
Computing With a Fixed Number of Pointers
Martin Hofmann and Ramyaa Ramyaa

Ludwig Maximilian University
Munich, Germany
{hofmann,ramyaa}@ifi.lmu.de

Abstract
Consider the P-complete problem horn which asks whether a given set of Horn clauses is
(un)satisfiable. To solve it one keeps a dynamic set of atoms that are forced to be true. Us-
ing the clauses one then adds atoms to this set until saturation is reached. It is easy to see that
this dynamic set will in general more than constant size even if we allow to discard already proved
atoms. Given that we need logarithmic space to store a single atom on a Turing machine tape
this seems like a strong intuitive argument for the hypothesis that logarithmic space is different
from polynomial time. We thus tried to find formal models of computation in which this intuitive
argument can be made rigorous. Thus, we study computational models that can be simulated in
logarithmic space and encompass logspace algorithms which manipulate a constant size of objects
that require logarithmic space individually such as pointers or graph nodes. The hope is then to
be able to show that such models are provably unable to solve P-complete problems. We report
in this survey article on our partial results towards this goal as well as the state-of-the-art in
general.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases Logarithmic space, Jumping graph automata (jags), st-connectivity,
co-st-connectivity, Cayley graphs

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2013.3

Category Invited Talk

1 Introduction

Consider the problem horn defined as follows. We are given a finite set of letters Σ and a
finite set of clauses C each of the form U → V where U, V are subsets of Σ with |U | ≤ 2 and
|V | ≤ 1. A valuation η : Σ→ {0, 1} satisfies a clause U → V if η(x) = 0 for some x ∈ U or
η(y) = 1 for some y ∈ V . E.g. η satisfies x, y → z if whenever η(x) = η(y) = 1 then η(z) = 1,
too. It satisfies → x (here U = ∅) if η(x) = 1; it satisfies x→ (here V = ∅) if η(x) = 0.

For example, the instance C = {→ x; x → y; x,y → z; z →} (where Σ = {x, y, z}) is
unsatisfiable. We call a letter x with → x in C an axiom and we call a letter y with y → in
C a goal. In this terminology an instance is unsatisfiable if one of the goals may be deduced
from the axioms with the understanding that if there is a clause x, y → z and x, y have both
been deduced then z may be deduced, too.

The obvious dynamic programming algorithm (grow a set of letters that can be deduced
by repeatedly going over the clauses until you reach a goal) places horn into the class ptime
(polynomial time) and it is well-known and easy to see that horn is ptime-complete w.r.t.
logspace-reductions, e.g. by a straightforward reduction to Cook’s solvable paths [1].

On the other hand, considering that storing a single letter requires logarithmic space (in
the number of letters |Σ|), we see that this algorithm does not run in logarithmic space on a

© Martin Hofmann and Ramyaa Ramyaa;
licensed under Creative Commons License CC-BY

33rd Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2013).
Editors: Anil Seth and Nisheeth K. Vishnoi; pp. 3–18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4 Computing With a Fixed Number of Pointers

Turing machine unless we can bound the size of the dynamic set in which we keep already
deduced letters by a constant. We might try to improve the algorithm by removing entries
from the dynamic set according to some strategy. However, even if we allow nondeterministic
selection of the letters to be “forgotten”, we will not be able to achieve a constant bound as
can be seen from the following pebble argument:
I Proposition 0.1. For each d ∈ N let Σd = {0, 1}≤d and

Cd = {→ w | |w| = d} ∪ {w0, w1→w | |w| < d} ∪ {ε→}

The instance (Σd, Cd) is unsatisfiable. Let A1, . . . , AN be a sequence of subsets of Σ such that
A1 = ∅ and Ai+1 ⊆ Ai∪{x | y, z → y ∈ Cn, {y, z} ⊆ An}. If ε ∈ AN then maxi |Ai| ≥ d+ 1.
The easy proof is by induction on d.

Since |Σd| = 2d+1 − 1 this furnishes a logarithmic lower bound on the size of the dynamic
set in any algorithm for horn that uses the dynamic programming strategy and is allowed to
forget already established facts according to any strategy however clever it might be. Thus,
no such algorithm can be implemented in logarithmic space (to be precise, space log(n)2 is
needed at least). We also remark that even a

√
n lower bound on the size of the dynamic set

can be achieved using a more complicated instance based on Cook’s “pyramids” [3].
A simpler yet related problem is st-connectivity in directed or undirected graphs. It can

be considered as the special case of horn where one has only one axiom (the source), one
goal (the target), and for every other clause U → V has |U | = |V | = 1. Those then represent
the edges of a graph. In this case, the pebbling argument no longer works and indeed, we can
solve st-connectivity with a nondeterministic algorithm that keeps only a constant number of
letters (graph nodes) in memory. In fact just one suffices. On the other hand, it is not known
whether a deterministic algorithm with the same space bounds exists for this problem.

Indeed, Cook and Rackoff have shown that no deterministic algorithm exists for st-
connectivity even on undirected graphs (ustcon) which uses graph nodes only abstractly
rather than having access to their machine representation and can only hold a fixed number of
graph nodes simultaneously in memory. Of course, one must make precise what is meant by
“use graph nodes only abstractly”. There are several formalisations which attempt to do so.
We describe below in more detail: Cook and Rackoff’s Jumping Automata on Graphs (jags)
for which their original result holds; Deterministic Transitive Closure Logic, an extension of
first order logic by a transitive closure operator providing unlimited iteration; and, finally,
the purple programming language introduced by the first author and U. Schöpp which
extends jags with a Java like iterator and subsumes dtc-logic. In [14] we could extend Cook
and Rackoff’s result to purple and thus also show that dtc-logic cannot define ustcon
which was an open question at the time.

Interestingly, however, Reingold’s result [19] shows that ustcon can be solved in logar-
ithmic space on a Turing machine. However, this algorithm, in addition to storing a constant
number of graph nodes stores a logarithmic number of booleans.

At the time, a motivation for Cook and Rackoff’s work could have been the attempt to
separate ptime from logspace (deterministic logarithmic space) or indeed logspace from
nlogspace (nondeterministic logarithmic space). Indeed, before Reingold’s result one might
be tempted to try to show the non-existence of any logspace-algorithm by devising an
ingenuous abstraction that associates with any run of a deterministic algorithm for ustcon a
run of an accompanying jag. Now, Reingold’s result shows that without further restrictions
on the nature of such hypothetical algorithm such an argument is bound to fail.

On the other hand, Reingold’s result shows that looking at graph nodes or propositional
letters as abstract objects provably makes a difference which raises the hope that while

M. Hofmann and R. Ramyaa 5

an unconditional separation of, say, logspace and ptime is not attainable with current
methods one might still obtain a “relativized” separation, for instance, in the form of a
rigorous proof that no algorithm for horn exists that only uses a fixed number of abstract
pointers (referring to graph nodes, letters, clauses, or similar).

Of course, neither jags nor dtc-logic and even purple are able to solve ustcon, and
thus are unable to solve horn. Thus, for a meaningful result of this kind, one would need
an extension of any of these formalisms which does encompass ustcon. In this paper we
summarise our efforts at finding such an extension and try to explain why this turned out to
be unexpectedly difficult.

The rest of this paper is structured as follows.
The next section describes the basic framework we consider - systems which build upon

minimal abstract pointers.
Section 3 describes Cook and Rackoff’s jumping automata on graphs, the first, and most

basic model for computation with a fixed number of pointers. We also report therein on our
current study of the computational strength of nondeterministic jumping automata.

Section 4 describes the programming formalism purple [15] which extends jags with an
iteration construct that provides access to all nodes of the input structure not only those
that are accessible from originally known ones. We present our results on the expressivity of
purple and its extensions.

Section 5 is about (deterministic) transitive closure logic known from finite model theory.
We show that its strength lies strictly between jags and purple.

Section 6 concludes and gives some directions for future work.

2 Minimal Abstract Pointers

Our aim is to define a system contained in logspace that is provably weaker than ptime,
but powerful enough to make the separation non trivial. Following the intuition outlined
above, the systems we consider aim to capture the subclass of “abstract pointer algorithms"
within logspace.

The minimal requirements of such a system is the ability to refer to a node of a graph
(or any structured input) using pointer (or pebble) variables, comparing two such variables
for equality, assigning the value of one to another, and traversing along an edge. Thus, the
concrete representation of the pointers is hidden. The main difference between these systems
and Turing machines is that Turing machines have access to a binary encoding of the input
graph which embodies a total ordering on the nodes.

In fact, it is easy to see that once a total ordering on the input nodes is available even
the most basic systems we consider capture all of logspace. Such a total ordering can be
provided in a number of ways, for instance by assuming that one of the directions {1, . . . , d}
threads all the nodes (λx.x.i is a permutation for some i). So, we want to focus on graphs
for which such total ordering is neither directly available nor definable.

On the other hand, we typically assume the presence of a local order, in particular an
ordering of the edges adjacent to or emanating from a node. A 1-locally ordered graph, (1LO
graph) is a one such that for each node, the edges emanating from it are ordered. A 2-locally
ordered graph (2LO graph) is one such that for each node, the edges coming out of it or
leading to it are ordered. For undirected graphs these two coincide.

The encoding of graphs using abstract pointers and the presentation of graphs in the
context of jags both induce at least a 1-local ordering. It is, however, possible to represent
graphs without local ordering as pointer structures, e.g. by using special edge objects having

FSTTCS 2013

6 Computing With a Fixed Number of Pointers

pointers to their source and target. In the context of first-order logic and extensions thereof,
the unordered case may seem more natural but leads to artificial weaknesses.

An interesting intermediary between absence and presence of a total ordering is the ability
to count or more generally perform arithmetic till the size of the input, called counting. A
total order can be utilized to simulate counting. However, this is not the case with local
orderings. In the extreme case of discrete graphs, local ordering provides no information at
all, and it is not possible to count over these graphs.

The systems we study are: jumping automata on graphs (jags), “pure pointer language"
(purple language), and Deterministic transitive closure Logic (dtc). It has been shown that
without counting, these systems cannot solve connectivity. We describe these systems and
several extensions.

3 Jumping automata on graphs

Cook and Rackoff ([2]) introduced Jumping Automata on Graphs (jags) in order to study
space lower bounds for reachability problems. A jag is a finite automaton which can move a
fixed number of pebbles along labelled edges of input graphs of fixed degree. Thus, jags are
a nonuniform machine model.

A labelled degree d graph for d > 1 comprises a set V of vertices and a function
ρ : V × {1, . . . , d} → V . If ρ(v, i) = v′ then we say that (v, v′) is an edge labelled i from v

to v′. All graphs considered here are labelled degree d graphs for some d. The important
difference to the more standard graphs of the form G = (V,E) where E ⊆ V × V is that
the out degree of each vertex is exactly d and, more importantly, that the edges emanating
from any one node are linearly ordered. One extends ρ naturally to sequences of labels
(from {1, . . . , d}∗) and writes v′ = v.w if ρ(v, w) = v′ for v, v′ ∈ V and w ∈ {1, . . . , d}∗. The
induced sequence of intermediate vertices (including v, v′) is called the path labelled w from
v to v′. Such a graph is undirected if for each edge there is one in the opposite direction
ρ(v, i) = v′ ⇒ ∃j.ρ(v′, j) = i. It is technically useful to slightly generalise this and also regard
such graphs as undirected if each edge can be reversed by a path of a fixed maximum length.

I Definition 1. A d-Jumping Automaton for Graphs (d-jag), J , consists of
a finite set Q of states with distinguished start state q0 and accept state qa
a finite set P of objects called pebbles (numbered 1 through p)
a transition function δ which assigns to each state q and each equivalence relation π on
P (representing incidence of pebbles) a set of pairs (q′,~c) where q′ ∈ Q is the successor
state and where ~c = (c1, . . . , cp) is a sequence of moves, one for each pebble. Such a move
can either be of the form move(i) where i ∈ {1, . . . , d} (move the pebble along edge i) or
jump(j) where j ∈ {1, . . . , p} (jump the pebble to the (old) position of pebble j).
The automaton is deterministic if δ(q, π) is a singleton set for each q, π.

The input to a jag is a labelled degree d graph. An instantaneous description (id) of a
jag J on an input graph G is specified by a state q and a function, node, from the P to the
nodes of G where for any pebble p, node(p) gives the node on which the pebble p is placed.

Given an id (q,node) a legal move of J is an element (q′,~c) ∈ δ(q, π) where π is the
equivalence relation given by p π p′ ⇐⇒ node(p) = node(p′). The action of a jag, or the
next move is given by its transition function and consists of the control passing to a new
state after moving each pebble i according to ci: (a) if ci = move(j) move i along edge j;
(b) if ci = jump(j) move (jump) it to node(j). Any sequence (finite or infinite) of id’s of a
jag J on an input G which form consecutive legal moves of J is called a computation of J

M. Hofmann and R. Ramyaa 7

on G. We assume that input graphs G have distinguished nodes startnode and targetnode,
and that jags have dedicated pebbles s and t. The initial id of J on input G has state q0,
node(t) = targetnode and ∀q 6= t. node(q) = startnode. J accepts G if the computation of J
on G starting with the initial id ends in an id with state qa.

One criticism of jags is that they are artificially weak on directed graphs. Since edges
can only be traversed in the forward direction, there is no way for a jag to reach a node
without incoming edges, for example. One solution to this is to work with graphs having a
local ordering both on the outgoing and on the incoming edges of each node, so that edges
can be traversed in both directions [7].

Cook and Rackoff’s result [2] shows that even with this modifications, jags can only
compute local properties:

I Theorem 2 ([2]). (u)st-connectivity cannot be solved by jags.

It is instructive to deduce this result from a generalization due to Schöpp [20] who gave a
formal proof in Coq. For any group G define its exponent exp(G) as the maximum element
order, i.e., the least m so that gm = e holds for all g ∈ G. Note that exp((Z/mZ)d) = m.

I Theorem 3. Let G be a group. A jag with p pebbles and q states can visit at most
(q · exp(G))dp nodes in the course of any computation on CG(G).

This implies that jags trivially cannot solve horn since ustcon is obviously a special
case of horn. It is thus natural to investigate strengthenings of jags.

3.1 Counters

The ramjag [18] consists of a finite state control together with p pebbles and a fixed number
of O(log(n))-bit registers which in total require O(log(q)) bits of storage. Its storage is
defined as (plog(n) + log(q)) bits. on which it can perform the usual RAM operations on
the registers and also three special instructions: walk, jump and compare. The instructions
walk(P, j) and jump(P, P ′) are the same as that in a jag. The instruction compare(P, P ′, R)
checks whether pebbles P and P ′ are on the same node and stores the result (T or F) in
a register R. where n is the size of the input graph. Obviously, using more registers this
bound extends to any polynomial in n.

I Theorem 4 ([18]). Reingold’s algorithm for ustcon can be implemented with ramjags.

We remark that Beame et al. citeDBLP:journals/siamcomp/BeameBRRT99 showed that jags
with arithmetic registers (O(logn) space bounded jags in their terminology) are equivalent
to logspace Turing machines without using and in fact prior to Reingold’s theorem.

I Corollary 5. ramjags can define a total order on connected graphs

Proof. Choose an arbitrary node as the start node and enumerate all logarithmic length paths
from it. The order in which the nodes are visited gives a total ordering on the graph. J

I Corollary 6. jags cannot count

Proof. jags cannot solve ustcon, but ramjags can. This shows that counting cannot be
simulated in jags. J

FSTTCS 2013

8 Computing With a Fixed Number of Pointers

3.2 Nondeterminism
Regarding nondeterministic jags (nd-jags) the situation is less clear. For our purpose,
nd-jags are relevant, for they are stronger than deterministic jags and purple since they
can solve stcon, so assuming that they are not equivalent to nlogspace it would then
constitute and interesting and perhaps accessible open question whether nondeterministic
jags can solve horn.

Before, however, attempting that question one should first try to see whether nd-jags
can solve co-stcon or even just co-ustcon. i.e., whether there exists a nondeterministic jag
with the property that if startnode and targetnode are not connected then there exists an
accepting run whereas in the case where they are connected, all runs reject or abort. It has
been left as an open problem in [5] whether or not nd-jags are able to decide co-ustcon or
indeed whether their computational power equals all of nlogspace.

In a recent as yet unpublished paper [12] the authors have tried to make some progress
towards the special case of this question where the graphs under consideration are Cayley
graphs. Recall that the Cayley graph of a group G with generators ~m, written as CG(G, ~m)
is the labelled degree |~m| graph whose nodes are the elements of G and where the edge
labelled i from node v leads to miv, formally ρ(v, i) = miv. Note that since every generator
has an inverse the Cayley graphs are undirected in the above relaxed sense.

Cayley graphs are interesting in this contexts because they furnish the hard examples
in [2] and [14]. In the former case the underlying group is (Z/mZ)m whose Cayley graph
resembles an m-dimensional torus of circumference d. E.g. for m = 480 and d = 2 one obtains
a 480 x 480 “screen” with opposite borders identified as is common in some video games. It
is hard for a jag to find its way through such a graph because the close neighbourhoods of
all nodes are the same and because repeated moves quickly lead to a repetition. E.g. the
order of each cyclic subgroup of (Z/mZ)d is ≤ m whereas the order of the group itself is md.
Of course, a jag does not necessarily stupidly repeat a fixed move and it required Cook and
Rackoff an ingenious pumping argument to turn this intuition into a rigorous proof. The
result in [14] generalises this using an iterated wreath product of a cyclic group Z/mZ.

I Definition 7. A nondeterministic Jumping Automaton for Graphs (nd-jag) J is a jag
whose transition function is nondeterministic. It accepts an input if there is some finite
computation starting at the initial configuration that reaches qa, and rejects an input if no
such computation does. A d−nd-jag operates on graphs of degree d. Again, we assume that
appropriate degree reduction is applied before inputting a graph to an nd-jag.

It is easy to see that the argument used in [2] for deterministic jags which is similar
to a pumping argument cannot be adapted easily to nd-jags, which can solve reachability
(guess a path from startnode to targetnode). However, it is unclear whether nd-jags can
solve co-st-connectivity. Since jags cannot count, it is reasonable to believe that nd-jags
cannot implement Immerman-Szelepcsenyi’s algorithm, and more generally, cannot solve
co-st-connectivity.

I Theorem 8 ([12]). nd-jags are equivalent to nlogspace and thus can in particular solve
co-stcon if the input consists of disjoint copies of one of Cayley graphs where the underlying
group is one of the following

an abelian group
a finite simple group
groups obtained from these by direct, semidirect, or wreath product
iterations of the above product constructions

M. Hofmann and R. Ramyaa 9

To us this power of nd-jags came as quite a surprise; initially, we believed that even on the
(abelian) group (Z/mZ)d that were used by Rackoff the nd-jags would be strictly weaker
than nlogspace.

To give a taste of these results we sketch here a special case:

I Theorem 9. There exists an nd-jag that can visit all nodes of CG(~m, (Z/mZ)d) in a
fixed order where ~m comprises the unit vectors e1, . . . ed of dimension d.

This shows in particular that co-stcon can be solved if the input consists of several disjoint
copies of this Cayley graph.

Proof sketch. Indeed, each element of the group can be uniquely written in the form
λ1e1 + . . . λded where λi ∈ {0, . . . ,m− 1}. Moreover, we can order the elements of the group
lexicographically using this representation. Now, we can design an nd-jag that places a
“cursor pebble” on all nodes of the Cayley graph in this lexicographic order. Suppose that
the cursor pebble is on λ1e1 + . . . λded. Using another pebble we nondeterministically trace
a path from startnode to the cursor pebble making sure that it has the form “some e1, then
some e2, etc”. By uniqueness of representation this path will repeat the coefficients λi or fail
to reach the cursor pebble in which case we abort. As we trace this path we can on-the-fly
move a third pebble to the lexicographically next position by incrementing the first coefficient
that is different from m− 1 and resetting all the previous ones. J

Given these results our current working hypothesis is that nd-jags can solve co-stcon on
all graphs (in fact, we even believe now that they capture nlogspace on all graphs); the
natural next step will be to demonstrate this for arbitrary Cayley graphs. We also note
that our results considerably narrow the search for counterexamples to the conjecture and in
particular rule out all the known ones.

We also note that any counterexample to our working hypothesis would in particular have
to be such that deterministic jags cannot solve stcon on them (otherwise we would trivially
get co-stcon) so that we would need a new proof of Cook-Rackoff’s result with substantially
different example graphs for the known ones are thwarted by our current results.

4 Purple language

Rather than as an automaton, we may understand a jag as a while-program whose variables
are partitioned into two types: boolean variables and graph pointer variables. Boolean
variables are used to represent the finite state of the jag and the usual boolean operations
are available for boolean expressions. Pointer variables are used to reference graph nodes
in the same way that pebbles are used in the automata-theoretic formulation of jags. For
pointer variables one only has an equality test and, for each constant number i, a successor
operation to move a pointer variable along the i-th edge from the graph node it points to.
Over unconnected graphs, jags may not be able to visit all nodes. For example, the property
whether a graph contains a node with a self-loop is not decidable with jags for the simple
reason that such a witnessing node might be in an unreachable part of the graph.

To address this, the formalism purple (for “pure pointer language”), was introduced by
the first author and U. Schöpp [15]. Essentially, it consists of augmenting this programming
language-theoretic version of jags with a special loop construct (forall x do P) whose
meaning is to set the pointer variable x successively to all graph nodes in some arbitrary
order and to evaluate the loop body P after each such setting. The important point is that
the order is arbitrary and will in general be different each time a forall-loop is evaluated.

FSTTCS 2013

10 Computing With a Fixed Number of Pointers

A program computes a function or predicate only if it gives the same (and correct) result for
all such orderings. The forall-loop in purple can be used to evaluate first-order quantifiers
and thus to encode dtc- logic (see below) on locally ordered graphs. Moreover, purple
is strictly more expressive than that logic. For instance, determining whether the input
graph has an even number of nodes is not possible in locally-ordered dtc logic [10], but the
following purple-program does this: (b := true; forall x do b := not(b).

Purple program are parametrised by a finite set L of labels and a finite set S of predicate
symbols. Each predicate symbol p is assumed to have a finite arity ar(p) ∈ N.

The input of a programs is a pointer structure, which interprets the labels and predicates:
A pointer structure on L and S ((L, S)-model, for short) specifies a finite set U as a universe,
a function [[l]] : U → U for each label l ∈ L and a set [[p]] ⊆ Uar(p) for each predicate symbol p.

The special case of d-labelled graphs arises when L = {1, . . . , d} and S = ∅.
A program with labels L and predicate symbols S can access its input structure through

the following terms for pointers to elements of the universe and for booleans.

tU ::= xU | tU .l for any label l ∈ L
tbool ::= xbool | ¬tbool | tbool

1 ∧ tbool
2 | p(xU1 , . . . , xUar(p)) for any predicate p ∈ S

We call xU pointer variables. The intention is that tU .l is interpreted by [[l]](tU).
The programs themselves are given by the grammar.

Prg ::= skip | Prg1; Prg2 | xU := tU | xbool := tbool

| if tbool then Prg1 else Prg2 | forall xU do Prg

We write if tbool then Prg for if tbool then Prg else skip.
A configuration 〈ρ, q〉 consists of a pebbling ρ and a state q. The pebbling ρ maps pointer

variables (which we also call pebbles) to elements of the universe U . The state q is a
function mapping boolean variables to booleans. Given a configuration I, we can define an
interpretation of the terms [[tbool]]I ∈ {true, false} and [[tU]]I ∈ U in the usual way.

A big-step reduction relation Prg `M I −→ O between configurations I and O on some
(L, S)-model M and a program Prg is defined inductively by the following clauses:

skip `M I −→ I.
Prg1; Prg2 `M I −→ O if Prg1 `M I −→ R and Prg2 `M R −→ O for some R.
xU := tU `M 〈ρ, q〉 −→ 〈ρ[x 7→ [[t]]〈ρ,q〉], q〉.
xbool := tbool `M 〈ρ, q〉 −→ 〈ρ, q[x 7→ [[t]]〈ρ,q〉]〉.
if t then Prg1 else Prg2 `M I −→ O if [[t]]I = true and Prg1 `M I −→ O.
if t then Prg1 else Prg2 `M I −→ O if [[t]]I = false and Prg2 `M I −→ O.
forall xU do Prg1 `M I −→ O if there exists an enumeration u1, u2, . . . , un of [[U]] and
configurations I = 〈ρ1, q1〉, 〈ρ2, q2〉, . . . , 〈ρn+1, qn+1〉 = O, such that Prg1 `M 〈ρk[x 7→
uk], qk〉 −→ 〈ρk+1, qk+1〉 holds for all k ∈ {1, . . . , n}.

When the model M is clear from the context we may omit the subscript.
In order for a purple program to accept (resp. reject) an input, it must do so no matter

what enumerations are chosen for its forall-loops. This is defined formally in the next
definition, in which we use a boolean variable result to indicate acceptance.

I Definition 10. A program Prg accepts (resp. rejects) an (L, S)-model M if Prg `M
〈ρ, q〉 −→ 〈ρ′, q′〉 implies q′(result) = true (resp. q′(result) = false) for all ρ, ρ′, q and q′.

A program Prg recognises a set X of (L, S)-models if it accepts any model in X and rejects
all others. Note that a program may neither accept nor reject its input, namely if for some

M. Hofmann and R. Ramyaa 11

Figure 1 The lamplighter graph CG(Λ(Z/8Z)) and the traversal sequence from [14]

runs it returns true and for others it returns false. To put it simply, a purple program
for some problem X should give the correct answer, be it true or false for any given input
and independent of the run, i.e. the traversal sequences chosen.

I Theorem 11. It is undecidable whether a given purple program is such that for every
input, it either rejects or accepts.

We also note that predicate symbols, which were not part of the original definition of
purple [15], are there just for notational convenience and do not add expressive power.
Unary predicates can be modelled with an extra pointer that points to designated nodes for
“true” and “false”. A binary relation can be modelled by introducing an extra node for each
pair of related nodes with pointers fst and snd pointing to the latter two nodes. One uses a
unary predicate to differentiate between the actual nodes and these helper nodes.

4.1 Power of purple
While purple subsumes jags and also deterministic transitive closure logic (see below) it
is strictly weaker than logspace. Notice that purple programs can be evaluated on a
logspace-bounded Turing machine.

I Theorem 12 ([15]). Checking whether the input is a discrete graph with n nodes, where n
is a power of two, is possible in logspace but cannot be programmed in purple.

I Theorem 13 ([14]). ustcon cannot be decided in purple.

Proof idea. For any group G one defines the lamplighter group Λ(G) by Λ(G) = {(f, g) | f ∈
2G, g ∈ G} and (f, g)(f ′, g′) = (λh.f(h) + f ′(gh), gg′) where + refers to addition modulo 2.
Given a set of generators (m1, . . . ,mk) for G one can generate Λ(G) by (0,mi) for i = 1 . . . k
and the toggle move (t, e) where t(e) = 1 and t(g) = 0 for g 6= e. The nodes of the Cayley
graph CG(Λ(G)) can be thought of as states of a system involving one streetlight at each
node of CG(G) and a lamplighter situation at one such node. Fig. 1 shows 8 of the 2048
nodes of CG(Λ(Z/8Z)). If G has order n, number of generators m and exponent e and
n′,m′, e′ denote those measures for Λ(G) then we have n′ = n2n, m′ = m + 1, e′ = 2e.
Thus, repeated application of the lamplighter construction furnishes groups with a very high
order yet moderate number of generators and exponent. Nothing beyond these numerical
properties is required from the lamplighter construction for our purpose.

Now, for any purple-program P we can find t,m depending on size and nesting depth
of loops in P so that when run on CG(Λt(Z/mZ)) the effect of P can be simulated (for
appropriately chosen traversal sequences of the forall-loops) by a very large jag. Theorem 3
applied to this jag then shows that some nodes remain unvisited.

FSTTCS 2013

12 Computing With a Fixed Number of Pointers

To obtain the desired simulation by a jag assume that all forall-loops except for the
outermost one have already been eliminated. One thus essentially has a jag with one special
iteration pebble that is supposed to be placed on every node in some arbitrary order. In
between such placements the jag is to be run until it reaches a dedicated state. Now, in an
intuitive sense that can be made precise, if the traversal sequence is chosen in such a way
that temporally close nodes, in particular successive ones, are sufficiently far apart spatially,
then the only nodes of the sequence that the jag will be able to remember will be those
from the beginning and the end of the traversal sequence. Thus, if the traversal sequence is
chosen in this fashion then at the end of the traversal all pebbles will be close to the original
nodes and it is possible to hardwire the total effect of the forall-loop into a very large jag.
The second half of Figure 1 illustrates this traversal sequence vc1, vc2, Herein R and u are
appropriately chosen large numbers. The radius R is related to the number of nods the jag
representing the body of the loop is able to visit according to Theorem 3, quantity u on the
other hand stems from the combinatorial possibility of designing an appropriate sequence.
Finally, ρc(_) indicates the initial pebble positions. J

This result provides the strongest possible evidence so far that ustcon cannot be solved
with a constant number of abstract pointers and that the use of arithmetic in Reingold’s
algorithm is intrinsic to the problem solved. The result also answers an open question about
transitive closure logic, see Section 5 below.

Similar to the case of jags, this implies that purple trivially cannot solve horn since
ustcon is obviously a special case of horn. It is thus natural to investigate strengthenings
of purple by various computational devices that stay within logspace or nlogspace. We
describe our efforts in this direction in the following subsections.

4.2 Counters
So, one obvious addition to purple is counting. Though purple subsumes jags, we
explored whether purple with counting is strictly continued within logspace. Here we
extend purple by counting variables (“counters”), each of which can hold a number from
0 to the size of the input structure’s universe, and we extend the terms with arithmetic
operations:

tbool ::= · · · | iszero(tcount) tcount ::= xcount | max | pred(tcount)

We extend the operational semantics such that the state q now not only maps boolean
variables to booleans, but also counting variables to numbers.

purple with counters (purplec) can do arithmetic: the complement of a counter can be
computed using max and repeated decrement; the increment can be implemented using double
complementation and decrement; The rest of the operations follow by repeated applications
of these. purplec can count the number of tuples of nodes satisfying any purple-definable
property, and so can simulate counting quantifiers used in dtc or tc logics.

I Lemma 14. purplec captures logspace on graphs with a two-way local ordering, repres-
ented as pointer structures as described above.

Outline. purple captures all of logspace on ordered graphs. So, it suffices to show that a
total ordering can be defined on any input graph.

To this end we note that given any graph node n, purplec can define a total ordering of
the weakly connected component containing n. We use Reingold’s algorithm for undirected
s-t-connectivity, which checks for connectivity by enumerating all nodes in the weakly

M. Hofmann and R. Ramyaa 13

connected component of s and checking if t appears therein. This algorithm be implemented
by ramjags [18], and so, by an easy translation, also in purplec. In this way, purplec can
order the nodes of the weakly connected component according to their order of their first
appearance in the enumeration.

In their proof that tc-logic with counting captures nlogspace [8], Etessami and Immer-
man have shown how a total ordering can be defined using counting from such orderings of
the weakly connected components. This argument can be adapted to purplec to complete
the proof. J

4.2.1 Iterators
Another possibility for strengthening purple that we investigated consists of replacing
forall-loops by iterators that are available e.g. in the Java library for the representation of
sets as trees or hash maps. Thus, in addition to Boolean and pointer variables, this extension
of purple then has iterator variables which store a subset of the nodes of the input graph.
The operations allowed on an iterator variable are:

Initialize: The variable is assigned the set of all nodes of the input graph
Next: If the variable refers to a non-empty set, an arbitrary node is removed from it (so
the variable now refers to a set without this node), and the node is returned.
isNull: Returns true if the variable is empty and false otherwise

With iterators in place, the forall-loop can be replaced by a plain while loop. Further,
we can determine whether the number of nodes with a self loop is equal to the number of
nodes without one. Surprisingly, iterators permit the definition of counting and thus render
purple with iterators (on locally ordered input) equivalent to full logspace.

I Theorem 15. purple with iterators can count.

Proof. A counter variable is represented by an iterator variable which is assigned a subset of
nodes with the required cardinality. It is direct that the operations of checking for zero and
decrement can be performed. To increment a variable x, we use another iterator variable y
as follows: Initialize y and keep decrementing both x and y till x is zero; increment y once
more and initialize x; finally, decrement both variables till y is zero. Similarly, variable can
be copied (assigned to another variable). J

4.3 Nondeterminism with counting but without local order
By the asymmetric acceptance and rejection conditions that are used in any nondeterministic
definition, it is not clear whether nondeterministic purple is closed under complementation.
Since the answer is not known even in the case of jags, we add counting as well, allowing us
to implement Immerman-Szelepcsenyi’s algorithm for complementation in nlogspace to get
purple c,nd. However, adding counting boosts the power of purple to full nlogspace in
the presence of local ordering. So, we consider input graphs without local ordering in this
case. These can be presented via primitive predicates or special edge objects.

Counters are added as described above. Adding nondeterminism is not completely
straightforward, as we must separate nondeterministic choices from the choices made in the
evaluation of forall-loops. We would like to allow programs to make nondeterministic choices,
while still maintaining that their acceptance behaviour is independent of the enumerations
chosen in the forall-loops.

Purple with nondeterminism (purplend) has a command for nondeterministic choice:

Prg ::= . . . | choose Prg1 or Prg2

FSTTCS 2013

14 Computing With a Fixed Number of Pointers

To define the semantics of purple with nondeterminism, we amend the notion of
configuration so that it now consists of a triple 〈ρ, q, σ〉, where ρ and q are a pebbling
and a state as before and σ is an infinite list enumerations of the universe U . This new
component σ specifies the runs of all future forall loops. Therefore, in the definition
of (forall xU do Prg) ` 〈ρ, q, σ〉 −→ 〈ρ′, q′, σ′〉 we do not use an arbitrary enumera-
tion of U , but we take the first one u1, . . . , un from σ. That is, we require there to be
configurations 〈ρ, q, tail(σ)〉 = 〈ρ1, q1, σ1〉, . . . , 〈ρn+1, qn+1, σn+1〉 = 〈ρ′, q′, σ′〉 with Prg `
〈ρk[x 7→ uk], qk, σk〉 −→ 〈ρk+1, qk+1, σk+1〉 for all k ∈ {1, . . . , n}. For the semantics of the
new term, we stipulate choose Prg1 or Prg2 ` I −→ O if Prg1 ` I −→ O or Prg2 ` I −→ O.
In all other cases, σ is merely passed on. E.g. x := t ` 〈ρ, q, σ〉 −→ 〈ρ[x 7→ [[t]]I], q, σ〉.

With these provisos, we can make the role of the two kinds of choices precise and define
when a nondeterministic program accepts an input:

I Definition 16. A nondeterministic program Prg accepts an (L, S)-model M if for all I
there exists O with Prg `M I −→ O and O(result) = true. It rejects M if for all I and for
all O with Prg `M I −→ O one has O(result) = false.

Thus, in the positive case, M must find, for all traversals of the forall-loops, appropriate
nondeterministic choices leading to result true. In the negative case, however, the program
must yield result false no matter how the nondeterministic choices are made and how the
forall-loops are being traversed.

Note that for programs without choose, this definition agrees with the one for purple
above. For programs without forall-loop it agrees with the definition of nondeterminism.

In [15] we have shown that purple can evaluate formulae in dtc-logic. One may expect
that with nondeterminism, this result generalises to TC-logic. We obtain the following
proposition. Recall that any relational structure M can be understood as a pointer structure.

I Lemma 17. For each closed tc-formula ϕ on a relational signature Σ, there exists a
program Pϕ in purple c,nd such that, for any Σ-structure of Σ, M |= ϕ holds iff Pϕ
recognises M .

4.3.1 Tree isomorphism
The problem of determining whether rooted, directed trees (unlabeled, without edge labeling)
are isomorphic is in logspace.

I Theorem 18 ([17]). Tree isomorphism is in logspace.

The proof uses an algorithm to canonize such trees. The algorithm uses counting, and depth
first search for which it relies on the edge ordering implicit in the encoding of the input
tree. Etessami and Immerman [8] were able show that transitive closure logic with counting
is unable to define tree isomorphism and thus confirmed that such ordering is intrinsically
necessary. The same counterexample albeit with a rather different proof technique shows
that purple with counting and nondeterminism cannot decide tree isomorphism either.

I Theorem 19 ([13]). purple c,nd cannot decide tree-isomorphism.

Proof idea. The family of trees (AB-trees) used by Etessami and Immerman comprises two
non-isomorphic tree structures which are defined by mutual induction to contain a large
number of isomorphic subtrees. For any two non-isomorphic trees of the same height, say
Ah and Bh, every immediate subtree is one of Ch, Dh or Eh. The only difference between
Ah and Bh is how many subtrees of each type are present, i.e., when the immediate subtrees

M. Hofmann and R. Ramyaa 15

Figure 2 AB-trees

of Ah and Bh are grouped according to isomorphism, the cardinality of the groups differ
(though the number of groups is the same). Unlike Etessami and Immerman who use a
variant of Ehrenfeucht Fra issé games we rely on a simulation argument between two runs of
a given purple program on both Ah and Bh.

Intuitively, to differentiate between t1 and t2, purple has to traverse each immediate
subtree to group them according to isomorphism and determine the cardinality of each such
group. So, reasoning recursively, this would need traversing the trees in a depth first manner.
Intuitively, the forall -loop provides no additional strength beyond quantifiers here, since it
is not required to enumerate the nodes in this order. The main work in the proof goes into
showing this rigorously. With no edge ordering, remembering whether a subtree has been
traversed or is yet to be traversed involves placing a pebble on the subtree. Given that it
has a limited number of pebbles, this cannot be done for arbitrary depths. J

4.4 Recursion

purple can be extended with procedures in the expected manner. We restrict the extension
to Boolean functions which take a tuple of pointers as input, and allow mutual recursion but
disallow global variables or side effects. The semantics of a (mutually) recursive function is
defined in terms of least fixed points in the usual way. We do formally allow non-terminating
functions but since the set of global states remains bounded such non-termination can be
detected and thus we can assume w.l.o.g. that all procedures are total.

This extension does not subsume logspace since it is unable to count over discrete
graphs (cf. Theorem 12).

I Theorem 20. No purple program with recursion can checking whether the input is a
discrete graph with n nodes, where n is a power of two.

Proof sketch. Non-pebbled nodes of discrete graph are indistinguishable, so the result of a
function should be identical on them. This allows one to deduce a bound on recursion depth
that is independent of the input size and thus reduce to Theorem 12. J

On the other hand, the fact that purple with recursion can hold more than a constant
number of pointers in memory albeit according to a stack discipline enables it to solve horn.

I Theorem 21. purple with recursion can solve horn and more generally evaluated formulas
in LFP logic.

FSTTCS 2013

16 Computing With a Fixed Number of Pointers

5 Deterministic transitive closure logic

In the context of descriptive complexity theory deterministic transitive closure logic (dtc-
logic) was introduced as a logical characterisation of logspace on ordered structures [16].
This logic is parametrized by a relational signature σ. Its syntax extends that of first-order
logic with equality over the signature σ by a construct dtcϕ~x~y~s~t for deterministic transitive
closure. The deterministic transitive closure of a binary relation R is the transitive closure of
the relation Rd = {〈x, y〉 | xRy ∧ (∀z. xRz ⇒ z = y)} and the formula dtcϕ~x~y~s~t expresses
that the pair 〈~s,~t〉 is in the deterministic transitive closure Rd of the binary relation on
tuples that is defined by ~xR~y ⇐⇒ ϕ(~x, ~y).

Note that Rd is a partial function in the sense that Rd(x, y) ∧ Rd(x, y′) implies y = y′

and that if R itself is a partial function then R = Rd.
Deterministic transitive closure logic captures logspace on finite structures with a total

ordering, i.e. where σ contains a binary relation lt that is interpreted as a total ordering, see
e.g. [4]. Informally, this is because with a total ordering one can do enough arithmetic in the
logic to encode work-tapes of logspace Turing Machines and thus simulate the computation
of such machines using the dtc-operator.

On unordered structures, however, dtc-logic is extremely weak, see [9].
An interesting, yet less studied, middle ground is dtc-logic on d-labelled graphs (called

locally-ordered graphs in this context), where the edges emanating from any given node
carry a linear order but the nodes themselves do not. This can be formally represented in a
number of equivalent ways. On such inputs, dtc-logic can simulated (deterministic) jags
by taking the transitive closure of the transition relation. On the other hand, purple can
evaluate dtc-formulas:

I Proposition 21.1. For each closed dtc-formula ϕ on locally ordered graphs there exists a
program Pϕ such that, for any finite locally ordered graph G, G |= ϕ holds if and only if Pϕ
recognises G.

In order to evaluate quantifiers we use the forall-loop to search for witnesses or counter-
examples. For transitive closure we first use forall-loops to find the (uniquely determined)
successor of any tuple; the transitive closure can then be simulated using a while-loop.

The converse of this proposition is not true since the parity of the input size is not definable
in dtc-logic [6]. The following direct consequence of Proposition 21.1 and Theorem 13
provides an answer to question left open by Etessami & Immerman [6].

I Corollary 22 ([14]). ustcon in locally-ordered graphs is not definable in dtc-logic.

6 Conclusion and Future Works

Our starting point was the observation that logspace and nlogspace algorithms operating
on graph-like structures and then can hold a constant number of pointers into the input
structure in memory. In addition, they can perform arithmetic up to the size of the input
and, finally, can access the binary representation of the input nodes in the form of a fixed
but arbitrary linear order.

We then considered that it might be possible to obtain “relativized” separation results if
some of these features are removed by considering pointers as an abstract datatype.

We surveyed existing systems that are based on this idea namely jumping automata on
graphs, transitive closure logic, and the purple programming language. All of these systems
are provably below ptime but somewhat trivially so because they cannot solve ustcon which

M. Hofmann and R. Ramyaa 17

lies in logspace. We thus considered various extensions of these systems with arithmetic,
nondeterminism, iterators, recursion and examined the strength of the resulting systems.

In the light of these results, the original motivation of obtaining a “relativised” separation
of logspace from ptime has become somewhat elusive: most systems considered either
coincide with logspace, nlogspace, ptime or there exists a logspace problem that can
provably not be decided in them (ustcon, tree isomorphism) and can be reduced to horn.

A possible way to address this, is to consider a weak system and add to it constructs
that will solve logspace problems. For instance, to strengthen purple with counting and
nondeterminism over graphs with no edge ordering can be strengthened with recursion in
tree-like structures in order to solve tree-isomorphism. Such a construct has been used in [11],
but their motivation differs from ours. However, this might require us to add such constructs
for many logspace complete problems since weaker systems would not necessarily capture
the reductions between the different logspace complete problems.

Another option could be to look for a subset of horn instances to which known logspace
complete problems such as ustcon or tree isomorphism cannot be reduced yet still require
a non-constant number of pebbles to be solved. Some initial progress has been made by
restricting graph-theoretical parameters such as tree width of the graph induced by a horn
instance.

References
1 Daniel P. Bovet and Pierluigi Crescenzi. Introduction to the theory of complexity. Prentice

Hall international series in computer science. Prentice Hall, 1994.
2 Stephen A. Cook and Charles Rackoff. Space lower bounds for maze threadability on

restricted machines. SIAM J. Comput., 9(3):636–652, 1980.
3 Stephen A. Cook and Ravi Sethi. Storage requirements for deterministic polynomial time

recognizable languages. J. Comput. Syst. Sci., 13(1):25–37, 1976.
4 H.D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 1995.
5 J. Edmonds, C. Poon, and D. Achlioptas. Tight lower bounds for st-connectivity on the

nnjag model. SIAM Journal on Computing, 28(6):2257–2284, 1999.
6 K. Etessami and N. Immerman. Reachability and the power of local ordering. Theoretical

Computer Science, 148(2):261–279, 1995.
7 Kousha Etessami and Neil Immerman. Reachability and the power of local ordering. Th.

Comp. Sci., 148(2):261–279, 1995.
8 Kousha Etessami and Neil Immerman. Tree canonization and transitive closure. In IEEE

Symp. Logic In Comput. Sci, pages 331–341, 1995.
9 E. Grädel and G.L. McColm. On the power of deterministic transitive closures. Information

and Computation, 119(1):129–135, 1995.
10 Erich Grädel and Gregory L. McColm. On the power of deterministic transitive closures.

Inf. Comput., 119(1):129–135, 1995.
11 Martin Grohe, Berit Grußien, André Hernich, and Bastian Laubner. L-recursion and a new

logic for logarithmic space. In CSL, pages 277–291, 2011.
12 Martin Hofmann and Ramyaa Ramyaa. Power of nondetreministic jags on cayley graphs,

2013. arXiv, 835993.
13 Martin Hofmann, Ramyaa Ramyaa, and Ulrich Schöpp. Pure pointer programs and tree iso-

morphism. In Frank Pfenning, editor, FoSSaCS, volume 7794 of Lecture Notes in Computer
Science, pages 321–336. Springer, 2013.

14 Martin Hofmann and Ulrich Schöpp. Pointer programs and undirected reachability. In
LICS, pages 133–142, 2009.

FSTTCS 2013

18 Computing With a Fixed Number of Pointers

15 Martin Hofmann and Ulrich Schöpp. Pure pointer programs with iteration. ACM Trans.
Comput. Log., 11(4), 2010.

16 Neil Immerman. Nondeterministic space is closed under complementation. SIAM J. Com-
put., 17(5):935–938, October 1988.

17 Steven Lindell. A logspace algorithm for tree canonization (extended abstract). STOC ’92,
pages 400–404, New York, NY, USA, 1992. ACM.

18 Lu, Zhang, Poon, and Cai. Simulating undirected st-connectivity algorithms on uniform
jags and nnjags. In Algo. and Comp., volume 3827 of LNCS. 2005.

19 Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4), 2008.
20 Ulrich Schöpp. A formalised lower bound on undirected graph reachability. In Iliano

Cervesato, Helmut Veith, and Andrei Voronkov, editors, LPAR, volume 5330 of Lecture
Notes in Computer Science, pages 621–635. Springer, 2008.

	Introduction
	Minimal Abstract Pointers
	Jumping automata on graphs
	Counters
	Nondeterminism

	Purple language
	Power of purple
	Counters
	Iterators

	 Nondeterminism with counting but without local order
	Tree isomorphism

	Recursion

	Deterministic transitive closure logic
	Conclusion and Future Works

