
Faster Deterministic Algorithms for r-Dimensional
Matching Using Representative Sets

Prachi Goyal1, Neeldhara Misra1, and Fahad Panolan2

1 Indian Institute of Science, Bangalore, India
prachi.goyal|neeldhara@csa.iisc.ernet.in

2 Institute of Mathematical Sciences, Chennai, India
fahad@imsc.res.in

Abstract

Given a universe U := U1]· · ·]Ur, and a r-uniform family F ⊆ U1×· · ·×Ur, the r-dimensional
matching problem asks if F admits a collection of k mutually disjoint sets. The special case
when r = 3 is the classic 3D-Matching problem. Recently, several improvements have been
suggested for these (and closely related) problems in the setting of randomized parameterized
algorithms. Also, many approaches have evolved for deterministic parameterized algorithms.
For instance, for the 3D-Matching problem, a combination of color coding and iterative ex-
pansion yields a running time of O∗(2.80(3k)), and for the r-dimensional matching problem,
a recently developed derandomization for known algebraic techniques leads to a running time of
O∗(5.44(r−1)k).

In this work, we employ techniques based on dynamic programming and representative families,
leading to a deterministic algorithm with running time O∗(2.85(r−1)k) for the r-Dimensional
Matching problem. Further, we incorporate the principles of iterative expansion used in the
literature [TALG 2012] to obtain a better algorithm for 3D-matching, with a running time
of O∗(2.003(3k)). Apart from the significantly improved running times, we believe that these
algorithms demonstrate an interesting application of representative families in conjunction with
more traditional techniques.

1998 ACM Subject Classification F.2.0 Analysis of Algorithms and Problem Complexity

Keywords and phrases 3-Dimensional Matching, Fixed-Parameter Algorithms, Iterative Expan-
sion

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2013.237

1 Introduction

Given a universe U := U1] · · ·] Ur, and a r-uniform family F ⊆ U1 × · · · × Ur, the r-
dimensional matching problem asks if F admits a collection of k mutually disjoint sets.
The special case when r = 3 can be viewed as an immediate generalization of the matching
problem on bipartite graphs to three-partite, three-uniform hypergraphs. The question of
finding the largest 3D-Matching is a classic optimization problem, and the decision version is
listed as one of the six fundamental NP-complete problems in Garey and Johnson [9]. These
problems may also be thought as restricted versions of the more general Set Packing
questions, where no restrictions are assumed on the universe.

© Prachi Goyal, Neeldhara Misra, and Fahad Panolan;
licensed under Creative Commons License CC-BY

33rd Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2013).
Editors: Anil Seth and Nisheeth K. Vishnoi; pp. 237–248

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.237
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

238 Faster Deterministic r-Dimensional Matching Algorithms using Representative Sets

r-Dimensional Matching. The question of r-dimensional matching has enjoyed sub-
stantial attention in the context of exact algorithms, and there have been several deter-
ministic and randomized approaches to the problem (see Table 1). One of the earliest
approaches [6] used the color-coding technique [1]. Further, in [7], an O(k3) kernel was
developed and the color-coding was combined with dynamic programming on the structure
of the kernel to obtain an improvement. In [10], Koutis used an algebraic formulation of
Set Packing and proposed a randomized algorithm (derandomized with hash families).
The randomized approaches saw further improvements in subsequent work [12, 11, 2], also
based on algebraic techniques. The common theme in these developments is to express a
parameterized problem in an algebraic framework by associating multilinear monomials with
the combinatorial structures that are sought, ultimately arriving at multilinear monomial
testing problem or polynomial identity testing problem.

In a recent development [4], the authors propose a derandomization method for these al-
gebraic approaches, leading to a determinstic algorithm that solves the r-dimensional
matching problem in time O∗(5.44(r−1)k)1.

Table 1 Algorithms for r-dimensional matching.

References Randomized Deterministic
Algorithms Algorithms

Fellows et al., 1999 [6] O∗((rk)!(rk)3rk+1)
Fellows et al., 2008 [7] O∗(2O(rk))
Koutis, 2005 [10] O∗((4e)rk) O∗(25.6rk) (See also [3, 13])
Koutis, 2008 [12] O∗(2rk)
Koutis and Williams, 2009 [11] O∗(2(r−1)k)
Björklund et al., 2010 [2] O∗(2(r−2)k)
Chen and Chen, 2013 [4] O∗(5.44(r−1)k)
This work (Theorem 3.4) O∗(2.851(r−1)k)

3D-Matching. The 3D-Matching problem admits of even better algorithms than those
obtained by using the algorithms above for the particular case of r = 3. Indeed, the
works [13, 3] consider 3D-Matching separately and obtain better algorithms with deter-
minstic running times O∗(2.773k) and O∗(2.803k). In fact, even in the present work, we
will explore an improvement that is specific to 3D-Matching, resulting in a significantly
faster algorithm. The approach in [3] uses a clever combination of dynamic programming
(embedded in a color coding framework) and iterative expansion, derandomized using hash
families. In our work, we obtain a deterministic algorithm with running time O∗(2.00343k).

The Method of Representative Families and Our Contributions

We first consider the general problem of finding a maximum weight r-dimensional k-packing
(that is, the sets have integer weights and the goal is to find a k-packing of weight at leastW).
Next, we focus on the 3D-Matching question separately, improving the general algorithm
further for this special case. Our algorithms are an improvization of the work in [3], in that

1 The O∗ notation is used to suppress polynomial factors in the running time.

P. Goyal, N. Misra, and F. Panolan 239

the main dynamic programming and iterative expansion wireframes stay intact, however,
the color coding engine is replaced by an application of representative families.

In using representative families, which is a general approach based on uniform matroids, our
attempt is somewhat different from the previous approaches to the problem. Matroids have
been applied to design fixed-parameter tractable algorithms as early as [14], where the main
tool was the notion of representative families. The idea of using representative families was
introduced by Monien in [15]. We briefly describe the basic notion here, and the reader is
referred to Section 2 for the details.

In a dynamic programming framework, one might think of every intermediate stage of the
algorithm as a location storing several partial solutions, with the hope that one of them
would “lead to” a final solution. In many settings, a solution (when it exists) can be viewed
as a split into two disjoint parts — where one can be thought of as the partial part that
we would like to store, and the other is the part that we are hoping to encounter down the
line. The inherent disjointness of these parts suggests that perhaps all partial solutions need
not be maintained, and instead, as long as there is some witness that can be evolved into a
complete solution, correctness is guaranteed.

We note that the color coding approach is a rather clever way of capturing this notion, albeit
with an element of randomization. The notion of representative families, on the other hand,
formalizes this intuition in a combinatorial fashion. The definition of a representative family
is as follows. Let M = (E, I) be a matroid and let S = {S1, . . . , St} be a family of subsets
of E of size p. A subfamily Ŝ ⊆ S is q-representative for S if for every set Y ⊆ E of size at
most q, if there is a set X ∈ S disjoint from Y with X ∪ Y ∈ I, then there is a set X̂ ∈ Ŝ
disjoint from Y with X̂ ∪ Y ∈ I.

For this definition to be useful, we will need to know that small representative families exist.
A classical result due to Bollobás indicates that uniform matroids, involving sets of size at
most p, admit a q-representative family with at most

(
p+q
p

)
sets (subsequently generalized

by Lovász to representable matroids). The next natural issue is that of computational
overhead, which brings us to the question of whether these representative families be found,
and at what cost. Fortunately, the combinatorial proofs turn out to be constructive, and
algorithmic versions have been established. The most recent development in this line of work
is in [8], where the authors describe an algorithm constructing a q-representative family of
size at most

(
p+q
p

)
in time bounded by a polynomial in

(
p+q
p

)
, t, and the time required for

field operations, where t is the size of the input family.

Representative families can be applied in a very natural way to a large class of “match-
ing and packing” problems. For instance, consider the DP table for 3-Set Packing
that stores in S[i] packings of size i. This approach can be improved by keeping only
(3k − 3i)-representative families at every stage, leading to an algorithm with running time
O∗(2.8513k).

Our focus is to improve this naive approach by more careful dynamic programming, lead-
ing to an algorithm with running time O∗(2.851(r−1)k) for r-dimensional matching (see
Theorem 3.4). For 3D-Matching, we are able to apply iterative expansion as used in [3].
The idea of iterative expansion is to focus on the “improvement” version of the question,
where the input includes a matching of size k and the question is if there is a matching of
size k+ 1. Clearly, an efficient algorithm for this question can be run k times (starting with
k = 1) to find a matching of size k. One of the reasons it is useful to have a matching of size
k as input is Lemma 3.4 in [3], which states if there is an improved matching, then there

FSTTCS 2013

240 Faster Deterministic r-Dimensional Matching Algorithms using Representative Sets

is one that overlaps the given matching in a substantial way. The guarantee of this overlap
can be exploited suitably to attain better running times. We use this result as well, except
that we incorporate the advantages in the setting of representative families. The result is
an algorithm with running time O∗(2.00343k) for 3D-Matching (see Theorem 4.5).

Another advantage of our first approach is the fact that it works for the weighted version
of the r-dimensional matching problem with only an additional factor of logW (where
W is the target weight). This factor is linear in the input, and is thus essentially optimal.
To the best of our knowledge, the known approaches either are not scalable to the weighted
version of the question or incur an additional factor of W in the running time.

Organization. In Section 2, we discuss some of the definitions associated with matroids and
representative families. In Section 3, we describe our first algorithm for the weighted version
of r-dimensional matching. Finally, in Section 4, we show how iterative expansion can
be used to obtain an improved algorithm for 3D-Matching. Owing to limitations of space,
some proofs have been omitted. Such results are marked with a ?.

2 Preliminaries

In this section we summarize the important definitions. A more detailed introduction may be
found in the full version. To begin with, we define the notion of a (min/max) representative
family and state the theorems associated with efficient computations of such families.

I Definition 2.1 (q-Representative Family,[8]). Given a matroid M = (E, I) and a
family S of subsets of E, we say that a subfamily Ŝ ⊆ S is q-representative for S if the
following holds: for every set Y ⊆ E of size at most q, if there is a set X ∈ S disjoint from Y

with X ∪ Y ∈ I, then there is a set X̂ ∈ Ŝ disjoint from Y with X̂ ∪ Y ∈ I. If Ŝ ⊆ S
is q-representative for S we write Ŝ ⊆qrep S. Also, we say that X̂ is a q-representative for X
with respect to Y .

I Definition 2.2 (Min/Max q-Representative Family,[8]). Given a matroid M =
(E, I), a family S of subsets of E and a non-negative weight function w : S → N, we
say that a subfamily Ŝ ⊆ S is min q-representative (max q-representative) for S if the fol-
lowing holds: for every set Y ⊆ E of size at most q, if there is a set X ∈ S disjoint from Y

withX∪Y ∈ I, then there is a set X̂ ∈ Ŝ disjoint from Y with X̂∪Y ∈ I; and w(X̂) ≤ w(X)
(w(X̂) ≥ w(X)). We use Ŝ ⊆qminrep S (Ŝ ⊆qmaxrep S) to denote a min q-representative (max
q-representative) family for S. Also, we say that X̂ is a min q-representative (respectively,
max q-representative) for X with respect to Y .

I Theorem 2.3 ([8]). Let S = {S1, . . . , St} be a family of sets of size p over a universe of
size n. For a given q, a q-representative family Ŝ ⊆ S for S with at most

(
p+q
p

)
·2o(p+q) · logn

sets can be computed in time O((p+q
q)q · 2o(p+q) · t · logn).

I Theorem 2.4 ([8]). There is an algorithm that given a p-family S of sets over a universe
U of size n, an integer q, and a non-negative weight function w : S → N with maximum
value at most W , computes in time O(|S| · (p+q

q)q · logn + |S| · log |S| · logW) a subfamily
Ŝ such that |Ŝ| =

(
p+q
p

)
· 2o(p+q) · logn and Ŝ ⊆qminrep S (Ŝ ⊆qmaxrep S).

The problems we consider are the following:

P. Goyal, N. Misra, and F. Panolan 241

r-dimensional matching Parameter: k

Input: A universe U := U1] · · ·] Ur, a family F ⊆ U1 × · · · × Ur, and k ∈ Z+.
Question: Does F have a collection of at least k mutually disjoint sets?

Weighted Exact r-Dimensional Matching Parameter: k

Input: A universe U := U1] · · ·] Ur, a family F ⊆ U1 × · · · × Ur, a non-negative
weight function w : F → N and positive integers k,W .
Question: Does there exist M ⊆ F , of k mutually disjoint sets such that w(M) ≥
W?

3 A Dynamic Programming Approach

In this section, we describe an algorithm with running time O∗(2.851(r−1)k) for the
Weighted Exact r-Dimensional Matching problem. For ease of presentation, we
will describe the algorithm for Weighted Exact 3-Dimensional Matching here. The
generalization to the problem of finding a weighted r-dimensional matching of size k appears
in the full version of this work.

Let (U1, U2, U3,F , w : F → N, k,W) be an instance of Weighted Exact 3D-Matching.
Recall that F ⊆ U1×U2×U3, and the problem involves finding k mutually disjoint sets in F
whose weight is at least W . For a set S ∈ F , we let S[i] denote S ∩ Ui, that is, S[i] is the
element of S that is from Ui. We sometimes refer to the element S[i] as the ith coordinate
of S.

The improved dynamic programming approach involves iterating over the elements in U3 (for
the discussion in this section, this is an arbitrary and fixed choice). In particular, let U3 :=
{c1, c2, . . . , cn}. Let M := {S1, S2, . . . , St} be a 3D-Matching. Let M3 := {Si[3] | i ∈
[t]} ⊆ U3. We define the maximum last index of M, denoted by λ(M), as the largest
index i for which ci ∈ M3. For the empty matching ∅, λ(∅) = 0. In the ith iteration of our
algorithm, we would like to store all matchings whose maximum last index is at most i, and
we stop at our first encounter with a matching of size k and weight at least W . However, it
turns out that storing all possible matchings at every stage is exponentially expensive — we
potentially run into storing O(n2i) matchings at the ith step. In [3], this problem (for the
unweighted case) is mitigated using color coding. We will now discuss how we can use the
notion of max representative families instead, which has the dual advantage of being faster
and deterministic.

We first introduce some notation. We let Q(i) = {M | λ(M) ≤ i} and Q(i)
j := {M | M ∈

Q(i), |M| = j}. Notice that theQ(i)
j ’s constitute a partition of the setQ(i) based on matching

size, in other words, Q(i) :=
⋃n
j=0Q

(i)
j . Recall that a naive application of the method of

representative families would lead to a running time of O(2.853k). To use the representative
families more efficiently, we would like to splice the elements of the matchings into two
parts. We will first collect the parts of the matching that come from (U1 ∪ U2), and then
store separately a map that completes the first part to the complete matching. This will
allow us to apply the dynamic programming approach suggested above. To this end, for a
matchingM, we letM12 denote the subset of (U1∪U2) obtained by projecting the elements
ofM on their first two co-ordinates, that is,M12 :=

⋃
S∈M{S[1], S[2]}. On other hand, let

γ := {(M,M12) | M is a matching in F}.

FSTTCS 2013

242 Faster Deterministic r-Dimensional Matching Algorithms using Representative Sets

Algorithm 1: A Simple DP Implementation for Weighted Exact 3D-Matching
using Representative Families

Input: (U1, U2, U3,F , w : F → N, k,W), where F ⊆ U1 × U2 × U3, and k,W ∈ N.
Output: A 3D-Matching of size k and weight at least W if it exists, No otherwise.

1 R(0)
0 ← {∅}

2 R(0)
j ← ∅, for all 1 ≤ j ≤ k

3 L(0) ← {∅}
4 for i ∈ {1, 2, . . . , n} do
5 L(i) ← {M∪ S | M ∈ L(i−1), S ∈ F ,M∩ S = ∅, S[3] = i} ∪ L(i−1)

6 for j ∈ {0, 1, . . . , k} do
7 L(i)

j ← {M | M ∈ L(i), |M| = j}
8 if L(i)

k 6= ∅ and ∃M ∈ L(i)
k such that w(M) ≥W then

9 return M.

10 P(i)
j ← {M12 | M ∈ L(i)

j };
11 γ ← {(M,M12) | M is a matching in L(i)

j }
12 w′ ← {(M12, w(γ†(M12))) | M12 ∈ P(i)

j }
13 Let R(i)

j ⊆2k−2j
maxrep P

(i)
j

14 L(i)
j ← {γ†(M12) | M12 ∈ R(i)

j }

15 L(i) ←
⋃k
j=0 L

(i)
j

16 return No;

In γ, we are merely storing the associations of M12 with the matchings that they “came
from”. Observe that γ might (by definition) contain multiple entries with the same second co-
ordinate. On the other hand, when the algorithm stores the associations in γ, we will see that
it will be enough to maintain one maximum weighted entry for eachM12. To this end, we
define the function γ† as follows. Let ≤ be an arbitrary total order on the set of all matchings
in F . For a set S ⊆ U1 ∪ U2, we define γ†(S) as the smallest matching M (with respect
to ≤) among the maximum weighted matchings in the set {M′ | (M′, S) ∈ γ}. If γ†(S)
is M, then we say that M is the matching associated with S. Finally, for a set S and a
matchingM, we abuse notation and say thatM is disjoint from S (notationally,M∩S = ∅)
to mean that T ∩ S = ∅ for all T ∈M.

We are now ready to describe our first algorithm (see also Algorithm 1). In L(i), we store
carefully chosen 3D-Matchings whose maximum last index is at most i. We compute L(i) by
considering all elements M of L(i−1), and checking if they can be extended to a matching
whose maximum last index is at most i. For a fixedM, this check is performed by iterating
over all elements S ∈ F such that S[3] = i and extendingM toM∪S wheneverM∩S = ∅.
Subsequently, we will compute a representative family of L(i). Since L(i) is a collection of
matchings of varying sizes, we will need an appropriate version of L(i) that will be suitable
for Theorem 2.4. To this end, we first partition the set L(i) — the part denoted by L(i)

j

contains all matchings from L(i) of size j. Note that this is simply done to ensure uniformity
of size. Of course, it is easily seen that if we have a matching of size k with weight at least
W at this point, then we are done.

Next, we associate with every matching M ∈ L(i)
j , a set that consists of the first two

indices of every set in M. Recall that this is denoted by M12. The collection of sets that

P. Goyal, N. Misra, and F. Panolan 243

correspond to matchings in L(i)
j is denoted by P(i)

j . We use γ to store the associations
between the sets and the original matchings. Note that γ might have multiple pairs with
the same second index and same weight w for first index, but this will be irrelevant (it
would simply mean that M12 can be “pulled back” to multiple matchings, each of which
would be equally valid). Now we define a weight function w′ : P(i)

j → N. ∀M12 ∈ P(i)
j ,

we set w′(M12) = w(γ†(M12)). Now, the central step of the algorithm is to compute a
max (2k − 2j)-representative family R(i)

j for P(i)
j . Once we have the representative family,

we revise L(i)
j to only include the associated matchings with sets in R(i)

j .

The correctness of the algorithm relies on the fact that at each step, instead of the complete
family of partial solutions Q(i), it suffices to store only a representative family of Q(i). Also,
we will show that the family computed by the algorithm, L(i), is indeed a representative
family for Q(i). The analysis of the running time will be quite straightforward in the light
of Theorem 2.4, and we will discuss it after arguing the correctness.

Let X (i)
j := {M12 | M ∈ Q(i)

j }. We assign a weight function w′ : X (i)
j → N as follows.

∀M12 ∈ X (i)
j , w′(M12) = max{w(M?) | M? ∈ Q(i)

j ,M12 = M?
12}. Our first claim is the

following.

I Lemma 3.1 (?). For all 0 ≤ i ≤ n, and 0 ≤ j ≤ k − 1, the set R(i)
j is a max (2k − 2j)-

representative family for X (i)
j .

Observe that any solution constructed by Algorithm 1 is always a valid matching. Therefore,
if there is no matching of size k, Algorithm 1 always returns a No. On the other hand, if
given a Yes instance, we now show that Algorithm 1 always finds a 3D-Matching of size k
with weight at least W .

I Lemma 3.2. Let (U1, U2, U3,F , w : F → N, k,W) be a Yes-instance of Weigted Exact
3D-Matching. Then, Algorithm 1 successfully computes a 3D-Matching of size k with
weight at least W .

Proof. Let (U1, U2, U3,F , w : F → Z+, k,W) be a Yes-instance of Weighted Exact 3D-
Matching. Let M = {S1, S2, . . . , Sk}, be a k-sized 3D-Matching in F and w(M) ≥ W .
Suppose λ(M) = i. Without loss of generality, let Sk[3] = ci. Finally, let M′ = M \
Sk. Recall that Q(i)

j is the set of all 3D-Matchings of size j with maximum last index at
most i, and X (i)

j contains the projections of these matchings on their first two coordinates.
Therefore,M′ ∈ Q(i−1)

k−1 andM′12 ∈ X
(i−1)
k−1 . Note that w′(M′12) ≥ w(M′).

By Lemma 3.1, we have that R(i−1)
k−1 is a max 2-representative family for X (i−1)

k−1 . Let
Y = {Sk[1], Sk[2]}. Since R(i−1)

k−1 ⊆2
maxrep X

(i−1)
k−1 , we have that R(i−1)

k−1 contains a 2-
representative Z?, for M′12 with respect to Y . So we have w′(Z?) ≥ w′(M′12). Let M?

be the matching associated with Z?. Therefore w(M?) = w′(Z?). It is easy to see that
M? ∩ Sk = ∅ and λ(M? ∪ Sk) = i. Therefore, in Step 2 of Algorithm 1, we have that L(i)

contains the matchingM? ∪ Sk which is then classified in the set L(i)
k . Consider the weight

ofM? ∪ Sk.

w(M? ∪ Sk) = w(M?) + w(Sk)
≥ w(M′) + w(Sk) (Since w(M?) = w′(Z?) ≥ w′(M′12) ≥ w(M′))
≥ W (Since w(M′) + w(Sk) = w(M) ≥W)

Thus, the algorithm will return a matching of size k and weight at least W in Step 9. J

FSTTCS 2013

244 Faster Deterministic r-Dimensional Matching Algorithms using Representative Sets

I Lemma 3.3 (?). The running time of Algorithm 1 is bounded by O(2.8512k).

We remark that in case of unweigted 3D-Matching, if there exists a 3D-Matching of size
at least k then there exists a 3D-Matching of size k, and so we can use Algorithm 1 to solve
3D-Matching. The extension of these ideas to the Weighted Exact r-Dimensional
Matching is discussed in the full version of the paper. The final result is the following.

I Theorem 3.4. Weighted Exact r-Dimensional Matching and r-Dimensional
Matching can be solved deterministically in time O∗(2.851(r−1)k).

4 Iterative Expansion and Representative Sets

In this section, we provide a faster algorithm for 3D-Matching using iterative expansion.
The idea is to first solve the following improvement problem: given a 3D-Matching of size j
as input, can we find a 3D-Matching of size (j + 1)? Once we have an algorithm for solving
the improvement question, we can use it as a subroutine k times to find a matching of size k,
by starting with a trivial matching of size one. Therefore, for the rest of this section, we
focus on the improvement problem:

3D-Matching Improvement Parameter: k

Input: A universe U := U1] U2] U3, a family F ⊆ U1 × U2 × U3, and K ⊆ F , a
3D-Matching of size k.
Question: Does F have a 3D-Matching of size (k + 1)?

LetM be a 3D-Matching given by {S1, . . . , St}. Generalizing the notation in the previous
section, we letMpq denote the subset of (Up∪Uq) obtained by projecting the elements ofM
on the p and q co-ordinates, that is,Mpq :=

⋃
S∈M{S[p], S[q]}. On other hand, let

γpq := {(M,Mpq) | M is a matching in F}.

The definition of γ†pq is also as expected: For a set S ⊆ Up ∪ Uq, we define γ†pq(S) as the
smallest matchingM (with respect to ≤) for which (M, S) ∈ γpq. Finally, for r ∈ {1, 2, 3},
letMr := {Si[r] | i ∈ [t]} ⊆ Ur. Let Ur = {c1, c2, . . . , cn}. We define the maximum last index
of M with respect to r, denoted by λr(M), as the largest index i for which ci ∈ Mr. For
empty matching ∅, λr(M) = 0. To use the method of iterative expansion to our advantage,
we invoke the following result from [3], which states that if there is some matching of
size (k + 1), then there is also one that has a large intersection with the given matching K.

I Lemma 4.1 (Lemma 3.4 and Theorem 3.6, [3]). Let (U1, U2, U3,F ,K) be a Yes-instance
of 3D-Matching Improvement, that is, F admits a matching M of size (k + 1). Then,
there is also a matching M? of size (k + 1) such that there exist two indices p, q ∈ {1, 2, 3},
for which |M?

pq ∩ Kpq| ≥ (4/3)k.

The improved algorithm for solving the 3D-Matching Improvement (see Algorithm 2)
is along the lines of Algorithm 1, in that the dynamic programming procedure is very
similar. The difference lies in how we compute the representative families (see lines 17-19,
Algorithm 2), and this is also what brings about the improved running time.

We begin by considering the given matching, K. By Lemma 4.1, we know that there is
always a solution that has a large common intersection with K (if one solution exists).

P. Goyal, N. Misra, and F. Panolan 245

In particular, if we denote this solution by M? then Lemma 4.1 indicates that there is a
choice of coordinates p, q ∈ {1, 2, 3} for which the number of elements in Kpq ∩ M?

pq is
at least (4/3)k. So our first step involves guessing the coordinates p and q (Steps 1-2 in
Algorithm 2). Once we have fixed a choice of p and q, we further guess the intersection
Kpq ∩ M?

pq. We do this by iterating over all subsets of Kpq (see Line 12, Algorithm 2).
Let U be a fixed guess of the elements in the intersection. In P(i)

j,U we store (as before) the
projection of the matchings from L(i)

j on Up and Uq — however we are now only interested
in matchings that satisfy Mpq ∩ Kpq = U . In the next step, we remove the elements
of U from every set in P(i)

j,U to obtain D(i)
j,U . Now, we compute a (2k/3 − 2j + |U | + 2)-

representative family of D(i)
j,U . The intuitive explanation is the following. SinceMpq already

has (4k/3) elements in common with Kpq, we could isolate these elements, set them aside,
and compute representative families only for the “rest”. Due to this restrictive computation
of representative families, the amount of time we spend on this step improves considerably.

Towards correctness, we define Q(i)JpqK, which is analogous to the notion of Q(i) in the
previous section. The only difference is that the maximum last index value is considered
along the r coordinate, where r ∈ {1, 2, 3} is such that r 6= p, q. Further, it will be useful to
define Q(i)

j,U JpqK, which further partitions the collection Q(i)JpqK based on the matching size
and the intersection with Kpq, i.e, Q(i)

j,U JpqK := {M | M ∈ Q(i), |M| = j,Mpq ∩ Kpq = U}
Finally let X (i)

j,U JpqK := {Mpq | M ∈ Q(i)
j,U JpqK}.

In this setting, our first claim is that if we have a Yes instance of 3D-Matching Improve-
ment, then for a correct guess of the coordinates p and q, at least one relevant partial
solution is preserved in L(i) at every stage of the algorithm.

I Lemma 4.2. For all 0 ≤ i ≤ n, for all U ⊆ Kpq, and for all 0 ≤ j ≤ k such that
2j ≤ (2k/3)+ |U |+2, we have that R(i)

j,U JpqK is a α(j, U)-representative family for X (i)
j,U JpqK,

where α(j, U) = (2k/3)− (2j − |U |) + 2.

Proof. Towards a proof, we need to show that for all Y ⊆ Up ∪ Uq such that |Y | ≤ α(j, U),
if there exists Z ∈ X (i)

j,U JpqK such that Y ∩Z = ∅, then there also exists Z? ∈ R(i)
j,U JpqK such

that Z? ∩ Y = ∅. Note that since Y is assumed to be disjoint from Z, and U ⊆ Z (since
Z ∈ X (i)

j,U JpqK), we have that Y ∩ U = ∅. The proof of the lemma is by induction on i. The
base case is when i = 0.

R(0)
j,U JpqK = X (0)

j,U JpqK =
{
{∅} if j = 0 and U = ∅,
∅ Otherwise.

Hence R(0)
j,U JpqK is α(j, U)-representative family for X (0)

j,U JpqK for all 0 ≤ j ≤ k and U ⊆
Kpq. The induction hypothesis states that R(i)

j,U JpqK is an α(j, U)-representative family
for X (i)

j,U JpqK for all U ⊆ Kpq and for all 0 ≤ j ≤ k such that 2j ≤ (2k/3) + |U | + 2.
For the induction step, we will show that R(i+1)

j,U JpqK is an α(j, U)-representative family
for X (i+1)

j,U JpqK for all U ⊆ Kpq and for all 0 ≤ j ≤ k such that 2j ≤ (2k/3)+ |U |+2. As with
the proof of Lemma 3.1, we note that the corner case when j = 0 is trivial. To this end,
let U ⊆ Kpq and j be fixed. Let Y ⊆ Up ∪ Uq such that |Y | ≤ α(j, U). Further, suppose
there exists a set Z ∈ X (i+1)

j,U JpqK such that Z ∩ Y = ∅. LetMZ be the matching associated
with Z. Since MZ is derived from X (i+1)

j,U JpqK, note that λr(MZ) ≤ i + 1. We distinguish
two cases, depending on whetherMZ contains a set with ci+1 as the r-coordinate.

FSTTCS 2013

246 Faster Deterministic r-Dimensional Matching Algorithms using Representative Sets

Algorithm 2: An Expansion Algorithm using Representative Families
Input: (U1, U2, U3,F ,K), where F ⊆ U1 ×U2 ×U3, K ⊆ F is a 3D-Matching of size k
Output: A 3D-Matching of size (k + 1) if it exists, No otherwise.

1 for r in {1, 2, 3} do
2 p← max{{1, 2, 3} \ {r}} and q ← min{{1, 2, 3} \ {r}}
3 R(0)

0,∅JpqK← {∅}, L
(0) ← {∅}

4 R(0)
j,U JpqK← ∅, if j 6= 0 or U 6= ∅, for all 0 ≤ j ≤ k and U ⊆ Kpq

5 for i ∈ {1, 2, . . . , n} do
6 L(i) ← {M∪ S | M ∈ L(i−1), S ∈ F ,M∩ S = ∅, S[r] = i} ∪ L(i−1)

7 for j ∈ {0, 1, 2, . . . , k + 1} do
8 L(i)

j ← {M | M ∈ L(i), |M| = j}
9 if L(i)

k+1 6= ∅ then
10 return M, whereM∈ L(i)

k+1.

11 γpq ← {(M,Mpq) | M is a matching in L(i)
j };

12 for U ⊆ Kpq do
13 if 2j > (2/3)k + |U |+ 2 then
14 Continue;

15 P(i)
j,U JpqK← {Mpq | M ∈ L(i)

j andMpq ∩ Kpq = U}
16 D(i)

j,U JpqK← {X \ U | X ∈ P(i)
j,U JpqK}

17 Let T (i)
j,U JpqK ⊆α(j,U)

rep D(i)
j,U JpqK, where α(j, U) = (2k/3)− (2j − |U |) + 2

18 Let R(i)
j,U JpqK← {X ∪ U | X ∈ T (i)

j,U JpqK}

19 L(i)
j ←

⋃
U⊆Kpq

{γ†pq(Mpq) | Mpq ∈ R(i)
j,U JpqK}

20 L(i) ←
⋃k
j=1 L

(i)
j

21 return No;

Case 1.MZ contains a set with ci+1 as the r-coordinate.

Let S ∈ MZ be such that ci+1 ∈ S. Define the smaller matching MZ\S := MZ \ S.
Notice that |MZ\S | = j − 1 and λr(MZ\S) ≤ i. Let US := U ∩ S and U ′ = U \ US .
Therefore, MZ\S ∈ Q(i)

j−1,U ′JpqK and MZ\S
pq ∈ X (i)

j−1,U ′JpqK. Let A = MZ\S
pq and Y S =

Y ∪({S[p], S[q]}\US). It is easy to check that A∩Y S = ∅. We claim that |Y S | ≤ α(j−1, U ′):

|Y S | = |Y |+ 2− |US | ≤ (2k/3)− 2j + |U |+ 2 + 2− |US | = α(j, U ′)

We also claim that 2(j− 1) ≤ (2k/3) + |U ′|+ 2. Suppose not, then 2j > (2k/3) + |U ′|+ 4 >
(2k/3) + |U | + 2 (Since |U | = |U ′| + |US | ≤ |U ′| + 2). This contradicts the assumption
that 2j ≤ (2k/3) + |U | + 2. Hence, we are now in a situation where A ∈ X (i)

j−1,U ′JpqK,
|Y S | ≤ α(j−1, U ′), A∩Y S = ∅ and 2(j−1) ≤ (2k/3)+|U ′|+2. By the induction hypothesis,
we have that R(i)

j−1,U ′JpqK contains a α(j − 1, U ′)-representative of A with respect to Y S .
Let us denote this representative by B. Note that B ∩ Y S = ∅ by definition. Also note
that B ∩ US = ∅ because B ∩ Kpq = U ′. Let MB be the matching associated with B.
Since B ∈ R(i)

j−1,U ′JpqK, we have that MB ∈ L(i)
j−1. Since the p, q-coordinates of S are

disjoint from B and the r-coordinate of S is ci+1, we have that MB ∩ S = ∅. Thus, the
matchingMB ∪ S ∈ L(i+1)

j . Let us denote this matching byMB|S . It is easy to check that

P. Goyal, N. Misra, and F. Panolan 247

MB|S
pq ∩ Kpq = U , and correspondingly, MB|S

pq ∈ P(i+1)
j,U JpqK. Let W := MB|S

pq \ U . Note
that W ∈ D(i+1)

j,U JpqK and W ∩ Y = ∅. Since T (i+1)
j,U JpqK is an α(j, U)-representative family

for D(i+1)
j,U JpqK, we have that T (i+1)

j,U JpqK contains an α(j, U)-representative W ? for W with
respect to Y . We now define Z? to be W ? ∪ U . Note that Z? ∈ R(i+1)

j,U JpqK. Since W ? is
disjoint from Y by definition, and we know that U ∩ Y = ∅, we conclude that Z? is the
desired representative.

Case 2.MZ contains no set with ci+1 as the r-coordinate.

Recall that Z ∈ X (i+1)
j,U JpqK, and therefore, Z ∩ Kpq = U . Since we additionally have

that λ(MZ) ≤ i,MZ ∈ Q(i)
j,U JpqK. Consequently,MZ

pq ∈ X
(i)
j,U JpqK. By induction hypothesis

there exists a α(j, |U |)-representative, B, forMZ
pq with respect to Y , in R(i)

j,U JpqK Note that
B ∩ Y = ∅. Thus the matching associated with B, sayMB , belongs to L(i)

j . Further, since
L(i+1)
j ⊇ L(i)

j , we have that MB ∈ L(i+1)
j . As before, this implies that MB

pq ∈ P
(i+1)
j,U JpqK.

Note that this may be equivalently stated as B ∈ P(i+1)
j,U JpqK. The rest of the argument is

identical to the last part of the previous case, leading to a representative of Z as desired. J

We now establish the correctness of Algorithm 2, and then establish the running time.

I Lemma 4.3. Let (U1, U2, U3,F ,K) be a Yes-instance of 3D-Matching Improvement.
Then, Algorithm 2 successfully computes a 3D-Matching of size (k + 1).

Proof. Since (U1, U2, U3,F ,K) be a Yes-instance of 3D-Matching Improvement, by
Lemma 4.1, we have that there exists a matching M such that |M| = (k + 1) and there
exists p, q ∈ {1, 2, 3} such that |Mpq ∩ Kpq| ≥ (4k/3). Let r ∈ {1, 2, 3} such that r 6= p, q.
Let M = {S1, S2, . . . , Sk, Sk+1}. Suppose λr(M) = i. Without loss of generality, let
Sk+1[r] = ci. Finally, let M′ denote the matching M \ {Sk+1}. Let U = Mpq ∩ Kpq,
US = Sk+1 ∩ Kpq and U ′ = U \ US . Note that M′pq ∈ X

(i−1)
k,U ′ and 2k ≤ (2k/3) + |U ′| + 2

(since |U ′| ≥ (4k/3)− 2). Now consider the value α(k, U ′).

α(k, U ′) = (2k/3)− 2k + |U ′|+ 2 ≥ (2k/3)− 2k + (4k/3− |US |) + 2 = 2− |US |

By Lemma 4.2, we have that R(i−1)
k,U ′ is a α(k, U ′)-representative family for X (i−1)

k,U ′ , where
α(k, U ′) ≥ 2− |US |. Now consider Y := {Sk[p], Sk[q]} \US . Note that |Y | = 2− |US |. Since
M′pq ∈ X

(i−1)
k,U ′ is clearly disjoint from Y , by the definition of a representative family, there

exists some set, say X ∈ R(i−1)
j,U ′ , which is also disjoint from Y . Let M? be the matching

associated with X, that is, letM? := γ†pq(X). It is easily checked thatM?∪Sk+1 is included
in L(i)

k+1 and is therefore returned as a matching of size (k+ 1) in Step 9 of Algorithm 2. J

I Lemma 4.4 (?). The running time of Algorithm 2 is bounded by O?(2.00343k).

Putting together Lemmas 4.2, 4.3, and 4.4, we have the following theorem.

I Theorem 4.5. The 3D-Matching problem can be solved in time O?(2.00343k).

5 Conclusions

We have demonstrated that when combined with techniques like iterative expansion, repre-
sentative families can be used to a great advantage inside dynamic programming routines.

FSTTCS 2013

248 Faster Deterministic r-Dimensional Matching Algorithms using Representative Sets

We were able to significantly improve on the state of the art for the of r-Dimensional
Matching problem (even with weights), and we further improved this running time for
the special case of the 3D-Matching problem. We already know that representative fam-
ilies can be applied to a variety of other packing problems. The naive approach, however,
yields only incremental improvements in running times. The more dramatic improvements
obtained for the matching problems considered in this work were due to the additional
structure in the input: the partitioned universe was exploited in the dynamic programming.

It will be very interesting to see what other techniques can be combined with this method
to obtain improved algorithms for other packing questions, such as the classic Set Packing
problem, or the problem of packing paths of length two from an underlying graph.

References

1 Alon, Yuster, and Zwick. Color-coding. JACM: Journal of the ACM, 42, 1995.
2 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves for

parameterized paths and packings. CoRR, abs/1007.1161, 2010.
3 Jianer Chen, Yang Liu, Songjian Lu, Sing-Hoi Sze, and Fenghui Zhang. Iterative expan-

sion and color coding: An improved algorithm for 3D-matching. ACM Transactions on
Algorithms, 8(1):6, 2012.

4 Shenshi Chen and Zhixiang Chen. Faster deterministic algorithms for packing, matching
and t-dominating set problems. CoRR, abs/1306.3602, 2013.

5 R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
6 R. G. Downey, M. R. Fellows, and M. Koblitz. Techniques for exponential parameterized

reductions in vertex set problems. (Unpublished, reported in [5], §8.3).
7 Michael R. Fellows, Christian Knauer, Naomi Nishimura, Prabhakar Ragde, Frances A.

Rosamond, Ulrike Stege, Dimitrios M. Thilikos, and Sue Whitesides. Faster fixed-parameter
tractable algorithms for matching and packing problems. Algorithmica, 52(2):167–176,
2008.

8 Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Efficient computation of represen-
tative sets with applications in parameterized and exact algorithms. CoRR, abs/1304.4626,
2013.

9 M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman, San Francisco,
1979.

10 I. Koutis. A faster parameterized algorithm for set packing. Information Processing Letters,
94:7–9, 2005.

11 I. Koutis and R. Williams. Limits and applications of group algebras for parameterized
problems. In Proceedings of Automata, Languages and Programming, 36th International
Colloquium, ICALP, volume 5555 of LNCS, pages 653–664. Springer, 2009.

12 Ioannis Koutis. Faster algebraic algorithms for path and packing problems. In Proceedings
of Automata, Languages and Programming, 35th International Colloquium, ICALP, volume
5125 of Lecture Notes in Computer Science, pages 575–586. Springer, 2008.

13 Y. Liu, S. Lu, J. Chen, and S.-H. Sze. Greedy localization and color-coding: improved
matching and packing algorithms. In International Workshop on Parameterized and Exact
Computation IWPEC, volume 4169 of LNCS, pages 84–95. Springer, 2006.

14 Dániel Marx. A parameterized view on matroid optimization problems. Theor. Comput.
Sci, 410(44):4471–4479, 2009.

15 B. Monien. How to find long paths efficiently. Ann. Discrete Math., 25:239–254, 1985.

	Introduction
	Preliminaries
	A Dynamic Programming Approach
	Iterative Expansion and Representative Sets
	Conclusions

