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Abstract
In a recent article, Lauri Hella and co-authors identify a canonical connection between modal logic
and deterministic distributed constant-time algorithms. The paper reports a variety of highly
natural logical characterizations of classes of distributed message passing automata that run in
constant time. The article leaves open the question of identifying related logical characterizations
when the constant running time limitation is lifted. We obtain such a characterization for a class
of finite message passing automata in terms of a recursive bisimulation invariant logic which we
call modal substitution calculus (MSC). We also give a logical characterization of the related
class A of infinite message passing automata by showing that classes of labelled directed graphs
recognizable by automata in A are exactly the classes co-definable by a modal theory. A class
C is co-definable by a modal theory if the complement of C is definable by a possibly infinite set
of modal formulae. We also briefly discuss expressivity and decidability issues concerning MSC.
We establish that MSC contains the Σµ1 fragment of the modal µ-calculus in the finite. We also
observe that the single variable fragment MSC1 of MSC is not contained in MSO, and that the
SAT and FINSAT problems of MSC1 are complete for PSPACE.
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1 Introduction

Distributed computing concerns itself with the investigation of computation processes carried
out by computer networks. In addition to performing local computation tasks, computers or
processors in the network communicate with each other by sending messages back and forth.
A distributed system can be modelled by a graph, where the nodes correspond to individual
computers and the edges are communication channels through which messages can be sent,
see [10]. For example, a distributed system can easily determine the sets of nodes that are
directly linked to another node that has a local property P: each node with the property P
simply sends a message “I have property P” to each of of its neighbours. Much of the theory
of distributed computing abstracts away details related to local computation, concentrating
on investigations concerning the network topology.

In the recent article [7], Hella and co-authors identify a highly natural connection between
modal logic [2] and local distributed algorithms. While modal logic has been successfully
applied in the distributed computing context before, the perspective in [7] is a radical
departure from most of the traditional approaches, where the domain elements of a Kripke
model correspond to possible states of a distributed computation process. In the framework
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of [7], a distributed system is a Kripke model, where the domain elements are individual
computers and the arrows of the accessibility relation are communication channels. While
such an interpretation is of course always possible, it turns out to be particularly helpful
in the study of weak models of distributed computing (see [7, 11]). The article [7] identifies
descriptive characterizations for a comprehensive collection of complexity classes of distributed
computing in terms of modal logics. For example, it is shown that the class SB(1) is captured—
in the sense of descriptive complexity theory [6, 4, 8]— by ordinary modal logic ML. A graph
property is in SB(1) iff it can be defined by a formula of ML. Various other characterizations
are also obtained. For example the class MB(1) is captured by graded modal logic, i.e.,
a modal logic which can count the number of accessible nodes. Furthermore, the logical
characterizations enable the use of logical tools in the investigation of distributed complexity
classes. The article [7] provides a complete classification of the investigated complexity classes
with respect to their computational capacities. The proofs behind the related separation
results make significant use of logical methods. In particular, the notion of bisimulation
turns out to be very useful in this context.

While there are various characterization results in classical descriptive complexity theory,
separation results are rare, and related questions have proved very difficult. Therefore the
separation results in [7] are rather delightful, since they nicely demonstrate the potential of
the descriptive complexity approach in the framework of non-classical computing.

A local algorithm [11] is a distributed constant-time algorithm that distributed systems
carry out by executing a fixed finite number of synchronized communication rounds. Our
example above concerning the property P is an example of a trivial local algorithm. The
characterizations in [7] concern local algorithms carried out by message passing automata
that run in constant time. The article leaves open the question of identifying related logical
characterizations when the constant running time limitation is lifted. We obtain such a char-
acterization for a class of finite message passing automata in terms of a recursive bisimulation
invariant logic which we call modal substitution calculus (MSC). The characterization extends
directly to multimodal contexts and to systems with graded modalities, and thereby provides
a nice characterization of cellular automata. We also give a logical characterization of the
related class A of general (possibly infinite) message passing automata by showing that classes
of labelled directed graphs recognizable by automata in A are exactly the classes co-definable
by a modal theory. A class C is is co-definable by a modal theory if the complement of C is
definable by a possibly infinite set of modal formulae. In distributed computing attention is
often directed towards understanding issues concerning network topologies of distributed
systems, and therefore it is often convenient to study infinite message passing automata with
even non-recursive local computation capacities. See [5] for further elaborations on related
matters.

In addition to logical characterizations, we briefly discuss expressivity and decidability
issues concerning MSC. We establish that MSC contains the Σµ

1 fragment of the modal
µ-calculus in the finite. We also observe that the single-variable fragment MSC1 of MSC is
not contained in MSO, and that the SAT and FINSAT problems of MSC1 are complete for
PSPACE.

The aim of this article is two-fold. On one hand, we wish to investigate further the
intimate link between distributed computing and modal logic identified in [7]. Advancing the
understanding of this link can ideally be beneficial to both research on distributed computing
and research on (modal) logic. Bringing together these two seemingly unrelated research
fields could turn out to be a fruitful and refreshing research programme. For example, it
seems that the local model [10, 9] of distributed computing is intimately related to hybrid
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logic [1]. On the other hand, we aim to promote the potential of the descriptive complexity
approach in the framework on non-classical computing.

2 Preliminaries

Let S be an arbitrary set. We let
⋃
S denote the set of elements x such that x ∈ L for some

L ∈ S. We let Pow(S) denote the power set of S.
Let Π be an arbitrary set of proposition symbols p ∈ Π. The language ML(Π) of ordinary

modal logic is generated by the grammar

ϕ ::= > | p | ¬ϕ | (ϕ ∧ ϕ) | ♦ϕ,

where p ∈ Π and > is a logical constant symbol. Formulae in ML(Π) are called Π-formulae.
We define the abbreviations ⊥ = ¬> and � = ¬♦¬. We also use the symbols ∨, → and ↔
in the usual way.

A Kripke model of the vocabulary Π (Π-model) is a structure M = (W,R, V ), where W
is a nonempty set, called the domain of the model, R ⊆ W ×W is a binary relation, and
V : Π→ Pow(W ) is a valuation function. The semantics of ML(Π) is defined with respect
to pointed Π-models (M,w), where M = (W,R, V ) is a Kripke model of the vocabulary Π
and w ∈W a point or a node in the domain W of the Kripke model. For p ∈ Π, we define
(M,w) |= p iff w ∈ V (p). We also define (M,w) |= >. For the connectives, we define

(M,w) |= ¬ϕ ⇔ (M,w) 6|= ϕ,

(M,w) |= (ϕ ∧ ψ) ⇔
(
(M,w) |= ϕ and (M,w) |= ψ

)
,

(M,w) |= ♦ϕ ⇔ ∃v ∈W
(
wRv and (M, v) |= ϕ

)
.

The set of subformulae of a formula ϕ is defined in the standard way and denoted by
SUBF(ϕ). The modal depth md(ϕ) of a formula is defined recursively such that md(>) =
md(p) = 0, md(¬ψ) = md(ψ), md(ψ∧χ) = max{md(ψ),md(χ)}, and md(♦ψ) = md(ψ)+1.
In a Kripke model

(
(W,R, V ), w

)
, the set succ(w) of successors of w is the set { u ∈W | wRu }.

The set { u ∈W | uRw } is the set of predecessors of w. If ϕ is a modal formula and M a
Kripke model, we let ||ϕ||M to the the set of points w such that (M,w) |= ϕ.

Let Π be a set of proposition symbols. Define the set S := { Xi | i ∈ N } of schema
variable symbols. Let K ⊆ S. The set of (Π,K)-schemata of modal substitution calculus
(MSC) is the set generated by the grammar

ϕ ::= > | p | Xi | ¬ϕ | (ϕ ∧ ϕ) | ♦ϕ,

where p ∈ Π, Xi ∈ K, and > is a logical constant symbol. A terminal clause of the vocabulary
Π of modal substitution calculus is a string of the form Xi(0) : − ϕ, where Xi ∈ S is a
schema variable and ϕ a formula of ML(Π). An iteration clause of the vocabulary Π of modal
substitution calculus is a string of the form Xi : − ψ, where Xi ∈ S is a schema variable
and ψ is a (Π,K)-schema for some set K ⊆ S of schema variable symbols. The symbol Xi of
a terminal clause Xi(0) : − ϕ or an iteration clause Xi : − ψ is called the head predicate of
the clause, and the formulae ϕ and ψ are the bodies of the clauses. Let K = {Y1, ..., Yn } ⊆ S
be a finite nonempty set of n distinct schema variable symbols. A (Π,K)-program Λ of MSC
consists of a pair
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Y1(0) : − ϕ1 Y1 : − ψ1
. .

. .

. .

Yn(0) : − ϕn Yn : − ψn

of lists of clauses, where the first list contains n terminal clauses Yi(0) : − ϕi of the
vocabulary Π, and the other list contains n iteration clauses Yi : − ψi such that each ψi
is a (Π,K)-schema. Furthermore, the (Π,K)-program Λ specifies a set A ⊆ K of appointed
predicates, so formally Λ is a triple (G, I,A), where G and I are the lists of terminal clauses
and iteration clauses, respectively, and A is an arbitrary subset of K specifying the appointed
predicates of Λ. A program Λ is a Π-program if Λ is a (Π,K)-program for some K ⊆ S.

We let ATOM(Λ) be the set of symbols s ∈ Π ∪ {>} that occur in the clauses of Λ. The
set HEAD(Λ) is the set of schema variable symbols that occur in the clauses of Λ. The set
SUBS(ϕ) of subschemata of a schema ϕ is defined in the obvious way. The set SUBS(Λ)
of subschemata of Λ is defined to be the smallest set such that HEAD(Λ) ⊆ SUBS(Λ) and
SUBS(ϕ) ⊆ SUBS(Λ) for each ϕ that occurs as a body of any clause (terminal or iteration)
of Λ. We define SUBF(Λ) to be the set of all schemata ϕ ∈ SUBS(Λ) that do not contain
any schema variable symbols, i.e., SUBF(Λ) is the set of subformulae of Λ.

For each variable Yi ∈ HEAD(Λ) of Λ, we let Y 0
i denote the right hand side of the

terminal clause Yi(0) : − ϕi. Recursively, assume we have defined an ML(Π)-formula Y ni for
each Yi ∈ HEAD(Λ). Let Yj : − ϕj be the iteration clause corresponding to the variable Yj .
We define Y n+1

j to be the ML(Π)-formula obtained by simultaneously replacing each variable
Yi of the schema ϕj by the formula Y ni . Let ϕ be an arbitrary schema in SUBS(Λ). We let
ϕn denote the ML(Π)-formula obtained from ϕ by simultaneously replacing each variable
Yi ∈ HEAD(Λ) in ϕ by the formula Y ni .

Let (M,w) be a pointed Π-model and Λ a Π-program of MSC. We define that (M,w) |= Λ
if there is an appointed variable Y of Λ such that for some n ∈ N, we have (M,w) |= Y n.
We say that Λ is true in (M,w), or that (M,w) satisfies Λ.

Let Π be a finite set of proposition symbols. A message passing automaton A of the
vocabulary Π is a tuple (Q,M, π, δ, µ, F ). The object Q is a nonempty set of states. The set
Q can be finite or countably infinite. The object M is a nonempty set of messages. The set
M can be finite or countably infinite. The object π : Pow(Π) −→ Q is an initial transition
function that determines the beginning state of A. The object δ : Pow(M)×Q −→ Q is a
transition function that constructs a new state in Q based on a set N ∈ Pow(M) of messages
received and a previous state in Q. The object µ : Q −→ M is a message construction
function that constructs a message for the automaton to send forward based on the state
of the automaton. The object F ⊆ Q is a set of accepting states of the automaton. A
message passing automaton such that the sets Q and M are finite, is a finite message passing
automaton FMPA. (MPA stands for a message passing automaton.)

A message passing automaton A of a vocabulary Π is run on a Kripke model
(
W,R, V ) of

the vocabulary Π, considered to be a distributed system. Intuitively, we put a copy (A,w) of
the automaton to each node w ∈W . Then, each automaton (A,w) first scans the propositional
information of the node w, and then makes a transition to a beginning state based on this.
Then, the automata (A, u), where u ∈W , begin running in synchronized steps. During each
step, each automaton first broadcasts a message to each of its neighbours with respect to R,
and then updates its state based on the set of messages it receives from its neighbours. More
formally, the automaton A and Kripke model (W,R, V ) define a synchronized distributed
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system which executes an omega-sequence of communication rounds defined as follows. Each
round n ∈ N defines a global configuration fn : W −→ Q. The configuration of the zeroth
round is the function f0 such that f0(w) = π({ p ∈ Π | w ∈ V (p) }). Recursively, assume
that we have defined fn, and call N =

{
m ∈ M | m = µ(fn(v)), v ∈ succ(w)

}
. Then

fn+1(w) = δ
(
N, fn(w)

)
.

Notice that the automaton A at node w receives messages from its successors, so messages
flow in the direction opposite to the arrows (or pairs) of the relation R. This may seem
strange at first, and indeed a more natural definition would stipulate that messages flow
in the direction of the arrows. The reason behind the choice here is mainly technical, and
related to the technical relationship between message passing automata and modal logic.
An alternative approach would be to consider modal logics with only backwards looking
diamonds, or to define a Kripke structure M corresponding to a distributed system S such
that M would be obtained from S by reversing the arrows of S.

When we talk about the state of an automaton A at the node w in round n, we mean
the state fn(w). We define that an automaton A accepts a pointed model (M,w) if there
exists some n ∈ N such that fn(w) ∈ F , in other words, if the automaton A at w visits an
accepting state during the execution of the distributed system. Note that the automaton A
at w does not stop passing messages even if it has visited an accepting state. Therefore this
model of computing can be regarded as a kind of a semidecision framework for distributed
computation: an accepting node will eventually know it has accepted, but a nonaccepting
node can keep running forever without knowledge of acceptance. These kinds of asymmetric
acceptance conditions are common in distributed computing (see for example [7]). It would
be natural to consider even more complex acceptance conditions, for example we could define
a subset G ⊆ Q of rejecting states. For the sake of space limitations, we shall not consider
such possibilities here. However, the considerations below can easily be adapted to deal with
various more complex acceptance scenarios.

3 MSC captures FMPA-recognizability

3.1 Specifying FMPAs in MSC
Let (M,w) = ((W,R, V ), w) be a pointed model and A an automaton of the same vocabulary
as M . Let Q be the set of states of A. For each u ∈W , let A

(
(M,u), n) denote the state of

A at u in round n. The set { q ∈ Q | q = A
(
(M,u), n

)
for some u ∈ succ(w) } is called the

set of states defined by the successors of w in round n.

I Theorem 1. Let Π be a finite set of proposition symbols. Let A be a finite message passing
automaton of the vocabulary Π. There exists a Π-program ΛA of MSC such that for all
pointed Π-models (M,w), the automaton A accepts (M,w) iff (M,w) |= ΛA.

Proof. Let A = (Q,M, π, δ, µ, F ). Define a formula variable Xq for each state q ∈ Q. For
each q ∈ Q, define the terminal clause

Xq(0) : −
∨

P ⊆Π, π(P ) = q

( ∧
p∈P

p ∧
∧

p∈Π\P

¬ p
)
. (1)

(Note that
∨
∅ = ⊥ and

∧
∅ = >.) Let S ⊆ Q be a set of states. Define the schema

ϕS :=
∧
q∈S
♦Xq ∧

∧
q 6∈S

¬♦Xq.
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If S ⊆ Q is a set of states, we denote the set { µ(q) | q ∈ S } by µ(S). We defineM(q, q′) to
be the set of exactly all sets S ⊆ Q such that δ(µ(S), q) = q′. For each state q′ ∈ Q, define
the iteration clause

Xq′ : −
∧
q∈Q

(
Xq →

∨
S ∈M(q,q′)

ϕS
)
. (2)

The program ΛA is the Π-program defined by the terminal clauses given by Equation 1 above
and the iteration clauses given by Equation 2. The set of appointed predicates is the set of
symbols Xq such that q ∈ F .

Let M = (W,R) be a Kripke model of the vocabulary Π. We will show that for each
node v ∈W , each state q ∈ Q, and each round n ∈ N, the state of the automaton A at node
v in round n is q if and only if (M,v) |= Xn

q . This is shown by an induction on n. The case
for n = 0 follows immediately by the definition of the initial transition function π and the
definition of Xq(0).

Assume that (M,w) |= Xn+1
q′ . Thus

(M,w) |=
∧
q∈Q

(
Xn
q →

∨
S ∈M(q,q′)

ϕnS
)
.

Let r ∈ Q be the state of A at w in round n. By the induction hypothesis, we have
(M,w) |= Xn

r , and therefore
(M,w) |=

∨
S ∈M(r,q′)

ϕnS .

Thus (M,w) |= ϕnS for some S ∈M(r, q′). By the definition of schema ϕS , each formula Xn
q

such that q ∈ S is satisfied by some successor of w, and there exists no successor of w that
satisfies a formula Xn

q such that q 6∈ S. Therefore, by the induction hypothesis, the set of
states defined by succ(w) in round n is S. Since S ∈M(r, q′), we conclude that the state of
the automaton at w in round n+ 1 is q′.

For the converse, assume that the state of A at w in round n+ 1 is q′. Let r be the state
of A at w in round n. Let S be the set of states defined by succ(w) in round n. Hence, by
the induction hypothesis, we have (M,w) |= ϕnS . We also have S ∈M(r, q′) by the definition
of r, q′ and S. Therefore

(M,w) |=
∨

S ∈M(r,q′)

ϕnS .

We also know, by the induction hypothesis, that for all q ∈ Q, (M,w) |= Xn
q iff q = r.

Therefore
(M,w) |=

∧
q∈Q

(
Xn
q →

∨
S ∈M(q,q′)

ϕS
)
,

and thus (M,w) |= Xn+1
q′ , as desired. J

3.2 Simulating MSC programs by FMPAs
Let Λ be a program of MSC, and let HEAD(Λ) = {Y1, ..., Ym }. For each n ∈ N, we define
md(Λ, n) = max{md(Y n1 ), ...,md(Y nm) }. We let mdt(Λ) denote the maximum modal depth
of the body formulae in the terminal clauses of Λ. Similarly, we let mdi(Λ) denote the
maximum modal depth of the body schemata of the iteration clauses of Λ.

Define scope(Λ, 0) = md(Λ, 0) and scope(Λ, n + 1) = scope(Λ, n) + max{1,mdi(Λ)}. If
(M,w) |= Λ, then the scope of Λ at w is the number scope(Λ, n), where n is the smallest
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number k ∈ N such that we have (M,w) |= Y ki for some appointed predicate Yi. If (M,w) 6|= Λ,
the scope of Λ at w is ω. Scope is a relatively natural spatio-temporal complexity measure
for the execution of an MSC program, when the execution is done by first evaluating each
formula Y 0

i , then each formula Y 1
i , and so on. Notice that even if mdi(Λ) = 0, scope is

increased after each iteration step. It is of course possible to define other natural complexity
measures for MSC programs.

Let A be an automaton and (M,w) a pointed model. If A accepts (M,w), then the
decision time of A at w is the smallest number k such that the state of A at w is an accepting
state in round k. If A does not accept (M,w), the decision time of A at w is ω.

Next we show how to define, when given a program Λ of MSC, a corresponding automaton
AΛ that accepts exactly the pointed models (M,w) such that (M,w) |= Λ. Furthermore,
the decision time of AΛ at each node w will be equal to the scope of Λ at w. Roughly, the
states of AΛ will encode finite sets of formulae satisfied by nodes of the underlying model.
For more of the intuition behind the definition of AΛ, see the proof of Theorem 2.

Let Π be a finite set of proposition symbols and fix a Π-program Λ of MSC. We assume
that mdi(Λ) ≥ 1. The pathological case where mdi(Λ) = 0 is discussed separately.

The set QΛ of states of AΛ contains all pairs (S,m), wherem ≤ mdi(Λ)−1 is a nonnegative
integer and S ⊆ SUBS(Λ) a set of schemata ϕ such that md(ϕ) ≤ m. The set QΛ also
contains all triples (S,m, f), where m ≤ mdt(Λ)− 1 is a nonnegative integer, S ⊆ SUBF(Λ)
is a set of formulae ϕ such that md(ϕ) ≤ m, and f is simply a symbol indicating that
this state encodes sets of formulae in SUBF(Λ). There are no other states in QΛ. The set
of messages MΛ is Pow

(
SUBS(Λ)

)
. (Some states and some messages may turn out to be

irrelevant for the computation of AΛ.)
We then define the transition function π of AΛ. Assume first that mdt(Λ) ≥ 1. Let

P ⊆ Π be a set of proposition symbols. Define a set U ⊆ SUBF(Λ) to be the smallest set
such that the following conditions hold.
1.
(
P ∩ SUBF(Λ)

)
∪
(
{>} ∩ SUBF(Λ)

)
⊆ U .

2. For each ¬ϕ ∈ SUBF(Λ) of the modal depth 0, ¬ϕ ∈ U iff ϕ 6∈ U .
3. For each (ϕ ∧ ψ) ∈ SUBF(Λ) of the modal depth 0, (ϕ ∧ ψ) ∈ U iff both ϕ ∈ U and

ψ ∈ U .
We define π(P ) = (U, 0, f). If mdt(Λ) = 0, we define π(P ) for the set P ⊆ Π of proposition
symbols differently. First define a set T ⊆ SUBF(Λ) to be the smallest set such that the
following conditions hold.
1.
(
P ∩ SUBF(Λ)

)
∪
(
{>} ∩ SUBF(Λ)

)
⊆ T .

2. For each formula ¬ϕ ∈ SUBF(Λ) of the modal depth 0, we have ¬ϕ ∈ T iff ϕ 6∈ T .
3. For each formula (ϕ ∧ ψ) ∈ SUBF(Λ) of the modal depth 0, we have (ϕ ∧ ψ) ∈ T iff both

ϕ ∈ T and ψ ∈ T .
Now let T ′ be the set of symbols in ATOM(Λ) ∪HEAD(Λ) of the modal depth 0 such that
the following conditions hold.
1. For each X ∈ HEAD(Λ), we have X ∈ T ′ iff X0 ∈ T .
2. For each ϕ ∈ ATOM(Λ), we have ϕ ∈ T ′ iff ϕ ∈ T .
Define U to be the set of schemata in SUBS(Λ) of the modal depth 0 such that the following
conditions hold.
1. For each ϕ ∈ ATOM(Λ) ∪ HEAD(Λ), ϕ ∈ U iff ϕ ∈ T ′.
2. For each schema ¬ϕ ∈ SUBS(Λ) of the modal depth 0, ¬ϕ ∈ U iff ϕ 6∈ U .
3. For each schema (ϕ ∧ ψ) ∈ SUBS(Λ) of the modal depth 0, (ϕ ∧ ψ) ∈ U iff both ϕ ∈ U

and ψ ∈ U .
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We define π(P ) = (U, 0).
We then define the transition function δ of AΛ. Let (S,m) be a state of AΛ. Let N ⊆MΛ

be a set of messages. Assume that m < mdi(Λ)− 1. Assume there exists a smallest set U
such that the following conditions hold.
1. For each schema ϕ ∈ SUBS(Λ) such that md(ϕ) < m+ 1, we have ϕ ∈ U iff ϕ ∈ S.
2. For each schema ♦ϕ ∈ SUBS(Λ) such that md(♦ϕ) ≤ m+1, we have ♦ϕ ∈ U iff ϕ ∈

⋃
N .

3. For each schema (ϕ ∧ ψ) ∈ SUBS(Λ) such that md(ϕ ∧ ψ) ≤ m+ 1, we have (ϕ ∧ ψ) ∈ U
iff both ϕ ∈ U and ψ ∈ U .

4. For each schema ¬ϕ ∈ SUBS(Λ) such that md(¬ϕ) ≤ m+ 1, we have ¬ϕ ∈ U iff ϕ 6∈ U .
We then define δ

(
N, (S,m)

)
to be the state (U,m + 1). If no set U satifying the above

conditions exists, we define δ
(
N, (S,m)

)
arbitrarily.

If m = mdi(Λ)− 1, we define δ
(
N, (S,m)) differently. Assume there exists a smallest set

T ⊆ SUBS(Λ) such that the following conditions hold. (If no such set T exists, δ((S,m), N)
is defined arbitrarily.)
1. For each schema ϕ ∈ SUBS(Λ) such that md(ϕ) < m+ 1, we have ϕ ∈ T iff ϕ ∈ S.
2. For each schema ♦ϕ ∈ SUBS(Λ) such that md(♦ϕ) ≤ m+1, we have ♦ϕ ∈ T iff ϕ ∈

⋃
N .

3. For each schema (ϕ ∧ ψ) ∈ SUBS(Λ) such that md(ϕ ∧ ψ) ≤ m+ 1, we have (ϕ ∧ ψ) ∈ T
iff both ϕ ∈ T and ψ ∈ T .

4. For each schema ¬ϕ ∈ SUBS(Λ) such that md(¬ϕ) ≤ m+ 1, we have ¬ϕ ∈ T iff ϕ 6∈ T .
Now define a set T ′ ⊆ HEAD(Λ) ∪ ATOM(Λ) such that the following conditions hold.
1. For each X ∈ HEAD(Λ), we have X ∈ T ′ iff ϕ ∈ T , where ϕ is the body of the iteration

clause for X.
2. For each ϕ ∈ ATOM(Λ), we have ϕ ∈ T ′ iff ϕ ∈ T .
Define U to be the set of schemata of the modal depth 0 in SUBS(Λ) such that the following
conditions hold.
1. For each ϕ ∈ ATOM(Λ) ∪ HEAD(Λ), ϕ ∈ U iff ϕ ∈ T ′.
2. For each ¬ϕ ∈ SUBS(Λ) of the modal depth 0, ¬ϕ ∈ U iff ϕ 6∈ U .
3. For (ϕ ∧ ψ) ∈ SUBS(Λ) of the modal depth 0, (ϕ ∧ ψ) ∈ U iff both ϕ ∈ U and ψ ∈ U .
Then δ(N, (S,m)) is defined to be the state (U, 0).

Let (S,m, f) be state of AΛ. Let N ⊆ MΛ be a set of messages. Assume that m <

mdt(Λ)− 1. Assume there exists a smallest set U such that the following conditions hold.
1. For each formula ϕ ∈ SUBF(Λ) such that md(ϕ) < m+ 1, we have ϕ ∈ U iff ϕ ∈ S.
2. For each formula ♦ϕ ∈ SUBF(Λ) such that md(♦ϕ) ≤ m + 1, we have ♦ϕ ∈ U iff

ϕ ∈
⋃
N .

3. For each formula (ϕ∧ψ) ∈ SUBF(Λ) such that md(ϕ∧ψ) ≤ m+ 1, we have (ϕ∧ψ) ∈ U
iff both ϕ ∈ U and ψ ∈ U .

4. For each formula ¬ϕ ∈ SUBF(Λ) such that md(¬ϕ) ≤ m+ 1, we have ¬ϕ ∈ U iff ϕ 6∈ U .
We then define δ

(
N, (S,m, f)

)
to be the state (U,m+ 1, f). If no set U satifying the above

conditions exists, we define δ
(
N, (S,m, f)

)
arbitrarily.

If m = mdt(Λ)−1, we define δ
(
N, (S,m, f)) differently. Assume there exists a smallest set

T ⊆ SUBS(Λ) such that the following conditions hold. (If no such set T exists, δ(N, (S,m, f))
is defined arbitrarily.)
1. For each formula ϕ ∈ SUBF(Λ) such that md(ϕ) < m+ 1, we have ϕ ∈ T iff ϕ ∈ S.
2. For each formula ♦ϕ ∈ SUBF(Λ) such that md(♦ϕ) ≤ m+1, we have ♦ϕ ∈ T iff ϕ ∈

⋃
N .

3. For each formula (ϕ∧ψ) ∈ SUBF(Λ) such that md(ϕ∧ψ) ≤ m+ 1, we have (ϕ∧ψ) ∈ T
iff both ϕ ∈ T and ψ ∈ T .

4. For each formula ¬ϕ ∈ SUBF(Λ) such that md(¬ϕ) ≤ m+ 1, we have ¬ϕ ∈ T iff ϕ 6∈ T .
Now define a set T ′ ⊆ HEAD(Λ) ∪ ATOM(Λ) such that the following conditions hold.
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1. For each X ∈ HEAD(Λ), we have X ∈ T ′ iff X0 ∈ T .
2. For each ϕ ∈ ATOM(Λ), we have ϕ ∈ T ′ iff ϕ ∈ T .
Define U to be the set of schemata in SUBS(Λ) of the modal depth 0 such that the following
conditions hold.
1. For each ϕ ∈ ATOM(Λ) ∪ HEAD(Λ), ϕ ∈ U iff ϕ ∈ T ′.
2. For each ¬ϕ ∈ SUBS(Λ) of the modal depth 0, ¬ϕ ∈ U iff ϕ 6∈ U .
3. For all (ϕ ∧ ψ) ∈ SUBS(Λ) of the modal depth 0, (ϕ ∧ ψ) ∈ U iff both ϕ ∈ U and ψ ∈ U .
Then δ(N, (S,m, f)) is defined to be the state (U, 0).

The message construction function µ of AΛ is defined such that µ
(
(S,m)

)
= S and

µ
(
(S,m, f)

)
= S. The set F of accepting states of AΛ is the set of states (S, 0) such that

we have Y ∈ S for some appointed head predicate of Λ.
We have now defined the automaton AΛ, assuming that mdi(Λ) 6= 0. The definition of

AΛ in the pathological case where mdi(Λ) = 0 is discussed in the proof of Theorem 2.

I Theorem 2. Let Π be a finite set of proposition symbols. Let Λ be a Π-program of MSC.
Let (M,w) be a pointed Π-model. We have (M,w) |= Λ if and only if AΛ accepts (M,w).
Furthermore, the scope of Λ at w equals the decision time of AΛ at w.

Proof. We begin by describing the idea of the proof. Let W be the domain of M . The
automata AΛ at the nodes u ∈W first compute the extensions ||X0||M of formulae X0 for
each X ∈ HEAD(Λ). The automata then operate in cycles of communication rounds. During
a cycle, the automata compute the extensions of formulae Xn+1 based on the extensions of
formulae Xn computed during the previous cycle. The communication steps during the cycle
contribute to the information about extensions of formulae of greater and greater modal
depths. The proof will proceed by induction on the iteration number n, and each step of the
induction will be a subinduction on modal depth of schemata. We assume that mdi(Λ) 6= 0.
The case where mdi(Λ) = 0 will be briefly discussed at the end of the proof.

Define a set C0 such that C0 = {−1} × {0, ...,mdt(Λ)− 1} if mdt(Λ) 6= 0, and C0 = ∅ if
mdt(Λ) = 0. Define also C1 = N× {0, ...,mdi(Λ)− 1}. Let C = C0 ∪ C1. Order the pairs in
C lexicographically, i.e., (i, j) < (i′, j′) ⇔ (i < i′ ∨ (i = i′ ∧ j < j′)). Let <C denote this
order. Let g be the isomorphism from (C,<C) to (N, <). We let Qv(i, j) denote the set of
schemata ϕ occurring in the state (S,m) or (S,m, f) of the automaton AΛ at node v in the
round g((i, j)). Observe that Qv(i, j) contains schemata of the modal depth up to j.

We will show by induction on n that the equivalence

(M, v) |= ϕn iff ϕ ∈ Qv
(
n, 0
)

holds for all v ∈W , all n ∈ N, and all schemata ϕ ∈ SUBS(Λ) of the modal depth 0. Each
step of the induction is a subinduction on the modal depth of schemata.

Let n = 0. Some of the details of the case n = 0 are straightforward or rather similar to
corresponding details of the case n > 0, and therefore omitted here. (See the appendix for
the omitted cases.) The case n > 0 is discussed in detail, and the omitted details for the
case n = 0 can be easily constructed from the corresponding arguments for the case n > 0.

Assume that mdt(Λ) 6= 0. For the case mdt(Λ) = 0, see the appendix. Call Φ =
SUBF(Λ) ∩ Π. By the definition of the transition function π, we have (M, v) |= p ⇔ p ∈
π
(
{ p ∈ Π | v ∈ V (p) }

)
for each p ∈ Φ. Therefore, for each atomic formula ϕ ∈ ATOM(Λ),

we have (M,v) |= ϕ ⇔ ϕ ∈ Qv(−1, 0). Hence, since every formula ϕ ∈ SUBF(Λ)
of the modal depth 0 is a Boolean combination of formulae in ϕ ∈ ATOM(Λ), we have
(M,v) |= ϕ ⇔ ϕ ∈ Qv(−1, 0) for all ϕ ∈ SUBF(Λ) of the modal depth 0.
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We then need to establish that the equivalence (M,v) |= ψ ⇔ ψ ∈ Qv
(
−1,mdt(Λ)− 1

)
holds for each v ∈W and each ψ ∈ SUBF(Λ) such that md(ψ) ≤ mdt(Λ)− 1. If mdt(Λ) = 1,
we are done. If not, the equivalence can be proved by induction on the modal depth of
formulae. We shall omit the details here (see the appendix). Once we have established
that (M,v) |= ψ ⇔ ψ ∈ Qv(−1,mdt(Λ)− 1), we can show that therefore (M,v) |= ϕ0 ⇔
ϕ ∈ Qv

(
0, 0) for all schemata ϕ ∈ SUBS(Λ) of the modal depth 0 and all v ∈ W , thereby

concluding the argument for the case n = 0. We omit the details here (see the appendix).
Now assume the claim of the main induction holds for n ∈ N, and consider the case for

n+ 1. By the induction hypothesis, we have (M,v) |= ϕn ⇔ ϕ ∈ Qv(n, 0) for all v ∈ W
and all ϕ ∈ SUBS(Λ) of the modal depth 0. We need to prove that

(M, v) |= ϕn+1 ⇔ ϕ ∈ Qv(n+ 1, 0)

for all v ∈W and all schemata in SUBS(Λ) of the modal depth 0. In order to show this, we
shall first establish that (M,v) |= ϕn ⇔ ϕ ∈ Qv(n, k) for all v ∈W and all ϕ ∈ SUBS(Λ)
of the modal depth k such that 0 ≤ k ≤ mdi(Λ)− 1. This is proved by by induction on the
modal depth k of schemata.

Since we already know that (M, v) |= ϕn ⇔ ϕ ∈ Qv(n, 0) for all v ∈ W and all
ϕ ∈ SUBS(Λ) of the modal depth 0, the basis of the subinduction on modal depth is clear. In
the case mdi(Λ) = 1, this suffices, and no subinduction is actually needed. Therefore assume
that mdi(Λ) > 1 and let k ∈ { 0 , ... , mdi(Λ)−2 }. Assume that (M,v) |= ϕn ⇔ ϕ ∈ Qv(n, k)
for all schemata in SUBF(Λ) of the modal depth up to k and all v ∈W . Let ϕ ∈ SUBS(Λ)
be a schema of the modal depth k + 1. The schema ϕ is a Boolean combination of schemata
♦ψ, where md(ψ) ≤ k. It therefore suffices to show that for each such schema ♦ψ, we have
(M,v) |= ♦ψn ⇔ ♦ψ ∈ Qv(n, k + 1).

Assume first that (M, v) |= ♦ψn. Therefore some successor u of v satisfies (M,u) |= ψn.
By the induction hypothesis, ψ ∈ Qu(n, k). Therefore the automaton AΛ at u sends a message
L such that ψ ∈ L to its predecessors in round g((n, k + 1)). Thus ♦ψ ∈ Qv(n, k + 1).

Conversely, assume that ♦ψ ∈ Qv(n, k + 1). Therefore v receives a message L such that
ψ ∈ L from some successor u in round g((n, k + 1)) = g((n, k)) + 1. Hence ψ ∈ Qu(n, k). By
the induction hypothesis, (M,u) |= ψn. Therefore (M,v) |= ♦ψn.

We have now established that (M,v) |= ϕn ⇔ ϕ ∈ Qv(n, k) for all v ∈ W and all
ϕ ∈ SUBS(Λ) of the modal depth k such that 0 ≤ k ≤ mdi(Λ)− 1. We shall next show that
therefore (M, v) |= ϕn+1 ⇔ ϕ ∈ Qv(n + 1, 0) for all v ∈ W and all ϕ ∈ SUBS(Λ) of the
modal depth 0.

Recall the definition of the sets T , T ′ and U in the definition of δ on input states (S,m)
in the case where m = mdi(Λ)− 1. We shall first show that (M,w) |= ϕn ⇔ ϕ ∈ T holds
for each ϕ ∈ SUBS(Λ) such that md(ϕ) ≤ mdi(Λ).

Let ϕ ∈ SUBS(Λ) be a schema such that md(ϕ) ≤ mdi(Λ). The schema ϕ is a Boolean
combination of schemata ♦ψ, where md(ψ) < mdi(Λ). It therefore suffices to show that for
each such schema ♦ψ, we have (M,v) |= ♦ψn ⇔ ♦ψ ∈ T. This is shown by an argument
analogous to the corresponding argument discussed above. (See the appendix.)

We can now conclude that (M,v) |= Xn+1 ⇔ X ∈ T ′ for all head symbols X ∈
HEAD(Λ), and also (M,v) |= ϕ ⇔ ϕ ∈ T ′ for all atomic formulae ϕ ∈ ATOM(Λ). Therefore,
since every schema ϕ ∈ SUBS(Λ) of the modal depth 0 is a Boolean combination of formulae
in ATOM(Λ) and head symbols in HEAD(Λ), we have (M,v) |= ϕn+1 ⇔ ϕ ∈ Qv(n+ 1, 0)
for all v ∈W and all ϕ ∈ SUBS(Λ) of the modal depth 0, as required.

Finally, if mdi(Λ) = 0, it is easy to define an automaton Λ that satisfies the requirements
of the Theorem. The number |HEAD(Λ)| of different head predicates is finite, so there
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are finitely many different truth distributions that the set of head predicates can obtain.
Therefore, once we have computed the extensions of the formulae X0, we can directly check
at each node, without further communication with neighbouring automata, whether any
iteration Xn of any appointed head predicate X of Λ is true. This holds because the Boolean
combinations obtained by the head predicate set must begin repeating periodically after
sufficiently many iterations. J

4 Modal theories capture complements of MPA-recognizable classes

Let Π be a finite set of proposition symbols. Let C be the class of pointed Π-models. A
class K ⊆ C of pointed Π-models is said to be definable by a modal theory if there exists a
set Φ of modal Π-formulae (Π-theory) such that for all (M,w) ∈ C, we have (M,w) |= Φ iff
(M,w) ∈ K. By (M,w) |= Φ we mean that (M,w) |= ϕ for all ϕ ∈ Φ. A class K′ ⊆ C is said
to be co-definable by a modal theory Φ if C \ K′ is definable by the modal theory Φ.

Let Π be a finite set of proposition symbols. The set T0 of Π-types of the modal depth 0
is defined to be the set containing a conjunction∧

p∈S
p ∧

∧
p 6∈S

¬ p

for each set S ⊆ Π, and no other formulae. We assume some canonical bracketing and
ordering of conjuncts, so that there is exactly one conjunction for each set S in T0. Note
also that

∧
∅ = >. The type τ(M,w),0 of a pointed Π-model (M,w) is the unique formula ϕ

in T0 such that (M,w) |= ϕ.
Assume then that we have defined the set Tn of Π-types of the modal depth n. Assume

that Tn is finite, and assume also that each pointed Π-model (M,w) satisfies exactly one
type τ(M,w),n of the modal depth n. Define

τ(M,w),n+1 := τ(M,w),n ∧
∧
{ ♦τ | τ ∈ Tn, (M,w) |= ♦τ }

∧
∧
{ ¬♦τ | τ ∈ Tn, (M,w) 6|= ♦τ }.

The formula τ(M,w),n+1 is the Π-type of the modal depth n + 1 of (M,w). We assume
some standard ordering of conjuncts and bracketing, so that if two types τ(M,w),n+1 and
τ(N,v),n+1 are equivalent, they are actually the same formula. We define Tn+1 to be the set
{ τ(M,w),n+1 | (M,w) is a pointed Π-model }. We observe that the set Tn+1 is finite, and that
for each pointed Π-model (M,w), there is exactly one type τ ∈ Tn+1 such that (M,w) |= τ .

It is easy to show that each Π-formula ϕ of modal logic is equivalent to the disjunction of
exactly all Π-types τ of the modal depth md(ϕ) such that τ |= ϕ. By τ |= ϕ we mean that
for all pointed Π-models (M,w), we have (M,w) |= τ ⇒ (M,w) |= ϕ. (Note that

∨
∅ = ⊥).

Define a type automaton A for Π to be message passing automaton whose set of states is
exactly the set T of all Π-types. The set of messages is also the set T . Furthermore, the
initial transition function π is defined such that the state of A at (M,w) in round n = 0 is
the type τ(M,w),0. Let N be a set of types. If all types in N are types of the same modal
depth n, and if τ is a type of the modal depth n, we define δ(N, τ) to be the type

τn+1 = τ ∧
∧
σ∈N

♦σ ∧
∧

σ ∈Tn\N

¬♦σ.

On other inputs, δ is defined arbitrarily. The message construction function µ is defined
such that µ(τ) = τ . The set of accepting states can be defined differently for different type
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automata A of the vocabulary Π. It is easy to see that the state of any type automaton A at
(M,v) in round n is τ iff the type of the modal depth n of (M,v) is τ .

I Theorem 3. Let Π be a finite set of proposition symbols. Each class of pointed Π-models
co-definable by a modal Π-theory is recognizable by a message passing automaton.

Proof. Let K be a class of Π-models co-definable by a modal Π-theory Φ. Let ϕ be an
arbitrary formula in Φ. The formula ¬ϕ is equivalent to the disjunction of Π-types τ of
the modal depth md(ϕ) such that τ |= ¬ϕ. Let D(¬ϕ) denote the disjunction. We write
τ ∈ D(¬ϕ) in order to indicate that τ is one of the disjuncts of D(¬ϕ).

Let T denote the set of exactly all Π-types. Define a Π-type automaton A such that the
set of accepting states is the set { τ ∈ T | τ ∈ D(¬ϕ) for some ϕ ∈ Φ }. It is straightforward
to show that the automaton accepts exactly the class K of pointed Π-models. J

I Theorem 4. Let Π be a finite set of proposition symbols. Each class of pointed Π-models
recognizable by a message passing automaton is co-definable by a modal theory.

Proof. Let (M,w) be a pointed Π-model. Let A be a message passing automaton whose
set of proposition symbols is Π. Let n ∈ N. We let A

(
(M,w), n

)
denote the state of the

automaton A at the node w in round n. We shall begin the proof by showing that the
following statements are equivalent for all pointed Π-models (M,w) and (N, v) and all n ∈ N.
1. The models (M,w) and (N, v) satisfy exactly the same Π-type of the depth n.
2. A

(
(M,w), k

)
= A

(
(N, v), k

)
for each k ≤ n and each message passing automaton A

whose set of proposition symbols is Π.
We prove the claim by induction on n. For n = 0, the claim holds trivially by definition of
the transition function π.

Let (M,w) and (N, v) be pointed Π-models that satisfy exactly the same Π-types of
the modal depth n + 1. Let A be an automaton and δ the transition function of A. Call
qn = A

(
(M,w), n

)
and qn+1 = A

(
(M,w), n+ 1

)
. Let σ1, ..., σk enumerate the Π-types of the

modal depth n and assume that

τ(M,w),n+1 = τ(M,w),n ∧
∧

i∈{1,...,m}

♦σi ∧
∧

i∈{m+1,...,k}

¬♦σi

Since (M,w) and (N, v) satisfy the same Π-type τ(M,w),n+1 of the depth n+ 1, they also
satisfy the same Π-type τ(M,w),n of the depth n. By the induction hypothesis, we therefore
conclude that A

(
(N, v), n

)
= qn. Also, since (M,w) and (N, v) satisfy the same type of the

depth n+ 1, the set of types of the depth n satisfied by the successors of w is the same as
the set satisfied by the successors of v. That set is {σ1, ..., σm } in both cases. Therefore, by
the induction hypothesis, the set of states defined by succ(w) in round n is exactly the same
as the set of states defined by succ(v) in round n. Therefore the set of messages received by
w in round n+ 1 is exactly the same as the set of messages received by v in round n+ 1.
Therefore, since A

(
(N, v), n

)
= qn, we conclude that A

(
(N, v), n+ 1

)
= qn+1, as required.

Let (M,w) and (N, v) be pointed Π-models and assume that A
(
(M,w), k

)
= A

(
(N, v), k

)
for each k ≤ n+ 1 and each message passing automaton A whose set of proposition symbols
is Π. Since this is true for an arbitrary automaton A of the vocabulary Π, this holds for
any type automaton of the vocabulary Π. Hence (M,w) and (N, v) satisfy exactly the same
Π-types of the depth n+ 1.

We have now established equivalence of the conditions 1 and 2 above. We are ready
to show that each class of pointed Π-models recognizable by an automaton can also be
co-defined by a modal theory.
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Let A be an arbitrary Π-automaton. Let C be the class of exactly all pointed Π-models
accepted by A. Define T to be the collection of exactly all Π-types. Let Φ denote the set
of exactly all Π-types τ ∈ T such that for some n, the type τ is the Π-type of the depth
n of some pointed Π-model (M,w), and furthermore, the automaton A accepts (M,w) in
round n. Define the infinite disjunction

∨
Φ. We shall establish that for all pointed Π-models

(M,w), we have (M,w) |=
∨

Φ iff A accepts (M,w).
Assume that (M,w) |=

∨
Φ. Thus (M,w) |= τn for some type τn of the depth n of some

pointed model (M ′, w′) accepted by A in round n. Now (M,w) and (M ′, w′) satisfy the
same type τn, so by the equivalence of the conditions 1 and 2 above, (M,w) and (M ′, w′)
must both be accepted by A in round n.

Assume that (M,w) is accepted by the automaton A. The pointed model (M,w) is
accepted in some round n, and thus the type of the depth n of (M,w) is one of the disjuncts
of Φ. Therefore (M,w) |=

∨
Φ. The modal theory { ¬ τ | τ ∈ Φ } co-defines the class C of

pointed Π-models accepted by A. J

5 Expressivity and Decidability

In this section we very briefly investigate expressivity and decidability issues concerning MSC.
We first investigate the single variable fragment MSC1 of MSC. This fragment contains the
programs Λ such that |HEAD(Λ)| = 1. In the finite, the single variable fragment MSC1 can
simulate formulae of the µ-calculus of the type µX.ϕ, where ϕ is free of fixed point operators
(see the proof of Proposition 7). Also, MSC1 is not contained in MSO (proof of Proposition
6). It turns out that decidability and PSPACE-completeness of the satisfiability and finite
satisfiability problems of MSC1 follow rather trivially by the following delightful argument.

I Proposition 5. The SAT and FINSAT problems for MSC1 are PSPACE-complete.

Proof. Let Λ be a program of MSC1. Let X be the appointed head predicate symbol of Λ.
(If Λ has no appointed symbol, Λ is not satisfiable.) We first check whether the formula X0

is satisfiable by using a decision algorithm for ordinary modal logic. If not, we check whether
the formula X1 is satisfiable, again using a decision algorithm for ordinary modal logic. If
not, we know that Λ is not satisfiable, for the following simple reason.

Let (M,w) = ((W,R, V ), w) be an arbitrary model of the same vocabulary as Λ. Let
ϕ be the schema such that the iteration clause of Λ for X is X : − ϕ. Define the function
F : Pow(W )→ Pow(W ) such that F (U) = { u ∈W |

(
(W,R, V [X 7→ U ]), u

)
|= ϕ }. Since

||X0||M = ||X1||M = ∅, we observe that F (∅) = ∅. Since ||Xn+1||M = F (||Xn||M ) for all
n ∈ N, we conclude that no formula Xk is satisfied by any node of M .

The claim of the current proposition now follows from the PSPACE-completeness of
ordinary modal logic. J

We leave the question of decidability of MSC open at this stage, and sketch some proofs
concerning expressivity instead. The µ-calculus (µML) is a bisimulation invariant logic that
expands modal logic with a recursion mechanism based on least and greatest fixed point
operators µX and νX. For the semantics and basic properties of µML, see [3].

I Proposition 6. MSC1 6≤ µML. This holds already in the finite.

Proof Sketch. (Note that we only sketch a proof of this proposition.) Define a program Λ
of MSC1 which is true in (M,w) iff the following conditions hold.
1. There exists some n ∈ N such that there is a directed path of the length n from w to a

point v without successors. We call v a dead-end.
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2. There are no directed paths shorter than n from w to a dead-end, and each directed path
of the length n originating from w ends in a dead-end.

If a pointed model (M,w) satisfies the above property, with n being the unique distance to a
dead-end, we say that (M,w) has the n-path property.

Define X0 : − �⊥ and X : − ♦X ∧�X. It is easy to show by induction on n that for
all pointed models (M,w), the model (M,w) satisfies the n-path property iff (M,w) |= Xn.

If a pointed model has the n-path property for some n ∈ N, we say that (M,w) has the
centre point property. The class of pointed models with the centre point property is not
definable by any formula of µML. This is shown by establishing that there exists no formula
ϕ(x) of MSO such that M |= ϕ(w) iff (M,w) has the centre point property. The claim that
MSC1 6≤ µML in the finite then follows, as it is well known that µML < MSO.

Assume, for the sake of contradiction, that there exists a formula ϕ(x) of MSO that defines
the centre point property. Therefore MSO can define the corresponding property in restriction
to the class of rooted finite ranked trees with two successor relations. By the pumping lemma
for tree languages it is then trivial to establish that this is a contradiction. J

Alternation of µ and ν-operators is a tricky issue in µ-calculus, and alternation hierarchies
have been defined in various ways. We define Σµ1 to be the fragment of µ-calculus without
ν-operators and with negations on the atomic level, i.e., the language built from literals with
∧,∨,♦ and �, and µX when X occurs only positively in the scope of µX. We define Πµ

1
analogously.

I Proposition 7. Σµ1 < MSC in the finite.

Proof Sketch. (Note that we only sketch the proof of this proposition.) It is folklore that
µ-calculus can be defined with or without the capacity of using simultaneous fixed points,
without change in expressive power. There are translations both ways, from standard
µ-calculus into one with simultaneous fixed points and back. It is also folklore that µ-
calculus can be defined in terms of modal equation systems (see [3]). For instance, a formula
µX.ψ

(
X, µY.ϕ(X,Y )

)
translates to the equation block

X : − ψ(X,Y )
Y : − ϕ(X,Y ),

where ψ(X,Y ) is the formula obtained from the formula ψ
(
X, µY.ϕ(X,Y )

)
by replacing

the subformula µY.ϕ(X,Y ) by the variable Y . For a more concrete example, the formula
µX.

(
�X ∨ µY.(p ∨ ♦(Y ∨X))

)
translates to the block

X : − �X ∨ Y
Y : − p ∨ ♦(Y ∨X).

If M = (W,R) is a model, the block

X : − ψ(X,Y )
Y : − ϕ(X,Y )

defines a monotone function F : (Pow(W ))2 −→ (Pow(W ))2 such that

F (U, V ) =
(
||ψ(U, V )||M , ||ϕ(U, V )||M

)
.

The least fixed point F∞(∅, ∅) of this monotone operator is a pair (X∞, Y∞) such that
X∞ = ||µX.ψ

(
X, µY.ϕ(X,Y )

)
||M .
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An arbitrary formula ϕ of Σµ
1 translates into an equation block with a finite number

of equations. We may assume that ϕ is of the form µX.ψ. (If not, we may use a dummy
variable X.) The set X∞ is then exactly the set ||ϕ||M . The very same equation block also
defines a program Λϕ of MSC, with the terminal clause corresponding to each variable Z
being Z(0) : − ⊥, and the set of appointed variables being {X}. Now, Λϕ is true in a finite
model M exactly in the nodes belonging to X∞. This follows immediately, since there is a
finite number n ∈ N such that FnM (∅, ..., ∅) = Fn+1

M (∅, ..., ∅), i.e., the closure ordinal of F is
finite. Therefore, for all w ∈W , we have w ∈ X∞ iff there is some n ∈ N such that we have
(M,w) |= Xn for the appointed variable X of Λ.

The strictness of the inclusion Σµ1 < MSC in the finite follows by Proposition 6. J

I Proposition 8. Πµ
1 6≤ MSC. This holds already in the finite.

Proof. MSC cannot define non-reachability: there exists no program of MSC true in exactly
those pointed models (M,w) where there is no directed path to, say, a point v without
successors, i.e., a dead-end. Assume that such a program exists. Run it in a directed successor
ring, i.e, a connected finite model (W,R), where R is a binary relation and where both the
out-degree and in-degree of each node is one. Let w be a node of the ring. If non-reachability
is definable, there is an automaton A such that if we run it on the ring, it accepts w in some
finite number n of rounds. However, let (N,S) be a finite model, where S is a successor
ordering of N and |N | ≥ n+ 10. Let u be the least element of N with respect to S. It is
straightforward to show that in the n-th round of running A, the state of A at w is exactly
the same as at u. Therefore A accepts ((N,S), u), which is a contradiction.

The formula νX.(♦> ∧�X) states that a deadend cannot be reached from the point of
observation. J

Finally, it is worth noting that the model checking problem for MSC is clearly decidable,
as the sequence of global configurations defined by an FMPA and a finite model must
eventually loop. With an MPA it is possible to recognize, with respect to the class of finite
pointed Kripke models, even undecidable classes of models.
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A Appendix

A.1 Addenda to the proof of Theorem 2

Argument for the special case where n = 0 and mdt(Λ) = 0

Recall the definition of the sets T , T ′ and U in the definition of π on initial inputs P ⊆ Π
for the case where mdt(Λ) = 0. Let V be the valuation of M . Call Φ = SUBF(Λ) ∩ Π.
By the definition π, we have (M, v) |= p iff p ∈ π

(
{ p ∈ Π | v ∈ V (p) }

)
for each p ∈ Φ,

and therefore, the equivalence (M,v) |= ϕ iff ϕ ∈ T holds for each atomic formula
ϕ ∈ ATOM(Λ). Hence, since every formula ϕ ∈ SUBF(Λ) of the modal depth 0 is a Boolean
combination of formulae in ATOM(Λ), we have (M, v) |= ϕ iff ϕ ∈ T for all formulae
ϕ ∈ SUBF(Λ) of the modal depth 0. Hence we have (M,v) |= X0 iff X ∈ T ′ for all schema
variable symbols X ∈ HEAD(Λ), and also (M,v) |= ϕ iff ϕ ∈ T ′ for all atomic formulae
ϕ ∈ ATOM(Λ). Therefore, since every schema ϕ ∈ SUBS(Λ) of the modal depth 0 is a
Boolean combination of formulae in ATOM(Λ) and head predicate symbols in HEAD(Λ),
the equivalence (M,v) |= ϕ0 iff ϕ ∈ Qv(0, 0) holds for all schemata ϕ ∈ SUBS(Λ) of the
modal depth 0, as required.

(M, v) |= ψ ⇔ ψ ∈ Qv(−1,mdt(Λ)− 1)

We have (M,v) |= ϕ iff ϕ ∈ Qv(−1, 0) for all v ∈ W and all ϕ ∈ SUBF(Λ) of the modal
depth 0, so the base step of the induction is clear. Let k ∈ N such that k ≤ mdt(Λ)− 2, and
assume that the equivalence (M, v) |= ψ iff ψ ∈ Qv(−1, k) holds for each v ∈W and each
ψ ∈ SUBF(Λ) such that md(ψ) ≤ k. Let v ∈W and let ϕ ∈ SUBF(Λ) be a formula of the
modal depth k + 1. We must show that (M,v) |= ϕ iff ϕ ∈ Qv(−1, k + 1). The formula ϕ
is a Boolean combination of formulae ♦ψ, where md(ψ) ≤ k. It therefore suffices to show
that for each such formula ♦ψ, we have (M,v) |= ♦ψ iff ♦ψ ∈ Qv(−1, k + 1).

Assume first that (M, v) |= ♦ψ. Therefore some successor u of v satisfies (M,u) |= ψ.
By the induction hypothesis, ψ ∈ Qu(−1, k). Hence, in round k + 1, the automaton A at u
sends a message L such that ψ ∈ L to the predecessors of u. Thus ♦ψ ∈ Qv(−1, k + 1).

Assume then that ♦ψ ∈ Qv(−1, k+ 1). Therefore the automaton AΛ at node v receives a
message L such that ψ ∈ L from some successor u in round k + 1. Therefore ψ ∈ Qu(−1, k).
By the induction hypothesis, (M,u) |= ψ. Therefore (M, v) |= ♦ψ.

(M,v) |= ϕ0 ⇔ ϕ ∈ Qv
(
0, 0)

Recall the definition of the sets T , T ′ and U in the definition of δ on input states (S,m, f)
in the case where m = mdt(Λ)− 1. We shall first show that (M, v) |= ϕ iff ϕ ∈ T holds for
each v ∈W and each formula ϕ ∈ SUBF(Λ) such that md(ϕ) ≤ mdt(Λ).

Let v ∈W . Let ϕ ∈ SUBF(Λ) be a formula such that md(ϕ) ≤ mdt(Λ). The formula ϕ
is a Boolean combination of formulae ♦ψ, where md(ψ) < mdt(Λ). By the definition of T , it
suffices to show that for each such formula ♦ψ, we have (M, v) |= ♦ψ iff ♦ψ ∈ T.

Assume first that (M, v) |= ♦ψ. Therefore some successor u of v satisfies (M,u) |= ψ.
Therefore, since md(ψ) < mdt(Λ), we know that ψ ∈ Qu

(
−1,mdt(Λ) − 1

)
. Thus the

automaton AΛ at u sends a message L such that ψ ∈ L to its predecessors in round mdt(Λ).
Thus ♦ψ ∈ T .

CSL’13
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Conversely, assume that ♦ψ ∈ T . Therefore v receives a message L such that ψ ∈ L from
some successor u in round mdt(Λ). Hence we have ψ ∈ Qu

(
−1,mdi(Λ)− 1

)
. Therefore we

know that (M,u) |= ψ. Thus (M,v) |= ♦ψ.
We have now established that (M,v) |= ϕ ⇔ ϕ ∈ T for all v ∈ W and all formulae

ϕ ∈ SUBF(Λ) of the modal depth up to mdt(Λ). Thus (M,v) |= X0 ⇔ X ∈ T ′ for all head
predicate symbols X ∈ HEAD(Λ), and also (M, v) |= ϕ iff ϕ ∈ T ′ for all atomic formulae
ϕ ∈ ATOM(Λ). Therefore, since every schema ϕ ∈ SUBS(Λ) of the modal depth 0 is a
Boolean combination of formulae in ϕ ∈ ATOM(Λ) and head predicate symbols in HEAD(Λ),
we have (M,v) |= ϕ0 iff ϕ ∈ Qv

(
0, 0) for all v ∈ W and all schemata in ϕ ∈ SUBS(Λ) of

the modal depth 0, as required. This concludes the base case of our argument by induction
on n.

(M,v) |= ♦ψn ⇔ ♦ψ ∈ T

Assume first that (M, v) |= ♦ψn. Therefore some successor u of v satisfies (M,u) |= ψn.
Hence, since md(ψ) < mdi(Λ), we know that ψ ∈ Qu

(
n,mdi(Λ) − 1

)
. Therefore the

automaton AΛ at u sends a message L such that ψ ∈ L to its predecessors in round
g(n+ 1, 0). Thus ♦ψ ∈ T .

Conversely, assume that ♦ψ ∈ T . Therefore v receives a message L such that ψ ∈ L from
some successor u in round g(n+ 1, 0). Hence, ψ ∈ Qu

(
n,mdi(Λ)− 1

)
. Therefore we know

that (M,u) |= ψn. Therefore (M,v) |= ♦ψn.
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