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Abstract
In this paper we investigate the decidability and complexity of problems related to braid compos-
ition. While all known problems for a class of braids with 3 strands, B3, have polynomial time
solutions we prove that a very natural question for braid composition, the membership problem,
is NP-hard for braids with only 3 strands. The membership problem is decidable for B3, but it
becomes harder for a class of braids with more strands. In particular we show that fundamental
problems about braid compositions are undecidable for braids with at least 5 strands, but decid-
ability of these problems for B4 remains open. The paper introduce a few challenging algorithmic
problems about topological braids opening new connections between braid groups, combinatorics
on words, complexity theory and provides solutions for some of these problems by application of
several techniques from automata theory, matrix semigroups and algorithms.
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1 Introduction

In this paper we investigate the decidability and complexity for a number of problems related
to braid composition. Braids are classical topological objects that attracted a lot of attention
due to their connections to topological knots and links as well as their applications to polymer
chemistry, molecular biology, cryptography, quantum computations and robotics [1, 11, 14].

The discovery of a various cryptosystems based on the braid group inspired a new line of
research about the complexity analysis of decision problems for braids, including the word
problem, the generalized word problem, root extraction problem, the conjugacy problem and
the conjugacy search problem. For many problems the polynomial time solutions were found,
but it was surprisingly shown by M. S. Paterson and A. A. Razborov in 1991 that another
closely related problem, the non-minimal braid problem, to be NP-complete [16]

Non-minimal braid problem: Given a word ω in the generators σ1, . . . , σn−1
and their inverses, determine whether there is a shorter word ω′ in the same
generators which represents the same element of the n-strand braid group Bn?

The main result of this paper is to show another hard problem for braids in B3, i.e. with
only three strands. The problem can be naturally formulated in terms of composition (or
concatenation) of braids which is one of the fundamental operations for the Braid Group.

Given two geometric braids, we can compose them, i.e. put one after the other making
the endpoints of the first one coincide with the starting points of the second one. There is
a neutral element for the composition: it is the trivial braid, also called identity braid, i.e.
the class of the geometric braid where all the strings are straight. Two geometric braids are
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isotopic if there is a continuous deformation of the ambient space that deforms one into the
other, by a deformation that keeps every point in the two bordering planes fixed.

· = −−−−− ↔ ↔

In this paper we study several computational problems related to composition of braids:
Given a set of braids with n strands B = b1, . . . , bk ∈ Bn. Let us denote a semigroup of
braids, generated by B and the operation of composition, by 〈B〉.

Membership problem. Check whether exist a composition of braids from a set B that
is isotopic to a given braid b. I.e. is b in 〈B〉 ?
Identity problem. Check whether exist a composition of braids from a set B that is
isotopic to a trivial braid.
Group problem. Check whether for any braid b ∈ B we can construct the inverse of b
by composition of braids from B. I.e. is a semigroup 〈B〉 a group?

B3 B4 B5

Membership Decidable, NP-hard ? Undecidable
Group/Identity Decidable ? Undecidable

In contrast to many polynomial time problems we show that the Membership problem
for B3 is NP-hard1 by using a combination of new and existing encoding techniques from
automata theory, group theory, matrix semigroups [4, 5] and algebraic properties of braids
[1]. Then we prove decidability result for the membership problem for B3 which is the first
non-trivial case where composition is associative, but it is non-commutative. The membership
problem for braids in B3 has a very close connection with other non-trivial computational
problems in matrix semigroups. since the braid group B3 is the universal central extension
of the modular group PSL(2,Z). The idea of decidability in B3 was inspired by the work of
several authors on the membership problem for 2× 2 matrix semigroups [9, 13, 4, 5]. We also
show that fundamental problems about the braid compositions are undecidable for braids
with at least 5 strands, but decidability of these problems for B4 remains open.

2 Preliminaries

2.1 Words and Automata
Given an alphabet Γ = {1, 2, . . . ,m}, a word w is an element w ∈ Γ∗. We denote the
concatenation of two words u and v by either u · v or uv if there is no confusion. For a letter
a ∈ Γ, we denote by a or a−1 the inverse letter of a, such that aa = ε where ε is the empty
word. We also denote Γ = Γ−1 = {1, 2, . . . ,m} and for a word w = w1w2 · · ·wn, we denote
w = w−1 = w−1

n · · ·w−1
2 w−1

1 .
The free group over a generating set H is denoted by FG(H), i.e., the free group over two

elements a and b is denoted as FG({a, b}). For example, the elements of FG({a, b}) are all

1 Note that proposed NP-hardness construction is not directly applicable for Identity Problem.
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the words over the alphabet {a, b, a−1, b−1} that are reduced, i.e., that contain no subword
of the form x · x−1 or x−1 · x (for x ∈ {a, b}). Note that x · x−1 = x−1 · x = ε.

Let Σ = Γ∪Γ. Using the notation of [2], we shall also introduce a reduction mapping which
removes factors of the form aa for a ∈ Σ. To that end, we define the relation `⊆ Σ∗ × Σ∗
such that for all w,w′ ∈ Σ∗, w ` w′ if and only if there exists u, v ∈ Σ∗ and a ∈ Σ where
w = uaav and w′ = uv. We may then define by `∗ the reflexive and transitive closure of `.

I Lemma 1 ([2]). For each w ∈ Σ∗ there exists exactly one word r(w) ∈ Σ∗ such that
w `∗ r(w) does not contain any factor of the form aa, with a ∈ Σ.

The word r(w) is called the reduced representation of word w ∈ Σ∗. As an example, we
see that if w = 132211 3 1 ∈ Σ∗, then r(w) = ε.

Using standard notations, a deterministic finite automaton (DFA) is given by quintuple
(Q,Σ′, δ, q0, F ) where Q is the set of states, Σ′ is the input alphabet, δ : Q× Σ′ → Q is the
transition function, q0 ∈ Q is the initial state and F ⊆ Q is the set of final states of the
automaton. We may extend δ in the usual way to have domain Q×Σ′∗. Given a deterministic
finite automaton A, the language recognized by A is denoted by L(A) ⊆ Σ′∗, i.e. for all
w ∈ L(A), it holds that δ(q0, w) ∈ F .

I Lemma 2. For any given n ∈ Z, n ≥ 3 there is a DFA Pn over a group alphabet Σ,
|Σ| = 2n, with n+ 2 states and 2n edges such that the only word w ∈ L(Pn) and r(w) = ε,
has length |w| = 2n.

Proof. We adapt the proof of a related result over deterministic finite automata (DFA)
recently shown in [2]. Define alphabets Γ = {1, 2, . . . , n}, Γ = {1, 2, . . . , n} and Σ = Γ ∪ Γ.
It is shown in [2] that for any n ≥ 3, there exists a DFA An, with n+ 1 states over Σ, such
that for any word w ∈ Σ∗ where w ∈ L(An) and r(w) = ε then |w| ≥ 2n−1. Their proof is
constructive and we shall now show an adaption of it. Let Q = {q0, . . . , qn+2} and q0 be the
initial state and {qn+2} is the final state. We define the transition function δ : Q× Σ∗ → Q

of the DFA such that:

δ(qa, c) =


q1, if c = 1 and a = 0;
qa+1, if c = a and 1 ≤ a ≤ n;
q0, if c = a and 2 ≤ a ≤ n− 1,
qn+2, if c = n and a = n+ 1;

All other transitions are not defined. The structure of this DFA can be seen in Figure 1.
The only path leading to a state qn, for any n ≥ 3 with an empty reduced word has length

n−1

n−1

qn−1

1

n

q

q2

q
3

1

...

1

2

3

2

3

q0

n−2

q

q

n

q

n n+1

n+2

Figure 1 A deterministic finite automaton such that the minimal non empty word w such that
r(w) = ε and δ(q0, w) ∈ F is of length 2n.
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2n − 2. The path for reaching state q2 with an empty reduced word has length 2 and there
are no other paths leading to q2 with an empty reduced word. Let us assume that another
path is leading to q2 via a path where the larger index of a reachable state on this path is
j. Then at least one symbol j is not canceled in the reduced word leading to q2. Consider
a path from qi to gi+1 which corresponds to reduced word v then it should be of the form
v = i · u · i where a word u is an empty word and it corresponds to a path from a state q0 to
qi otherwise the reduced word of v is not empty.

Let us assume that the path leading to a state qi with an empty reduced word, i.e r(w) = ε

has length 2i − 2. Then the path for reaching state i+ 1 with a reduced word equal to the
empty word can be represented as a path w · i · ui where r(u) = ε. Since w is the only path
to reach qi from q0 then we have the required path has a form w · i · wi and its length is
(2i− 2) + 1 + (2i− 2) + 1 = 2i+1− 2. Finally we add two extra transitions to make the length
of a path to be 2n. J

I Lemma 3. For any given s ∈ Z which has a binary representation of size m, i.e. m =
dlog2(s)e, there is a DFA Ms over a group alphabet Σ, |Σ| = O(m2), with O(m2) states such
that the only word w ∈ L(Ms) and r(w) = ε, has a length |w| = s.

Proof. Let us represent s as the following power series

αm2m + αm−12m−1 + . . .+ α221 + α120, where αi ∈ {0, 1}.

For each non-zero αi and i ≥ 3 we will contract the automaton Pi from Lemma 2 using
unique non-intersecting alphabets for each automaton to avoid any possible cancellation of
words between different parts of our final automaton. Also for non-zero α1, α2 and α3 we
define three different automata P1, P2, P3 having a linear structure with one ε transition,
two consecutive ε transitions and four consecutive ε transitions, which will give us paths of
length 20, 21 and 22.

Then we will use a resulting set of automata Pi1 , Pi2 , . . . Pil to build a single automaton
by merging the initial state of Pit with the final state of Pit+1 for all t = 1 . . . l − 1 and
defining the initial state of Pi1 as the initial state of automaton Ms and the final state of
Pil as the final state of Ms. It is easy to see that following the Lemma 2 each Pit will reach
its own final state having an empty word iff the number of executed transition is 2it . So
finally we build a DFA Ms over a group alphabet, such that the only word w ∈ L(Ms) and
r(w) = ε, has a length |w| = s.

The DFA Ms over a group alphabet Σ, will have |Σ| = O(m2), O(m2) states and O(m2)
transitions, since there are no more then m parts Pi1 , Pi2 , . . . Pil and each part Pit has only
it + 2 states. Moreover the only word w ∈ L(Ms) and r(w) = ε, has a length |w| = s. J

2.2 Braids

The braid groups can be defined in many ways including geometric, topological, algebraic
and algebro-geometrical definitions [17]. Here we provide algebraic definition of the braid
group.

I Definition 4. The n-strand braid group Bn is the group given by the presentation with
n − 1 generators σ1, . . . , σn−1 and the following relations σiσj = σjσi, for |i − j| ≥ 2 and
σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2. These relations are called Artrin’s relation.
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Words in the alphabet {σ , σ−1} will be referred to as braid words 2.

We say that a braid word w is positive if no letter σ−1
i occurs in w. The positive

braids form a semigroup denoted by B+
n . There is one very important positive braid

known as the fundamental n-braid, ∆n. The fundamental braid of the group Bn (also
known as Garside element) can be written with n(n − 1)/2 Artin generators as: ∆n =
(σn−1σn−2 . . . σ1)(σn−1σn−2 . . . σ2) . . . σn−1.

Geometrically, the fundamental braid is obtained by lifting the bottom ends of the identity
braid and flipping (right side over left) while keeping the ends of the strings in a line. The
inverse of the fundamental braid ∆n is denoted by ∆−1

n .

∆ =
σ1
σ2
σ1

σ2
σ1
σ2

=
σ1

σ−1
1

σ2

σ−1
2

= =

Let B3 = {σ1, σ2|σ1σ2σ1 = σ2σ1σ2} be the group with three braids. Let ∆ be the Garside
element: ∆ = σ1σ2σ1. Let τ : B3 → B3 be automorphism defined by σ1 → σ2, σ2 → σ1. It
is straightforward to check that

∆b = τ(b)∆, ∆−1b = τ(b)∆−1, b ∈ B3. (1)

I Lemma 5 ([15]). Two positive words are equal in B3 if and only if they can be obtained
from each other by applying successively the relation σ1σ2σ1 = σ2σ1σ2 . A positive word is
left or right divisible by ∆ if and only if it contains the subword σ1σ2σ1 or σ2σ1σ2 .

I Lemma 6 ([12, 1]). Garside normal form – Every braid word w ∈ Bn can be written
uniquely as ∆kb, where k is an integer and b is a positive braid of which ∆ is not a left
divisor.

I Definition 7. Two braids are isotopic if their braid words can be translated one into each
other via the relations from the Defintion 4 plus the relations σiσ−1

i = σ−1
i σi = 1, where 1 is

the identity (trivial braid).

Let us define a set of natural problems for semigroups and groups in the context of braid
composition. Given a finite set of braids B. A multiplicative semigroup 〈B〉 is a set of braids
that can be generated by any finite composition of braids from B.

Membership Problem: Given a braid b ∈ Bn and a finite set of braids B ⊆ Bn, does
there exist a composition Y1Y2 · · ·Yr, with each Yi ∈ B such that Y1Y2 · · ·Yr = b? In other
words, is b ∈ 〈M〉? In the Membership Problem, when braid b is the trivial braid, we call
this problem the Identity Problem.

The Identity Problem for semigroups is a well-known challenging problem which is also
computationally equivalent to another fundamental problem in Group Theory: given a finitely
generated semigroup S, decide whether a subset of the generator of S generates a nontrivial
group (Group Problem) [9].

2 Whenever a crossing of strands i and i+ 1 is encountered, σi or σi
−1 is written down, depending on

whether strand i moves under or over strand i+ 1.

FSTTCS 2013
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3 NP-hardness of the Membership Problem in B3

In this section we show that the Membership is NP-hard for braids in B3. Our reduction
will use the following well-known NP-complete problem. Subset Sum Problem: Given a
positive integer x and a finite set of positive integer values S = {s1, s2, . . . , sk}, does there
exist a nonempty subset of S which sums to x?

We will require the following encoding between words over an arbitrary group alphabet
and a binary group alphabet, which is well known from the literature.

I Lemma 8. Let Σ′ = {z1, z2, . . . , zl} be a group alphabet and Σ2 = {c, d, c, d} be a binary
group alphabet. Define the mapping α : Σ′ → Σ∗2 by:

α(zi) = cidci, α(zi) = cidci,

where 1 ≤ i ≤ l. Then α is a monomorphism 3 (see [8] for more details). Note that α can be
extended to domain Σ′∗ in the usual way.

I Lemma 9 ([7]). Let Σ2 = {c, d, c, d} be a binary group alphabet and define f : Σ∗2 → B3
by: f(c) = σ1

4, f(c) = σ1
−4, f(d) = σ2

4, f(d) = σ2
−4. Then mapping f is a monomorphism.

The above two morphisms give a way to map words from an arbitrary sized alphabet into
the set braid words in B3. We will later require the following corollary concerning mappings
f and α to allow us to argue about the size of braid words constructed by f ◦ α.

I Corollary 10. Let α and f be mappings as defined in Lemma 8 and Lemma 9, then:

f(α(zj)) = f(cjdcj) = σ1
4jσ2

4σ1
−4j

and the length of a braid word from B3 corresponding a symbol zj ∈ Σ′ is 8j + 4.

I Theorem 11. The Membership Problem is NP-hard for braids from B3

Proof. We shall use an encoding of the Subset Sum Problem into a set of braids from
B3. Define an alphabet Σ = Σ′ ∪ {∆,∆},Σ′ = {1, 2, . . . , k + 2, 1, 2, . . . , k + 2} that will be
extended during the construction.

We now define a set of words W which will encode the Subset Sum Problem (SSP)
instance. Note that the length of words in the following set is not bounded by a polynomial
of the size of the SSP instance, however this is only a transit step and will not cause a
problem in the final encoding. In particular the unary representation of a number s by a
word ∆2s will be substituted by a set of words of a polynomial size of i, j and s that will
generate a unique word i ·∆2sj.

W =

{1 ·∆2s1 · 2, 1 · ε · 2,
2 ·∆2s2 · 3, 2 · ε · 3,
...

...
k ·∆2sk · (k + 1), k · ε · (k + 1),
(k + 1) ·∆2x · (k + 2)} ⊆ Σ∗

Figure 2 shows the way in which the words of W can be combined to give the identity for
the reduced word on labels in the graph structure. The above assumption will mean that we

3 A monomorphism is an injective homomorphism.
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start from node 1 of the graph and choose either as1 or ε to move to node 2. This corresponds
to w1 being equal to either 1 ·∆2s1 · 2 or 1 · ε · 2. We follow such non-deterministic choices
from node 1 until we reach a node sk+2. At this point, if we chose si1 , si2 , . . . , sil , such that
they sum to x, then the reduced representation of w will equal 1 · k + 2. If there does not
exist a solution to the subset sum problem, then it will not be possible to reach the empty
word concatenating the labels on a graph structure so it would be possible to get a word
1 · k + 2, since it will be only 1 · w′ · k + 2, where w′ 6= ε.

Using the encoding idea from Lemma 3 we replace each transition from state i to state j
labelled with ∆2sj by the automatonM2s and then will encode each transition formM2s from
a state x to state y with the label z ∈ Σ by the braid word f(α(x))·(σ1σ2σ3)2 ·f(α(z))·f(α(y))
following Corollary 10. We use ∆2 = (σ1σ2σ3)2 rather then ∆ to have unchanged structure
of words since ∆2 is commutative with any word in B3. Also each word of the following type
i · ε · j, where i, j ∈ Σ′ can be directly encoded by a braid f(α(i)) · f(α(i)) .

The number of states, the alphabet size and the number of edges for eachM2si automaton
are of the order O(m2), where m is log2si. Thus we have that the whole automaton after
replacing all ∆2si transitions by M2si will be encoded with the finite number of words of the
order O(k · log2

22s), where s is the maximal element of {s1, s2, . . . , sk} and the length of each
braid word is of the order O(k · log2

22s). In addition to that we add k words representing ε
transitions.

Using Lemma 8, we encode the set of wordsW into a set of braids words over the alphabet
{σ1, σ

−1
1 , σ2, σ

−1
2 }, where the total number of letters will be only polynomially increased. So

finally the SSP has a solution if and only iff the braid f(α(1)) · f(α(k + 2)) belongs to the
defined semigroup of braid words . J

4 Decidability of the Membership problem in B3

I Theorem 12. The membership problem is decidable for braids from B3.

Proof. Let us given a set of braid words {b1, b2, . . . bn} from B3. First let us convert them
into Garside normal form ∆kb where k is an integer and b is a positive braid of which ∆ is
not a left divisor.

In order to find the unique Garside decomposition we need to replace each occurrence of
σ−1

1 with σ2σ1∆−1, and σ−1
2 with σ1σ2∆−1, and then push all ∆−1 to the right using (1).

After that iteratively one should successively replace all subwords σ1σ2σ1 and σ2σ1σ2 with
∆ and push them to the right using (1).

Then we construct a finite state automaton A with n multi-states loops representing n
braid words in the Garside normal form. For each braid word bi in the Garside form ∆kb,
where b = σj1σj2 . . . σj|bi| we define a sequence of |bi| transitions

s1,i
∆k

−−→ s2,i
σj1−−→ s3,i

σj2−−→ s4,i −→ . . . −→ s|bi|−1,i
σj|bi|−−−→ s|bi|,i

After that we merge all states s1,i and s|bi|,i for all i′s into a single state s0, which will be

...

...

...

1 2 3 k k+1

ε ε ε

2s 22s k2s

k+2

2x

1 1 2 k

Figure 2 The initial structure of a product which forms the identity on labels.
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the initial and the final state of the automaton A. Thus A has n multi-states loops from the
initial/final state s0 representing n braid words.

If the automaton A has q states we will first show that any path from a state s to t of
the length greater than 3 · 2(q2−3q) and equal to ∆k, for some k ∈ Z should contain a path of
shorter length from s to t which is equal to ∆k′ . Suppose A has a path u from state s to
t which is equal to ∆k. Then u can be decomposed in at least one of two ways. Either in
Case 1 there exist two words v1 = ∆k1 and v2 = ∆k2 , k1, k2 ∈ Z such that u = v1 · v2 or in
Case 2 there exist two words v1 = ∆µ1 and v2 = ∆µ2 such that

if µ1, µ2 are even numbers then u = σ1v1σ2v2σ1 or u = σ2v1σ1v2σ2 or u = σ−1
1 v1σ

−1
2 v2σ

−1
1

or u = σ−1
2 v1σ

−1
1 v2σ

−1
2 ;

if µ1, µ2 are odd numbers then u = σ1v1σ1v2σ1 or u = σ2v1σ2v2σ2 or u = σ−1
1 v1σ

−1
1 v2σ

−1
1

or u = σ−1
2 v1σ

−1
2 v2σ

−1
2 ;

if µ1 is even and µ2 is odd then u = σ1v1σ2v2σ2 or u = σ2v1σ1v2σ1 or u = σ−1
1 v1σ

−1
2 v2σ

−1
2

or u = σ−1
2 v1σ

−1
1 v2σ

−1
1 ,

if µ1 is odd and µ2 is even then u = σ2v1σ2v2σ1 or u = σ1v1σ1v2σ2 or u = σ−1
2 v1σ

−1
2 v2σ

−1
1

or u = σ−1
1 v1σ

−1
1 v2σ

−1
2 ;

Any subword u′ of u such that u′ = ∆k′ can also be decomposed in at least one of these
two ways, so we can recursively decompose u and the resulting subwords until we have
decomposed u into single symbols. So, we can specify a certain type of parse tree such that
the automaton A has a path u from state s to t which is equal to ∆k if and only if we can
build this type of parse tree for u.

Let us define a parse tree for a given word u equal to ∆k from a state s to t as follows.
Every internal node corresponds to a subword u′ of u, such that u′ is a power of the
fundamental braid ∆ and the root of the whole tree corresponds to u. The leaves store
individual symbols σ1, σ

−1
1 , σ2, σ

−1
2 . When read from left to right, the symbols in the leaves

of any subtree form the word that corresponds to the root of the subtree. Following Lemma 5
each internal node is
1. either the node that has two children, both of which are internal nodes that serve as

roots of subtrees (corresponds to Case 1).
2. or the node that has five children, where the first, third and fifth (from the left) children

are single symbols and the second and fourth children in the middle can be either empty
or an internal node that is the root of another subtree which is equal to ∆r, r ∈ Z
(corresponds to Case 2).

We label each internal node γ with a pair of states (sj1 , sj2) such that if u′ is the subword
of u that corresponds to the subtree rooted at γ, and u = v1 · u′ · v2 then sj1 ∈ δ(s, v1),
sj2 ∈ δ(sj1 , u

′). are the states reached after reading the input prefixes v1 and v1u
′, respectively,

during the accepting computation under consideration. This implies that s ∈ δ(sj2 , v2) and
(s,t) is the label associated with the root of the tree.

If the parse tree of u has two nodes ξ1 and ξ2 with the same state-pair label such that ξ2 is
a descendant of ξ1, then there exists a word shorter than u which is ∆k′ . This is because we
can replace the subtree rooted at ξ1 with the subtree rooted at ξ2. Furthermore, if an internal
node ξ1 is labeled with a pair (p,q), for some p, q ∈ Q then the subword u′ corresponding to
the subtree rooted at ξ1 can be removed from u, obtaining a shorter path. Therefore the
height of the subtree corresponding to the shortest subword equal to a power of ∆ is at most
q2 − q and the number of leaves of a parse tree of height h is at most 3(2q2−q − 2). In the
maximal case we have the complete binary tree of depth q− 1 with three extra leaves in each
internal node and on the last level every node has three leaves. Assume that we have a path
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with some larger length from a state s to t with a braid word w equal to ∆k then according
to above proof it should be two states p and q which will appear twice in the path with the
following order s A−→ p

B−→ p
C−→ q

D−→ q
E−→ t and decomposing it into five parts A,B,C,D,E,

where w = A ·B ·C ·D ·E = ∆k, C = ∆k1 , B ·C ·D = ∆k2 . From this follows that any path
from a state s to t in A, which is equal to ∆k, can be represented by a linear combination of
shorter ∆ paths each of which has length at most 3(2q2−q − 2). This gives us a bound on the
number of values for expressing a power of ∆’s during modification of automata A and also
will guarantee the termination of the following procedure, where we add a number of new
transitions between states s and t to get a direct edge labelled by a power of ∆:
1. For any of the following sequences, where even1 and even2 are any even numbers or 0,

which means that in case of ∆0 the transition is not there:
s
σ1−→ ∆even1
−−−−−→ σ2−→ ∆even2

−−−−−→ σ1−→ t; s
σ2−→ ∆even1
−−−−−→ σ1−→ ∆even2

−−−−−→ σ2−→ t we add
s

∆even1+even2+1

−−−−−−−−−−→ t

2. For any of the following sequences, where odd is any odd number:

s
σ1−→ ∆odd

−−−→ σ1−→ σ2−→ t; s σ2−→ ∆odd

−−−→ σ2−→ σ1−→ t; s σ1−→ σ2−→ ∆odd

−−−→ σ2−→ t; s σ2−→ σ1−→ ∆odd

−−−→ σ1−→ t

we add s ∆odd+1

−−−−−→ t

3. For any of the following sequences, where odd1 and odd2 are any odd numbers:
s
σ1−→ ∆odd1
−−−−→ σ1−→ ∆odd2

−−−−→ σ1−→ t; s
σ2−→ ∆odd1
−−−−→ σ2−→ ∆odd2

−−−−→ σ2−→ t

we add s ∆odd1+odd2+1

−−−−−−−−−→ t

4. For any of the following sequences, where odd is any odd number and even is any even
number, we add s ∆odd+even

−−−−−−−→ t:

s
σ1−→ ∆odd

−−−→ σ1−→ ∆even

−−−−→ σ2−→ t; s σ2−→ ∆odd

−−−→ σ2−→ ∆even

−−−−→ σ1−→ t;

s
σ1−→ ∆even

−−−−→ σ2−→ ∆odd

−−−→ σ2−→ t; s σ2−→ ∆even

−−−−→ σ1−→ ∆odd

−−−→ σ1−→ t

5. For any of the following sequences, where z1, z2 are integer numbers:
s

∆z1
−−→ ∆z2

−−→ t; we add s ∆z1+z2
−−−−−→ t

6. If s = t, for any of the above cases 1-5, then the new edge should make a cycle labelled by
some power of ∆, i.e ∆a, where a ∈ Z. In this case if there are no other cyclic edges from
a state s then we add a cyclic edge from state with an expression ∆xnew·a, where xnew is a
new symbol from some infinite alphabet {xi|i ∈ N}, which will be used later as unknown
in a system of equations. Assume that there is a cyclic edge with ∆z where z is repres-
ented by a linear expression Expr(xi1 , xi2 , ..., xij ) then no extra cyclic edges are added,
but the expression Expr(xi1 , xi2 , ..., xij ) will be replaces by Expr(xi1 , xi2 , ..., xij )+xnew ·a.

Now we will generalize the cases 1-5 to incorporate the idea of expressions into the
new set of rules in the straightforward way: for any ∆x, x is an expressions Expr() that
can be a constant of a linear function. In case 6, if a in ∆a is already some expression of
the form Expr1(...) + c, where c ∈ Z, we replace the expression on the original cycle by
Expr(xi1 , xi2 , ..., xij ) + Expr1(...) + xnew · c. 4

4 Formally we should also multiply Expr1(...) by xnew which can be avoided since the variables in the
linear expression Expr1(...) are independent from xnew and in this case can be simply renamed.
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7. For s ∆Expr1()

−−−−−−→ p
∆Expr2()

−−−−−−→ p
∆Expr3()

−−−−−−→ t; we add s ∆Expr1()+Expr2()+Expr3()

−−−−−−−−−−−−−−−−−→ t, where any of
the expressions Expri() can be a constant.

8. For any of the following sequences, where α, β ∈ Z s
σj1−−→ p0

∆Expr0()

−−−−−−→ p0
∆α

−−→
p1

∆Expr1()

−−−−−−→ p1
σj2−−→ p2

∆Expr2()

−−−−−−→ p2
∆β

−−→ p3
∆Expr3()

−−−−−−→ p4
σj3−−→ t

we add the transition s
∆Expr0()+Expr1()+Expr2()+Expr3()+α+β+1

−−−−−−−−−−−−−−−−−−−−−−−−−−−→ t if the values of the σ’s
indices and even/odd constrains for ∆ in between them will match with one of the cases
1-4. In order to record the information about even/odd case for the expressions we can
add one of the following equations:

if Expr() should have an even value then we add: Expr() = 2 · xnew
if Expr() should have an odd value then we add: Expr() = 2 · xnew + 1

Now let us modify the automaton A following rules 1-8 in the following way. We apply rules
1-5 in any order until it is possible then if no cycles are created then the process will terminate
since there will be only a finite number of such sequences. In this case no other rules 1-8 are
applicable. If there is at least one cycle after applying rules 1-5 we iteratively apply rules 6,
7 and 8: as many times as possible each, then the process is starting again. When no extra
transition can be added according to the above rules the process will terminate.

Finally in order to check the membership for a braid b = ∆k ·w we will need to find a path
from the initial to the final state of A that consists of a set of |w| edges in the automaton A
connected by ∆’s such that total sum for powers of ∆’s will be equal to k and the positive
word after moving all ∆’s to the left will be equal to w.

If the length of a braid word b is equal to l then in the canonical form ∆k · w that is
isotopic to b we have that the length of a positive word w , i.e h = |w|, is limited by 2 · l,
following the process of rewriting. Then the absolute value of the negative power of ∆ is
2 · l and the number of positive ∆’s that can be derived from w is bounded by 2l

3 . So the
absolute value of k is bounded by | 2l3 − l|=

l
3 .

Let w be a positive word σi1 · σi2 · . . . · σih . If b is in the semigroup of braids generated
by b1, b2, . . . , bn then it should be a word in A that consists of a set of h edges with σ labels
which are connected by ∆’s such that total sum for powers of ∆’s will be equal to k and the
positive word after moving all ∆’s to the left will be equal to w:

∆j1σi1∆j2σi2 . . .∆jhσih = ∆kw; i ∈ {1, 2}, j ∈ Z,
∑h
d=1 jd = k

Now we nondeterministically choose a particular pattern of σ’s and even/odd values of
j′s and checking whether the resulting positive word after moving all ∆’s to the left will
be equal w. Obviously it can be converted into deterministic algorithm since any of the
non-deterministic guesses will be made from some finite sets. Then we also define a system of
linear Diophantine equations that will correspond to the ∆ transitions which are connecting
σi1 , σi2 . . . σih transitions. Let us assume that the subset of σ’s transitions are connected via
a ∆ transitions in modified automaton A with the following expressions R1, R2, . . . , Rh+1,
where each Rl can be

ε, i.e. empty, which corresponds to direct connection of σl−1 and σl
∆k
l for some kl ∈ Z

∆Exprl(xz1 ,xi2 ,...,xzµ ) - which is a linear expression with µ variables, xi ∈ N .

The system of linear Diophantine equations and inequalities will consists of the equation∑h
d=1Rd = k and several equations representing a number of constraints for even/odd

properties as well as the restrictions on variables to be positive integers. Since this system is
known to be decidable [3] we can decide the membership problem by checking the existence
of a solution for our system of linear Diophantine equations and inequalities. J
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The composition problems become harder with a larger number of strands.
Here we illustrate the technique to show undecidability of the fundamental problem

whether a semigroup of braids is a group.

I Lemma 13. [7] Subgroups 〈σ1
4, σ2

4〉, 〈σ4
2, d〉 of the group B5 are free and B5 contains

the direct product 〈σ1
4, σ2

4〉 × 〈σ4
2, d〉 of two free groups of rang 2 as a subgroup, where

d = σ4σ3σ2σ
2
1σ2σ3σ4.

I Theorem 14. The Identity problem and the Group Problem are undecidable for braids in
B5.

Proof. It was recently proved in [6] the undecidability of the following Identity Correspond-
ence Problem (ICP) which asks whether a finite set of pairs of words (over a group alphabet)
can generate an identity pair by a sequence of concatenations:

Identity Correspondence Problem (ICP) - Let Σ = {a, b} be a binary alphabet and
Π = {(s1, t1), (s2, t2), . . . , (sm, tm)} ⊆ FG(Σ)× FG(Σ). Is it decidable to determine if there
exists a nonempty finite sequence of indices l1, l2, . . . , lk where 1 ≤ li ≤ m such that
sl1sl2 · · · slk = tl1tl2 · · · tlk = ε, where ε is the empty word (identity)?

We can directly use the Lemma 13 to encode Identity Correspondence Problem in terms
of braid words. We shall use a straightforward encoding to embed an instance of the Identity
Correspondence Problem into a set of braids. Given an instance of ICP say W ⊆ Σ∗ × Σ∗
where Σ = {a, b, a−1, b−1} generates a free group. Define two morphisms φ and ψ, Σ→ B5:

φ(a) = σ1
4, φ(b) = σ2

4, φ(a−1) = σ1
−4, φ(b−1) = σ2

−4.

ψ(a) = σ4
2, ψ(b) = σ4σ3σ2σ

2
1σ2σ3σ4,

ψ(a−1) = σ4
−2, ψ(b−1) = σ−1

4 σ−1
3 σ−1

2 σ−2
1 σ−1

2 σ−1
3 σ−1

4 .

Both φ and ψ can be naturally extended for words Σ∗ → B5:

φ(ai1 . . . aij ) = φ(ai1) · . . . · φ(aij ); ψ(ai1 . . . aij ) = ψ(ai1) · . . . · ψ(aij )

For each pair of words (s, t) ∈ Π, define the braid word φ(s) · ψ(t). Let S be a semigroup
generated by these braid words. If there exists a solution to ICP, i.e., (ε, ε), then we see
that φ(ε) · ψ(ε) = 1 ∈ S where 1 is the trivial braid. Otherwise, since ψ and φ are injective
homomorphisms, 1 6∈ S.

Thus we have that the problem whether a trivial braid can be expressed by any finite
length composition of braids from B5 is undecidable. The ICP problem is also computationally
equivalent to the following Group Problem: is the semigroup generated by a finite set of
pairs of words (over a group alphabet) a group. Using the same morphisms φ and ψ we can
encode the Group Problem for words by braids, having that the Group Problem for braids
in B5 is also undecidable. J

5 Conclusion

The paper introduce a few challenging algorithmic problems about topological braids opening
new connections between braid groups, combinatorics on words, complexity theory and
provides solutions for some of these problems by application of several techniques from
automata theory, matrix semigroups and algorithms.
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We show that the membership problem for B3 is decidable. The complexity of the
problem is at least NP-hard5 and the basic upper bound for the time complexity of proposed
construction is exponential. The question about the exact complexity of the membership
problem in B3 is left open and may require a further study in terms of improving the lower
bound or designing a more efficient algorithm. We believe that the proposed technique for
deciding the membership problem in B3 can also be used to design the algorithm for the
Freeness Problem: Given a set of braids with n strands B = b1, . . . , bk ∈ Bn. Let us
denote a semigroup of braids, generated by B and the operation of composition, by 〈B〉.
Check whether any two different concatenations of braids from B are not isotopic. I.e. is a
semigroup of braids 〈B〉 free? One of the possibilities for solving above problem with our
techniques is to follow ideas proposed in [10], but arranging a more sophisticated procedure of
dealing with powers of ∆’s. Finally in this paper we show that fundamental problems about
the braid compositions are undecidable for braids with at least 5 strands, but decidability of
these problems for B4 remains open.

Acknowledgements. The author is grateful for many fruitful discussions with Sergei Chmu-
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