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Abstract
Nowhere dense classes of graphs were introduced by Nešetřil and Ossona de Mendez as a model
for “sparsity” in graphs. It turns out that nowhere dense classes of graphs can be characterised
in many different ways and have been shown to be equivalent to other concepts studied in areas
such as (finite) model theory. Therefore, the concept of nowhere density seems to capture a
natural property of graph classes generalising for example classes of graphs which exclude a
fixed minor, have bounded degree or bounded local tree-width. In this paper we give a self-
contained introduction to the concept of nowhere dense classes of graphs focussing on the various
ways in which they can be characterised. We also briefly sketch algorithmic applications these
characterisations have found in the literature.
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1 Introduction

Structural graph theory has proved to be a powerful tool for coping with computational
intractability. It provides a wealth of concepts and results that can be used to design
efficient algorithms for hard computational problems on specific classes of graphs that occur
naturally in applications. Examples include polynomial-time (in fact, fixed-parameter linear)
algorithms for problems such as computing dominating sets, independent sets, Hamiltonian
cycles, 3-colourings and many other problems on classes of graphs of bounded tree-width. See
e.g. [6, 8, 7, 5, 4] for surveys on tree-width and the huge number of algorithmic applications.
Other examples are polynomial-time approximation schemes (PTAS) for problems such as
vertex cover, dominating sets or Steiner-forests on planar graphs or, more generally, on graph
classes of bounded genus or which exclude a fixed graph as a minor [3, 58, 29, 36, 14].

In their monumental work on graph minors [56], Robertson and Seymour developed a
very powerful structure theory for classes of graphs excluding a fixed minor which has found
a large number of algorithmic consequences, for instance to constant-factor approximations
of colouring problems (see e.g. [19, 20]), to polynomial-time approximation schemes ([36, 19,
14, 21]) or for general parameterized algorithms for problems such as dominating sets and
many other in form of bidimensionality theory developed in [17] and subsequent papers. See
e.g. [16, 18].

Excluding a fixed graph H as a minor yields classes of graphs for which topological
methods can be employed to obtain efficient algorithms for computational problems. A
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22 Characterisations of Nowhere Dense Graphs

different approach is taken in classes of bounded degree, where topology does not play a
decisive rôle in the development of algorithms but other approaches succeed in obtaining good
algorithms for various problems on input graphs of maximum degree d, for some constant
d. Graph classes of bounded degree can be generalised further to classes of bounded local
tree-width [30, 31], a property where we do not require that the entire graph has small
tree-width, but only that every r-neighbourhood of a vertex in the graph has tree-width
bounded by some function of its radius r. Again, bounded local tree-width and excluded
minors are incomparable concepts.

Whereas many papers provide optimised algorithms for specific, individual problems on
certain classes of graphs, another line of research aims at developing general tractability
results for a whole and natural class of problems on special classes of inputs. One example is
bidimensionality theory as outlined above. Many other examples of such general tractability
results, often referred to as algorithmic meta-theorems, use definability of computational
problems in logical languages to obtain natural classes of problems. The best-known of
these results is Courcelle’s theorem [12] stating that every algorithmic problem definable in
monadic second-order logic can be decided in linear time on classes of graphs of bounded
tree-width. This includes many common algorithmic problems such as Hamiltonicity, 3-
Colourability and many covering problems such as dominating sets. Following Courcelle’s
result, meta-theorems of various forms have been developed, see e.g. [9, 57, 33, 34, 13, 28]
and the surveys [37, 38, 45].

In general, the main goals of this whole line of research described so far, sometimes
referred to as algorithmic graph structure theory, are the following: we want to understand
for natural and important classes of graphs what kind of problems can be solved efficiently on
these graphs and to develop the corresponding graph structural and algorithmic techniques;
for natural classes of problems we want to understand their general tractability frontier,
i.e. the “most general” classes of graphs on which these problems become tractable.

In particular the last aspect has been pursued intensively in research on algorithmic
meta-theorems with a quest for finding the largest classes of graphs where problems definable
in first-order logic become tractable. First-order definable problems define a natural class of
problems including dominating sets, vertex covers, network centres and many others.

As diverse as the examples above of graph classes with a rich algorithmic theory may
appear, a feature all these classes have in common is that they are relatively sparse, i.e. graphs
in these classes have a relatively low number of edges compared to the number of vertices.
In fact, classes of graphs excluding a fixed minor can only have a linear number of edges.
This suggests that this “sparsity” might be an underlying reason why many problems can be
solved efficiently on these classes of graphs, even though they otherwise do not have much in
common. This leads to the question how to define a reasonable concept of “sparse classes of
graphs”.

A first idea to capture the concept of “sparse” classes of graphs is to bound the average
degree, i.e. to study classes C of graphs such that for all G ∈ C, |E(G)|

|V (G)| ≤ d for some constant
d. However, given any graph G of order n := |V (G)|, we can bound its average degree
by “padding”, i.e. simply by adding n2 isolated vertices. While this reduces the average
degree below 2, for many problems it does not significantly change the structure of the
graph. For instance, adding extra isolated vertices does not really change the problem of
evaluating first-order formulas. Hence, this notion is not a satisfactory measure for sparsity
in general. Therefore, to prevent padding arguments of this form, we may want to require
that sparse graphs remain sparse if we take a subgraph, i.e. that sparse graphs do not have
dense subgraphs.



M. Grohe, S. Kreutzer, and S. Siebertz 23

planar

bounded genus
bounded tree-width

bounded
local

tree-width

excluded minor

excluded topological subgraph

bounded degree

bounded expansion

locally excluded minor

locally bounded expansion

nowhere dense

bounded degeneracy

nowhere dense
somewhere dense

Figure 1 Sparse graph classes.

This leads to the well-studied concept of degeneracy. A graph G is d-degenerate if every
subgraph of G contains a vertex of degree at most d. In particular, this means (and in fact
degeneracy is equivalent to saying) that the average degree of every subgraph is bounded by
a constant. But again this concept is not universally satisfactory as we can make every graph
2-degenerate by subdividing every edge once. Here, by subdividing an edge we mean the
operation of replacing an edge {u, v} by a path of length 2. Again, for various problems such
as evaluating first-order formulas, this does not change the nature of the graph significantly.
Hence, in addition to closure under subgraphs, we may want to require of our notion of
sparsity that it should be invariant under such subdivisions or local modifications. The two
requirements together exactly yield the concept of nowhere dense classes of graphs introduced
by Nešetřil and Ossona de Mendez [52]. See [49] for an extensive study of sparse graphs.
We defer a formal definition to Section 2, see Definition 2.5.

It turns out that nowhere dense classes of graphs can equivalently be characterised in many
different ways which at first sight have very little in common. For instance, nowhere dense
classes of graphs can equivalently be characterised by the concept of uniformly quasi-wideness
(see Section 6), a concept studied in finite model theory; by the existence of low tree-depth
colourings (see Section 4); by generalised colouring numbers (see Section 3); by a game
characterisation (see Section 7.2); or by the model-theoretic concept of independence, see
[1]. See the individual sections for references. This shows that the concept of nowhere dense
classes of graphs is very robust and seems to capture a natural property of graph classes
arising independently in many diverse contexts.

By construction, nowhere dense classes of graphs contain all examples of special graph
classes mentioned above and thereby form a very general type of graph classes. Figure 1
shows the containment of the various classes mentioned so far. In particular, nowhere dense
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24 Characterisations of Nowhere Dense Graphs

classes unify the two incomparable concepts of bounded degree or bounded local tree-width
on the one hand and excluded minors or excluded topological subgraphs on the other hand.
They therefore provide a unifying framework in which to study sparse classes of graphs.

Following their introduction, nowhere dense classes of graphs have been studied also
with algorithmic applications in mind. The fact that they can be characterised in many
different ways also has very nice algorithmic consequences, as each characterisation yields
different algorithmic techniques. For instance, it has been shown that problems such as
network centres and dominating sets can be solved by fixed-parameter algorithms on nowhere
dense classes of graphs using uniformly quasi-widesness [15] (see Section 6). Using low
tree-depth colourings, Nešetřil and Ossona de Mendez [50] showed that the subgraph
isomorphism or homomorphiosm problem is fixed-parameter tractable on nowhere dense
classes. Furthermore, using the same characterisation, Gajarsky et al. [35] extended the
meta-kernelisation framework of [10] to nowhere dense classes of graphs providing polynomial
kernels for a large number of algorithmic problems (see Section 4). On an important
subclass of nowhere dense graphs, called classes of bounded expansion (see Definition 2.8),
even more algorithmic applications are known, for instance in database query answering
and enumeration [42], which relies on the concept of augmentations (see Section 5), or in
approximating dominating sets [25], which is based on generalised colouring numbers (see
Section 3).

As mentioned above, in a series of papers starting in the 1990s researchers have tried to
investigate the largest classes of graphs on which all first-order definable graph properties can
be decided efficiently, or more formally, on which first-order model checking is fixed-parameter
tractable. It turns out that for classes of graphs closed under subgraphs, this limit are exactly
nowhere dense classes of graphs. For, it was shown in [45] and [27] that on classes of graphs
which are not nowhere dense but closed under subgraphs first-order model-checking cannot
be fixed-parameter tractable unless FPT = W[1], a consequence widely believed to be false
in the parameterized complexity community (see e.g. [24, 32]). On the other hand, very
recently it was shown by the authors of this paper that on nowhere dense classes of graphs,
first-order model-checking is fixed-parameter tractable [39]. Hence, this is another indication
that nowhere dense classes of graphs form a natural limit for certain types of algorithmic
problems to be solved efficiently.

As the exposition above already indicates, the appeal of nowhere dense classes and their
applications relies on the fact that they are characterised in many different ways. In this
paper we provide a self-contained introduction to nowhere dense classes with a strong focus
on their different characterisations. In each of the individual sections of this paper we will
present some characterisation of nowhere dense classes of graphs, prove its equivalence to
other characterisations, state their main properties and sketch some algorithmic consequences.

Notation. We use standard notation in graph theory and refer, e.g., to [23] for details. In
particular, we write d(G) for the average degree of a graph G, δ(G) for the minimum degree
and ∆(G) for its maximum degree. ∆−(~G) denotes the maximum in-indegree of a directed
graph ~G.

2 Sparse graphs

As motivated in the introduction, we want to find the largest number of edges an n-vertex
graph can have such that we still find structure that can be used algorithmically. This is
closely related to one of the classical questions of extremal graph theory: given a graph H,
what is the maximum number of edges in an n-vertex graph that does not contain H as a
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subgraph? This number is known as the Turán number ex(n,H) of H and Turán determined
the exact value of ex(n,Kt) for the complete graph on t vertices, Kt. For algorithmic
purposes often a more interesting restriction is to exclude a graph as a topological subgraph.
A graph H is a subdivision of a graph H ′ if H can be obtained from H ′ by replacing edges
by vertex disjoint paths. H is a topological subgraph or topological minor of G, denoted
H �t G, if a subdivision of H is isomorphic to a subgraph of G. Mader was one of the first
who considered Turán’s question for topological subgraphs.

I Theorem 2.1 (Mader [46]). Given t ∈ N, there exists a constant ct depending only on t
such that every graph G on n vertices with at least ctn edges contains a subdivision of the
complete graph Kt.

Bollobás and Thomason [11] and independently Komlós and Szemerédi [44] showed that
ct ≤ ct2 for some absolute constant c, hence every graph with average degree at least ct2
contains a subdivision of Kt. More generally, a graph that contains a subgraph with average
degree at least ct2 contains a subdivision of Kt.

Recent results show that even less structural information suffices to solve many problems
efficiently. A graph H ′ is an r-subdivision of a graph H if H ′ can be obtained from H by
replacing edges by vertex disjoint paths of length at most r + 1. H is a topological depth-r
subgraph or topological depth-r minor of a graph G, denoted H �tr G, if an r-subdivision
of H is isomorphic to a subgraph of G. In the proofs of the above results, the edges of the
complete graphs that are found as topological subgraphs are subdivided by more than a
constant number of vertices. It was hence the next step to ask how many edges an n-vertex
graph that does not contain an r-subdivision of a complete graph Kt can maximally have. A
first result in this direction is implied by a result of Alon, Krivelevich and Sudakov.

I Theorem 2.2 (Alon, Krivelevich, Sudakov [2]). Let t ∈ N and ε ≥ 1/2. Every graph G on
n vertices with at least t2

2 n
1+ε edges contains a 2-subdivision of Kt.

On the other hand, there are well known classes of graphs of girth at least g and Ω(n1+1/g)
edges. Any c-subdivision of Kt, where t ≥ 3, must contain a cycle of length at most 3c. Hence
there are n-vertex graphs with Ω(n1+1/(3c+1)) edges and no c-subdivision of Kt. Dvořák
[26] and Jiang [41] independently answered the question for 0 < ε < 1/2 by showing the
following.

I Theorem 2.3 (Dvořák [26], Jiang [41]). Given t ∈ N and ε > 0. There exists n0 = n0(t, ε)
and c = c(ε) such that all graphs G with n ≥ n0 vertices and at least n1+ε edges contain a
c-subdivision of the complete graph Kt.

Jiang [41] provides the best bound for the constant c(ε) known today, c(ε) ≤ b10/εc. If
we apply this result to infinite classes of graphs, we obtain an interesting dichotomy in terms
of edge densities. Note that for every graph G with at least one edge and for all ε ≥ 0,

|E(G)| = |V (G)|ε ⇐⇒ log |E(G)|
log |V (G)| = ε.

I Corollary 2.4. Let C be an infinite class of graphs. Then either for all r ∈ N

lim
n→∞

sup
{

log |E(H)|
log |V (H)|

∣∣∣∣ G ∈ C with |V (G)| ≥ n,H �tr G
}
≤ 1 (2.1)

or there exists r ∈ N with

lim
n→∞

sup
{

log |E(H)|
log |V (H)|

∣∣∣∣ G ∈ C with |V (G)| ≥ n,H �tr G
}

= 2. (2.2)

FSTTCS 2013



26 Characterisations of Nowhere Dense Graphs

Here we take log |E(H)|
log |V (H)| to be −∞ if E(H) = ∅.

Proof. Note that the supremum always exists, because log |E(H)|
log |V (H)| ≤ 2 for all H. Furthermore,

observe that if an r-subdivision of H1 is a subgraph of G and an s-subdivision of H2 is a
subgraph of H1, then an ((r+ 1)s+ 1-subdivision of H2 is a subgraph of G. Assume that for
some r ∈ N, limn→∞ sup

{
log |E(H)|
log |V (H)|

∣∣∣ G ∈ C with |V (G)| ≥ n,H �tr G
}

= 1 + 2ε for some
0 < ε < 1

2 . Then there are infinitely many n-vertex graphs H with at least n1+ε edges such
that an r-subdivision of H is a subgraph of some G ∈ C. Let C′ be the class of those graphs.
By Theorem 2.3, for all t ∈ N there exists n0(t, ε) and s := c(ε) such that all graphs in C′
contain an s-subdivision of Kt. By our above observation, C contains (r+1)s+1-subdivisions
of arbitrary large complete graphs. Then the above limit goes to 2 for (r + 1)s+ 1. J

The previous corollary was proved by Nešetřil and Ossona de Mendez [52] who showed
that the limits defined there form a trichotomy, i.e. that for all classes C of graphs the lim sup
can only take the values {0, 1, 2}. Those classes for which the limits is ≤ 1 are called nowhere
dense.

I Definition 2.5. Let C be a class of graphs. C is nowhere dense, if

lim
n→∞

sup
{

log |E(H)|
log |V (H)|

∣∣∣∣ G ∈ C with |V (G)| ≥ n,H �tr G
}
≤ 1.

Otherwise C is called somewhere dense.

We can rephrase the definition in the following ways.

I Corollary 2.6. A class C of graphs is nowhere dense if, and only if, for all r ∈ N and all
ε > 0 there is n0(r, ε) such that all n-vertex graphs H �tr G ∈ C with n ≥ n0 vertices satisfy
|E(H)| ≤ n1+ε.

I Corollary 2.7. A class C is nowhere dense if and only if there is a function f such that
for all r ∈ N we have Kf(r) 6�tr G for all G ∈ C.

The original interest of Nešetřil and Ossona de Mendez when studying sparse graph
classes was the following subclass of nowhere dense classes [47, 53, 48].

I Definition 2.8. A class C has bounded expansion if for every r there exists n0(r) and c(r)
such that all n-vertex graphs H �tr G ∈ C with n ≥ n0 vertices satisfy |E(H)| ≤ c · n.

I Remark. Nowhere dense classes and classes of bounded expansion were originally defined
in terms of excluded depth-r minors and not in terms of excluded r-subdivisions. In
general, minors and topological subgraphs behave quite different. Surprisingly, densities of
bounded depth minors and bounded depth topological subgraphs are strongly related. In
our presentation we will always work with topological subgraphs and hence we have defined
nowhere dense classes accordingly.

In the rest of this section we present a proof of Theorem 2.3. Our presentation follows
[49]. A well-known lemma from graph theory states that any graph with high average degree
contains a subgraph of high minimum degree.

I Lemma 2.9. Let G be a graph and 1/|V (G)| < ε ≤ 1. Then G has a subgraph H with

δ(H) ≥ (1− ε) |E(G)|
|V (G)| and |E(H)| ≥ ε · |E(G)|.
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The next lemma will be used to show that in graphs of large minimum degree d we can
find a 1-subdivision of H of only slightly smaller minimum degree and such that we can
carefully control the order of H. We will use this to show that when we express the minimum
degree relative to the order of H, it will in fact grow.

I Lemma 2.10. Let A be an n-element set and let A1, . . . , An ⊆ A be a collection of sets of
size at least d such that A =

⋃
1≤i≤nAi. Let d ≤ s ≤ n. Then there exists a set S ⊆ A of

size s such that |Ai ∩ S| ≥ bs · d/nc for at least n/2 of the Ai.

Proof. We may assume without loss of generality that every set Ai has exactly d elements.
For each i, the number of subsets of A of size s including exactly k elements of Ai is

(
n−d
s−k
)(
d
k

)
(choose k elements of Ai and s− k elements of A \Ai). Hence the number of subsets of A of
size s including at least k elements from Ai is

∑
k≤`≤s

(
n−d
s−`
)(
d
`

)
.

For k ≤ d consider the bipartite graphs Gk, where one part consists of the s-element
subsets of A and the other part consists of the sets Ai. We add an edge (B,Ai) if and only
if |B ∩ Ai| ≥ k. The degree of B in Gk corresponds to the number of Ai that B shares at
least k elements with. As observed above, every Ai has degree

∑
k≤`≤s

(
n−d
s−`
)(
d
`

)
. Hence

|E(Gk)| = n ·
∑
k≤`≤s

(
n− d
s− `

)(
d

`

)
.

The average degree of a vertex B in Gk is
n·
∑

k≤` (n−ds−`)(d`)
(ns)

and there must be one vertex S
with at least this degree.

Observe that (n−ds−k)(dk)
(ns)

is the probability mass function of a hypergeometric distribution

with mean ds
n . Hence for k =

⌊
ds
n

⌋
the above sum is greater than 1/2 and hence d(S) ≥ n/2

for this k. We conclude that |Ai ∩ S| = k =
⌊
ds
n

⌋
for at least n/2 of the Ai. J

We now show how to find a subgraph with larger minimum degree with respect to its
order.

I Lemma 2.11. Let ρ > 1. There exists n0(ρ) such that for all graphs G on n ≥ n0 vertices
with minimum degree δ(G) ≥ n1/ρ there exists a graph H such that a 1-subdivision of H is a
subgraph of G and either

H is a complete graph of order n1/(3ρ2), or
δ(H) ≥ |V (H)|1/(ρ−1/2) and |V (H)| ≥

√
n/6.

Proof. Let µ := 1/ρ and s := n1−µ+µ2/3. For each vertex ai ∈ V (G) let Ai be the set of
neighbours of ai. Then every set Ai has at least nµ many vertices,

⋃
1≤i≤nAi = A and

nµ ≤ s ≤ n. By Lemma 2.10 there exists a subset S ⊆ A of size s and a set T ′ ⊆ V (G) of size
at least n/2 such that every vertex in T ′ has at least nµ · n1−µ+µ2/3/n = nµ

2/3 neighbours
in S. Let T := T ′ \ S. T has size at least t := n/2 − s. Enumerate the vertices of T as
t1, . . . , tt. We construct a sequence H0 ⊆ H1 ⊆ . . . of graphs, where H0 is the empty graph
on vertex set S. Assume that graph Hi has already be constructed. Consider all neighbours
of ti+1 in S. If they induce a complete graph in Hi define H to be this complete graph
of order nµ2/3 = n1/(3ρ2). Otherwise, we add the edge ei+1 to Hi+1 between two arbitrary
not yet adjacent neighbours u, v of ti+1 and associate with this edge the path u, ti+1, v of
length 2 and continue the construction. After t steps, we define H ′ := Ht. Then |E(H ′)| = t.
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Let d := nµ−µ
2/3 > 2 and ε := (1 − 1/d)/(2 − 1/d) (hence 1/n < 1/2 < ε < 1). Note that

n/d = s. By Lemma 2.9, H ′ has a subgraph H with

δ(H) ≥ (1− ε) |E(H ′)|
|V (H ′)| = 1

2− 1/d ·
n/2− n/d

n/d
= 1

2− 1/d · (2d− 1) = d = nµ−µ
2/3

and

|E(H)| ≥ ε · |E(H ′)| = 1− 1/d
2− 1/d · (n/2− n/d) = (1− 1/d) · d

2d− 1 ·
d− 2

2d · n

= (1− 1/d) · d− 2
4d− 2 · n ≥ (1− 1/d) · n10 .

We conclude that

|V (H)| ≥
√

2|E(H)| ≥
√

(1− 1/d)n5 .

For sufficiently large n, 1/d ≤ 1/6 and hence |V (H)| ≥
√
n/6.

On the other hand, as H ⊆ H ′, we have |V (H)| ≤ n1−µ+µ2/3, and hence
n ≥ |V (H)|

1
1−µ+µ2/3 . Then

δ(H) ≥ |V (H)|
µ−µ2/3

1−µ+µ2/3 ≥ |V (H)|µ+µ2
2 .

We conclude the proof by observing that
(

1
ρ + 1

2ρ2

)−1
= ρ− 1

2 + 1/2
2ρ+1 > ρ− 1

2 . J

We are ready to take the final step.

I Lemma 2.12. Let ρ > 1. There exists n0 = n0(ρ) and µ = µ(ρ) > 0 such that for all
graphs G on n ≥ n0 vertices with minimum degree at least n1/ρ we find a complete graph of
order nµ as a 9ρ subdivision of G.

Proof. We construct a sequence of graphs G0, G1, . . . , Gk such that for each 0 ≤ i ≤ k the
graph Gi has order ni and minimum degree at least n1/(ρ−i/2)

i as follows. Let G0 := G.
Iteratively, for each i ≥ 0, if Gi is not a complete graph we apply Lemma 2.11 to Gi. We get
a graph Hi whose 1-subdivision is a subgraph of Gi. If Hi is a 1-subdivision of a complete
graph we stop. Otherwise we let Gi+1 := Hi. The process stops after k ≤ 2ρ iterations
because of the increase of δ(Gi). We have ni+1 ≥

√
ni/6 and hence nk−1 ≥ 1

6
(
n
6
)2−2ρ

. At
the next step we find a complete subgraph of size at least n1/(3ρ2)

k−1 and we let µ > 0 such
that for any k ≤ 2ρ we have nk ≥ nµ. Now every 1-subdivision of a k-subdivision is a 2k + 1
subdivision of the original graph. For simplicity we treat it as a 3k subdivision. Hence we
find Gk as a 32ρ = 9ρ-subdivision of G. J

3 Generalised colouring numbers

As explained in the introduction, degeneracy is another concept to describe sparse graphs.
Degeneracy gives rise to an ordering of the vertices of a graph with nice properties in a
very natural way. Let d be the degeneracy of G. By induction on the number of vertices
we construct an order v1 < . . . < vn such that every vertex vi has at most d neighbours
in {v1, . . . vi−1}. In G, there is a vertex v which has at most d neighbours. G − v is also
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d-degenerate and has n− 1 vertices. By induction, we have an order v1 < . . . < vn−1 such
that every vi has at most d neighbours in {v1, . . . , vi−1}. Adding v as the largest element to
this order gives us an order with the desired properties. This order can for example be used
to compute a vertex colouring of V (G) with at most d colours in linear time.

When characterising nowhere dense classes in terms of degeneracy, we have to talk about
the degeneracy of topological depth-r subgraphs. For example the class of 1-subdivisions
of complete graphs is a class of degeneracy 2 but it is dense at depth 1. The aim of this
section is to find a measure which generalises degeneracy and which allows to state that a
class is nowhere dense if and only if this measure is bounded by nε for every sufficiently
large n-vertex graph from C. Such generalisations were found by Kierstead and Yang [43]
which they called the generalised colouring numbers of a graph. Their theorem is weaker
than what they actually proved, as they were not aware of the depth-r minor terminology.
Zhu [60] formulated their theorem in terms of topological depth-r subgraphs. The following
presentation follows Kierstead and Yang.

For a graph G, let Π(G) be the set of all linear orderings of the vertices of G. For ≤∈ Π(G)
and x, y ∈ V (G), we say that x is weakly k-reachable1 from y if there is a path of length
0 ≤ ` ≤ k from y to x such that x is the smallest vertex with respect to the ordering. Let
WReachk[G,≤, y] be the set of vertices that are weakly k-reachable from y with respect to
the ordering. If furthermore, all internal nodes of the path are larger than y in the ordering,
then x is called strongly k-reachable from y. Let SReachk[G,≤, y] be the set of vertices that
are strongly k-reachable from y with respect to the ordering. The weak k-colouring number
wcolk(G) of G is defined as

wcolk(G) = min
L∈Π(G)

max
v∈V (G)

[WReachk(G,≤, v)]

and the k-colouring number colk(G) of G is defined as

colk(G) = min
L∈Π(G)

max
v∈V (G)

[SReachk(G,≤, v)].

The aim of this section is to present a proof of the following theorem which follows from
Kierstead and Yang’s result [43] and Zhu’s result [60].

I Theorem 3.1. A class C of graphs is nowhere dense if and only if for every ε > 0 there is
n0 = n0(r, ε) such that wcolr(G′) ≤ nε for all n-vertex subgraphs G′ ⊆ G of a graph G ∈ C
with n ≥ n0.

The direction from right to left is easy to see. We show that an r − 1-subdivision G of a
complete graph Kt satisfies wcolr(G) ≥ t− 1. To see this, fix any ordering of V (G). Let v
be the largest vertex with respect to the ordering that corresponds to a vertex of Kt. For
every other vertex w which corresponds to a vertex of Kt, v weakly k-reaches either w or
some subdivision vertex on the path of length at most r − 1 between v and w. Hence if C is
somewhere dense, i.e., it contains arbitrary large complete graphs as r − 1-subdivisions for
some r, then the weak colouring numbers are too large.

To prove the other direction, we first show the following connection between weak-colouring
number and colouring number.

I Theorem 3.2 (Kierstead, Yang [43]). Let G be a graph. Then colk(G) ≤ wcolk(G) ≤
colk(G)k.

1 Note that weak k-reachability is also known as weak k-accessibility and strong k-reachability is known
as k-accessibility in the literature.
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Proof. The first inequality clearly holds. For the second inequality let L ∈ Π(G). We show
by induction on k that

max
v∈V (G)

|WReachk[G,≤, v]| ≤ ( max
v∈V (G)

|SReachk[G,≤, v]|)k.

For the base step k = 1, observe that |WReach1[G,≤, v]| = |SReach1[G,≤, v]|. (Note also
that the degeneracy of a graph is equal to wcol1(G) + 1 = col1(G) + 1). Let k > 1 and
y ∈ V (G). For each x ∈WReachk[G,≤, y] let Pxy be a shortest x− y-path such that every
vertex z ∈ V (P ) satisfies x ≤L z. If x 6= y, let w be the first vertex on Pxy such that w <L y

and let i be the distance from y to w. Then w ∈ SReachi[G,≤, y]− SReachi−1[G,≤, y] and
x ∈WReachk−i[G,≤, w]. It follows that

|WReachk[G,≤, y]|

≤ 1 +
k∑
i=1

∣∣SReachi[G,≤, y]− SReachi−1[G,≤, y]
∣∣ · max
v∈V (G)

∣∣WReachk−1[G,≤, v]
∣∣

≤
∣∣SReachk[G,≤, y]

∣∣ · max
v∈V (G)

∣∣WReachk−1[G,≤, v]
∣∣.

Thus by the induction hypothesis

|WReachk[G,≤, y]| ≤ |SReachk[G,≤, y]| · max
v∈V (G)

|WReachk−1[G,≤, v]|

≤ |SReachk[G,≤, y]| · ( max
v∈V (G)

|SReachk−1[G,≤, v]|)k−1

≤ ( max
v∈V (G)

|SReachk[G,≤, v]|)k.

J

We now show that for a nowhere dense class of graphs, for sufficiently large n-vertex subgraphs
G′ of graphs from the class, colr(G′) ≤ nε.

I Theorem 3.3. There exists a function f : N×N→ N which is linear in the first argument
such that for all d, r ∈ N and all classes C of graphs, if the class {H : H �tr G,G ∈ C} is
d-degenerate, then colk(G′) ≤ f(d, r) for every subgraph G′ ⊆ G of a graph G ∈ C.

Proof. Let G′ ⊆ G for some G ∈ C. Define f by

f(d, r) =
{
r + 1 if d = 1
2d · f(d, r − 1)2r2 else.

If d = 1, then G′ is a forest and it is easy to see that colr(G′) ≤ r + 1.
If d ≥ 2, we recursively construct an ordering L = x1x2 . . . xn of V as follows. Suppose

that we have constructed the final sequence xi+1 . . . xn of L (if i = n then this sequence
is empty). Let M = {xi+1, . . . , xn} be the set of vertices that have already been ordered
and let U = V −M be the set of vertices that have not yet been ordered. Notice that even
though we have not finished constructing L, we have determined SReachr[G′,≤, y] for any
y ∈M . However, we have not necessarily determined WReachr[G′,≤, y]. We now have to
choose xi from U . To do this we first define a probability space Ω, where each point in Ω
is a graph H = (U,F ) such that an r-subdivision of H is a subgraph of G′. For each pair
{u, v} ⊆ U for which there exists a u− v path of length at most r whose internal vertices
are all in M , choose any such path and denote it by Puv. For each vertex z ∈M let

Sz = {{u, v} ⊆ U : z ∈ Puv}.
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Label each z ∈M with a random element chosen from Sz; if Sz = ∅ then leave z unlabeled.
Let F be the set of edges {u, v} such that every internal vertex of Puv is labeled with {u, v}.
Then an r-subdivision of H is a subgraph G′. If Puv is defined then the probability that
{u, v} ∈ F is

Pr({u, v} ∈ F ) =
∏

z∈M∩V (Puv)

1
|Sz|

.

In particular, if {u, v} ∈ E then Pr({u, v} ∈ F ) = 1. Let E[dH(u)] be the expected value
of the degree of u in H. Choose xi in U such that E[dH(xi)] is minimal. We show that
E[dH(xi)] ≤ 2d.

Assume towards a contradiction that for all u ∈ U

E[dH(u)] =
∑
H′∈Ω dH′(u)
|Ω| > 2d.

Then

|U | · d ≥
∑
H′∈Ω |E(H ′)|
|Ω| =

∑
H′∈Ω

∑
u∈U dH′(u)/2
|Ω| > |U | · d.

This is a contradiction and completes the construction of L.
We now argue by induction on s ≤ r that |SReachs(y)| < f(d, s) for all vertices y. The

base step s = 1 is trivial, so consider the induction step s = t + 1. Let y ∈ V (G′). Let
U and M be the sets at the step before y was added to the order in the above recursion
(SReachs[G′,≤, y] is determined at this step). For each z ∈ M and {u, v} ∈ Sz both u

and v are in WReacht[G′,≤, z]. Thus, by induction hypothesis and Theorem 3.2, |Sz| ≤
|WReacht[G′,≤, z]|2 < f2t(d, t). It follows that

2d ≥ E[dH(y)] =
∑

x∈SReachs(y)

Pr({x, y} ∈ F )

=
∑

x∈SReachs(y)

∏
z∈M∩V (Pxy)

1
|Sz|

> |SReachs[G′,≤, y]| · f(d, t)−2t2 .

So |SReachs[G′,≤, y]| < 2d · f(d, t)2t2 = f(d, s). J

As an algorithmic application, we close this section by demonstrating how generalised
colouring numbers can be used in the design of sparse neighbourhood covers. Neighborhood
covers of small radius and small size play a key role in the design of many data structures
for distributed systems. See e.g. [54]. In this section we will show that nowhere dense classes
of graphs admit sparse neighbourhood covers of small radius and small size.

I Definition 3.4. For r ∈ N, an r-neighbourhood cover X of a graph G is a set of connected
subgraphs of G called clusters, such that for every vertex v ∈ V (G) there is some X ∈ X
with Nr(v) ⊆ X. The radius rad(X ) of a cover X is the maximum radius of any of its clusters.
The degree dX (v) of v in X is the number of clusters that contain v. Themaximum degree ∆(X )
of X is ∆(X ) = maxv∈V (G) d

X (v). The size of X is ‖X‖ =
∑
X∈X |X| =

∑
v∈V (G) d

X (v).

As proved in [39], nowhere dense classes of graphs admit sparse neighbourhood covers.
This follows relatively easily from the characterisation of nowhere dense classes by weak
colouring numbers (Theorem 3.1).

I Theorem 3.5 (Grohe, Kreutzer, Siebertz [39]). Let C be a nowhere dense class of graphs.
There is a function f such that for all r ∈ N and ε > 0 and all graphs G ∈ C with n ≥ f(r, ε)
vertices, there exists an r-neighbourhood cover of radius at most 2r and maximum degree at
most nε and this cover can be computed in time f(r, ε) · n1+ε.

FSTTCS 2013



32 Characterisations of Nowhere Dense Graphs

4 Low tree-depth colourings

Many local problems can be solved by decomposing a graph into smaller pieces on which
the problem hopefully becomes easier to solve. In the previous section, we have seen the
concept of small radius neighbourhood covers. In this section we will use a graph colouring
to define decompositions of graphs. It has been conjectured by Thomas [59] that for every
graph K there is an integer k such that if a graph G excludes K as a minor then G has a
vertex partition into two graphs with tree-width at most k. DeVos et al. proved the following
stronger theorem.

I Theorem 4.1 (DeVos et al. [22]). For every graph K and every integer j ≥ 1, there is an
integer k, such that every graph with no K-minor has a vertex partition into j + 1 graphs
such that any j parts form a graph with tree width at most k.

This result was strengthened by Hell and Nešetřil.

I Theorem 4.2 (Hell and Nešetřil [40]). For every graph K and integer j ≥ 1, there is an
inter N(K, j) such that every graph with no K-minor has a vertex partition into N graphs
such that any j′ ≤ j parts form a graph with tree depth at most j′.

The aim of this section is to present a characterisation of nowhere dense classes in terms
of low tree depth colourings in the sense of the above theorem. Let us first give the formal
definitions of tree depth and low tree depth colourings.

An elimination tree of a graph G is a rooted tree Y with vertex set V (G) defined
recursively as follows. If V (G) = {v} then Y is just {v}. Otherwise, let w ∈ V (G) be an
arbitrary vertex which is chosen as the root of Y . The branches of Y at w are the elimination
trees of the connected components of G− w whose roots are the sons of w in Y . The height
of a rooted tree Y is the maximum distance of the root to any vertex of the tree. The tree
depth of a graph G is the minimum height of an elimination tree of G. It follows that we can
give the following recursive characterisation.

Let G be a graph. The tree depth td(G) is defined as

td(G) =


0 if |V (G)| = 1
1 + minv∈V (G) td(G− v) if G is connected and |V (G)| > 1
max1≤i≤k td(Gi) if G1, . . . , Gk are the connected components of G.

For r ≥ 1, an r-tree depth colouring of G is a colouring such that every nonempty
subgraph G′ ⊆ G is coloured by at least min{r, td(G′) + 1} colours. Equivalently, an r-tree
depth colouring of G is a colouring such that any r′ ≤ r colour classes induce a subgraph
with tree depth at most r′ + 1. The minimum number of colours of such a colouring of G is
denoted by td-colr(G).

The aim of this section is to show the following theorem.

I Theorem 4.3 (Nešetřil and Ossona de Mendez [52]). A class C of graphs is nowhere dense
if and only if for every ε > 0 there is n0(r, ε) such that td-colr(G′) ≤ nε for all n-vertex
subgraphs G′ ⊆ G of a graph G ∈ C with n ≥ n0.

As a first step towards the proof of this theorem, we present a result of Zhu [60]. Recall
that every nowhere dense class admits an ordering of its vertices such that only few vertices
are weakly r-reachable from any other vertex.
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I Theorem 4.4 (Zhu [60]). If G is a graph with wcol2r−2(G) ≤ m, then G can be coloured
with m colours such that any in connected subgraph H ⊆ G either some colour appears
exactly once in H or H gets at least r colours.

Proof. Let ≤∈ Π(G) be an ordering of V (G) witnessing wcol2r−2 ≤ m. Colour the vertices
greedily with m colours, using the order L, such that the colour assigned to v is distinct from
colours assigned to vertices weakly reachable from v. We claim that this colouring satisfies
the desired properties.

Let H be a connected subgraph of G and let v be the minimum vertex of H with respect
to L. If the colour c(v) appears exactly once in H then we are done.

Assume c(v) occurs more than once in H. We shall prove that H uses at least r colours.
Let u 6= v be a vertex of H with c(u) = c(v) and let P0 = v, v1, . . . , vq = u be a path in
H connecting v and u. We must have q > 2r−2, for otherwise v is weakly 2r−2-accessible
from u and we should have c(v) 6= c(u). Let u0 := v and let P1 := v1, . . . , v2r−2 . Observe
that no vertex of P1 uses colour c(u0) and P1 contains 2r−2 vertices. Assume 0 ≤ j ≤ r − 2
and that a vertex uj of Pj and a subpath Pj+1 of Pj are chosen such that the following
holds. No vertex of Pj+1 uses the colour of uj and Pj+1 contains at least 2r−j−2 vertices.
We show how to establish this same situation for j + 1. Let uj+1 be the minimum vertex
of Pj+1 with respect to L let Pj+2 be the largest component of Pj+1 − uj+1. Then uj+1 is
weakly 2r−2-accessible from each vertex of Pj+1 and hence no vertex of Pj+2 uses the colour
c(uj+1). Moreover, Pj+2 is a path containing at least 2r−j−3 vertices. We repeat this process
until j = r − 2 and obtain vertices u0, . . . , ur−1 of distinct colours. Hence H uses at least r
colours. J

The properties of the colouring in the above proof are important enough to give a special
name to such colourings.

I Definition 4.5. An r-centered colouring of a graph G is a vertex colouring such that for
any connected subgraph H ⊆ G, either some colour appears exactly once in H or H gets at
least r colours.

It is not difficult to see that indeed such colourings induce low tree depth colourings.

I Lemma 4.6. Any r-centered colouring is an r-tree depth colouring.

Proof. Let c be an r-centered colouring of G. Assume that there is a subgraph G′ ⊆ G with
td(G′) = k < r which does not get k+ 1 colours. Let G′ be minimal with this property. Then
G′ is connected. As G′ does not get k+ 1 ≤ r colours and c is r-centered, there is one colour
which occurs exactly once, say this colour is given to vertex v. Then td(G′ − v) ≥ k − 1 and
G′ − v does not get k − 1 colours. Hence G′ was not minimal. J

Let us show how low tree depth colourings bound the edge density of depth-r topological
subgraphs.

I Lemma 4.7 (Zhu [60]). Let G be a graph, r ∈ N and H �tr G. Then

|E(H)|
|V (H)| ≤

(
td-colr+2(G)

r + 2

)
(r + 1).

Proof. Consider a vertex colouring c of G with N = td-colr+2(G) colours such that any
i ≤ r + 2 colours induce a subgraph of tree depth at most i. For every set J of r + 2 colours
let GJ := G[c−1(J)] and let YJ be an elimination tree of height td(GJ ) ≤ r+ 2 of GJ (which
is in fact a rooted forest).
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Suppose that V (H) = [k]. As H �tr G, there are vertices h1, . . . , hk ∈ V (G) and mutually
internally disjoint paths Pij ⊆ G of length at most (r + 1) from hi to hj for all edges
ij ∈ E(H). Let Jij be a set of r + 2 colours such that c(V (Pij)) ⊆ Jij . Then Pij ⊆ GJij ,
and there is a vertex vij on Pij that is a common ancestor of hi and hj in the elimination
tree Yij = YJij . Possibly, vij = hi or vij = hj . We orient the edge e = ij from i to j if
hi = vij and from j to i if vij = hj . If neither hi = vij nor hj = vij then we orient the edge
ij arbitrarily. Let ~H be the resulting oriented graph.

To bound the number of edges of H, we bound the maximum in-degree ∆−1( ~H). Let
j ∈ V (H). For every edge ij ∈ E( ~H), the vertex vij is a proper ancestor of hi in the
elimination tree Yij , and there are at most r + 1 such ancestors. Moreover, for distinct edges
ij, i′j the vertices vij and vi′j are distinct, because the paths Pij are internally disjoint. Thus

∆−( ~H) ≤
∑
J

(r + 1) =
(

N

r + 2

)
(r + 1),

where the sum ranges over all sets J of at most r + 2 colours. It follows that

|E(H)| ≤ |V (H)| ·∆−( ~H) ≤ |V (H)|
(

N

r + 2

)
(r + 1).

J

Note that in order to conclude the proof with Corollary 2.6, we have to express |E(H)|
|V (H)|

with respect to |V (H)| and not with respect to |V (G)|. For r-subdivisions this is no problem
though. Take a minimal subgraph G′ of G such that an r-subdivision is a subgraph of G′.
Then G′ has at most |V (H)|2 · r edges.

We demonstrate the algorithmic applications of low tree depth colourings by showing
that the subgraph isomophism problem can be solved in time O(n1+ε) on nowhere dense
classes of graphs for any fixed template H. Recall that the subgraph isomorphism problem is
the problem, given two graphs H and G as input, to decide whether G contains a subgraph
isomorphic to H. For a fixed template H and ε > 0, the problem can be solved on any
nowhere dense class C of graphs as follows. Let h := |V (H)| and set ε′ := ε

h . Let G ∈ C. To
decide whether G contains a subgraph G′ isomorphic to H, we first apply Theorem 4.3 to
obtain a colouring γ of V (G) with at most nε′ colours such that any h colour classes together
induce a subgraph of G of tree depth at most h. Note that while we have only given a proof
of the existence of such colouring, such a colouring γ can be computed in time O(n1+ε′) using
the concept of augmentations introduced in the next section (see e.g. [53, 47]). Furthermore,
it is well-known (and follows, e.g. from Courcelle’s theorem mentioned in the introduction)
that on any class of graphs of bounded tree depth there is a linear time algorithm for solving
the subgraph isomorphism problem for a fixed template H. Hence, to verify whether G
contains a subgraph isomorphic to H we can compute all (nε′)h = nh·ε

′ = nε subgraphs
Gc1,...,ch induced by exactly h colour classes c1, . . . , ch with respect to γ and for each test in
linear time whether Gc1,...,ch contains H as an isomorphic subgraph. Together this yields
the required running time.

5 Augmentations

For many algorithms it is essential to compute an ordering that witnesses wcolr(G) ≤ nε or
a td-colr-colouring with at most nε colours. Not surprisingly, the problem of computing an
optimal such ordering is NP-complete in general (it is easy to modify the proof of Pothen [55],
showing that computing the tree depth of a graph is NP-complete). The question whether
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the problem is fixed-parameter tractable (with parameter wcolr(G)) is an interesting open
question, yet even a positive answer would not help in the context of nowhere dense classes
of graphs, as the parameter is only bounded by nε for such classes. Yet there are good
approximation algorithms, see e.g. Dvořák [25]. We are going to present another way of
approximating wcolr(G) in order to present another important method for nowhere dense
classes of graphs. The idea is as follows. Assume that an order witnessing wcolr(G) = k has
been found. We define a directed graph ~Hr on the same vertex set as G by adding an edge
from u to v if and only if u is weakly r-accessible from v. ~Hr has the following properties.
For all pairs u, v of vertices such that distG(u, v) ≤ r one of the following holds. Either there
is an edge (u, v) or (v, u) in ~Hr or there is a vertex w such that (w, u) and (w, v) are edges
of ~Hr (if the first two cases do not hold, consider the smallest vertex w on the path from u

to v). Furthermore, every vertex of ~Hr has indegree at most k.

I Lemma 5.1. Let G be a graph and let r > 0. Let ~H be a directed graph such that for all
pairs u, v of vertices with distG(u, v) ≤ r one of the following holds. Either there is an edge
(u, v) or (v, u) in ~H or there is a vertex w such that (w, u) and (w, v) are edges of ~H and
such that every vertex of ~H has indegree at most d. Then wcolr(G) ≤ 2(d+ 1)2.

Proof. As ∆−( ~Hr) ≤ d, the underlying undirected graph H is 2d-degenerate and we can
order the vertices of H such that each vertex has at most 2d smaller neighbours. Denote this
order by ≤. For each vertex v ∈ V (G) we count the number of endvertices of paths of length
at most r from v such that the endvertex is the smallest vertex of the path. This number
bounds |WReachr[G,≤, v)]|.

By assumption, for each such path with endvertex w, we either have an edge (v, w) or an
edge (w, v) or there is u on the path and we have edges (u, v), (u,w) in ~H. By construction
of the order there are at most 2d edges (v, w) or (w, v) such that w < v. Furthermore, we
have at most d edges (u, v), as v has indegree at most d and for each such u there are at
most 2d edges (u,w) such that w < u by construction of the order. These are exactly the
pairs of edges we have to consider, as no vertex on the path from v to w may be smaller
than w. Hence in total we have |WReachr[G,≤, v]| ≤ 2d+ 2d2 + 1 ≤ 2(d+ 1)2. (Note that
we have to add 1 because WReachr[G,≤, v] contains v which is not reachable by any edges
in the above way). J

It was shown by Nešetřil and Ossona de Mendez that we can iteratively compute a good
approximation to the above on nowhere dense classes of graphs.

I Definition 5.2. Let ~G be a directed graph. A tight 1-transitive fraternal augmentation of
~G is a directed graph ~H with the same vertex set, including all the arcs of ~G and such that
for all distinct vertices u, v, w

if (u,w), (w, v) ∈ E(~G) then (u, v) ∈ E( ~H),
if (u,w), (v, w) ∈ E(~G) then (u, v) or (v, u) are arcs of ~H and
for all (u, v) ∈ E( ~H), either (u, v) ∈ E(~G) or there is some w such that (u,w), (w, v) ∈
E(~G) or (u,w), (v, w) ∈ E(~G).

Let us show that edge densities of depth-r topological subgraphs are relatively stable
under tight 1-transitive fraternal augmentations.

I Definition 5.3. Let H,G be graphs. The lexicographic product of G and H is defined as
the graph G •H with vertex set and edge set respectively:

V (G •H) = V (G)× V (H)

E(G •H) =
{
{(x, y), (x′, y′)} : {x, x′} ∈ E(G) or (x = x′ and {y, y′} ∈ E(H))

}
.
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u1 u2 u3

u4

u5 u6

•K∆−(~G)+1

u1 u2 u3

u4 u5 u6

Figure 2 Proof sketch of Lemma 5.5.

The following is not hard to see.

I Lemma 5.4. Let G be a graph and let r, t,m ∈ N. If G has an r-centered colouring with
m colours then G •Kt has an r centered colouring with t ·m colours.

The following was shown by Nešetřil and Ossona de Mendez [49, Lemma 7.2].

I Lemma 5.5. Let ~G be a directed graph and let ~H be a tight 1-transitive fraternal augment-
ation of ~G. Let t := ∆−(~G) + 1 and let G,H be the undirected graphs underlying ~H and ~G,
respectively. Then a 1-subdivision of H is a subgraph of G •Kt.

We only sketch the proof of the lemma. The main construction is illustrated in Figure 2.
We want to show that the tight 1-transitive fraternal augmentation of the graph ~G on the left
hand side of the figure is a 1-subdivision of a subgraph of G •K3. G •K3 is illustrated in the
middle section of the figure, where rounded rectangles correspond to copies of K3. The right
hand side of the figure shows how the tight 1-transitive fraternal augmentation of ~G can be
found as a 1-subdivision. Here, the thick black edges show the edges that are subdivided
once. To improve readability we have omitted the edges from u5 and u6 to u1, u2, u3 as these
are not subdivided. Note that the only purpose of the two edges going to the two rectangles
on the bottom is that in this way we can extend the construction to larger graphs ~G. See
[49, Lemma 7.2] for details.

By Lemma 4.7 we can conclude that H has small degeneracy if G had an r-centered
colouring with few colours and if the indegree of ~G was not too large. Both is the case for
nowhere dense classes of graphs. We can hence reorient the degenerate graph H to obtain
again a small indegree orientation. Note furthermore that (G •Kt) •Ks

∼= G •Kt·s. We can
hence iterate the augmentation procedure for r times and obtain as a result a directed graph
with the properties required by Lemma 5.1. It was shown by Nešetřil and Ossona de Mendez
that this procedure can be implemented in time O(n1+ε) on nowhere dense classes of graphs.

Augmentations are a key algorithmic tool for nowhere dense classes of graphs. Due to
space restriction we refrain from giving explicit algorithmic applications here and refer, e.g.,
to [42] instead, where augmentations are used for query answer enumeration in nowhere
dense classes of databases.

6 Quasi-wideness

A set A ⊆ V (G) is called r-scattered if Nr(u) ∩Nr(v) = ∅ for all distinct u, v ∈ A.

I Definition 6.1. A class C of graphs is uniformly quasi-wide with margin s : N → N
and N : N × N → N if for all r, k ∈ N, if G ∈ C and W ⊆ V (G) with |W | > N(r, k), then
there is a set S ⊆ W with |S| < s(r), such that W contains an r-scattered set of size at
least k in G− S.
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The aim of this section is to show the following theorem.

I Theorem 6.2. A class C is nowhere dense if and only if C is uniformly quasi-wide.

Obviously, if C is somewhere dense then it is not uniformly quasi-wide. We will hence
show the other direction.

The first step of showing that nowhere density implies uniformly quasi-wideness is to find
large independent sets. We will make use of the following Ramsey Theorem.

I Theorem 6.3. For k ≥ 1, let n1, . . . , nk ∈ N. There exists a number R = R(n1, . . . , nk),
called Ramsey number, which is minimum with the following property. For every complete
graph G on at least R vertices with edges coloured by colours {1, . . . , k}, there exists some
1 ≤ i ≤ k such that G contains an induced subgraph of size at least ni such that every edge
has colour i.

The theorem implies that every sufficiently large graph contains either a large independent
set or a large complete graph. As nowhere dense classes of graphs do not contain large
complete graphs, we conclude that in large graphs from the class we find large independent
sets.

To go from 1-independent sets to 2-independent sets, we will use the following lemma
which was proved by Nešetřil and Ossona de Mendez. The proof makes use of Theorem 6.3
in it’s general form.

I Lemma 6.4 (Nešetřil and Ossona de Mendez [51]). There is a function Θ such that for all
s, k, a, b ∈ N and all bipartite graphs G = (A ∪B,E) with |A| ≥ Θ(k, a, b, s) at least one of
the following holds.

There exists in B a subset of size at most s whose removal leaves in A a 2-independent
set of size k.
A includes the branch vertices of a 1-subdivision of the complete graph Ka.
B includes s+ 1 vertices that form one side of a complete bipartite subgraph Ks+1,b in G.

Given a graph G and an independent set A ⊆ V (G) of size at least Θ(k, a, b, s) we can
just construct the bipartite graph with part B = N(A) and establish the situation of the
above lemma. For a nowhere dense class of graphs and sufficiently large a, b, s, we again
know that we are in the first case.

We now apply the above arguments iteratively for r times. Given a large 2k-independent
set in a graph, we contract the k-neighbourhoods of the elements of the independent set and
find large a 2k + 1 independent set. Given a large 2r + 1-independent set, we contract the
2k + 1-neighbourhoods of the elements of the set, and after the deletion of few elements, we
find a 2k + 2-independent set. Note that we do not delete contracted vertices but vertices of
V (G) and hence we really delete only few vertices.

Algorithmically, the concept of uniformly quasi-wideness is very useful in designing
bounded depth search trees for parameterized algorithms for solving problems such as
dominating sets and network centres. We refer to [15] for examples demonstrating this
technique.

7 Game-theoretic characterisation

As a final characterisation we show that nowhere dense classes of graphs can also be defined
in terms of a game, which we call the splitter game introduced in [39].
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I Definition 7.1 (Splitter game). Let G be a graph and let `,m, r > 0. The (`,m, r)-splitter
game on G is played by two players, “Connector” and “Splitter”, as follows. We let G0 := G.
In round i+ 1 of the game, Connector chooses a vertex vi+1 ∈ V (Gi). Then Splitter picks a
subset Wi+1 ⊆ NGi

r (vi+1) of size at most m. We let Gi+1 := Gi[NGi
r (vi+1) \Wi+1]. Splitter

wins if Gi+1 = ∅. Otherwise the game continues at Gi+1. If Splitter has not won after `
rounds, then Connector wins.

A strategy for Splitter is a function f , which associates to every partial play (v1,W1, . . . ,

vs,Ws) with associated sequence G0, . . . , Gs of graphs and move vs+1 ∈ V (Gs) by Connector
a set Ws+1 ⊆ NGs

r (vs+1) of size at most m. A strategy f is a winning strategy for Splitter in
the (`,m, r)-splitter game on G if Splitter wins every play in which he follows the strategy f .
If Splitter has a winning strategy, we say that he wins the (`,m, r)-splitter game on G.

I Theorem 7.2 (Grohe, Kreutzer, Siebertz [39]). Let C be a nowhere dense class of graphs.
1. For every r > 0 there are `,m > 0, such that for every G ∈ C, Splitter wins the

(`,m, r)-splitter game on G.
2. Conversely, if for every r > 0 there are `,m > 0 such that for every graph G ∈ C, Splitter

wins the (`,m, r)-splitter game, then C is nowhere dense.
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