
Model Checking and Functional Program
Transformations∗

Axel Haddad

LIAFA (Université Paris Diderot / CNRS)
LIGM (Université Paris Est / CNRS)

Abstract
We study a model for recursive functional programs called higher order recursion schemes (HORS).
We give new proofs of two verification related problems: reflection and selection for HORS. The
previous proofs are based on the equivalence between HORS and collapsible pushdown automata
and they lose the structure of the initial program. The constructions presented here are based
on shape preserving transformations, and can be applied on actual programs without losing the
structure of the program.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases Higher-order recursion schemes, Model checking, Tree automata

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2013.115

1 Introduction

Recursion schemes were introduced in the early 70s as a model of computation, describing
the syntactical part of a functional program [18, 6, 7, 8]. Originally they only handled
order-0 (constants) or order-1 (functions on constants) expressions, but not higher-order
types. Higher-order versions of recursion schemes were later introduced to deal with functions
taking functions as arguments [13, 9, 10].

Recently, the focus came back on higher-order recursion schemes when considering them
as generators of possibly infinite trees [14, 19, 12]. Indeed, roughly speaking a recursion
scheme is a deterministic rewriting system on typed terms that generates ad infinitum a
unique infinite tree. As the trees they generate are very general and as they can capture
the computation tree of (higher-order) functional programs, studying their logical properties
leads to very natural and challenging problems.

The most popular one is (local) model-checking: for a given recursion scheme and a formula
e.g. from monadic second order logic (MSO) or µ-calculus, decide whether the tree generated
by the scheme satisfies the formula. Following partial decidability results for the subclass of
safe recursion schemes [14, 5], Ong proved, using the notion of traversals, the decidability
of MSO model-checking for the whole class of trees generated by recursion schemes [19].
Since then, other proofs of this result have been obtained using different approaches: Hague,
Murawski, Ong and Serre established the equivalence of schemes and higher-order collapsible
pushdown automata (CPDA), and then showed the MSO decidability by reduction to parity
games on collapsible pushdown automata [12]; following ideas from [1], Kobayashi and Ong
[17] developed the type system of [15] to obtain a new proof. Finally, Salvati and Walukiewicz
used Krivine machines to establish the MSO decidability of λ-Y-calculus, which is a typed
lambda calculus with recursion, equivalent to higher order recursion schemes [21].

∗ This work was supported by the project AMIS (ANR 2010 JCJC 0203 01 AMIS).

© Axel Haddad;
licensed under Creative Commons License CC-BY

33rd Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2013).
Editors: Anil Seth and Nisheeth K. Vishnoi; pp. 115–126

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.115
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

116 Model Checking and Functional Program Transformations

Another important problem is global model-checking: for a given recursion scheme and
a formula, provide a finite representation of the set of nodes in the tree generated by the
scheme where the formula holds. Broadbent, Carayol, Ong and Serre answered this question
using a so-called endogenous approach to represent the set of nodes: they showed how to
construct another scheme generating the same tree as the original scheme except that now
those nodes where the formula holds are marked [3]. They refer to this property as the logical
reflection. The technique they used relies on the equivalence between schemes and CPDA.

Going further with the idea of marking a set of nodes, Carayol and Serre considered in [4]
the following problem called logical selection and generalising global model-checking: for a
given recursion scheme and an MSO formula ϕ[X] with one free set variable, provide (if it
exists) a finite representation of a set S of nodes in the tree generated by the scheme such
that ϕ[S] holds. They show that one can construct another scheme generating the same tree
as the original scheme except that now those nodes are marked and describe a set S with
the previous property. Again, they relied on the equivalence with CPDA.

One interest for logical reflection and logical selection is that they can be used to modify
a scheme in a useful way. Indeed, assume some (syntax tree of a) program is described by
a scheme and that it contains bad behaviours: using logical reflection, one can get a new
scheme where those bad behaviours are marked and this latter scheme can then easily be
modified to remove these behaviours. Using logical selection, one can e.g. select branches in
the syntax tree so that a given property is satisfied in the resulting subtree. A drawback of
the approach in [3, 4] that goes back and forth between schemes and CPDA is that the scheme
that is finally obtained is structurally very far from the original one (the names of the non
terminals as well as the shape of the rewriting rules have been lost): hence this is a serious
problem if one is interested in doing automated correction of programs or even synthesis.

Our main contribution in this paper is to provide proofs of both logical reflection and
selection without appealing to CPDA as we only reason on schemes. Our constructions
avoid the loss of the structure, i.e. the solution scheme is obtained only by duplicating and
annotating some parts of the initial scheme and the transformation is easily reversible. Our
constructions are based on the type system and the game used by Kobayashi and Ong in their
proof of the model-checking decidability [17]. There is no known correspondence between
these proofs and the former ones. In order to prove the logical reflection, we introduce
the notion of morphism inspired by denotational semantics, and we give a morphism for
MSO. In order to prove the logical selection, we embed carefully a winning strategy of the
model-checking game into the scheme.

In Section 2 we give the basic definitions and in Section 3 we introduce the two problems
we are looking at in the paper. In Section 4 we introduce morphisms, explain how to “embed”
a morphism into a scheme, and give some possible applications. In Section 6, we show how
to use morphisms to obtain a new proof of logical reflection. In Section 7, we deal with
logical selection. In Section 5, we present a simple example that describes how we can use a
morphism describing a property to transform a scheme. An extended version of this work is
available online: http://hal.archives-ouvertes.fr/hal-00865682.

2 Preliminaries

In this section we give the definition of a higher order recursion scheme, which is a deterministic
rewriting system that produces an infinite tree. It handles terms of typed symbols, i.e. each
symbol is a constant or a function that can have functions as arguments. Terms may represent
expressions of higher order programming languages, for example the term Apply Copy File

http://hal.archives-ouvertes.fr/hal-00865682

A. Haddad 117

means “apply the function Copy to the file”. In this example an intuitive rewrite rule for
the function Apply would be the term where the first argument is applied on the second
argument, written: Apply ϕ x→ ϕ x.
Types. Types are defined by the grammar τ ::= o | τ → τ and o is called the ground
type. Considering that → is associative to the right (i.e. τ1 → (τ2 → τ3) can be written
τ1 → τ2 → τ3), any type τ can be written uniquely as τ1 → · · · → τk → o. The integer k is
called the arity of τ . We define the order of a type by order(o) = 0 and order(τ1 → τ2) =
max(order(τ1) + 1, order(τ2)). For instance o→ o→ o→ o is a type of order 1 and arity 3,
(o → o) → (o → o), that can also be written (o → o) → o → o is a type of order 2.We let
τ ` → τ ′ be a shorthand for τ → · · · → τ︸ ︷︷ ︸

` times

→ τ ′.

Terms. Let Γ be a finite set of typed symbols, and Let Γτ denote the set of symbols of type
τ . For all type τ , we define the set of terms of type τ , T τ (Γ) as the smallest set containing
the symbols of type τ and the application of a term of type τ ′ → τ to a term of type τ ′ for all
τ ′; formally: Γτ ⊆ T τ (Γ) and

⋃
τ ′{t s | t ∈ T τ

′→τ (Γ), s ∈ T τ ′(Γ)} ⊆ T τ (Γ). We shall write
T (Γ) for the set of terms of any type, and t : τ if t has type τ . The arity of a term t, arity(t),
is the arity of its type. Remark that any term t can be uniquely written as t = α t1 . . . tk
with α ∈ Γ and 0 ≤ k ≤ arity(α). We say that α is the head of the term t. For instance, let
Γ = {F : (o→ o)→ o→ o , G : o→ o→ o , H : (o→ o) , a : o}. Then F H and G a are
terms of type o → o; F (G a) (H (H a)) is a term of type o; F a is not a term since F is
expecting a first argument of type o→ o while a has type o.

A set of symbols of order at most 1 (i.e. each symbol has type o or o→ o→ · · · → o) is
called a signature. In the following, we use the letters t, r, s to denote terms, and given a
tuple of term ~t = (t1, . . . , tk) we may use the shorthand s ~t to denote s t1 . . . tk.
Contexts. Let t : τ , t′ : τ ′ be two terms, x : τ ′ be a symbol of type τ ′, then we write
t[x 7→t′] : τ for the term obtained by substituting all occurrences of x by t′ in the term t. A
τ -context is a term C[•τ] ∈ T (Γ]{•τ : τ}) containing exactly one occurrence of •τ ; it can be
seen as an application turning a term into another, such that for all t : τ , C[t] = C[•τ][•τ 7→t].
In general we will only talk about ground type contexts where τ = o and we will omit to
specify the type when it is clear. For instance, if C[•] = F • (H (H a)) and t′ = G a then
C[t′] = F (G a) (H (H a)).
Rewrite Rules. Given two disjoint sets of symbols Γ,V where V is called a set of variables,
we define a (fully applied) rewrite rule on Γ and V as a pair of terms of T (Γ] V) of type
o written F x1 . . . xk → e with F ∈ Γ, x1, . . . , xk ∈ V such that for all i 6= j xi 6= xj , and
e ∈ T (Γ] {x1, . . . , xk}). Given a set of rewrite rules R, we define the rewriting relation
→ ∈ T (Γ)2 as t → t′ iff there exists a context C[•], a rewrite rule F x1 . . . xk → e, and
a term F t1 . . . tk : o such that t = C[F t1 . . . tk] and t′ = C[e[x1 7→t1]...[xk 7→tk]]. We call
F t1 . . . tk : o a redex. We define →∗ as the reflexive and transitive closure of →. Finally
we say that a set of rewrite rules is deterministic1 if for all F ∈ Γ there exists at most one
rule of the form F x1 . . . xk → e.
Trees. Let Σ be a finite signature, m be the maximum arity in Σ and ⊥ : o be a fresh symbol.
A (ranked) tree t over Σ]⊥ is a mapping t : domt → Σ]⊥, where domt is a prefix-closed subset
of {1, . . . ,m}∗ such that if u ∈ domt and t(u) = a then {j | u · j ∈ domt} = {1, . . . , arity(a)}.

Given a node u ∈ domt, we define the subtree of t rooted at u as the tree tu such that
domtu = {j | u · j ∈ domt} and for all v ∈ domtu , tu(v) = t(u · v). Given a : ok → o and

1 Although the rules are deterministics, there may be several possible rules to apply in a term.

FSTTCS 2013

118 Model Checking and Functional Program Transformations

some trees t1, . . . , tk we use the notation a t1 . . . tk to denote the tree t′ whose domain is
domt′ =

⋃
i i · domti , t′(ε) = a and t′(i · u) = ti(u). Note that there is a direct bijection

between ground terms of T o(Σ] ⊥) and finite trees. Hence we will freely allow ourselves to
treat ground terms over Σ] ⊥ as trees. We define the partial order v over trees as t v t′

if domt ⊆ domt′ and for all u ∈ domt, t(u) = t′(u) or t(u) = ⊥. Given a (possibly infinite)
sequence of trees t0, t1, t2, . . . such that ti v ti+1 for all i, the set of all ti has a supremum
that is called the limit tree of the sequence.

Higher Order Recursion Schemes. A higher order recursion scheme (HORS) G = 〈V,Σ,N ,
R, S〉 is a tuple such that: V is a finite set of typed symbols called variables; Σ is a finite
signature, called the set of terminals; N is a finite set of typed symbols called non-terminals;
R is a deterministic set of rewrite rules on Σ]N and V, such that there is exactly one rule
per non terminal and no rule for terminals; S ∈ N is the initial non-terminal.

We define inductively the ⊥-transformation (·)⊥ : T o(N] Σ) → T o(Σ] {⊥ : o})
turning a ground term into a finite tree as: (F t1 . . . tk)⊥ = ⊥ for all F ∈ N and
(a t1 . . . tk)⊥ = a t⊥1 . . . t

⊥
k for all a ∈ Σ. We define a derivation, as a possibly infinite

sequence of terms linked by the rewrite relation, and we will mainly look at derivations where
the first term of the sequence is equal to the initial non terminal. Let t0 = S → t1 → t2 → · · ·
be a derivation, then one can check that (t0)⊥ v (t1)⊥ v (t2)⊥ v . . ., hence it admits a limit.
One can prove2 that the set of all such limit trees has a greatest element that we denote
‖G‖ and refer to as the value tree of G. Note that ‖G‖ is the supremum of {t⊥ | S →∗ t}.
Given a term t : o, we denote by Gt the scheme obtained by transforming G such that it
starts derivations with the term t, formally, Gt = 〈V,Σ,N] {S′},R] {S′ → t}, S′〉. One
can prove that if t→ t′ then ‖Gt‖ = ‖Gt′‖. We call ‖Gt‖ the value tree of t in G.

Parallel derivation. Intuitively, the parallel rewriting from a term t is obtained by rewriting
all the redexes in t simultaneously. Formally, given a term t = α t1 . . . tk with α ∈ Σ]N , we
define inductively the parallel rewriting t? of t as if α ∈ Σ or k < arity(α), then t? = α t?1 . . . t

?
k,

if α ∈ N and k = arity(α), let α x1 . . . xk → e be the rewrite rule associated to α, we have
t? = e[∀i xi 7→t?i]. Given t, t′, we write t⇒ t′ for the relation “t′ = t?”. Notice that if t⇒ t′ and
t′ →∗ t′′ then t→∗ t′′ (in particular t→∗ t′). Furthermore the derivation S ⇒ t1 ⇒ t2 ⇒ . . .

leads to ‖G‖.

I Example 1. Let G = 〈Σ,V,N , S,R〉 with Σ = {a, b : o→ o, c : o→
o→ o}, V = {x : o, ϕ : o→ o}, N = {S : o, I, F : (o→ o)→ o,D,A :
(o→ o)→ o→ o} and R = {S → F b, D ϕ x→ ϕ (ϕ x), A ϕ x→
ϕ (a x), I ϕ→ ϕ (I ϕ), F ϕ → c (I (A ϕ)) (F (D ϕ))}.
Remark the rewrite rule associated to D: it means that for any
function t, D t is simply the function obtained by composing t with
itself. The rule associated to I is also interesting: for any function t,
I t leads to the infinite iteration of t. For example the term I a can be
derived to obtain a (a (a (a (. . .)))). The tree ‖G‖ is depicted on the
left, its branches are labelled by cω or cn · (b2(n−1) · a)ω for all n ≥ 1.

c
c

c
. . .

b
a

b
a

b
a

b
a
...

b
b
a

b
b
a

b
...

b
b
b
b
a

b
...

Parity tree automaton. A non-deterministic max parity automaton (we will just refer to
them as automata in the following) is a tuple A = 〈Σ, Q, δ, q0,Ω〉 with Σ a finite signature, Q a
finite set called the set of states, δ ⊆ {q a−→ (q1, . . . , qarity(a)) | a ∈ Σ, q, q1, . . . , qarity(a) ∈ Q}

2 The existence of a value tree is a consequence the confluence property of HORS.

A. Haddad 119

is called the transition relation, q0 ∈ Q the initial state, Ω : Q → {1, . . . ,mmax} for some
mmax ∈ N the colouring function.

Given an infinite tree t on Σ we define a run r of A on t as a tree on Σ×Q = {aq : ok →
o | a : ok → o, q ∈ Q} such that domr = domt, for all u ∈ domt, if r(u) = aq then t(u) = a

and there exists q a−→ q1, . . . , qk ∈ δ such that for all i, r(u · i) = t(u · i)qi , and r(ε) = t(ε)q0 .
We say that the automaton A accepts the tree t, written t |= A, if there exists a run r

on t such that for every infinite branch b = (a0, q0) · j0 · (a1, q1) · j1 · . . . in r, the greatest
colour seen infinitely often in Ω(q0),Ω(q1),Ω(q2), . . . is even. We define Aq as the automaton
obtained by changing in A the initial state to q: Aq = 〈Σ, Q, δ, q,Ω〉, and we say that A
accepts the tree t from state q, if t |= Aq.

I Example 2. Let A = 〈Σ, Q, q0, δ,Ω〉 be an auto-
maton with Σ = {a, b : o → o, c : o → o → o},
Q = {q0, q1, q2}, Ω = {q0 7→ 0, q1 7→ 1, q2 7→ 2}
and δ = {q0

c−→ (q0, q0), q0
b−→ q1, q1

a−→ q2, q1
b−→

q1, q2
a−→ q2, q2

b−→ q1}.
The automaton A accepts the trees whose branches are
labelled by cω or by c∗ · b · (b∗ · a)ω. An accepting run
of A on the tree ‖G‖ of Example 1 is depicted on the
right.

cq0

cq0

cq0

. . .

bq0

aq1

bq2

aq1

bq2

aq1

bq2

aq1

...

bq0

bq1

aq1

bq2

bq1

aq1

bq2

...

bq0

bq1

bq1

bq1

aq1

bq2

...

3 Logical reflection and logical selection

In this section we formalise the notion of annotated tree and we define the problems of logical
reflection and logical selection we are interested in.

Given a signature Σ, a set X and a tree t on the signature Σ, we define the signature
Σ×X = {(a, x) : ok → o | a : ok → o ∈ Σ, x ∈ X} and we say that the tree t′ on the signature
Σ×X is an X-annotation of t, if domt = domt′ and if for all u ∈ domt, t′(u) = (t(u), x) for
some x ∈ X. For example a run of an automaton over a tree t is a Q-annotation of t, with
Q being the set of states of the automaton. Furthermore, for any tree t′ on the signature
Σ×X, we define Unlab(t′) as the tree on Σ obtained by turning all nodes (a, x) of t′ into a
i.e. the tree obtained by removing the annotated part of the tree.

Given a set of nodes S in a tree t, we define an S-marking of t as a {0, 1}-annotation
t′ of t such that for all nodes u, u ∈ S if and only if t′(u) = (t(u), 1). Given a µ-calculus
formula ϕ, we say that t′ is a ϕ-reflection of t if it is a marking of the set of nodes u such
that the subtree of t rooted at u satisfies the formula ϕ. Given a monadic second-order logic
(MSO) formula ϕ[x] with a first order free variable, we say that t′ is a ϕ[x]-reflection of t if
it is a marking of the set of nodes u satisfying ϕ[u]. Given an MSO formula ϕ[X] with a
second order free variable, we say that t′ is a ϕ[X]-selection of t if it is a marking of a set of
nodes S satisfying ϕ[S].

Finally, we define the µ-calculus reflection, MSO reflection, and MSO selection as follow.
Given a class R of generators of trees (i.e. a set of finitely described elements such that
to each g ∈ R we associate a unique tree ‖g‖), we say that R is (effectively) reflective with
respect to the µ-calculus (resp. MSO) if for any µ-calculus formula ϕ (resp. any MSO formula
ϕ[x]) and any tree generator g ∈ R, one can construct another generator g′ such that the
‖g′‖ is a ϕ-reflection (resp. ϕ[x]-reflection) of ‖g‖. We say that R is (effectively) selective
with respect to MSO if for any MSO formula ϕ[X] and any generator g ∈ R such that there

FSTTCS 2013

120 Model Checking and Functional Program Transformations

exists a subset S of nodes of ‖g‖ satisfying ϕ[S], one can construct another generator g′ such
that ‖g′‖ is a ϕ[X]-selection.

The main contribution of this paper is to give new proofs of the fact that schemes have
these properties. In order to do so we use the equivalence results between logic and automata,
and we rather prove automata reflexivity and automata selectivity defined as follows.

Given a tree t on the signature Σ and an automaton A = 〈Σ, Q, q0, δ,Ω〉, we define an
A-reflection of A on t as a 2Q-annotation t′ of t, such that for all nodes u, t′(u) = (t(u), Q′)
with Q′ ⊆ Q being the set of states q such that Aq accepts the subtree of t rooted on u; we
define an A-selection of A on t as an accepting run of A on t. We say that a class R of
generators of trees is reflective with respect to automata if for any automaton A and any
generator g ∈ R, one can construct another generator g′ such that ‖g′‖ is an A-reflection of
‖g‖. We say that R is selective with respect to automata if for any automaton A and any
generator g ∈ R such that ‖g‖ |= A, one can construct another generator g′ such that ‖g′‖ is
an A-selection of ‖g‖.

From the equivalence between logics and automata [20] we have that schemes are reflective
with respect to the µ-calculus iff they are reflective with respect to automata, and they are
selective with respect to MSO iff they are reflective with respect to automata. Furthermore,
it is shown in [3] that µ-calculus reflection for schemes implies MSO reflection.

4 Morphisms

4.1 Definitions
In the following we fix a scheme G = 〈Σ,N ,V, S,R〉. We define a typed domain D as a set
such that each element is typed, and to each element d : τ1 → τ2 ∈ D is associated a partial
mapping fd from Dτ1 to Dτ2 , where Dτ = {d ∈ D | d : τ}. We write d d′ the element fd(d′).

We define a morphism J·K : T (Σ] N) → D from terms on Σ] N to the domain D as
a mapping such that (1) if t : τ then JtK : τ , (2) if t0 : τ1 → τ2 and t1 : τ1, then JtK Jt′K is
defined and equal to Jt t′K. In the following, we refer to JtK as the D-value of the term t.

I Example 3. Let D =
⋃
τ{⊥τ : τ,>τ : τ} such that for all τ1, τ2: >τ1→τ2 >τ1 = >τ2 ;

>τ1→τ2 ⊥τ1 = >τ2 ; ⊥τ1→τ2 >τ1 = >τ2 ; If τ2 = o then ⊥τ1→τ2 ⊥τ1 = >τ2 , otherwise
⊥τ1→τ2 ⊥τ1 = ⊥τ2 . For t : τ , we define JtK as JtK = >τ if t contains a ground subterm and
JtK = ⊥τ otherwise. Then J·K is a morphism since t1 t2 contains a ground subterm iff t1
contains a ground subterm, or t2 contains a ground subterm, or t1 t2 is ground.

Note that a morphism is entirely defined by its value on Σ] N , i.e. from those values
one can compute JtK for any term t. Also remark that given a context C[•] and two terms t
and t′, if JtK = Jt′K then JC[t]K = JC[t′]K. We say that a morphism J·K is stable by rewriting if
for t, t′ ∈ T such that t→ t′, JtK = Jt′K.

Finally, given a set of terms T ′ ⊆ T (Σ]N), we say that the morphism J·K recognises T ′
if there exists a subset D′ of D such that t ∈ T ′ if and only if JtK ∈ D′. In Example 3, the
morphism recognises the set of terms containing a ground term as a subterm.

4.2 Embedding a morphism into a scheme
We fix a scheme G = 〈V,Σ,N ,R, S〉 and a morphism J·K : T (Σ] N)→ D on G, stable by
rewriting, such that for all type τ , Dτ is finite. We transform G into G′ = 〈V ′,Σ′,N ′,R′, S〉
which, while it is producing a derivation, evaluates Jt′K for any subterm t′ of the current
term and annotates the term with all these D-values. The new symbols of G′ are symbols

A. Haddad 121

of G annotated with elements of the domain D, and we define a transformation (·)+ from
terms of G to terms of G′ such that the transformation t+ of t will be annotated with the
D-values of the subterms of t. The tree generated by G′ will be annotated and when one
removes these annotations, one retreives back the tree generated by G. More precisely we
show the following.

I Theorem 4 (Embedding a morphism). Given two terms t, t′ : o ∈ T (Σ]N), if t⇒G t′, then
t+ ⇒G′ t′+. In particular Unlab(‖G′t+‖) = ‖Gt‖ (where Unlab is the function that removes
the annotations).

I Remark. This transformation keeps the structure of the original scheme i.e. the new
symbols are simple labelings of the original ones, new rewrite rules are obtained by duplicating
some subterms and labeling the symbols, a very simple transformation allows to get back
to the original scheme, and there is a direct correspondence between derivations of the two
schemes.

4.3 Applications

Embedding properties of subterms during a derivation, or properties of subtrees of the
value tree, can be useful for program analysis: instead of saying “There will be a forbidden
behaviour in the program” reflection allows to say during the execution of a program “Here,
the forbidden behaviour will appear in this subexpression, but the rest of the program is
valid”. Furthermore, once a property is embedded into a scheme, one can add some new
rewrite rules that deal explicitly with wether the property is valid or not. For example one
could replace all forbidden subtrees of the value tree by a special symbol forbidden, as
illustrated in Section 5.

Some morphisms generated by type systems are used in [15] to model check a subclass of
trivial acceptance condition automata (i.e. automata where there is no colouring function,
and the acceptance of a tree simply asks if there exists a run of the automaton on the tree).
Then the construction allows one to reflect the accepting states of the automaton (as defined
in Section 3). This result has been improved in [22] to deal with the whole class of trivial
acceptance condition automata. In Section 6 we extend this result to show that for any parity
tree automaton one can create a morphism that reflects the acceptance of the automaton on
the value tree.

One can create a model (for example in [2]) to decide whether or not a ground term t

would be productive or not (i.e. ‖t‖ 6= ⊥). Reflecting the productivity of terms into a scheme
‖G‖ allows one to create a scheme G′ on the signature Σ] {⊥} such that ‖G′‖ = ‖G‖, but
such that no derivation will create some non productive terms. In [11] we developed this
idea to compare evaluation policies.

5 An example of scheme transformation

In this section, we present a simple example that describes how one can use the embedding
procedure to transform a program.

Let Map({0, 1}) be the typed domain inductively defined by Map({0, 1})o = {0, 1},
Map({0, 1})τ→τ ′ is the set of total functions from Map({0, 1})τ to Map({0, 1})τ ′ . And given
f : τ → τ ′ and h : τ in Map({0, 1}), f · h = f(h).

Let G = 〈V,Σ,N , S,R〉 be defined by V = {y : o→ o, x : o}, Σ = {a : o2 → o, b : o, c : o},

FSTTCS 2013

122 Model Checking and Functional Program Transformations

a
a

a a

a a a a
· · · · · ·

a
a

a

a

· · ·

b

b

b

a

a

a

· · ·

c

c

c

Figure 1 The value tree of the scheme of Section 5.

N = {S : o,H : o→ o, J : o→ o, F : (o→ o)→ o}, R contains the following rewrite rules:

S → a (F H) (F J) H x → a x (H x)
J x → a (J x) (J x) F y → a (y b) (y c).

The value tree of G is (partially) depicted in Figure 1. We write [u, v] the mapping
f : {0, 1} → {0, 1} such that f(0) = u and f(1) = v for all u, v. We define the morphism ϕ

as follows:

ϕ(b) = 0 ϕ(c) = 1 ϕ(S) = 1 ϕ(a) u v = u ∨ v
ϕ(H) u = u ϕ(J) u = 0 ϕ(F) [u, v] = u ∨ v.

One can check that the morphism ϕ is stable by rewrite. Furthermore it recognises the
property “t has type o, and its value tree contains a c”, with the subset A′ = {1}.

We construct a scheme G′ = 〈V ′,Σ′,N ′, S,R〉 that consists of an embedding of the
morphism ϕ inside the scheme G. V ′ = {x : o, y0, y1 : o → o}, Σ′ = {a0,0, a0,1, a1,0, a1,1 :
o2 → o, b, c : o}, N ′ = {S : o, H0, H1, J0, J1 : o, F [0,0], F [0,1], F [1,0], F [1,1] : (o→ o)2 → o},
R′ contains the following rewrite rules:

S → a1,0 (F [0,1] H0 H1) (F [0,0] J0 J1)
H0 x → a0,0 x (H0 x)
H1 x → a1,1 x (H0 x)
J0 x → a0,0 (J0 x) (J0 x)
J1 x → a0,0 (J1 x) (J1 x)
F [0,0] y0 y1 → a0,0 (y0 b) (y1 c)
F [0,1] y0 y1 → a0,1 (y0 b) (y1 c)
F [1,0] y0 y1 → a1,0 (y0 b) (y1 c)
F [1,1] y0 y1 → a1,1 (y0 b) (y1 c).

Let us explain how the rewrite rule related to F [0,1] has been produced. Recall the original
rule: F y → a (y b) (y c). The first occurrence of y is applied to b, therefore it should be
annotated with ϕ(b) = 0. Similarly, the second occurrence of y should be annotated with
ϕ(c) = 1. This justifies the occurrence of y0 and y1 on the left hand part of the rule.

The annotation [0, 1] means that this rule will be applied to an argument whose evaluation
is the mapping [0, 1], thus the evaluation of y b is equal to [0, 1] ϕ(b) = [0, 1] 0 = 0 and by a
similar reasoning the evaluation of y c is equal to 1. Therefore the occurrence of a should be
annotated with (0, 1).

We want to transform the scheme in order to forbid the derivation of a subterm when
its associated value tree will not include any c. For instance, the occurrence of a c would
correspond to a completed service, and thus such a situation witnesses a useless derivation.
In the embedded scheme, this can be detected by applying the evaluation of the head over

A. Haddad 123

its annotation. For instance F [0,0]t1 t2 is the annotation of a term F t whose value is
ϕ(F) [0, 0] = 0. Therefore we might turn the rule associated to F [0,0] into F [0,0]y1 y2 →
forbidden, where forbidden : o is a new terminal added to the scheme. Here is the whole
set of rewrite rules transformed this way.

S → a1,0 (F [0,1] H0 H1) (F [0,0] J0 J1)
H0 x → forbidden
H1 x → a1,1 x (H0 x)
J0 x → forbidden
J1 x → forbidden
F [0,0] y0 y1 → forbidden
F [0,1] y0 y1 → a0,1 (y0 b) (y1 c)
F [1,0] y0 y1 → a1,0 (y0 b) (y1 c)
F [1,1] y0 y1 → a1,1 (y0 b) (y1 c).

6 Logical reflection

In the following we present a morphism based on [17] that recognises the acceptance of a
parity tree automaton. Using the construction introduced in Section 4.2, one can construct
a scheme that reflects the accepting states of the automaton, which is equivalent to reflect
the subtrees accepted by a formula of the µ-calculus. In [3], µ-calculus reflection (and MSO
reflection) on schemes is already proven, but this construction uses the equivalence between
schemes and collapsible pushdown automata, and the successive transformations (scheme
→ pushdown automaton → reflective pushdown automaton → reflective scheme) lose the
structure of the scheme. In our construction, the structure of the scheme is the preserved,
in the sense of Remark 4.2. Since our proof of the logical reflection, as well as the one of
logical selection in Section 7, is build on top of the MSO model checking proof of Kobayashi
and Ong [17], we first recall their construction and then we explain how to use this result to
obtain the logical reflection.

6.1 Kobayashi-Ong result

We fix a non deterministic parity tree automaton A = 〈Σ, Q, qI , δ,Ω〉 and a scheme G =
〈Σ,N ,V, S,R〉. We let aritymax, ordermax, and mmax be the maximum arity in Σ]N , order
in Σ]N , colour in Ω(Q). The idea of the result is to define a type system, and to use this
type system in the construction of a two player parity game, such that Eve wins the game if
and only if the automaton accepts the value tree of the scheme.

The type system. Kobayashi and Ong introduced a set of judgement rules that allow to
type a term by an element of the typed set Map, called the set of mappings. Mappings of type
o are the states Q, and mappings of type τ → τ ′ are of the form (θ1,m1)∧ . . .∧ (θk,mk)→ θ

with for all i θi is a mapping of type τ , mi is a color, and θ is a mapping of type τ ′. The
judgements are of the form Γ ` t . θ meaning that under the environment Γ, one can
judge t with the mapping θ. The environment Γ associates some mapping and colors to
non terminal and variables, and gives some restriction on the judgements one can make.
Terminals are judged according to the transition of the automaton, i.e. a : ok → o ∈ Σ may
be judged as ∅ ` a . (q1,m1)→ . . .→ (qk,mk)→ q with for all i, mi = max(Ω(qi),Ω(q)) and
q

a−→ q1, . . . , qk ∈ δ. This type system keeps track of the colours in order to know exactly
what colour has been seen along the term. It is given formally in the extended version.

FSTTCS 2013

124 Model Checking and Functional Program Transformations

The game. Now we define a game GA in which Eve’s states will be triples made of a non
terminal, mapping and a colour, and Adam’s states will be environments. Eve chooses an
environment that can judge the rewrite rule of the current nonterminal with the current
atomic mapping, while Adam picks one binding in the current environment. Intuitively, Eve
tries to show a well-typing of the terms with respect to the rewrite rules, that would induce
a well-coloured run of the automaton, and Adam tries to show that she is wrong. From the
state (F, θ,m), Eve has to find an environment Γ such that she can prove Γ ` rF : θ, then
Adam picks a F and θ′ in Γ and asks Eve to prove that θ′ is chosen correctly according to
the rewrite rule of F . If at some point of a play, Eve cannot find a correct environment, she
loses the play; if she can choose the empty environment, Adam would have nothing to choose
then she wins the play; if the play is infinite, Eve wins if and only if the greatest colour seen
infinitely often is even. The game is also given formally in the extended version.

I Theorem 5 (Kobayashi, Ong 09). The tree ‖G‖ is accepted by A from the state q if and
only if Eve has a winning strategy from the vertex (S, q,Ω(q)) in the game GA.

6.2 A morphism for automata reflection
From the Eve’s winning strategy, we define a morphism J·K : T (Σ]N)→ D: the domain D
contains the sets of mappings of the same type: for all τ , Dτ = 2Mapτ . Given a nonterminal
F , JF K = {θ | ∃m Eve wins from (F, θ,m)}, given a ∈ Σ, JaK = {θ | ∅ ` a : θ}, and given
d : τ1 → τ2 ∈ D and d′ : τ1 ∈ D d d′ = {θ | ∃(θ1,m1) ∧ . . . ∧ (θk,mk)→ θ ∈ d ∀i θi ∈ d′}.

I Theorem 6. The morphism J·K recognises the states of the automaton, i.e. for each state
q ∈ Q of the automaton, it recognises the set Tq = {t : o | ‖Gt‖ |= Aq} which is the set
of ground terms whose associated value tree is recognised by the automaton from state q.
Furthermore, it is stable by rewriting.

Using the construction of Section 4.2, we have the following result.

I Corollary 7 (Automata Reflection). Higher order recursion schemes are reflective with
respect to automata (hence they are reflective with respect to µ-calculus, and to MSO).

7 Selection

Given a signature Σ, we recall the selection problem: given an MSO formula ϕ[X] having one
free monadic second order variable X, and a scheme G such that ‖G‖ satisfies the formula
∃X ϕ[X], produce another scheme G′ on the signature Σ× {0, 1} such that their exists a set
S satisfying ϕ[S] and ‖G′‖ is a S-marking of ‖G‖. Note that MSO selection implies MSO
reflection. Indeed, being able to mark the nodes u satisfying the formula ϕ[x] is equivalent
to being able to mark a (unique) set satisfying ψ[X] = ∀x x ∈ X ⇔ ϕ[x].

As mentioned in Section 3, MSO selection is equivalent to automata selection; we show a
construction of a scheme annotating itself with an accepting run of the automaton. Since we
cannot embed this problem into a morphism, we define another construction, similar to the
one of Section 4.2. The construction is also based on the Kobayashi-Ong result presented
in Section 5. The main difference between reflexivity and selectivity is that to construct a
reflection of an automaton we embedded the winning region of the game into the scheme,
while here we will embed the winning strategy of the game to prove the selection.

I Theorem 8 (Automata Selection). Higher order recursion schemes are selective with respect
to automata (hence to MSO).

A. Haddad 125

Proof sketch. In the following, we give an informal glimpse on the proof, the full (technical)
proof can be found in the extended version. Take a scheme G and an automaton A such that
‖G‖ |= A. We want to construct a scheme G′ such that ‖G′‖ is an accepting run of A on
‖G‖. The first observation is that there are some great similarities between the structure
of the proof trees in the type system system and the definition of a term. Indeed, one can
type proofs and one can apply proofs to one another to get new proofs. For example take
two terms t0 : o→ o and t1 : o and assume that we have a proof P0 of t0 . (θ1,m1)→ θ and
a proof P1 of t1 . θ1 under some environments. Then one can put together P0 and P1 to
obtain a proof of ` t0 t1 . θ. We can see this proof as P0 P1: the application of P1 to P0.

In the actual construction, the transformed scheme will not deal with such proofs, but we
use this similarity between proofs and terms to create annotations of terms. Given a term t

and a proof P of a judgement Γ ` t . θ, we will define the annotated term tP where each
symbol is annotated by an atomic mapping and a color, verifying that if a non terminal F is
annotated by (θ,m) then Γ assiciate F to (θ,m). The term tP is somehow a trace of the
proof P. Now given a rewrite rule F x1...xk → e in the original scheme, we want to define
for all annotated versions F (θ,m) an associated rewrite rule in the transformed scheme. If
(F, θ,m) is a winning vertex of the game, then Eve can choose an environment Γ such that
Γ ` e.θ. We take a proof P of this judgement and we define F (θ,m)x1 . . . xk → eP . Since Eve
has chosen the environment Γ with respect to her winning strategy, then for all annotated
non terminals H(θ′,m′) appearing in eP , (H, θ′,m′) is winning in the game. In particular, if
the initial non terminal of the transformed scheme is S(θ,m) with (S, θ,m) winning in the
game (as it will be), any non terminal in any term of any derivation will be annotated in
order to represent a winning vertex in the game. Therefore we do not need to care about
which rewrite rule is chosen for F (θ,m) when (F, θ,m) is not winning.

As we said, the initial non terminal is (S, q0,Ω(q0)) which is winning in the game since A
accepts ‖G‖ from state q0. Any terminal a will be annotated by some (q1 → · · · → qk → q,m).
Then to obtain elements of Σ ×Q, we just turn any a(q1→···→qk→q,m) into a non terminal
and we add a rewrite rule transforming it into aq.

The intuition of why this construction works is the following, based on the proof of the
soundness of Kobayashi and Ong construction. To a derivation in the transformed scheme
we associate a tree of plays in the game. The terms will be labeled by some F (θ,m) that Eve
has chosen in the environments she picked, and each time Adam choose one such F (θ,m), it
is rewritten according to Eve’s strategy. Due to the colour constraints in the type systems,
we can show that from the point where F (θ,m) is created to the point where it is on the head
of a redex, the maximum colour that has been seen is m. Furthermore, we have that along
an infinite branch, there is an infinite sequence of nonterminals that are rewritten such that
each non terminal is created when the previous one is rewritten. This means that we can
map an infinite branch to an infinite play in the game. Furthermore the greatest colour seen
infinitely often along this branch is equal to the greatest colour seen infinitely often in the
sequence of maximum colours appearing between the non terminals of the sequence. And
this is equal to the greatest colour seen infinitely often in the play. Since Eve wins in the
game, this colour is even, then for any branch of the value tree of G′ the greatest colour seen
infinitely often is even, hence it is an accepting run. J

8 Conclusion

We have given new shape preserving constructions for logical reflection and logical selection
using a scheme-only approach, which can be useful for correction or synthesis of programs.

FSTTCS 2013

126 Model Checking and Functional Program Transformations

The complexity is the same as in the solutions proposed so far, i.e. the problem is n-
EXPTIME complete, and the size of the new scheme is n-EXP the size of the original one n
being the order of the scheme. As possible continuation of these work, we may be interesting
to see if these results scale for actual program verification, and if they can be included in
tools like T-RecS [16], a model-checker for HORS.

References
1 Klaus Aehlig. A finite semantics of simply-typed lambda terms for infinite runs of automata.

In CSL’06, volume 4207 of LNCS, pages 104–118, 2006.
2 R. M. Amadio and P.-L. Curien. Domains and Lambda-Calculi. CTTCS, 1998.
3 Christopher H. Broadbent, Arnaud Carayol, C.-H. Luke Ong, and Olivier Serre. Recursion

schemes and logical reflection. In LICS’10, pages 120–129, 2010.
4 Arnaud Carayol and Olivier Serre. Collapsible pushdown automata and labeled recursion

schemes. In LICS’12, pages 165–174, 2012.
5 Didier Caucal. On infinite terms having a decidable monadic theory. In MFCS’02, volume

2420 of LNCS, pages 165–176, 2002.
6 Bruno Courcelle. A representation of trees by languages I. TCS, 6:255–279, 1978.
7 Bruno Courcelle. A representation of trees by languages II. TCS, 7:25–55, 1978.
8 Bruno Courcelle and Maurice Nivat. The algebraic semantics of recursive program schemes.

In MFCS’78, volume 64 of LNCS, pages 16–30, 1978.
9 Werner Damm. Higher type program schemes and their tree languages. In Theoretical

Computer Science, 3rd GI-Conference, volume 48 of LNCS, pages 51–72, 1977.
10 Werner Damm. Languages defined by higher type program schemes. In ICALP’77,

volume 52 of LNCS, pages 164–179, 1977.
11 Axel Haddad. IO vs oi in higher-order recursion schemes. In FICS’12, pages 23–30, 2012.
12 Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong, and Olivier Serre. Collapsible

pushdown automata and recursion schemes. In LICS’08, pages 452–461, 2008.
13 Klaus Indermark. Schemes with recursion on higher types. In MFCS’76, volume 45 of

LNCS, pages 352–358, 1976.
14 Teodor Knapik, Damian Niwiński, and Pawel Urzyczyn. Higher-order pushdown trees are

easy. In FOSSACS’02, volume 2303 of LNCS, pages 205–222, 2002.
15 Naoki Kobayashi. Types and higher-order recursion schemes for verification of higher-order

programs. In POPL’09, pages 416–428, 2009.
16 Naoki Kobayashi. A practical linear time algorithm for trivial automata model checking of

higher-order recursion schemes. In FOSSACS’11, pages 260–274, 2011.
17 Naoki Kobayashi and C.-H. Luke Ong. A type system equivalent to the modal mu-calculus

model checking of higher-order recursion schemes. In LICS’09, pages 179–188, 2009.
18 M. Nivat. On the interpretation of recursive program schemes. In Symp. Mat., 1972.
19 C.-H. Luke Ong. On model-checking trees generated by higher-order recursion schemes. In

LICS’06, pages 81–90, 2006.
20 M.O. Rabin. Decidability of second-order theories and automata on infinite trees. In Trans.

Amer. Math. Soc., 1969.
21 Sylvain Salvati and Igor Walukiewicz. Krivine machines and higher-order schemes. In

ICALP’11, pages 162–173, 2011.
22 Sylvain Salvati and Igor Walukiewicz. Using models to model-check recursive schemes. In

Typed Lambda Calculi and Applications, pages 189–204. Springer, 2013.

	Introduction
	Preliminaries
	Logical reflection and logical selection
	Morphisms
	Definitions
	Embedding a morphism into a scheme
	Applications

	An example of scheme transformation
	Logical reflection
	Kobayashi-Ong result
	A morphism for automata reflection

	Selection
	Conclusion

