
A New Type Assignment for Strongly
Normalizable Terms
Rick Statman

Carnegie Mellon University
Department of Mathematical Sciences
Pittsburgh, PA 15213
(statman@cs.cmu.edu)

Abstract
We consider an operator definable in the intuitionistic theory of monadic predicates and we
axiomatize some of its properties in a definitional extension of that monadic logic. The axioma-
tization lends itself to a natural deduction formulation to which the Curry-Howard isomorphism
can be applied. The resulting Church style type system has the property that an untyped term
is typable if and only if it is strongly normalizable.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases lambda calculus

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.634

1 Introduction

Intersection types [4] are very interesting especially in their use for proving untyped terms to
be strongly normalizable [6]. However, we view them only as types, and the Curry-Howard
isomorphism does not seem to apply. Here we would like to extend the formulae as types
direction of Curry-Howard to include all strongly normalizable terms. We shall do this by
considering a definitional extension of a very weak version of intuitionistic monadic logic.
Our notion of typing appears quite different from the clever application of Curry-Howard
to the derivations of intersection types for untyped terms in [2]; we do no linearization of
untyped terms.

2 Intuitionistic Monadic Logic

We consider the first-order language of intuitionistic monadic predicate logic in the negative
fragment. The language consists of two individual constants
0, 1
and an arbitrary selection of monadic predicates R. In addition, we shall have two other
distinguished monadic predicates
P,Q

that play a special role and remain mostly hidden. We have the connective, →, the universal
quantifier, ∧, and a symbol for falsehood, @. We shall assume that P0, Q1 and P and Q are
disjoint; that is, ∧x(Px→ (Qx→ @)). As usual, we set ∼ F := F → @.

We define a certain definitional extension of our language as follows. Introduce a new
connective/relation symbol D which takes a single individual and two formula arguments,
and which is defined by DxFG := (Px→ F) & (Qx→ G).
Indeed, this is the only way that P and Q enter into our discussion.

© Richard Statman;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca; pp. 634–652

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.634
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

R. Statman 635

D satisfies many interesting properties. Of these, the equivalences

(a) D0FG ↔ F

(b) D1FG ↔ G

(c) Dt(F → G)(H → K) ↔ DtFH → DtGK

(d) Dt(∧yF)G ↔ ∧y DtFG y not free in G, t

(e) DtF (∧yG) ↔ ∧yDtFG y not free in F, t

are the most important. They can be verified as follows

(a) Assume F , then P0→ F and Q0→ G since ∼ Q0.
Conversely, assume D0FG. Then P0→ F so F since P0.

(b) Similar to (a)
(c) Assume Dt(F → G)(H → K). Now assume DtFH. To show DtGK assume Pt. Then,

since DtFH we get F and since Dt(F → G)(H → K) we get F → G. Thus G. So
Pt → G. Now assume Qt. Similarly, we get K. Thus, Qt → K. Conversely, assume
DtFH → DtGK. To show Dt(F → G)(H → K) assume Pt and F . Then ∼ Qt so
DtFH;. Thus, DtGK and hence since Pt, G. Similarly for H → K.

(d) Assume Dt(∧xF)G. Let x be given. To show DtFG assume Pt. Then ∧xF , in
particular, F . Thus, Pt→ F . Now assume Qt. By hypothesis G. Thus, Qt→ G. But
x was arbitrary; thus, ∧x(Pt → F and Qt → G). Conversely, suppose ∧x DtFG. To
show Dt(∧xF)G assume Pt. Let x be given. We have, by assumption, Pt→ F so F .
Thus ∧xF . We already have Qt→ G. Similarly for the other half.

The above equivalences would be shared by D with any discriminator. Discriminators
have been extensively studied, and we refer the reader to Bloom & Tindell [3]. Fortunately,
the properties above do not depend on the decidability of P and Q, their coverage, nor on
their complementarity. For example, in any (Kripke) model satisfying ∧x (DxFF ↔ F) if
the model fails to satisfy ∧x (Px ∨Qx) then the model satisfies ∼∼ F . Unfortunately, the
five above are not complete in our context. For example,

Dt(DrFG)(DrHK)↔ Dr(DtFH)(DtGK)

is valid but not derivable from the five. This can be seen as an exercise after the next
section. There are more; indeed, the set of all valid equivalences is undecidable. If A[S] is
any monadic formula on the monadic predicate S then

A[S] is intuitionistically valid ⇔

A[λxDx(Rx)(Rx)]↔ (R0→ R0) is a valid equivalence. In particular, Kripke model M
for S can be extended by setting R = S, P = M − {1} and Q = {1}. Thus, we can apply
the theorem of Maslow, Mints, and Orevkov [5].

3 Natural Deduction and Rewrite Rules

From now on, we consider only the restricted language without @, P , and Q, and with D as
a primitive symbol. The above equivalences can be formulated as reduction rules;

CSL’13

636 A New Type Assignment for Strongly Normalizable Terms

(0)D0FG � F

(1)D1FG � G

(→)Dt(F → G)(H → K) � (DtFH)→ (DtGK)
(∧)Dt(∧uF)G � ∧uDtFG u not free in G or t
(∧)DtF (∧vG) � ∧v DtFG v not free in F or t
($) ∧ uF � F u not free in F

($$) ∧ u ∧ vF � ∧v ∧ uF

Here ($) and ($$) make for a smoother theory. The congruence generated by � is called
formula conversion (conv.).

D − {(0), (1)} is denoted D−. The following are easily verified.

Facts:

(i) D− reductions satisfy the weak-diamond property.
(ii) A given formula D− reduces to only finitely many others.
(iii) D− reduction has the strong diamond property, modulo ($$).

There is an obvious notion of residual for reductions. Residuals, if they exist, are unique
and the corresponding reductions commute modulo the order of ∧’s.

(iv) D− is Church-Rosser.
(v) (0) + (1) has unique normal forms.
(vi) There is a strip lemma for (0)+(1) -reduction over D; If F ←� G in general, and G�→ H

by (0) + (1) then H �→ K in general and F �→ K by (0) + (1).
(vii) � is Church-Rosser.
(viii) There is a standardization theorem for (∧);

If F �→ ∧yG then there exists H such that F �→ ∧yH by (∧) and ($$) alone and
H �→ G.

(ix) A formula F in � normal form has the properties

(a) F does not contain D0HK or D1HK

(b) If F contains DtF0F1 then if Fi is not atomic then Fi has the form H → K and F1−i

is atomic.

(i) � normal forms are unique up to ($$).

If we have a formula F with no variable both free and bound and no variable bound twice
(alpha normal form) and we require that in ($) expansions u is new, then in any conversion
F conv. G each quantifier ∧v has at most one descendant in G. The replacement of ∧v in F
by t in this conversion is the result of substituting t for every occurrence of v and omitting
∧v. The result is a valid conversion when redundant steps are omitted.

Now we have the natural deduction rules for intuitionistic monadic logic with D

R. Statman 637

/

F

/

·
·
·

(→ I) G

F → G

· ·
· ·
· ·

(→ E) F → G F

G

·
·
·

(∧I) F

∧vF v (eigenvariable) not free in any
assumption

·
·
·

(∧E) ∧vF

[t/v]F t free for v in F (i.e. if t is a
variable it should not become bound by
substitution)

·
·
·

(conv.) F

F conv. G
G

These rules will be transformed into typing rules for untyped lambda terms.

4 Typing Rules

Although we are essentially using Church typing, two deviations from normal conventions
will be employed. First, as already mentioned, we adopt Curry style derivations. This is
merely a notational convenience. In a second notational convenience, we dispense with

CSL’13

638 A New Type Assignment for Strongly Normalizable Terms

lambda abstraction over object variables appearing in types normally used as a coercion into
universally quantified types. Instead, we could distinguish the notion of a typed sub-term
from an untyped one, so an untyped sub-term begins a nested set of typed ones; but, in
practice, we shall just refer to a particular point in the typing derivation tree. Nevertheless,
each typed sub-term has a unique type. The typing rules are the following.

/

x : F
/

·
·
·

(→ I) X : G

λxX : F → G

· ·
· ·
· ·

(→ E) X : F → G Y : F

(XY) : G

·
·
·

(∧I) X : F

X : ∧vF v (eigenvariable) not free in the
type of any free variable of X

·
·
·

(∧E) X : ∧vF t free for v in F

X : [t/v]F

·
·
·

(conv.) X : F F conv. G

X : G

where x can occur in an assumption x : F with at most one F . These rules are to be
understood in the obvious way. Each derivation of X : G, for untyped X, corresponds to a
Church typing of X with G, and the free variables of X with the types assigned to them in
the assumptions.

R. Statman 639

5 Reductions of Derivations

With each conversion, F (conv.) G, a pair of reductions

F �→ H ←� G

can be associated. We can always assume that H has only 0 and 1 in atomic sub-formulae
R0 or R1, and no D0KK ′ or D1KK ′, and by the strip lemma, each reduction begins with
(0), (1) reductions and proceeds afterwards with none. Two conversions

F conv. G conv. H

in a row can be transformed into a single one

F conv. H

We now define the notion of a “derivation reduction" in 4 parts.
(1) In three successive inferences (∧I), (conv.), (∧E)

·
·
·
F

∧v F

∧u G

[t/u] G

either ∧u is a descendant of ∧v or it is not. In the first case, omitting trivial pairs of
($$)’s we have

·
[t/v] ·

·
[t/v] F

[t/u] G

In the latter case, there is the trivial case that ∧v is omitted by ($), and we have

·
·
·
F

∧u G (conv.)

[t/u] G

CSL’13

640 A New Type Assignment for Strongly Normalizable Terms

Otherwise, in case ∧u is omitted by ($), we have

·
·
·
F

∧v F

(conv.)
[t/u] G

Finally, we have

∧v F (conv.) ∧ v ∧ u H(v, u) by (∧) and ($$)
∧v ∧ u H(v, u)�→ ∧v ∧ u K(v, u)
∧u ∧ v K(v, u)←� ∧u ∧ v L(u, v)
∧u ∧ v L(u, v)←� ∧u G by (∧) and ($)

and so

·
·
·
F

∧u H(v, u)

H(v, t)

L(t, v)

∧v L(t, v)

[t/u]G

In this manner the three successive inferences are reduced to either

(conv.)
(conv.), (∧E)
(∧I), (conv.) or
(∧E), (conv.), (∧I)

(2) In three successive inferences (→ I), (conv.), (∧E);

R. Statman 641

/

F

/

·
·
·
G

F → G

∧u H

[t/u]H

omitting trivial pairs of ($$)’s, there exist H ′, F ′, G′ such that

∧uH �→ ∧uH ′� H ′ by ($)
H ′ �→ (F ′ → G′) ←� (F → G)
H ′ ←� [t/u]H

and so the three successive inferences can be reduced to an (→ I), (conv.).
(3) In three successive inferences (∧I), (conv.), (→ E);

/

F

/

·
·
·
H

·
∧u H ·

·
F → G F

G

omitting trivial pairs of ($$)’s, there exist H ′, F ′, G′ such that

∧uH �→ ∧uH ′ � H ′ by ($)
H ′ �→ (F ′ → G′) ←� (F → G)
H ′ ←� H

and so the three successive inferences can be reduced to an (conv.) (→ E).
(4) In three successive inferences (→ I), (conv.), (→ E);

CSL’13

642 A New Type Assignment for Strongly Normalizable Terms

/

F

/

·
·
·
G

·
F → G ·

·
H → K H

K

we have F conv. H and G conv. K. These three successive inferences can be reduced to
·
·
·
H

F

·
·
·
G

K

which uses only (conv.).
A segment in a derivation is an alternating sequence of (∧I), or (∧E) inferences and

conversions. Thus, in a segment, we can assume that no (∧I) precedes an (∧E) by applying
suitable reductions (1)-(3). Thus, if a segment begins and ends in a formula beginning with
→, it is simply a conversion. When employing the rules as typing rules, applying reductions
(1)-(3) to segments does not alter the untyped term being typed.

6 The Main Result

We shall now prove that an untyped term is strongly normalizable if, and only if, it has a
type in our system.

I Lemma 1. Suppose that we have typings X : F and X : G of the untyped X. Then there
exists a typing X : DvFG for v new. Moreover, if, for the free variable x, we have x : H in
X : F and x : K in X : G then x : DvHK in X : DvFG.

I Lemma 2. A normal untyped term X has a typing X : F .

I Lemma 3. Suppose that x occurs in X and [Y/x]X has a typing

[Y/x]X : F.

Then there is a typing (λxX)Y : F , where the free variables of X may have new types.

R. Statman 643

I Proposition 1. If X is strongly normalizable then for some F we have a typing X : F .

Proof. Now suppose that X is strongly normalizable. We show that X has a typing by
induction on the reduction tree of X with a subsidiary induction on the length of X. This
is really induction on Barendregts’s perpetual reduction strategy beginning with X ([1] pg.
334). We can write X :=

λx1 . . . xr


xi

X1 . . . Xs

(λx.X0)

Case 1: r > 0. Then the induction hypothesis on length can be applied directly.

Case 2: r = 0 and there is no head redex. This is just like the case of normal terms.

Case 3: r = 0 and X has a head redex. We distinguish two subcases.

Subcase 1: x is not free in X0. Now both X1 and X0X2 . . . Xs have shorter reduction trees
than X. Thus, by induction hypothesis, both have typings with X1 : G. We may adjust
the typings of the free variables in X1 and X0X2 . . . Xs so that they match as in the case of
normal terms. Thus, we have a typing of X with x : G.

Subcase 2: x appears free in X0. Now the reduction tree of

([X1/x]X0)X2 . . . Xs

is smaller than that of X so the induction hypothesis applies and this term has a typing. Now
we can apply Lemma 3 and adjust the types of the free variables in ([X1/x]X0)X2 . . . X2. J

I Lemma 4. If X : G is strongly normalizable with y : F and Y : F is strongly normalizable
then [Y/y]X : G is strongly normalizable.

I Proposition 2. If the untyped term X has a typing X : F then X is strongly normalizable.

Proof. By induction on X where we again write X :=

λx1 . . . xr


xi

X1 . . . Xs

(λxX0).

Lemma 4 prevails. J

Acknowledgement. The author would like to thank refree 3 (the expert) for his many
thoughtful and usefull suggestions. There was neither time nor space to include them all in
the version of this paper.

References
1 H. P. Barendegt, “The Lambda Calculus", North Holland, 1984.
2 A. Bucciarelli, Piperno, A., and Salvo, I., Intersection types and lambda definability,

MSCS03 13 (1), 2003, pp. 15-53.
3 S. Bloom and R. Tindell, Varieties of “if-then-else", SICOMP 12 (4), 1983.

CSL’13

644 A New Type Assignment for Strongly Normalizable Terms

4 M. Coppo and M. Dezani, A new type assignment for lambda terms, Archiv fur Math.
Logik, 19, 1978.

5 S. Ghilezan, Strong normalization and typability with intersection types, Notre Dame Jour-
nal of Formal Logic, 37 (1), 1996.

6 S. A. Maslow, G. E. Mints, and V. P. Orevkov, Unsolvability in the constructive predicate
calculus, Soviet Math. Doklady 4 1963, pp. 1365-1367.

7 G. Pottinger, “A type assignment for strongly normalizable lambda terms", Curry
Festschrift, 1980.

8 M. Sorenson and P. Urzyczyn, Lectures on the Curry-Howard Isomorphism Manuscript,
1998.

R. Statman 645

A Proof of Lemma 1

Proof. Lemma 1. By induction on X.

Basis: X = x. The typings X : F and X : G are both segments, which we can assume are the
same length by adding trivial conversions. In addition, we can assume that all the variables
which occur bound in one typing are distinct from the variables which at some point occur
free in the other. Then we can simulate both typings in a typing by DvFG as follows.

From X : F to X : DvFG

x : H

x : ∧uH

7→ x : DvHK

x : ∧uDvHK

x : Dv(∧uH)K

x : ∧uH

x : [t/u]H

7→ x : Dv(∧uH)K

x : ∧u DvHK

x : [t/u]DvHK

and similarly for from X : G to X : DvFG.

Induction step:

Case 1: X = (Y Z)

In X : F we have
· ·
· ·
· ·

Y : H Z : M
· ·
· (segment) · (segment)
· ·

Y : K → L Z : K

(Y Z) : L
·
· (segment)
·

(Y Z) : F

and in X : G we have

CSL’13

646 A New Type Assignment for Strongly Normalizable Terms

· ·
· ·
· ·

Y : H ′ Z : M ′
· ·
· (segment) · (segment)
· ·

Y : K ′ → L′ Z : K ′

(Y Z) : L′
·
· (segment)
·

(Y Z) : G

The segments can be simulated as in the basis case and this arrives at

· ·
· ·
· ·
Y : DvHH ′ z : DvMM ′

· ·
· (segment) · (segment)
· ·
Y : Dv(K → L)(K ′ → L′) (conv.) ·

Y : DvKK ′ → DvLL′ Z : DvKK ′

(Y Z) : DvLL′

and the final segment can be, again, simulated as in the basis case.

Case 2: X = λyY .

In X : F we have

/

y : H
/

·
·
·

Y : K

λyY : H → K

·
· (segment)
·

X : F

R. Statman 647

In X : G we have
/

y : H ′
/

·
·
·

Y : K ′

λyY : H ′ → K ′

·
· (segment)
·

X : G

and so we have the simulation

/

y : DvHH ′

/

·
·
·

Y : DvKK ′

λyY : DvHH ′ → DvKK ′

(conv.)
X : Dv(H → K)(H ′ → K ′)

and the final segment can be, again, simulated as in the basis case. J

As usual we say that an untyped term is strongly normalizable if every beta reduction
sequence terminates.

B Proof of Lemma 4

Proof. Lemma 4: By induction where we let

k = the length of any � normal form of F,
l = the size of the reduction tree of Y,
m = the size of the reduction tree of X,
n = the length of X

and we order the 4-tuples (k, l,m, n) lexicographically. As before we write X :=

λx1 . . . xr


xi

X1 . . . X2
(λxX0)

Case 1: r > 0. In this case the result follows from the induction hypothesis applied to n.

CSL’13

648 A New Type Assignment for Strongly Normalizable Terms

Case 2: r = 0 and xi is not the free variable y. In this case the result follows by the induction
hypothesis applied to the Xj in place of X.

Case 3: r = 0 and X has the head redex (λxX0)X1. In this case the typing of X has the
form

/

x : H, y : F
/

·
·
·

X0 : J

(→ I)
λx.X0 : H → J y : F

· segment ·
· ·

λx.X0 : K → L X1 : K

(λx.X0)X1 : L

·
· (segment)
·

(λx.X0)X1 : L

·
·
·

X : G .

By the remark before Lemma 1 we may assume that the segment from H → J to K → L is
actually a conversion which factors into a conversion of H to K followed by a conversion of
J to L. We note here that no eigenvariable in either segment displayed above can occur in
F . We distinguish two subcases.

Subcase 1: x is not free inX0. By induction hypothesis on n, [Y/y]X1 is strongly normalizable.
In addition,

y : F

·
·
·

X0 : J

(conv.)
X0 : M

·
·
·

X0X2 . . . Xs : G.

R. Statman 649

is a typing of the strongly normalizable X0X2 . . . Xs for which the induction hypothesis
applies to m. Thus,

[Y/y](X0X2 . . . Xs)

is strongly normalizable. But then Barendregt’s perpetual strategy terminates when applied
to [Y/y]X, so [Y/y]X is strongly normalizable.

Subcase 2: x is free in X0. Now

y : F

·
·
·

X1 : K

(conv.)
X1 : H, y : F

·
·
·

[X1/x]X0 : J

(conv.)
[X1/x]X0 : M

·
·
·

([X1/x]X0)X2 . . . Xs : G

is a typing of ([X1/x]X0)X2 . . . Xs and the induction hypothesis applies to m. Thus,
([X1/x]X0)X2 . . . Xs is strongly normalizable and Barendregt’s perpetual strategy terminates
when applied to [Y/y]X. Thus, [Y/y]X is strongly normalizable.

Case 4: r = 0 and xi = y is free in X. Let

Y = λy1 . . . yt


yk

Y1 . . . Yq

λz.Z

Subcase i: t = 0 and Y has no head redex. Then [Y/y]X is strongly normalizable by the
induction hypothesis for n applied to the terms [Y/y]Xj and the assumption that Y is
strongly normalizable applied to the terms Yj .

Subcase ii: t = 0 and Y has a head redex. By induction hypothesis for n applied to the
[Y/y]Xj we have that

x[Y/y]X1 . . . [Y/y]Xs

is strongly normalizable and we can apply the induction hypothesis for ` to

CSL’13

650 A New Type Assignment for Strongly Normalizable Terms

[([Y1/z]Z)Y2 . . . Yq/x](x[Y/y]X1 . . . [Y/y]Xs)

where x : F .

Subcase iii: t > 0. For easier notation let Y = λz.Z. In this case the typing of X has the
form

y : F y : F

· ·
· (segment) ·
· ·

y : H → K X1 : H

yX1 : K

(conv.)
yX1 : J , y : F

·
·

X : G

and the typing of Y has the form

/

Z : L
/

·
·
·

Z : M

(→ I)
λz.Z : L→M

·
· (segment)
·

λz.Z : F

Now the segment

λz.Z : L→M

·
· (segment)
·

λz.Z : F

·
· (segment)
·

λz.Z : H → K

R. Statman 651

reduces to a conversion by the remark preceeding Lemma 1 and we have the typings
Z : H

(conv.)
z : L′

·
·

Z : M ′

Z : J

for suitable instances L′ of L and M ′ of M and
/

Z : L
/

·
·
·

Z : M

(→ I)
λz.Z : L→M

·
· (segment)
·

λzZ : F

·
·
·

[Y/y]X1 : H

and

/

Z : L

/

·
·
·

Z : M

(→ I)
λz.Z : L→M

·
· (segment)
·

x : J, Y : F

·
·

x([Y/y]X2) . . . ([Y/y]Xs) : G

CSL’13

652 A New Type Assignment for Strongly Normalizable Terms

Thus, by induction hypothesis for n, x([Y/y]X2) . . . ([Y/y]X)s, is strongly normalizable. By
induction hypothesis for n, [Y/y]X1 is strongly normalizable. Now the length of any �
normal form of H is less than that of F since H conv. L′ and L→ M conv. F . Thus, by
induction hypothesis for k

[[Y/y]X1/z]Z

is strongly normalizable. In addition, the length of any� normal form of J is less than that
of F since H conv. L′ and L→M conv. F . Thus, by induction hypothesis for k

([[Y/y]X1/z]Z)([Y/y]X2) . . . ([Y/y]Xs)

is strongly normalizable. Hence, Barendregt’s perpetual strategy terminates for [Y/y]X and
it is strongly normalizable. J

	Introduction
	Intuitionistic Monadic Logic
	Natural Deduction and Rewrite Rules
	Typing Rules
	Reductions of Derivations
	The Main Result
	Proof of Lemma 1
	Proof of Lemma 4

