ∈ X.φ(x, y) : X → X. The function φ† : Y → X is also ω-continuous. We
call † the parametric fixpoint operation. The operation † is monotone. We interpret the
dagger symbol † of the language as parametric fixpoint †: for f : n → n + p we define
Jf†K =

(
JfK : An ×Ap → An

)† : Ap → An.
Every homset CPO(X,Y) is equipped with the pointwise partial order ≤. For terms

s, t we write CPO |= s ≤ t to mean that JsK ≤ JtK for every interpretation J·K of the
language in CPO. Define Th(CPO) to be the set of all valid inequalities over CPO, that
is, Th(CPO) := {s ≤ t | CPO |= s ≤ t}, where s, t are terms of the language of iteration
theories. Th(CPO) is the “(in)equational theory of iteration”, in the words of Ésik [9].

I Definition 14. Define Park to be the universal Horn system (including equality) with:
axioms for categories, axioms asserting that ι, [−,−, · · · ,−], and ⊥ give associative categorical
coproducts, axioms stating that ≤ is a partial order, that ; and [−,−, · · · ,−] are motonone
in all arguments w.r.t. ≤, and that ⊥nm : n → m is the least element of Hom(n,m), and
axioms for the dagger operation:

f : n→ n+ p

f ; [f†, idp] ≤ f† : n→ p

f : n→ n+ p g : n→ p

f ; [g, idp] ≤ g ⇒ f† ≤ g
f : n→ n+ p g : p→ q

f†; g ≤ [f ; (idn ⊕ g)]† : n→ q
where the copairing operation [−,−] is induced by the cotupling operation [−,−, . . . ,−] in
the obvious way. The three dagger axioms are called pre-fixpoint inequality, least pre-fixpoint
implication or Park induction rule, and parameter inequality respectively.

I Theorem 15 (Ésik [9]). Park axiomatizes Th(CPO), that is, CPO |= t1 ≤ t2 iff Park `
t1 ≤ t2, for all terms t1, t2 in the language of iteration theories.

The choice of a language with coproducts and copairing/injection symbols is confusing,
because the standard models we are interested in here are models of functions where the
symbols are interpreted as products and pairing/projections respectively. Moreover, there is
no reason to collapse isomorphic products, such as X× (Y ×Z) ∼= (X×Y)×Z or 1×X ∼= X.
In fact, this only complicates the technical presentation of proofs.

So, we consider for the rest of the paper (as is also done in [6, 26]) that the language
of iteration theories is instead as follows: For a set Ω of atomic types, let Types(Ω) be
the set freely generated by Ω, 1 /∈ Ω, and the product constructor ×. The terms of the
language are typed, e.g., f : X → Y , where X,Y ∈ Types(Ω). Each atomic arrow has a fixed
type h : X → Y . We have polymorphic constants πXY1 , πXY2 , idX , ⊥XY and polymorphic
constructors ;, 〈·, ·〉, †. The typing rules are as usual with the exception of the rule for †: for
f : X × Y → X we have f† : Y → X. Now, a standard interpretation J·K in CPO assigns

D. Kozen and K. Mamouras 427

an ω-CPO to each base type and an ω-continuous function to each atomic action. This
extends in the obvious way to all terms of the language. In particular, the dagger symbol is
interpreted as parametric fixpoint, e.g., Jf†K = JfK† : JY K→ JXK for f : X × Y → X. See
the first column of Table 3 for the axioms of Park in the language with products.

7 Embedding the Equational Theory of Iteration in KA

We augment the system of KA that we presented in Section 5 with an additional typing rule
about the preservation of determinism:

g : X _ Y f : Y _ Y g ≤ g; f : X ⇀ Y

g; f∗ : X _ Y
. (7)

We note that this rule is not valid in all Kleene algebras, but it is valid in the Kleisli category
CPOI of the ideal completion monad over CPO. For a term f : X × Y ⇀ X of KA,
we define the abbreviation f‡ := 〈⊥Y X , idY 〉; 〈f, π2〉∗;π1 : Y ⇀ X. We call ‡ the derived
dagger operation in KA. Using the rule (7) we can derive in KA the dagger typing rule: if
f : X × Y _ X then f‡ : Y _ X. The dagger typing rule states that the derived dagger
operation preserves determinism.

I Definition 16 (translation). We define a translation [·] from the language of iteration
theories to the language of KA with products. All atomic action symbols and atomic
constants are translated as deterministic symbols of the same type. E.g., for h : X → Y we
have [h] = h : X _ Y , and [π1] = π1 : X × Y _ X. The dagger is translated as

[f†] := f‡ = 〈⊥, id〉; 〈[f], π2〉∗;π1 : Y _ X

The translation function [·] commutes with the rest of the operation symbols.

I Theorem 17 (Completeness and soundness). Let t ≤ t′ be an inequality in the language of
Park. Then, CPO |= t ≤ t′ iff KA ` [t] ≤ [t′].

Proof sketch. For completeness we use Theorem 15 and show how to obtain the Park axioms
in KA. For soundness we exhibit an operation-preserving embedding of CPO in CPOI. J

Even though the above result was developed using Park theories, which have a universal
Horn axiomatization, we also obtain a result for the equational theory of iteration theories.
Recall the definition (see e.g. [7]): an iteration theory is a cartesian category with a dagger
operation that satisfies the equations valid in CPO. So, the above theorem also says that
the equational theory of iteration theories is embedded in KA.

8 Related Work

The work by Goncharov [11] is closely related to ours. He defines additive (strong) monads
and Kleene monads axiomatically. Calculi for an extended metalanguage of effects are defined
and completeness/incompleteness results are obtained. Our notion of a “nondeterministic
strong monad with iteration” is different from that of a Kleene monad: we consider non-
strict programs that form lazy pairs, and we axiomatize iteration quasi-equationally. The
absence of the strictness axiom ⊥; f = ⊥ from our axiomatization and the use of lazy
pairs are essential for our encoding of fixpoints. In particular, the axioms stipulated
in [11] would force all the parametric fixpoints to be equal to ⊥, because in that system
〈⊥, id〉; 〈f, π2〉∗;π1 = ⊥; 〈f, π2〉∗;π1 = ⊥. So, the models we are investigating in the present
work are crucially different from the models considered in [11].

The work on Hoare powerdomains [1, 25], which give models of angelic nondeterministic
computations, is related. The (lower) Hoare powerdomain of a domain is formed by taking

CSL’13

428 Kleene Algebra with Products and Iteration Theories

all the ideals of the domain, where by ideal we mean here the nonempty Scott-closed subsets
of the domain. In the present work, we identify models of the axiomatically defined “nonde-
terministic monad with iteration,” which are similar to and simpler than the construction of
Hoare powerdomains over DCPOs. We first identify a simple model: the lowerset monad over
the category of posets with bottom elements. Then, we also prove that the ideal completion
monad over the category of ω-CPOs is a model.

There is a long line of work, primarily by Bloom and Ésik, under the name of “iteration
theories” or the “(in)equational theory of iteration” (see e.g. [4, 6, 7, 9, 26] and references
therein), which is intimately related to the work on Kleene algebra [8, 16–23] in general
and the present work in particular. The axioms of iteration theories capture the equational
properties of fixpoints in several classes of structures relevant to computer science. For
example, they capture the equational theory of ω-continuous functions between ω-CPOs,
where the algebraic signature includes symbols for composition, pairing, and parametric
fixpoints. Several different equational axiomatizations have been considered in the literature,
all of which require substantial effort to parse and understand. By allowing quasi-equations,
simpler axiomatizations can be found. Many examples of iteration theories involve functions
on posets, so it is a natural question to look for complete axiomatizations of the valid
inequalities over classes of structures that are of interest, e.g., structures of ω-continuous
functions over ω-CPOs. One such universal Horn axiomatization is given in [9]. This
axiomatization includes two inequalities and one implication for the † operation, which are
both intuitive and easy to memorize. We note that in the work on iteration theories, the
issue of how (non)determinism interacts with pairs, which is central in the present work, is
not handled at all.

Of particular relevance to the relationship between iteration theories and Kleene algebra
are the works on the so-called “matrix iteration theories” [4, 5, 7]. They are cartesian
categories in which the homsets are commutative monoids with respect to an operation
+, which distributes over composition. This also induces cocartesian structure and allows
an easy translation between the dagger (parametric fixpoint) operation and Kleene star.
However, this translation is not sound for the classes of structures we consider. In particular,
the + symbol cannot be interpreted as nondeterministic choice when 〈·, ·〉 is interpreted as
pairing: the axioms imply the property 〈a,⊥〉+ 〈⊥, b〉 = 〈a, b〉, which is not meaningful for
programs. The translation of the dagger operation in the language of KA that we give here
is crucially different, and is in fact sound for the class of matrix iteration theories as well.

There is a connection between our characterizations of nondeterministic structure and
the work of Plotkin and Power on algebraic operations (see e.g. [24] for an overview). The
theory of algebraic operations provides a uniform semantics of computational effects by
considering primitive operations of type fX : (PX)n → PX that are the source of effects.
The binary union operation uX : PX×PX → PX that we consider is an algebraic operation
in this sense. Our purpose here, however, is very different: we axiomatize uX and establish
equivalence with other axiomatizations of nondeterministic structure that do not fit in the
framework of algebraic operations, e.g., with dX : X × X → PX. In particular, for the
equivalence results that we develop here, there does not seem to be any known fact about
algebraic operations that can be invoked to simplify our proofs.

Our work here builds directly upon the existing work on Kleene algebra [8, 17–20, 22].
The crucial axioms for the iteration operation ∗ are taken from [18]. The system of KA we
present is a typed Kleene algebra in the sense of [21] extended with products that satisfy
weaker axioms than those of categorical products.

D. Kozen and K. Mamouras 429

9 Conclusion and Future Work

In the present work we reconcile the notions of iteration captured by the star operation ∗ of
KA and the dagger operation † of IT. We present and investigate a system of typed KA with
products, in which the notion of a deterministic program turns out to be of importance. We
work in the framework of cartesian categories combined with commutative strong monads to
treat (angelic) nondeterminism. We have adapted an axiomatization of commutative strong
monads from the work of Kock [13, 15] to our setting. We have described three equivalent
ways, in the presence of cartesian structure, of capturing nondeterminism. We have identified
two concrete monads, the monad of lowersets of pointed posets and the monad of ideals of
ω-CPOs, as models. The main technical result of our paper is a translation of † in terms of
∗ that gives an embedding of the (in)equational theory of † in KA.

The present work has been a first step in presenting a higher-order system of typed Kleene
algebra. We would like to investigate what properties of recursion can be captured in such a
higher-order system and how this would relate to the investigations of [6].

References
1 Samson Abramsky and Achim Jung. Domain theory, 1994.
2 J. Adámek, S. Milius, and J. Velebil. Elgot algebras. Log. Meth. Comp. Sci., 2:1–31, 2006.
3 J. Adámek, S. Milius, and J. Velebil. Elgot theories: a new perspective of the equational

properties of iteration. Math. Structures Comput. Sci., 21(2):417–480, 2011.
4 S. L. Bloom and Z. Ésik. Iteration Theories. Springer, 1993.
5 S. L. Bloom and Z. Ésik. Matrix and matricial iteration theories, part I. Journal of

Computer and System Sciences, 46(3):381 – 408, 1993.
6 S. L. Bloom and Z. Ésik. Fixed-point operations on ccc’s. part I. TCS, 155(1):1–38, 1996.
7 S. L. Bloom and Z. Ésik. The equational logic of fixed points. TCS, 179(1–2):1–60, 1997.
8 John Horton Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971.
9 Z. Ésik. Completeness of Park induction. Theor. Comput. Sci., 177(1):217–283, 1997.
10 S. Ginali. Regular trees and the free iterative theory. JCSS, 18:228–242, 1979.
11 Sergey Goncharov. Kleene Monads. PhD thesis, Universität Bremen, 2010.
12 S. C. Kleene. Representation of events in nerve nets and finite automata. Automata Studies,

1956.
13 A. Kock. Monads on symmetric monoidal closed categories. Ar. der Math., 21:1–10, 1970.
14 A. Kock. Bilinearity and cartesian closed monads. Mathematica Scand., 29:161–174, 1971.
15 A. Kock. Strong functors and monoidal monads. Archiv der Math., 23:113–120, 1972.
16 L. Kot and D. Kozen. Kleene algebra and bytecode verification. ENTCS, 141(1):221–236,

2005.
17 D. Kozen. On Kleene algebras and closed semirings. MFCS ’90, pages 26–47, 1990.
18 D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular events.

In Proceedings of 6th Annual IEEE Symp. on Logic in Comp. Sci., pages 214–225, 1991.
19 D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular events.

Information and Computation, 110(2):366–390, 1994.
20 D. Kozen. Kleene algebra with tests. ACM Trans. Prog. Lang. Syst., 19(3):427–443, 1997.
21 D. Kozen. Typed Kleene algebra. Technical report, Cornell University, 1998.
22 D. Kozen. On Hoare logic and Kleene algebra with tests. TOCL, 1(1):60–76, 2000.
23 D. Kozen and M.-C. Patron. Certification of compiler optimizations using Kleene algebra

with tests. In Proceed. of the First Intern. Conf. on Comput. Logic, pages 568–582, 2000.
24 G. Plotkin and J. Power. Computational effects and operations. ENTCS, 73:149–163, 2004.
25 Gordon Plotkin. Domains, 1983. Pisa notes on domain theory.
26 A. Simpson and G. Plotkin. Complete axioms for categorical fixed-point operators. In

Proceedings of 15th Annual IEEE Symp. on Logic in Comp. Sci., pages 30 –41, 2000.

CSL’13

430 Kleene Algebra with Products and Iteration Theories

A Interaction between tensorial strength and iteration

In [11] an axiom is considered that relates the iteration operation µ with the tensorial strength
of the nondeterministic monad:

µf.
(
(idX × p); tX,Y + f ; (idX × q); tX,Y

)
=
(
idX × µf.(p+ f ; q)

)
; tX,Y ,

where p : X → PY and q : Y → PY (composition ; binds tighter than Kleisli composition ; ,
which in turn binds tighter than +). We rewrite the above axiom in terms of ψ using the
property tX,Y = (ηX × id);ψX,Y :

µf.
(
(ηX × p);ψX,Y + f ; (ηX × q);ψX,Y

)
=
(
ηX × µf.(p+ f ; q)

)
;ψX,Y .

Recall the definition of the Kleisli product functor: f ⊗ g = (f × g);ψ. So, we can rewrite
the above equation as

µf.
(
(ηX ⊗ p) + f ; (ηX ⊗ q)

)
= ηX ⊗ µf.(p+ f ; q).

The expression µf.φ(f) is meant to denote the least fixpoint of the map f 7→ φ(f). So,
we think intuitively of the expression µf.(p+ f ; q) as denoting the supremum of the chain
p ≤ p+ p; q ≤ p+ p; q + p; q; q ≤ · · · , which in our language would be represented by p; q∗.
Using this correspondence, the axiom finally becomes

(ηX ⊗ p); (ηX ⊗ q)∗ = ηX ⊗ p; q∗

in the language of KA. We will identify two very fundamental axioms that together with the
KA axioms allow us to prove the above equation.

Before we state the result, we give some intuition for the extra axioms we will assume. In
the categorical models we have been investigating the uniqueness property 〈〈h;$1, h;$2〉〉 = h

holds whenever the arrow h : X ⇀ Y × Z is deterministic, but does not hold for arbitrary h.
The reason for this is illustrated by the following example:

S = {(a, c), (b, d)} : 1→ P (X × Y) S;$1 = {a, b} : 1→ PX

S;$2 = {c, d} : 1→ PY

and 〈〈S;$1, S;$2〉〉 = {(a, c), (a, d), (b, c), (b, d)} 6= S. However, if we change the example so
that S;$1 is deterministic, then the uniqueness axiom is satisfied.

S = {(a, c), (a, d)} : 1→ P (X × Y) S;$1 = {a} : 1→ PX

S;$2 = {c, d} : 1→ PY

Notice that S;$1 = {a} is deterministic and 〈〈S;$1, S;$2〉〉 = S, even though S is not
deterministic. This example motivates the rules of Table 4.

I Proposition 18. Every nondeterministic monad with iteration that additionally satisfies
the two rules of Table 4 also satisfies the equation

(ηX ⊗ p); (ηX ⊗ q)∗ = ηX ⊗ p; q∗.

Table 4 Additional rules for the interaction between (non)determinism and Kleisli products.

f : X ⇀ Y × Z f ;$1 : X _ Y

〈〈f ;$1, f ;$2〉〉 = f : X ⇀ Y × Z
f : X ⇀ Y × Z f ;$2 : X _ Z

〈〈f ;$1, f ;$2〉〉 = f : X ⇀ Y × Z

D. Kozen and K. Mamouras 431

Proof. Call L the left-hand side and R the right-hand side of the equation we have to prove.
The inequality L ≤ R is easily seen to be provable from the axioms for ∗. It suffices to show
that ηX ⊗ p ≤ ηX ⊗ p; q∗, which holds because p ≤ p; q∗, and also that

(ηX ⊗ p; q∗); (ηX ⊗ q) = ηX ; ηX ⊗ p; q∗; q [⊗ functor]
≤ ηX ⊗ p; q∗. [star axiom]

We will see now that the inequality R ≤ L is also provable from the star axioms, by making
use of the rules given in Table 4. First, we claim that

L;$1 = (ηX ⊗ p); (ηX ⊗ q)∗;$1 = $1.

Since (ηX⊗q);$1 = $1; ηX = $1, we have that (ηX⊗q);$1 ≤ $1 and hence (ηX⊗q)∗;$1 ≤
$1. It follows that L;$1 ≤ (ηX ⊗ p);$1 = $1. Moreover,

$1 = (ηX ⊗ p);$1 ≤ (ηX ⊗ p); (ηX ⊗ q)∗;$1 = L;$1.

We have thus shown that L;$1 = $1 is deterministic. So, the first rule of Table 4 gives us
that

(ηX ⊗ p); (ηX ⊗ q)∗ = 〈〈$1, (ηX ⊗ p); (ηX ⊗ q)∗;$2〉〉.

We also have by definition of ⊗ that ηX ⊗ p; q∗ = 〈〈$1, $2; p; q∗〉〉. It suffices to show that

$2; p; q∗ ≤ (ηX ⊗ p); (ηX ⊗ q)∗;$2 ⇐= (ηX ⊗ p);$2; q∗ ≤ (ηX ⊗ p); (ηX ⊗ q)∗;$2

⇐= $2; q∗ ≤ (ηX ⊗ q)∗;$2,

which is implied by $2 ≤ (ηX ⊗ q)∗;$2 (it clearly holds) and

(ηX ⊗ q)∗;$2; q = (ηX ⊗ q)∗; (ηX ⊗ q);$2 ≤ (ηX ⊗ q)∗;$2. J

So, the above proposition says, somewhat informally, that the interaction between iteration
and tensorial strength that is stipulated in [11] is a consequence of the properties of ∗ and
of two fundamental axioms that involve only determinism judgments and Kleisli products.
The axioms of Table 4 are sound for the models we consider here, as well as for the powerset
monad ℘ over Set, which is a model of the axioms considered in [11]. We have not included
these axioms in the definition of a nondeterministic strong monad with iteration, because
they are not necessary for our investigations.

CSL’13

	Introduction
	Commutative Strong Monads with Lazy Pairs
	Nondeterministic Monads
	Nondeterministic Strong Monad with Iteration
	The Lowerset Monad
	The Ideal Completion Monad

	Typed Kleene Algebra with Products
	Iteration Theories
	Embedding the Equational Theory of Iteration in KA
	Related Work
	Conclusion and Future Work
	Interaction between tensorial strength and iteration

