
Semantics of Intensional Type Theory extended
with Decidable Equational Theories ∗

Qian Wang1,3,4,5,6 and Bruno Barras1,2

1 Laboratoire d’Informatique de L’École Polytechnique
2 INRIA Saclay – Île de France
3 Key Laboratory for Information System Security, Ministry of Education
4 Tsinghua National Laboratory for Information Science and Technology

(TNList)
5 School of Software, Tsinghua University
6 Department of Computer Science and Technology, Tsinghua University

Abstract
Incorporating extensional equality into a dependent intensional type system such as the Calculus
of Constructions (CC) provides with stronger type-checking capabilities and makes the proof
development closer to intuition. Since strong forms of extensionality generally leads to undecid-
able type-checking, it seems a reasonable trade-off to extend intensional equality with a decidable
first-order theory, as experimented in earlier work on CoqMTU and its implementation CoqMT.

In this work, CoqMTU is extended with strong eliminations. The meta-theoretical study,
particularly the part relying on semantic arguments, is more complex. A set-theoretical model
of the equational theory is the key ingredient to derive the logical consistency of the formal-
ism. Strong normalization, the main lemma from which type-decidability follows, is proved by
attaching realizability information to the values of the model.

The approach we have followed is to first consider an abstract notion of first-order equational
theory, and then instantiate it with a particular instance, Presburger Arithmetic. These results
have been formalized using Coq.
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1 Introduction

Most proof assistants, such as Coq [19], implement intensional type theory because ex-
tensional type theory is usually undecidable. Coq implements ECIC, a type theory that
extends CC [8] with two more features: inductive types in the style of the Calculus of In-
ductive Constructions (CIC) [12], and a predicative hierarchy of universes, in the style of
the Extended Calculus of Constructions (ECC) [10].

The purely intensional version of type-theory may become awkward when it comes to
programming with dependent types. In the well-known examples of “vectors”, one has the
type Vect(n) of lists of length n, a concatenation function @ such that v1@v2 has length
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n1 + n2 whenever vi has length ni. But showing that v@nil = v is not possible because it is
not even a well-typed statement: lengths n+ 0 and n are not identified because + is defined
recursively on the first argument (n here) which is not in the form of 0 or successor.

Several works tried to fix this problem by either adding rewrite rules to increase the
computing ability [5] or including in extensional equalities [14, 15, 11]. Unfortunately, such
solutions have never been implemented as a proof assistant until CoqMT [17] which is
evolved from [6, 7, 16] and further generalized by CoqMTU [4]. The idea is a trade-
off between decidability and type-checking capabilities, only allowing decidable extensional
theory and automatically checking the theory equality by a decision procedure. Though this
solution looks nice, the meta-theory of CoqMTU is not well understood yet: confluence
and subject reduction of the full calculus are proved, but strong normalization (SN) and
consistency are only proved in absence of strong elimination.

Our first contribution, shown in Section 4, is that formalizing a new schema (CCT) incor-
porating an abstract decidable theory into CC family, which is not only ECIC implemented
by Coq, but a further extension of it. The abstract theory can be instantiated by any
concrete one of interest if it can be represented in CCT and satisfies special assumptions to
ensure the main meta-theoretical properties. CCT captures many calculus, but we provide
a uniform way of establishing the meta-theoretical properties proved semantically.

Our second contribution, shown in Section 5, is about proving the key properties of CCT:
consistency and strong normalization (with strong elimination), the basis for proving the
meta-theory of other calculus extending CC and admitting a decidable theory. As often,
this requires a set-theoretical model. We have based our study on the work of the second
author [3, 2], that provides a modular framework for modeling a wide range of type theories
from CC to the formalism of Coq. In this article, we show that this framework can be
reused and that it accommodates the extra features of CCT.

To implement CICUT as a proof assistant, we must investigate its syntactic properties,
among which only Church-Rosser can not be proved in the usual way, because we do not
embed extensional equations into ι-reduction as CoqMTU does. Nevertheless, it is not
a disaster because we believe Church-Rosser still hold and will study the whole syntactic
properties of CICUT in the future.

Finally, our last contribution, shown in Section 6, is to show that Presburger Arithmetic
fits perfectly in this abstract notion of decidable first-order theory, which also demonstrates
our abstraction philosophy works well.

In the following sections, most of the proofs will not be shown in the paper due to the page
limit. They have been done in the Coq development and available to whom are interested1.
Many similar notations are overloaded to avoid ambiguity, such as λ is overloaded by λ̇ and
λ̌ to represent abstractions of set and pure λ-term respectively. We will detail when we need.
The notations without overloading are Coq primitives, such as ∀ for universal quantification
because the whole work is formally done in Coq. To make the concepts easier to understand,
we use → for function types only, and use ⇒ for implication. We also try to hide De Bruijn
index, though it is heavily used in the development.

2 CICUT

Since the focus of this paper is the semantic meta-theory, the syntax of CICUT will not be
exhaustively introduced here. The core of CICUT is almost the same as that of the CC.

1 The development is available at https://github.com/superwalter/SETheory-dev

https://github.com/superwalter/SETheory-dev


Q. Wang and B. Barras 655

Γ `
Γ ` T : s
Γ [x : T ] `

Γ `, Γ(n) = (x : T )
Γ ` n :↑n+1 T

Γ `
Γ ` Prop : Kind

Γ ` T : s1, Γ [x : T ] ` U : s2

Γ ` Πx : T.U : s2

Γ [x : T ] `M : U
Γ ` λx : T.M : Πx : T.U

Γ `M : Πx : T.U, Γ ` N : T
Γ `M N : U [x\N ]

Γ `M : T, Γ ` T = T ′ : s
Γ `M : T ′

Γ `M : T
Γ `M = M : T

Γ `M = M ′ : T
Γ `M ′ = M : T

Γ `M1 = M2 : T, Γ `M2 = M3 : T
Γ `M1 = M3 : T

Γ ` T = T ′ : s1, Γ [x : T ] ` U = U ′ : s2

Γ ` Πx : T.U = Πx : T ′.U ′ : s2

Γ ` T = T ′ : s1, Γ [x : T ] `M = M ′ : U
Γ ` λx : T.M = λx : T ′.M ′ : Πx : T.U

Γ `M = M ′ : Πx : T.U, Γ ` N = N ′ : T
Γ `M N = M ′N ′ : U [x\N ]

Γ [x : T ] `M = M ′ : U, Γ ` N = N ′ : T
Γ ` (λx : T.M)N = M ′[x\N ′] : U [x\N ]

Figure 1 Calculus of Constructions, judgmental presentation.

Figure 1 shows a judgmental presentation of the typing rules of CC, it is different from the
usual one by replacing an equivalence relation on untyped λ-terms by equality judgments.
Γ ` M = M ′ : T expresses that M is equal to M ′, both being of type T in context Γ. [13]
shows these two representations are equivalent, and we will extend this conclusion for all of
the extensions considered in this article, leaving the proof to the future.

The main novel feature of CICUT and CoqMTU in the syntax of terms is the embedding
of a type of first-order terms. Regarding the typing rules, the main difference is the extension
of the definitional equality with a decidable theory ∼T on these first-order terms. See [4] for
a more detailed presentation. Let us just give the extra inference rules (besides Presburger
arithmetic axioms) that need to be considered to have CICUT instantiated with Presburger
arithmetic. It introduces three canonical constants and a defined symbol (Rec):

Γ `
Γ ` nat : Kind

Γ `
Γ ` 0 : nat

Γ `
Γ ` S : nat→ nat

Γ ` P : nat→ s, Γ ` N : nat, Γ `M0 : P 0, Γ `M1 : Πn : nat. P n→ P (Sn)
Γ ` Rec(P,N,M0,M1) : P N

Γ ` M ∼T N
Γ `M = N : T

N ∼T 0
Rec(P,N,M0,M1) ∼T M0

N ∼T SN ′

Rec(P,N,M0,M1) ∼T M1N
′ Rec(P,N ′,M0,M1)

The main difference between CICUT and CoqMTU is the abandon of incorporating
definitional equalities into reductions and restore the strong elimination, which is witnessed

CSL’13
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by the fact that the eliminator of natural numbers (Rec) can be used with a term P belonging
to any sort s. By contrast, weak eliminations are obtained by restricting s to the Prop, the
sort of propositions. In other words, weak elimination provides the induction principle of
the natural numbers, but not the possibility to define functions by structural induction.

3 Extensible set-theoretical realizability model of CC

This section gives a short introduction to a general method used to build consistency and
strong normalization models of a wide range of type-theories with dependent types. See [2]
for more details.

Consistency of such formalisms is often achieved by providing a set-theoretical model,
that interprets terms and types as sets. The judgment that a term has a given type is
interpreted by the proposition that the term is interpreted by a member of the interpretation
of the type. The soundness of such a model implies the consistency of the formalism, as
soon as one type (representing the absurd proposition) is interpreted by the empty set.

Strong normalization (SN) is the property that any well-typed term of a type system
cannot be reduced ad infinitum. It often captures the logical strength of the type system
seen as a logical formalism. This is why it generally requires a particular model construction.
Types are not mere sets of values anymore, but they should also be interpreted as sets of
strongly normalizing λ-terms, that represent the possible terms that have this type. The
latter are often called “realizers”. The soundness of the model shall also require that the
term can be interpreted by a realizer of its type. SN is thus a consequence of the construction
of such a realizability model.

The main ingredient in this model construction is the notion of saturated sets due to
Tait [18] (but Girard’s reducibility candidates serve the same purpose). They are sets of
strongly normalizing λ-terms such that the type constructors (such as the arrow type or
intersection) can be interpreted.

SN of CC and CIC in presence of weak elimination can be proved in this setting. However,
to take care of strong elimination, we need a more subtle definition of realizers: a saturated
set for the value of each type is not enough, each member of the value of a type should have
its own saturated set of realizers (see the R function below). This is closely related to the
notion of Λ-sets introduced by Altenkirch [1].

In the remainder of this section, we show how the model construction can be carried out,
provided we can implement the two signatures below: the first one gathers what is required
to build a set-theoretical model (the set-denotation, symbols will be overloaded with a )̇;
the second one corresponds to the extra requirements to have a full realizability model (the
term-denotation, symbols will be overloaded with a )̌, from which SN will follow.

3.1 Abstract Parameterized Models
The first abstract model is designed to provide a uniform structure of set denotations to all
the models, hiding the implementation until instantiation. It contains the set-denotation
for all closed terms in the model together with the properties to ensure soundness. It uses a
higher-order presentation: binding constructions are represented using functional arguments.

I Definition 1 (Abstract model). The model has the following signature:

X : Type ∈̇ : X→ X→ Prop =̇ : X→ X→ Prop F : X

@̇ : X→ X→ X λ̇ : X→ (X→ X)→ X Π̇ : X→ (X→ X)→ X
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satisfying certain properties (the followings are some examples):

N ∈̇A
(λ̇x∈̇A.f)@̇N=̇F (N)

[β]
∀x∈̇A.F (x)∈̇F
(Π̇x∈̇A.F )∈̇F

[Imp]
∀x∈̇A.(f(x))∈̇(F (x))
(λ̇x∈̇A.f)∈̇(Π̇x∈̇A.F )

[Π-I]

where λ̇x∈̇A.f stands for λ̇(A, x 7→f(x)) and Π̇x∈̇A.B for Π̇(A, x 7→B(x)).

X is the type of values, that can be seen as a kind of set-theory since we assume we have
relations ∈̇ and =̇ (equality and membership). F is the set of all the values. Other symbols
and related properties are specific to CC, hence look similar to their counterpart in CC.

The second abstract model is an supplement of the first one when upgrading a consistency
model to a SN model. The key parameter is the function R that takes a type and one of its
elements, and returns the saturated set formed by the realizers of this element.

I Definition 2 (Abstract supplement of SN model). This model aims at building a saturated
set for each type and indicates that each proposition is inhabited.

z : X z ∈ Π̇(P ∈̇F).P R : X→ X→ SAT

R(Π̇x∈̇A.B, f) =
⋂
x∈̇A

R(A, x) sat→ R(B(x), f@̇x) R(F, P ) = SN

where SAT and SN are the sets of all saturated sets and all SN pure λ-terms respectively.⋂
and sat→ are standard set intersection and product on saturated sets.

The instance z (the daimon) ensures that any type is inhabited including False, such
that SN is guaranteed in arbitrary type context. Consequently, consistency can not be
proved as in the consistency model, but as a matter of fact, it still can be deduced as will
be shown in Section 5.

3.2 Main Model Construction
The main model is called M, consisting in giving an account of all syntactic entities (terms,
judgments, derivations) based on an instance of the signatures above. The denotations of
open terms depend on the valuations of free variables, thus a term is encoded as a pair of
functions each taking a valuation (N→ X for set-denotation, or N→ Λ for term-denotation)
as a parameter returning a set or a pure λ-term as denotation, with some requirements to
ensure consistency. Since de Bruijn indices are used, the arguments of valuations are natural
numbers. Λ is the type of pure λ-terms.

Due to space constraints, we do not expose the full details of how sorts are dealt with.
In the following, we will only consider the sort of propositions. See the formal development
or [2] for an exact account. And the symbols of M will be overloaded with a .̃

I Definition 3 (Pseudo-terms). A term is a pair of a set and term denotation:

Term ∆= {f : (N→ X)→ X} × {g : (N→ Λ)→ Λ | sub(g) ∧ lift(g)}

where sub(g) and lift(g) assert that g commutes with substitution and relocation.

We use Val(t)i
∆= f(i) and Tm(t)j

∆= g(j) to denote the set-denotation and term-
denotation of term t with certain valuations i and j.

CSL’13
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I Definition 4 (Explicit substitution). An explicit substitution is a pair:

Esub ∆= {f : (N→ X)→ (N→ X)} × {g : (N→ Λ)→ (N→ Λ)|El(g),Es(g)}

where El(g) and Es(g) are commutation properties similar to the previous definition.

We use σ(i) and σ(j) to represent f(i) and g(j) for an explicit substitution σ.

I Definition 5 (Term constructors). Constructors in M are encoded as:

Prop ∆= 〈i 7→F, j 7→k〉
ñ

∆= 〈(i 7→i(n)), j 7→j(n)〉
M@̃N ∆= 〈i 7→Val(m)i@̇Val(N)i, j 7→Tm(m)j@̌Tm(N)j〉
λ̃A.t

∆= 〈i 7→λ̇x∈̇Val(A)i.Val(t)i′ , j 7→k@̌(λ̌x.Tm(t)j′)@̌Tm(A)j〉
Π̃A.B ∆= 〈i 7→Π̇x∈̇Val(A)i.Val(B)i′ , j 7→k@̌Tm(A)j@̌λ̌x.Tm(B)j′〉

where k is the combinator λ̌x.λ̌y.x, i′ is the function such that i′(0) = x and i′(n+1) = i(n),
and j′ is defined as j′(0) = j(0) and j′(n+ 1) = ↑̌

1
j(n).

Note that we just show the pair omitting the trivial proof of the assertions. The k com-
binator used in the second component of λ̃ and Π̃ allows to simulate CC-reductions occurring
in types. Many properties such as Val(M@̃N)i = Val(M)i@̇Val(N)i follow straightforwardly.

Similarly, we define several instances of explicit substitution, identity and cons:

id ∆= 〈i 7→i, j 7→j〉 σ ·M ∆= 〈i 7→Val(M)i � σ(i), j 7→Tm(M)j � σ(j)〉

where i 7→x� σ ∆= [0 7→x, . . . , n+ 1 7→σ(n)](n ≥ 0).
An explicit substitution σ applied to a term M is defined as:

M [σ] ∆= 〈i 7→Val(M)σ(i), j 7→Tm(M)σ(j)〉.

I Definition 6 (Judgment). A type judgment, denoted by M : T , holds for valuations i j iff:

[M : T ]i,j
∆= Tm(M)j 
Val(T )i

Val(M)i

where t 
T x stands for x∈̇T ∧ t∈̌R(T, x), which reads as “t realizes x of type T”.

I Definition 7 (Semantics of context). The denotation of a M-context Γ is a set of pairs of
valuations defined as :

[Γ] = {(i, j) | ∀n.[n : ↑̃n+1Γ(n)]i,j}

We will write membership of (i, j) to [Γ] as (i, j)∈̃[Γ].

I Definition 8 (Judgments with context). There are four kinds of judgments:

˜̀ Γ ∆= ∃(i, j).(i, j)∈̃[Γ] (Well-founded Judgment)
Γ ˜̀M ∈̃T ∆= ∀(i, j)∈̃[Γ].[M : T ]i,j (Typing Judgment)

Γ ˜̀M=̇N ∆= ∀(i, j)∈̃[Γ].Val(M)i=̇Val(N)i (Equality Judgment)
Γ1 ˜̀ σ . Γ2

∆= ∀(i, j)∈̃[Γ1], (σ(i), σ(j))∈̃[Γ2] (Explicit Substitution Judgment)

To express strong normalization, we need to express the notion of reduction between
pseudo-terms. This can be based on the set-denotation since the [β] parameter of Def. 1
assigns the same set to β-equivalent pseudo-terms. A pseudo-term reduces to another if the
term-denotation of the former reduces to that of the latter, whatever the valuation:
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I Definition 9. The pseudo-reduction (one step or more) in M is defined as:

M→̃M ′ ∆= ∀j.Tm(M)j→̌+Tm(M ′)j

A pseudo-term is said strongly normalizing if there is no infinite chain of pseudo-reduction
starting from it. The abstract SN lemma can be proved now:

I Lemma 10 (Abstract SN). For any well-typed term t in a valid context Γ, t is SN.

˜̀ Γ ∧ Γ ˜̀ t∈̃T ⇒ SN(t)

Proof. By ˜̀ Γ, we have ∃(p, q)∈̃[Γ]. By Γ ˜̀ t∈̃T , we have Tm(t)j∈̌R(Val(T )i,Val(t)i) for all
(i, j)∈̃[Γ]. Since R(Val(T )i,Val(t)i) is a saturated set, we have Tm(t)q is SN by applying
(p, q). Any reduction from t can be simulated by a reduction from Tm(t)q, hence t is SN as
a consequence of Tm(t)q is SN. J

3.3 Soundness of the Main Model
There are four steps to investigate the meta-theories of CC using the model above. The first
is to prove the existence of a model, that is, there are instances of the abstract models.

We can show that the abstract models can be instantiated in intuitionistic Zermelo-
Frankel set theory with replacement (IZFR). Types are encoded as a couples formed of a
set of values and a function from this set towards saturated set.

All propositions have the same set-denotation {∅}, and associate a saturated set to ∅.
So the type of all propositions is defined as

F
∆= ({(∅,_ 7→S)|S∈̌SAT},_ 7→SN).

Dependent product is based on an alternative encoding of functions due to Aczel (see [2] for
details), in order to interpret the impredicativity of Prop. The term-denotation of products
is fixed by the abstract model. Finally, the daimon z has to be taken as ∅.

The second step is to prove that the model interprets CC correctly. Syntax maps to
semantic terms in the model straightforwardly.

I Theorem 11 (Soundness). If Γ ` t : T (in CC, see Fig. 1), then Γ̃ ˜̀ t̃∈̃T̃ (in M).

The third step is the prove the consistency and SN in M. Consistency can now be proved
independently from strong normalization:

I Theorem 12 (Consistency). The model M is consistent.

∀M,¬([ ] ˜̀M ∈̃(Π̃P : Prop.P ))

Proof. Assume there is closed proof t of False ∆= Π̃Prop.0̃ in the model. Then, the term
interpretation of the proof t should be closed by commutation with substitution. By the
properties of Π̃, Tm(t)j@̌u, where u and j are respectively a closed term and a closed
valuation, should be in all saturated sets. As a consequence, it must contain free variables
which must be in Tm(t)j since u is closed. Since both t and j are closed, Tm(t)j should be
closed, a contradiction. J

I Theorem 13 (Strong normalization). Well typed M-terms are SN.

Finally, by soundness result, consistency and SN of CC is an immediate consequence of
the consistency and SN of M.

CSL’13
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4 A Sound Model of Abstract First Order Theory

Compared with sticking to some specific first-order theory, we are more interested in invest-
igating an abstract model (MT) such that the abstract meta-theoretical results established
in that model can apply to any of its instance.

There are three principles to design such an abstract model. Firstly, this model should
capture as many theories as possible which leads to an abstract expression of its signature
and axioms. Secondly, this model should provide enough evidence to ensure only the valid
theories are included : including in such a theory would not break the meta-theories estab-
lished in M. The evidence can be taken as abstract property about the abstract expressions,
which we call assumption. At last, we want to carry out the tough work as much as possible,
such that it is not so hard to instantiate this model later for any allowable specific theory.
There should be as few assumptions as possible and each assumption should be the familiar
concept. Many decidable theories are first order, hence we restrict us to first-order theories.

To prove the soundness, we also need to abstractly formalize the syntax of the theory
as well as the interpretation rules following the abstraction schema of MT. There are two
kinds of abstraction: abstract expressions and assumptions. When instantiating, all abstract
expressions and assumptions should be specified and proved respectively.

Following Coq’s convention, environment Parameter and Axiom are used for abstract
expression and assumption respectively. Environment Definition and Lemma are only
used for concrete definition and property. Since MT is an extension of M, the symbols in MT
are also reloaded by .̃ Syntactic symbols are overloaded byˆfor formulas and¯for terms.

4.1 Syntax of the Abstract Theory
Classically, first-order theory consists in four parts: the signature, the formulas, the axioms
and the inference rules.

I Parameter 14 (Signature). The domain and the operations of signature are:

T : Set; ↑̄ : T→ N→ N→ T; Θ̄ : T→ T→ N→ T; Φ̄ : T→ N→ [..N..]

where Set is the Coq’s primitive type, [..N..] is the list of natural numbers. Θ̄u
kt is the

substitution operation on t, Φ̄kt the function collecting the free variables in t, and ↑̄nk t the
operation relocating the free variables in t. The latter three operations are indexed by some
number k corresponding to the depth at which the operator is applied.

I Definition 15 (Formulas). Formulas are defined inductively upon signature:

F ::= >̂ | ⊥̂ | f→̂g | f ∨̂g | f ∧̂g | t ∼T u | ¬̂f | ∀̂f | ∃̂f

where f and g are formulas, and t and u are first-order terms.

Note that equality is the only predicate we are interested in. We shall (again) use Φ̂kf ,
↑̂
n

kf and Θ̂N
k f to denote respectively the set of free variables, the relocation of free variables

and the substitution operating on formulas.

I Definition 16 (Context). The context (notated as C) is a list of declarations corresponding
to either a term variable or an assumption:

C ∆= [..(T + {f : F})..].
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Since theories considered here are first-order, a well-formed formula should contain term
variables only.

I Definition 17 (Well-formed term and formula). Given a context H,

Wft(H, t)
∆= ∀n ∈l Φ̄t,H(n) = T; Wff(H, g) ∆= ∀n ∈l Φ̂g,H(n) = T

A valid formula should be a well-formed formula justified from the axioms by a succession
of judgments. We define first the (abstract) notion of axiom, which should be well-formed
formulas. Inference rules for generating theorems from the axioms come next. They are
defined here in terms of introduction rules, elimination rules and judgmental rules.

I Parameter 18 (Axioms). Axioms are Coq’s predicates which judges special formulas in
a context, further they should be well-formed :

Âx : C→ F→ Prop; Âx(H, f)⇒Wff(H, f)

I Definition 19 (Derivation rules). A derivation rule ( ˆ̀ : C → F → Prop) is a Coq’s
predicate with arity two defined inductively as followings:

H(n) = f, Wff(H, ↑̂
(S n)

f)

H ˆ̀ ↑̂
(S n)

f

Âx(H, f)
H ˆ̀ f H ˆ̀ >̂

H ˆ̀ ⊥, Wff(H, f)
H ˆ̀ f

H ˆ̀ f→̂⊥̂
H ˆ̀ ¬̂f

H ˆ̀ ¬̂f
H ˆ̀ f→̂⊥̂

H ˆ̀ f1, H ˆ̀ f2

H ˆ̀ f1∧̂f2

H ˆ̀ f1∧̂f2

H ˆ̀ f1

H ˆ̀ f1∧̂f2

H ˆ̀ f2

H ˆ̀ f1, Wff(H, f2)
H ˆ̀ f1∨̂f2

H ˆ̀ f2, Wff(H, f1)
H ˆ̀ f1∨̂f2

H ˆ̀ f1∨̂f2, (f1 ::H) ˆ̀ ↑̂
1
f3, (f1 ::H) ˆ̀ ↑̂

1
f3

H ˆ̀ f3

Wff(H, f1), (f1 :: H) ˆ̀ ↑̂
1
f2

H ˆ̀ f1→̂f2

H ˆ̀ f1→̂f2, H ˆ̀ f1

H ˆ̀ f2

(T :: H) ˆ̀ f

H ˆ̀ ∀̂f
H ˆ̀ ∀̂f, Wft(H, t)

H ˆ̀ Θ̂tf

H ˆ̀ Θ̂tf Wft(H, t)
H ˆ̀ ∃̂f

H ˆ̀ ∃̂f (f :: T :: H) ˆ̀ ↑̂
2
g

H ˆ̀ g

Valid formulas (or theorems) are those formulas that can be derived by application of
the above rules. Valid formulas should be well-formed:

I Lemma 20. If H ˆ̀ f , then Wff(H, f)

4.2 The abstract model of the theory
MT is another formalization of the theory using the material provided by M. The domain
of first-order term is encoded by a constant S : Term in MT. First-order terms also encoded
by Term should satisfy the following assumptions:

I Axiom 21. The following assumptions aims at ensuring the meta-theory:

∀Γ,Γ ˜̀ S∈̃Kind [1] ↑̃nkS=̃S ∧ Θ̃N
k S=̃S [2]

Val(x)i∈̇Val(S)i Val(y)i∈̇Val(S)i
Val(x)i=̇Val(y)i ∨ ¬Val(x)i=̇Val(y)i

[3]

Val(x)i∈̇S Val(y)i∈̇S ¬Val(x)i=̇Val(y)i
∃P, P ∈̇(Π̇x∈̇S.F) ∧ P @̇Val(x)i=̇true ∧ P @̇Val(x)i=̇false

[4]

where true ∆= Π̇P ∈̇F.Π̇p∈̇P.P and false ∆= Π̇P ∈̇F.P .
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Assumption [1] and [2] assert that S is a closed object of type Kind. Assumption [3]
asserts that equation of set-denotations of the first-order term should be decidable. The
last assumption is included to ensure we could define the equality of the theory as Leibniz
equality later. The idea is that there exists a predicate that discriminates between different
values of S.

We further assume that axioms actually hold in the model MT:

I Axiom 22. Axioms are formulas interpreted by provable M-terms.

The encoding of formulas is given by a standard impredicative encoding due to Girard [9].

I Definition 23 (Formulas). The formulas are defined impredicatively:

x=̃y ∆= Π̃p : (Π̃x : S.Prop).Π̃t : (p@̃x).(p@̃y) ¬̃f ∆= f→̃⊥̃ A→̃B ∆= Π̃x : A.B

⊥̃ ∆= Π̃P : Prop.P A∨̃B ∆= Π̃P : Prop.((A→̃P )→̃(B→̃P )→̃P )

>̃ ∆= Π̃P : Prop.P→̃P A∧̃B ∆= Π̃P : Prop.((A→̃B→̃P )→̃P )

∀̃f ∆= Π̃x : S.f ∃̃f ∆= Π̃P : Prop.((Π̃n : S.f [x/n])→̃P )

We can prove similar properties to those in Definition 19, but in the format of typing
judgments. Among the 26 properties, we only show the following by using Rule [3] and [4]
of the previous Assumption 21.

I Lemma 24. Equality of theory can be embedded into the typed equality.
WFCE(Γ) Γ ˜̀ x∈̃S Γ ˜̀ y∈̃S Γ ˜̀ t∈̃(x=̃y)

Γ ˜̀ x=̇y
[=̃-E]

where WFCE(Γ), standing for well-formed closed environment, is defined as:

∀(i, j′)∈̃[Γ],∃j, (i, j)∈̃[Γ] ∧ CPT(j)

CPT(j) stands for Closed Pure Term, means j always returns a closed term to any index.

WFCE looks strange but necessary. In M, the value of any proposition is the singleton
of empty, the distinction between true propositions and false propositions reflects in their
realizers. False proposition contains open realizers only, while true proposition contains at
least one close realizer. A well-formed context Γ can contain false propositions and of course
false proposition (x=̃y) is derivable from Γ indicating that x and y may have different values.
That’s why we need a constraint WFCE on the context showing that the term-valuation of
each variable should be the closed to ensure that Γ does not contain false propositions.

4.3 Interpretation Rules and Soundness
Soundness of MT can be proved by defining abstract interpretation rules.

I Parameter 25 (Signature mapping). There exists a function IT : T→ Term which assigns
a M-term for each first-order term.

I Definition 26 (Formula mapping). The function IF : F → Term, which assigns a M-term
to each formula, is defined as:

IF(x ∼T y) ∆= IT(x)=̃IT(y) IF(⊥̂) ∆= ⊥̃ IF(>̂) ∆= >̃

IF(¬̂f) ∆= ¬̃IF(f) IF(f ∧̂g) ∆= IF(f)∧̃IF(g) IF(f ∨̂g) ∆= IF(f)∨̃IF(g)

IF(f→̂g) ∆= IF(f)→̃IF(g) IF(∀̂f) ∆= ∀̃IF(f) IF(∃̂f) ∆= ∃̃IF(f)
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The interpretation of the context is a combination of IT and IF:

I Definition 27. The function IΓ : C→ [..Term..] is defined as:

IΓ(e) ∆=
{

[ ] (e = [ ])
f(x) :: IΓ(l) (e = x :: l) and f(x) =

{
IΓ(x) ((x = f) : F))
S (x = T)

We now need to assume or prove that each one of these semantic mappings produces
expressions of the expected type (S for terms and Prop for formulas). Omitting the trivial
case of contexts, this yields:

I Axiom 28. Wft(Γ, t)⇒ IΓ(Γ) ˜̀ IT(t)∈̃S

I Lemma 29. Wff(Γ, f)⇒ IΓ(Γ) ˜̀ IF(f)∈̃Prop

All axioms are formulas provable in the model.

I Axiom 30. Âx(Γ, f)⇒ ∃t, IΓ(Γ) ˜̀ t∈̃IF(f)

Soundness of MT is not a trivial result:

I Theorem 31 (Soundness). MT is sound, that is any derivable formula can be proved in
MT by induction on the syntactic derivation rules (Definition 19):

Γ ˆ̀ P ⇒ ∃p, IΓ(Γ) ˜̀ p∈̃IF(P )

5 Soundness of CCT and CICUT

Having a sound model of the theory, the work remaining to ensure the meta-theory of CCT
is to prove the soundness of the conversion rule extended with first-order equations.

The theorem is introduced step by step. When the original conversion checking fails to
check Γ ` A ' B, a decision procedure Preprocess is called to check whether the theory can
be used to check this equation. If the theory is applicable, Preprocess will refine the context
and relocate the variables and the theory will check whether A′ and B′ are equal in the
context Γ′. If any of the above steps fails, then it makes no difference to Coq. Hence, we
can start the proof from the conditions that the equality is derivable in the theory:

Preprocess(Γ, A,B) = (Γ′, A′, B′)[1] and Γ′ ˆ̀ A′ ∼T B′[2]

The Preprocess function should maintain some invariants:

IΓ(Γ) ˜̀ σ . IΓ(Γ′) [3]; IT(A) = (IT(A′))[σ] [4]; IT(B) = (IT(B′))[σ] [5]

By Lemma 20, any derivable formula should be a well-formed formula, particularly for
equation in condition [2], its sub-term A′ and B′ should be well-formed in Γ′. Further, by
Axiom 28, they should be interpreted in the scope S:

IΓ(Γ′) ˜̀ IT(A′)∈̃S [6] IΓ(Γ′) ˜̀ IT(B′)∈̃S [7]

By the soundness theorem (Theorem 31) the interpretation of this equality should be inhab-
ited in MT (condition [8]). If Γ′ does not contain false formula, then we have WFCE(IΓ(Γ′)),
hence the equality judgment can correctly interpret the equality in theory by Lemma 24
using conditions [6], [7] and [8]:

∃t, IΓ(Γ′) ˜̀ t∈̃(IT(A′)=̃IT(B′)) [8] IΓ(Γ′) ˜̀ IT(A′)=̇IT(B′) [9]
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Finally, by the substitution lemma applied to conditions [2], [3], [4] and [5], we derive:

IΓ(Γ) ˜̀ IT(A)=̇IT(B)

Following the above analysis, the new conversion rule is justified by proving:

I Theorem 32. Equal terms in theory have the same values in the model:
WFCE(IΓ(Γ′)) Γ ˜̀ σ . IΓ(Γ′) Γ′ ˆ̀ A′ ∼T B′ x = IT(A′)[σ] y = IT(B′)[σ]

Γ ˜̀ x=̇y

Since we require WFCE(IΓ(Γ′)), not all first-order objects (terms and formulas) can be
extracted from Γ. That means we may not extract satisfiable equations to Γ′ and use these
equations to check another equation as SMT solvers do. Nevertheless, it is still an significant
improvement of conversion checking.

The sound model of CCT can be built now by adding a sound model for the abstract
theory and proving the extended conversion rule. Further, since we no longer incorporate
the equality of the theory into ι-reduction, we can absorb the models of inductive types
and universes built by Barras to yield a sound model for CICUT. All the meta-theoretical
properties that we have established for CC can be established for CCT and CICUT as well.

6 Example: Presburger Arithmetic

In this section, we take Presburger Arithmetic as an example to illustrate how to instantiate
the above abstract setting for a specific theory.

Firstly, we define the signature and axioms of Presburger, and prove it correctly instan-
tiates the abstract syntax of theory in Subsection 4.1.

6.1 Formalization of Presburger Arithmetic
The definition of the signature and axioms instantiate Parameter 14 and 18.

I Definition 33 (Signature). Presburger signature is defined inductively:

T ∆= n̄|C0|C1|(x : T)+̄(y : T)

where n̄ indicates the free variables, C0 and C1 are two constants representing zero and one
respectively, +̄ is the addition relation.

With this definition, variable relocation, substitution and free variable operations can be
defined by recursion on the structure of T.

I Definition 34 (Axioms). An axiom is a special formula presented by a predicate in Coq
taking a context and formula as arguments and checking whether this formula is an axiom:

Âx(H, f) ∆=



f = ∀̂x.¬̂(C0 ∼T (x+̄C1)) ∨
f = ∀̂xy.((x+̄C1 ∼T y+̄C1)→̂(x ∼T y)) ∨
f = ∀̂x.x ∼T (x+̄C0) ∨
f = ∀̂xy.((x+̄y)+̄C1) ∼T (x+̄(y+̄C1)) ∨
∃g,Wff(T :: H, g) ∧ (f = g[C0]→̂(∀̂n.g[n]→̂g[n+̄C1])→̂(∀̂n.g[n]))

The assumption in Parameter 18 can be proved, because g is well-typed in (T :: H).
Secondly, we give a brief introduction to the formalization of natural number in [2]: useful

definition (maybe abstract) and properties without proof. Then the MT will be instantiated
by the these definitions and properties. The abstract interpretation rules are instantiated
accordingly which will not be detailed here.
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6.2 Formalization of Natural Numbers
As mentioned in Section 3, the first step is to define the set-values of natural numbers (NAT),
its constructors (ZERO and SUCC) and eliminator (NREC) in set-theory. Proving that this
setting interprets all of the axioms of Presburger arithmetic is straightforward.

The second step is to define the realizers (saturated set) of the type and its constructors.
More details can be found in [2].

I Definition 35 (Realizer of constructors). The realizers of natural number are:

ZE ∆= λ̌x.λ̌f.x SU ∆= λ̌n.λ̌x.λ̌f.f@̌n@̌(n@̌x@̌f)

We then define the saturated set cNAT(k), the realizers of number k. The idea is to
follow the impredicative definition of natural numbers, but we need the dependent version.
So we take the least fixpoint of a function fNAT defined as follows:

I Definition 36 (Saturated set associated to natural numbers).

fNAT(A, k) ∆=
⋂

P :X→SAT
P (ZERO)→

[ ⋂
n∈NAT

A(n)→ P (n)→ P (SUCC(n))
]
→ P (k)

cNAT(k) ∆=
⋂

A s.t. fNAT(A)⊆A

A

and these definitions satisfy following properties :

ZE∈̌(cNAT(ZERO))
n∈̇NAT t∈̌cNAT(n)

SU@̌t∈̌cNAT(SUCC(n)))

Then, natural numbers can be defined in M:

I Definition 37 (Natural Number). The type of natural number and its constructors are
defined in M as follows:

Nat ∆= 〈i 7→(NAT, cNAT), j 7→k〉
Zero ∆= 〈i 7→ZERO, j 7→ZE〉
Succ ∆= 〈i 7→SUCC, j 7→SU〉

NatRec(f, g, n) ∆=
〈
i 7→NREC(Val(f)i, (n, y 7→Val(g)i@̇n@̇y),Val(n)i),
j 7→Tm(n)j@̌Tm(f)j@̌Tm(g)j

〉
I Lemma 38. Typing rules of the natural numbers can be proved:

Γ ˜̀ Zero∈̃Nat Γ ˜̀ Succ∈̃(Π̃n∈̃Nat.Nat) Γ ˜̀ Nat∈̃Kind

Γ ˜̀ n∈̃Nat Γ ˜̀ f ∈̃(P @̃Zero) Γ ˜̀ g∈̃(Π̃n∈̃Nat.Π̃(P @̃n).P @̃(Succ@̃n))
Γ ˜̀ NatRec(f, g, n)∈̃(P @̃n)

6.3 Instantiation the Model of Abstract Theory by Presburger
The S in MT is instantiated by Nat. Furthermore, we need to provide enough constructors
to interpret Presburger Signature (Definition 33).

I Definition 39 (Presburger Semantic). The semantic of Presburger is:

S ∆= Nat Zero Succ(Zero) +̃ ∆= λ̃(x∈̃Nat).λ̃(y∈̃Nat).NatRec(x, λ̃(z∈̃Nat).Succ, y)
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By the induction scheme provided in the values of natural numbers, we can prove the last
two assumptions in Axiom 21, while others are trivial according to the definition.

Instantiating Presburger axioms in M is just a translation work according to the inter-
pretation rules, but proving them requires more efforts: the main task is to construct the
proof term for each axiom. We have all the detailed proofs in our development to ensure:

I Lemma 40. MT instantiated by Presburger arithmetic is sound.

Then, all the meta-theoretical properties holding in MT preserve after instantiation by Pres-
burger arithmetic, therefore we can conclude:

I Lemma 41. Presburger arithmetic is a safe theory to be embedded, hence CoqMT is safe.

Let us finish with an important remark. We have proven the strong normalization for
CICUT instantiated with Presburger arithmetic, but the reduction considered includes β-
and ι-reduction (the reduction of NatRec when its main argument is either 0 or successor),
but not the reduction associated to the last two rules of Section 2. The main difficulty is
that the latter is not sequential (both S(n) +m and n+ S(m) reduce to a successor), while
the β-reduction of λ-calculus is sequential. We thus cannot claim yet the decidability of
type-checking for the presented version of CICUT.

7 Conclusion

In this paper, we give an abstract proof of consistency and SN to CCT, which extends
CC family by incorporating extensional equalities from an abstract theory. Presburger
arithmetic is proved to correctly instantiate the abstract theory which, on the one hand,
ensures Presburger arithmetic is safe to be embedded, on the other hand demonstrates that
our abstraction strategy works well for adding a new theory of interest.

Actually, this proof is applicable to a richer type system contains more features if each
feature has a sound model and it does not have interference with other features, such as
CICUT. That’s our original motivation to do this research: improving the Coq by incor-
porating decidable extensional equalities.

We don’t embed theory in the ι-reduction to ensure the consistency and SN, the side
effect is that Church-Rosser can not be proved in the usual way, as well as the decidability
of type checking (DoTC). However we have another way to prove DoTC, that’s our next
work : formalize the syntax of CCT or CICUT, and build a complete formal proof of all the
properties required.
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