
Fair Matchings and Related Problems ∗

Chien-Chung Huang1, Telikepalli Kavitha2, Kurt Mehlhorn3, and
Dimitrios Michail4

1 Chalmers University, Sweden
huangch@chalmers.se

2 Tata Institute of Fundamental Research, India
kavitha@tcs.tifr.res.in

3 Max-Planck Institut für Informatik, Germany
mehlhorn@mpi-inf.mpg.de

4 Harokopio University of Athens, Greece
michail@hua.gr

Abstract
Let G = (A ∪ B,E) be a bipartite graph, where every vertex ranks its neighbors in an order of
preference (with ties allowed) and let r be the worst rank used. A matching M is fair in G if it
has maximum cardinality, subject to this, M matches the minimum number of vertices to rank r
neighbors, subject to that,M matches the minimum number of vertices to rank (r−1) neighbors,
and so on. We show an efficient combinatorial algorithm based on LP duality to compute a fair
matching in G. We also show a scaling based algorithm for the fair b-matching problem.

Our two algorithms can be extended to solve other profile-based matching problems. In
designing our combinatorial algorithm, we show how to solve a generalized version of the min-
imum weighted vertex cover problem in bipartite graphs, using a single-source shortest paths
computation—this can be of independent interest.

1998 ACM Subject Classification F.2.2 Computations on discrete structures

Keywords and phrases Matching with Preferences, Fairness and Rank-Maximality, Bipartite
Vertex Cover, Linear Programming Duality, Complementary Slackness

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2013.339

1 Introduction

Let G = (A ∪B,E) be a bipartite graph on n vertices and m edges, where each u ∈ A ∪B
has a list ranking its neighbors in an order of preference (ties are allowed). Such an instance
is usually referred to a stable marriage instance with incomplete lists and ties. A matching is
a collection of edges, no two of which share an endpoint.

The focus in stable marriage problems is to find matchings that are stable [6]. However,
there are many applications where stability is not a proper objective: for instance, in matching
students with counselors or applicants with training posts, we cannot compromise on the
size of the matching and a fair matching is a natural candidate for an optimal matching in
such problems.

I Definition 1. A matching M is fair in G = (A ∪ B,E) if M has maximum cardinality,
subject to this, M matches the minimum number of vertices to rank r neighbors, and subject

∗ This work is based on two preprints [11, 17].

© Chien-Chung Huang, Telikepalli Kavitha, Kurt Mehlhorn, and Dimitrios Michail;
licensed under Creative Commons License CC-BY

33rd Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2013).
Editors: Anil Seth and Nisheeth K. Vishnoi; pp. 339–350

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.339
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


340 Fair Matchings and Related Problems

to that, M matches the minimum number of vertices to rank (r − 1) neighbors, and so on,
where r is the worst rank used in the preference lists of vertices.

The fair matching problem can be solved in polynomial time as follows: for an edge
e with incident ranks i and j, let w(e) = ni−1 + nj−1. It is easy to see that a maximum
cardinality matching of minimum weight (under weight function w) is a fair matching in G.
Such a matching can be computed via the maximum weight matching algorithm by resetting
e’s weight to 4nr − ni−1 − nj−1, where r is the largest rank used in any preference list.

However this approach can be expensive even if we use the fastest maximum-weight
bipartite matching algorithms [1, 3, 4, 5]. The running time will be O(rmn) or Õ(r2m

√
n).

Note that these complexities follow from the customary assumption that an arithmetic
operation takes O(r) time on weights of the order nr. We present two different techniques to
efficiently compute fair matchings and a generalization called fair b-matchings.

A combinatorial technique. Our first technique is an iterative combinatorial algorithm for
the fair matching problem. The running time of this algorithm is Õ(r∗m

√
n) or Õ(r∗nω)

with high probability, where r∗ is the largest rank used in a fair matching and ω ≈ 2.37
is the exponent of matrix multiplication. This algorithm is based on linear programming
duality and in iteration i, we solve the following “dual problem” – dual to a variant of the
maximum weight matching problem.

Generalized minimum weighted vertex cover problem. Let Gi = (A ∪ B,Ei) be a
bipartite graph with edge weights given by wi : Ei → {0, 1, . . . , c}. Let Ki−1 ⊆ A∪B
satisfy the property that there is a matching in G that matches all v ∈ Ki−1. Find a
cover {yiu}u∈A∪B so that

∑
u∈A∪B y

i
u is minimized subject to (1) for each e = (a, b)

in Ei, we have yia + yib ≥ wi(e), and (2) yiu ≥ 0 if u 6∈ Ki−1.

When Ki−1 = ∅, the above problem reduces to the standard weighted vertex cover
problem. We show that the generalized minimum weighted vertex cover problem, where yiv
for v ∈ Ki−1 can be negative, can be solved via a single-source shortest paths subroutine in
directed graphs, by a non-trivial extension of a technique of Iri [13].

A scaling technique. Our second technique uses scaling in order to solve the fair matching
problem, by the aforementioned reduction to computing a maximum weight matching using
exponentially large edge weights. It starts by solving the problem when each edge weight is
0 and then iteratively solves the problem for better and better approximations of the edge
weights. This technique is applicable in the more generalized problem of computing fair
b-matchings, where each vertex has a capacity associated with it. We solve the fair b-matching
problem, in time Õ(rmn) and space O(m), by solving the capacitated transshipment problem,
while carefully maintaining “reduced costs” whose values are within polynomial bounds.
Brute-force application of the fastest known minimum-cost flow algorithms would suffer from
the additional cost of arithmetic and an O(rm) space requirement. For instance, using [9]
would result in Õ(r2mn) running time and O(rm) space.

1.1 Background
Fair matchings are a special case of the profiled-based matching problems. Fair matchings
have not received much attention in the literature so far. Except the two preprints [11, 17]
on which this work is based, the only work dealing with fair matchings is the Ph.D. thesis of



Chien-Chung Huang, Telikepalli Kavitha, Kurt Mehlhorn, and Dimitrios Michail 341

Sng [23], which has an algorithm to find a fair b-matching1 in O(rQmin{m logn, n2}) time,
where Q =

∑
v∈V q(v) and q(v) is the capacity of vertex v.

The first profiled-based matching problem was introduced by Irving [14] and is called the
“rank-maximal matching” problem.2 This problem has been well-studied [15, 16, 18, 20].

I Definition 2. A matching M in G = (A ∪ B,E) is rank-maximal if M matches the
maximum number of vertices to rank 1 neighbors, subject to this constraint, M matches the
maximum number of vertices to rank 2 neighbors, subject to the above two constraints, M
matches the maximum number of vertices to rank 3 neighbors, and so on.

However the rank-maximal matching problem has been studied so far in a more restricted
model called the the one-sided preference lists model. In this model, only vertices of A have
preferences over neighbors while vertices in B have no preferences. Note that a problem
in the one-sided preference lists model can also be modeled as a problem with two-sided
preference lists by making every b ∈ B assign rank r to every edge incident on it, where r is
the worst rank in the preference lists of vertices in A.

The current fastest algorithm to compute a rank-maximal matching in the one-sided
preference lists model takes time O(min{r∗m

√
n,mn, r∗nω}) [15], where r∗ is the largest

rank used in a rank-maximal matching. In the one-sided preference lists setting, each edge
has a unique rank associated with it, thus the edge set E is partitioned into E1 ∪̇E2 ∪̇ · · · ∪̇Er
– this partition enables the problem of computing a rank-maximal matching to be reduced to
computing r∗ maximum cardinality matchings in certain subgraphs of G.

Our fair matching algorithm can be easily modified to compute a rank-maximal match-
ing in the two-sided preference lists model. Thus the latter problem can be solved in
time Õ(r∗m

√
n) or Õ(r∗nω) with high probability, which almost matches its running time

for the one-sided case. Another problem that our algorithm can solve is the “maximum
cardinality” rank-maximal matching problem. A matching M is a maximum cardinality
rank-maximal matching if M has maximum cardinality, and within the set of maximum
cardinality matchings, M is rank-maximal.

Organization of the paper. Section 2.1 contains our algorithm for the generalized bipartite
vertex cover problem, Section 2.2 has our algorithm for fair matchings. Section 3 has our
scaling algorithm. The omitted details can be found in the full version of the paper.

2 Our Combinatorial Technique for fair matchings

Recall that our input here is G = (A ∪B,E) and r is the worst or largest rank used in any
preference list. The notion of signature will be useful to us in designing our algorithm. We
first define edge weight functions wi, for 1 ≤ i ≤ r − 1. The value wi(e), where e = (a, b), is
defined as follows:

wi(e) =


2 if both a and b rank each other as rank ≤ r − i neighbors
1 if exactly one of {a, b} ranks the other as a rank ≤ r − i neighbor
0 otherwise

I Definition 3. For any matching M in G, let signature(M) be (|M |, w1(M), . . . , wr−1(M)),
where wi(M) =

∑
e∈M wi(e), for 1 ≤ i ≤ r − 1.

1 Sng used the term “generous maximum matching”.
2 Irving originally called it the “greedy matching” problem.

FSTTCS 2013



342 Fair Matchings and Related Problems

Thus signature(M) is an r-tuple, where the first coordinate is the size of M , the second
coordinate is the number of vertices that get matched to neighbors ranked r − 1 or better,
and so on. Let OPT denote a fair matching. Then signature(OPT) � signature(M) for any
matching M in G, where � is the lexicographic order on signatures.

Let us introduce the constant function w0 : E → {1} so that the first coordinate of
signature(M) is also captured via an edge weight function. Thus |M | = w0(M) =

∑
e∈M w0(e).

For any matching M and 0 ≤ j ≤ r − 1, let signaturej(M) = (w0(M), . . . , wj(M)) denote
the (j + 1)-tuple obtained by truncating signature(M) to its first j + 1 coordinates.

I Definition 4. A matching M is (j + 1)-optimal if signaturej(M) = signaturej(OPT).

Our algorithm runs for r∗ iterations, where r∗ ≤ r is the largest index i such that
wi−1(OPT) > 0. For any j ≥ 0, in the (j + 1)-st iteration, our algorithm solves the minimum
weighted vertex cover problem in a subgraph Gj . This involves computing a maximum
wj-weight matching Mj in the graph Gj under the constraint that all vertices of a critical
subset Kj−1 ⊆ A ∪B have to be matched. In the first iteration which corresponds to j = 0,
we have G0 = G and K−1 = ∅.

The problem of computing Mj will be referred to as the primal program of the (j + 1)-st
iteration and the minimum weighted vertex cover problem becomes its dual. We will showMj

to be (j + 1)-optimal. The problem of computing Mj can be expressed as a linear program
(rather than an integer program) as the constraint matrix is totally unimodular and hence
the corresponding polytope is integral. This linear program and its dual are given below.
(Let δ(v) be the set of edges incident on vertex v.)

max
∑
e∈E

wj(e)xje∑
e∈δ(v)

xje ≤ 1 ∀v ∈ A ∪B

∑
e∈δ(v)

xje = 1 ∀v ∈ Kj−1

xje ≥ 0 ∀e in Gj .

min
∑
v∈V

yjv

yja + yjb ≥ wj(e) ∀e = (a, b) in Gj

yjv ≥ 0 ∀v ∈ (A ∪B) \Kj−1.

I Proposition 1. Mj and yj are the optimal solutions to the primal and dual programs
respectively, iff the following hold:
1. if u is unmatched in Mj (thus u has to be outside Kj−1), then yju = 0;
2. if e = (u, v) ∈Mj , then yju + yjv = wj(e).

Proposition 1 follows from the complementary slackness conditions in the linear program-
ming duality theorem. This suggests the following strategy once the primal and dual optimal
solutions Mj and yj are found in the (j + 1)-st iteration.

to prune “irrelevant” edges: if e = (u, v) and yju + yjv > wj(e), then no optimal solution
to the primal program of the (j + 1)-st iteration can contain e. So we prune such edges
from Gj and let Gj+1 denote the resulting graph. The graph Gj+1 will be used in the
next iteration.
to grow the critical set Kj−1: if yju > 0 and u 6∈ Kj−1, then u has to be matched in every
optimal solution of the primal program of the (j + 1)-st iteration. Hence u should be
added to the critical set. Adding such vertices u to Kj−1 yields the critical set Kj for
the next iteration.

Below we first show how to solve the dual problem and then give the main algorithm.



Chien-Chung Huang, Telikepalli Kavitha, Kurt Mehlhorn, and Dimitrios Michail 343

s

z

a1

a2

a3

b1

b2

b3

b4

A′ B

Figure 1 The bold edges are edges of Mj and are directed from B to A′ while the edges of
Ej \ Mj are directed from A′ to B.

2.1 Solving the dual problem
For any 0 ≤ j ≤ r − 1, let Gj = (A ∪ B,Ej) be the subgraph that we work with in the
(j+1)-st iteration and let Kj−1 ⊆ A∪B be the critical set of vertices in this iteration. Recall
that for each e ∈ Ej , we have wj(e) ∈ {0, 1, 2}. We now show how to solve the dual problem
efficiently for a more general edge weight function, i.e., wj(e) ∈ {0, 1, . . . , c} for each e ∈ Ej .

Let Mj be the optimal solution of the primal program (we discuss how to compute it at
the end of this section). We know that Mj matches all vertices in Kj−1. We now describe
our algorithm to solve the dual program using Mj . Our idea is built upon that of Iri [13],
who solved the special case of Kj−1 = ∅. Recall that if a vertex v is not matched in Mj ,
then v 6∈ Kj−1.

Add a new vertex z to A and let A′ = A ∪ {z}. Add an edge of weight 0 from z to
each vertex in B \ Kj−1. For convenience, we call the edges from z to these vertices
“virtual” edges. The matching Mj still remains an optimal feasible solution after this
transformation. [Note that there are only O(n) virtual edges.]
Next direct all edges e ∈ Ej \Mj from A′ to B and set the edge weight d(e) = −wj(e);
also direct all edges in Mj from B to A′ and let the edge weight d(e) = wj(e).
Create a source vertex s and add a directed edge of weight 0 from s to each unmatched
vertex in A′. See Figure 1.

Let R denote the set of all vertices in A′ ∪ B that are reachable from s. In Figure 1,
R = {z, a3, b1, b2}.

I Lemma 5. By the above transformation,
1. B \Kj−1 ⊆ R.
2. There is no edge between A′ ∩R and B \ R.
3. Mj projects on to a perfect matching between A′ \ R and B \ R.

Proof. Part (1) holds because there is a directed edge from s to z and directed edges from z

to every vertex in B \Kj−1. To show part (2), it is trivial to see that there can be no edge
from A′ ∩R to B \ R (by the definition of B \ R). If there is an edge (b, a) from B \ R to
A′ ∩R, then this has to be an edge in Mj and hence it is a’s only incoming edge. So for a
to be reachable from s, it has to be the case that b is reachable from s, contradicting that
b ∈ B \ R.

For part (3), observe that if b ∈ B \ R is unmatched in Mj , then b 6∈ Kj−1 and such a
vertex can be reached via z, contradicting the assumption that b ∈ B \ R. If a ∈ A′ \ R is
unmatched in Mj , then such a vertex can be reached from s, contradicting the assumption

FSTTCS 2013



344 Fair Matchings and Related Problems

A′ B

A′ ∩R

A′ \R

B ∩R

B \R

Figure 2 The set A′ ∪ B in the graph Hj is split into two parts: (A′ ∪ B) ∩ R and (A′ ∪ B) \ R.

that a ∈ A′ \R. So all vertices in (A′∪B)\R are matched in Mj . By (2), a vertex b ∈ B \R
cannot be matched to vertices in A′ ∩R. If a vertex a ∈ A′ \ R is matched to a vertex B in
R, then a is also in R, a contradiction. This proves part (3). J

Note that there may exist some edges in Ej \Mj that are directed from A′ \R to B ∩R.
Furthermore, some vertices of A \Kj−1 can be contained in A \ R. Delete all edges from
A′ \ R to B ∩R from Gj ; let Hj denote the resulting graph. By Lemma 5.3, no edge of Mj

has been deleted, thus Mj belongs to Hj and Mj is still an optimal matching in the graph
Hj . Moreover, Hj is split into two parts: one part is (A′ ∪B) ∩R, which is isolated from
the second part (A′ ∪B) \ R. See Figure 2.

Next add a directed edge from the source vertex s to each vertex in B \R. Each of these
edges e has weight d(e) = 0. By Lemma 5.3, all vertices can be reached from s now. Also
note that there can be no negative-weight cycle, otherwise, we can augment Mj along this
cycle to get a matching of larger weight while still keeping the same set of vertices matched,
which leads to a contradiction to the optimality of Mj .

Apply the single-source shortest paths algorithm [7, 21, 22, 24] from the source vertex s
in this graph Hj where edge weights are given by d(·). Such algorithms take O(m

√
n) time

or Õ(nω) time when the largest edge weight is O(1). Let dv be the distance label of vertex
v ∈ A′ ∪B.

We define an initial vertex cover as follows. If a ∈ A′, let ỹa := da; if b ∈ B, let ỹb := −db.
(We will adjust this cover further later.)

I Lemma 6. The constructed initial vertex cover {ỹv}v∈A′∪B for the graph Hj satisfies the
following properties:
1. For each vertex v ∈ ((A ∪B) ∩R) \Kj−1, ỹv ≥ 0.
2. If v ∈ (A ∪B) \Kj−1 is unmatched in Mj, then ỹv = 0.
3. For each edge e = (a, b) ∈ Hj, we have ỹa + ỹb ≥ wje.
4. For each edge e = (a, b) ∈Mj, we have ỹa + ỹb = wje.

Proof. For part (1), suppose that a ∈ (A ∩R) \Kj−1 and ỹa < 0. By Lemma 5.2 and the
fact that all edges from A′ \ R to B ∩R are absent, the shortest path from s to a cannot go
through (A ∪B) \ R. So there exists an alternating path P (of even length) starting from
some unmatched vertex a′ ∈ (A′ ∩ R) \Kj−1 and ending at a. The distance from a′ to a
along path P must be negative, since da = ỹa < 0. Therefore,

∑
e∈Mj∩P

we <
∑

e∈P\Mj

we.



Chien-Chung Huang, Telikepalli Kavitha, Kurt Mehlhorn, and Dimitrios Michail 345

Note that it is possible that the first edge e = (a′, b) ∈ P is a virtual edge, i.e., a′ = z

and the first edge e connects z to some vertex b ∈ (B ∩R) \Kj−1. In this case, de = 0 and b
is not an element of the critical set Kj−1. Therefore, irrespective of whether the first edge is
virtual or not, we can replace the matching Mj by Mj ⊕ P (ignoring the first edge in P if it
is virtual), thereby creating a feasible matching with larger weight than Mj , a contradiction.

So we are left to worry about the case when vertex b ∈ (B ∩ R) \ Kj−1. Recall that
ỹb = −db. We claim that db ≤ 0. Suppose not. Then the shortest distance from s to b is
strictly larger than 0. But this cannot be, since there is a path composed of edges (s, z) and
(z, b), and such a path has total weight exactly 0. This completes the proof of part (1).

To show part (2), by Lemma 5.3, an unmatched vertex must be in R. First, assume that
this unmatched vertex is a ∈ (A ∩R) \Kj−1. By our construction, there is only one path
from s to a, which is simply the directed edge from s to a and its weight is 0. So ya = da = 0.
Next assume that this unmatched vertex is b ∈ (B ∩R) \Kj−1. Suppose that ỹb > 0. Then
db = −ỹb < 0. By Lemma 5.2 and the fact that all edges from A′ \ R to B ∩R have been
deleted, the shortest path from s to b cannot go through (A ∪B) \ R. So the shortest path
from s to b must consist of the edge from s to some unmatched vertex a ∈ (A′ ∩R) \Kj−1,
followed by an augmenting path P (of odd length) ending at b. As in the proof of (1), we
can replace Mj by Mj ⊕ P (irrespective of whether the first edge in P is virtual or not)
so as to get a matching of larger weight while preserving the feasibility of the matching, a
contradiction. This proves part (2).

For parts (3) and (4), first consider an edge e = (a, b) outside Mj in Hj . Such an edge
is directed from a to b. So ỹa − wje = da + d(e) ≥ db = −ỹb. This proves part (3). Next
consider an edge e = (a, b) ∈Mj . Such an edge is directed from b to a. Furthermore, e is the
only incoming edge of a, implying that e is part of the shortest path tree rooted at s. As a
result, −ỹb + wje = db + d(e) = da = ỹa. This shows part (4). This completes the proof of
Lemma 6. J

At this point, we possibly still do not have a valid cover for the dual program due to the
following two reasons.

Some vertex a ∈ A \ Kj−1 has ỹa < 0. (However it cannot happen that some vertex
b ∈ B \Kj−1 has ỹb < 0, since Lemma 5.1 states that such a vertex is in R and Lemma 6.1
states that ỹb must be non-negative.)
The edges deleted from Gj (to form Hj) are not properly covered by the initial vertex
cover {ỹv}v∈A∪B .

We can remedy these two defects as follows. Define δ = max{δ1, δ2, 0},

where δ1 = max
e=(a,b)∈E

{wje − ỹa − ỹb} and δ2 = max
a∈A\Kj−1

{−ỹa}.

In O(n+m) time, we can compute δ. If δ = 0, the initial cover is already a valid solution
to the dual program. In the following, we assume that δ > 0 exists (if the initial cover is
already a valid solution for the dual program, then the proof that it is also optimal is just
the same as in Theorem 7.) We build the final vertex cover as follows.

1. For each vertex u ∈ (A ∪B) ∩R, let yu = ỹu;
2. For each vertex a ∈ A \ R, let ya = ỹa + δ;
3. For each vertex b ∈ B \ R, let yb = ỹb − δ.

I Theorem 7. The final vertex cover {yv}v∈A∪B is an optimal solution for the dual program.

FSTTCS 2013



346 Fair Matchings and Related Problems

Given Mj , it follows that the dual problem can be solved in time O(m
√
n) or Õ(nω).

The problem of computing Mj can be solved by the following folklore technique: form a new
graph G̃j by taking two copies of Gj and making the two copies of a vertex u /∈ Kj−1 adjacent
using an edge of weight 0. A maximum weight perfect matching in G̃j yields a maximum
weight matching in Gj that matches all vertices in Kj−1, i.e., an optimal solution to the
primal program of the j-th iteration. Since c = O(1), a maximum weight perfect matching in
G̃j can be found in O(m

√
n logn) time by the fastest bipartite matching algorithms [1, 3, 5],

or in Õ(nω) time with high probability by Sankowski’s algorithm [22].

2.2 Our main algorithm
We now present our algorithm to compute a fair matching. Recall that r is the worst rank
in the problem instance and r∗ is the worst rank in a fair matching. We first present an
algorithm that runs for r iterations and we show later in this section how to terminate our
algorithm in r∗ iterations.

1. Initialization. Let G0 = G and K−1 = ∅.
2. For j = 0 to r − 1 do

a. Find the optimal solution {yju}u∈A∪B to the dual program of the (j + 1)-st iteration.
b. Delete from Gj every edge (a, b) such that yja + yjb > wj(e). Call this subgraph Gj+1.
c. Add all vertices with positive dual values to the critical set, i.e., Kj = Kj−1 ∪ {u}yj

u>0.
3. Return the optimal solution to the primal program of the last iteration.

The solution returned by our algorithm is a maximum (wr−1)-weight matching in the
graph Gr−1 that matches all vertices in Kr−2. By Proposition 1, this is, in fact, a matching
in the subgraph Gr that matches all vertices in Kr−1. Lemma 9 proves the correctness of
our algorithm. Lemma 8 guarantees that our algorithm is never “stuck” in any iteration due
to the infeasibility of the primal or dual problem.

I Lemma 8. The primal and dual programs of the (j + 1)-st iteration are feasible, for
0 ≤ j ≤ r − 1.

I Lemma 9. For every 0 ≤ j ≤ r − 1, the following hold:
1. any matching M in Gj that matches all v ∈ Kj−1 is j-optimal;
2. conversely, a j-optimal matching in G is a matching in Gj that matches all v ∈ Kj−1.

Proof. We proceed by induction. The base case is j = 0. As K−1 = ∅, G0 = G, and all
matchings are, by definition, 0-optimal, the lemma holds vacuously.

For the induction step j ≥ 1, suppose that the lemma holds up to j− 1. As Kj−1 ⊇ Kj−2
and Gj is a subgraph of Gj−1, M is a matching in Gj−1 that matches all vertices of Kj−2.
Thus by induction hypothesis, M is (j − 1)-optimal. For each edge e = (a, b) ∈ M to be
present in Gj , e must be a tight edge in the j-th iteration, i.e., yj−1

a + yj−1
b = wj−1(e).

Furthermore, as Kj−1 ⊇ {u}yj−1
u >0, we have

wj−1(M) =
∑

e=(a,b)∈M

wj−1(e) =
∑

e=(a,b)∈M

yj−1
a + yj−1

b ≥
∑

u∈A∪B
yj−1
u ,

where the final inequality holds because all vertices v with positive yj−1
v are matched in

M . By linear programming duality, M must be optimal in the primal program of the j-th
iteration. So the j-th primal program has optimal solution of value wj−1(M).



Chien-Chung Huang, Telikepalli Kavitha, Kurt Mehlhorn, and Dimitrios Michail 347

Recall that by definition, OPT is also (j − 1)-optimal. By (2) of the induction hypothesis,
OPT is a matching in Gj−1 and OPT matches all vertices in Kj−2. So OPT is a feasible
solution of the primal program in the j-th iteration. Thus wj−1(OPT) ≤ wj−1(M). However,
it cannot happen that wj−1(OPT) < wj−1(M), otherwise, signature(M) � signature(OPT),
since both OPT and M have the same first j − 1 coordinates in their signatures. So we
conclude that wj−1(OPT) = wj−1(M), and this implies that M is j-optimal as well. This
proves (1).

In order to show (2), let M ′ be a j-optimal matching in G. Since M ′ is j-optimal, it is
also (j − 1)-optimal and by (2) of the induction hypothesis, it is a matching in Gj−1 that
matches all vertices in Kj−2. So M ′ is a feasible solution to the primal program of the j-th
iteration. As signature(M ′) has wj−1(OPT) in its j-th coordinate, M ′ must be an optimal
solution to this primal program; otherwise there is a j-optimal matching with a value larger
than wj−1(OPT) in the j-th coordinate of its signature, contradicting the optimality of OPT.
By Proposition 1.2, all edges of M ′ are present in Gj and by Proposition 1.1, all vertices
u 6∈ Kj−2 with yj−1

u > 0, in other words, all vertices in Kj−1 \Kj−2 have to be matched by
the optimal solution M ′. This completes the proof of (2). J

Since our algorithm returns a matching in Gr that matches all vertices in Kr−1, we know
from Lemma 9.1 that this matching is r-optimal, thus the matching returned is fair. As
mentioned earlier, our algorithm can be modified so that it terminates in r∗ iterations. For
that, we need to know the value of r∗.

We continue to use the weight function w0 : E → {1}, however instead of w1, . . . , wr−1,
we should use the weight functions w̃1, . . . , w̃r∗−1 where for 1 ≤ i ≤ r∗ − 1, w̃i is defined
as: for any edge e = (a, b), w̃i(e) is 2 if both a and b rank each other as rank ≤ r∗ − i+ 1
neighbors, it is 1 if exactly one of {a, b} ranks the other as a rank ≤ r∗ − i + 1 neighbor,
otherwise it is 0. The value r∗ can be computed right at the start of our algorithm as follows.

Let M∗ be a maximum cardinality matching in G. The value r∗ is the smallest index
j such that the subgraph Ḡj admits a matching of size |M∗|, where Ḡj is obtained by
deleting all edges e = (a, b) from G where either a or b (or both) ranks the other as a
rank > j neighbor.
We compute r∗ by first computing M∗ and then computing a maximum cardinality
matching in Ḡ1, Ḡ2, . . . and so on till we see a subgraph Ḡj that admits a matching of
size |M∗|. This index j = r∗ and it can be found in O(r∗m

√
n) time [12] or in O(r∗nω)

time [10, 19].

We now bound the running time of our algorithm. We showed how to solve the dual
program in O(m

√
n) time once we have the solution to the primal program and we have seen

that the primal program can be solved in O(m
√
n logn) time. Alternatively, both the primal

and dual problems can be solved in Õ(nω) time with high probability. Theorem 10 follows.

I Theorem 10. A fair matching M in G = (A∪B,E) can be computed in Õ(r∗m
√
n) time,

or in Õ(r∗nω) time with high probability, where r∗ is the largest rank incident on an edge in
M , n = |A ∪B|, m = |E|, and ω ≈ 2.37 is the exponent of matrix multiplication.

In the full version of the paper, we show how our algorithm can be adapted to find a
rank-maximal matching and similarly, a maximum cardinality rank-maximal matching.

I Theorem 11. A rank-maximal (similarly, a maximum cardinality rank-maximal) matching
in G = (A∪B,E) with two-sided preference lists, can be computed in Õ(r∗m

√
n) time, or in

Õ(r∗nω) time with high probability, where r∗ is the largest rank used in such a matching.

FSTTCS 2013



348 Fair Matchings and Related Problems

3 The fair b-matching problem: our scaling technique

The fair matching problem can be generalized by introducing capacities on the vertices. We
are given G = (A ∪ B,E) as before, along with the capacity function q : V → Z>0. What
we seek is a subset E′ of E where each vertex v ∈ A ∪B is incident to at most q(v) edges
in E′. Such a subset E′ is a b-matching. Our goal here is to find a fair b-matching, i.e., a
b-matching M which has the largest possible size, subject to this constraint, M matches the
minimum number of vertices to their rank r neighbors, and so on.

The fair b-matching problem can be reduced to the minimum-cost flow problem as follows.
Add two additional vertices s and t. For each vertex a ∈ A, add an edge (s, a) with capacity
q(a) and cost zero; for each vertex b ∈ B, add an edge (b, t) with capacity q(b) and cost zero.
Every edge (a, b) where a ∈ A, b ∈ B has capacity one and is directed from A to B. If the
incident ranks on edge e are i and j, then e will be assigned a cost of −(4nr − ni−1 − nj−1).
The resulting instance has a trivial upper bound of n2/4 on the maximum s-t flow. We also
add an edge from t to s with zero cost and capacity larger than the n2/4 upper bound. It is
easy to verify that a minimum-cost circulation yields a fair b-matching.

We note however, that the above reduction involves costs that are exponential in the
size of the original problem. We now present a general technique in order to handle these
huge costs – we focus on solving the capacitated transshipment version of the minimum-cost
flow problem [8]. Let G = (V,E) be a directed network with a cost c : E → Z and capacity
u : E → Z≥0 associated with each edge. With each v ∈ V , a real number b(v) is associated,
where

∑
v∈V b(v) = 0. If b(v) > 0, then v is a supply node, and if b(v) < 0, then v is a

demand node. We assume G to be symmetric, i.e., e ∈ E implies that the reverse arc eR ∈ E.
The reversed edges are added in the initialization step. The cost and capacity functions
satisfy c(e) = −c(eR) for each e ∈ E, u(e) ≥ 0 for the original edges and u(eR) = 0 for the
additional edges. From now on, E denotes the set of original and artificial edges.

A pseudoflow is a function x : E → Z satisfying the capacity and antisymmetry constraints:
for each e ∈ E, x(e) ≤ u(e) and x(e) = −x(eR). This implies x(e) ≥ 0 for the original
edges. For a pseudoflow x and a node v, the imbalance imbx(v) is defined as imbx(v) =∑

(w,v)∈E x(w, v) + b(v). A flow is a pseudoflow x such that, imbx(v) = 0 for all v ∈ V . The
cost of a pseudoflow x is cost(x) =

∑
e∈E c(e)x(e). The minimum-cost flow problem asks for

a flow of minimum cost.
For a given flow x, the residual capacity of e ∈ E is ux(e) = u(e)− x(e). The residual

graph G(x) = (V,E(x)) is the graph induced by edges with positive residual capacity. A
potential function is a function π : V → Z. For a potential function π, the reduced cost of
an edge e = (v, w) is cπ(v, w) = c(v, w) + π(v) − π(w). A flow x is optimal if and only if
there exists a potential function π such that cπ(e) ≥ 0 for all residual graph edges e ∈ E(x).
For a constant ε ≥ 0, a flow is ε-optimal if cπ(e) ≥ −ε for all e ∈ E(x) for some potential
function π. Consider an ε-optimal flow x and any original edge e. If cπ(e) < −ε, the residual
capacity of e must be zero and hence e is saturated, i.e., x(e) = u(e). If cπ(e) > ε, we have
cπ(eR) = −cπ(e) < −ε and hence the residual capacity of eR must be zero. Thus eR is
saturated, i.e., x(eR) = u(eR) = 0. So e is unused.

We are now ready to describe our scaling algorithm, which is presented in a concise form
in Figure 3. The details can be found in the full version of the paper. We conclude this
section with Theorem 13, which follows from the edge cost values used in our reduction.

I Lemma 12 (from [9], see also [8]). Given the edge cost function c̃i and a 3-optimal flow
xi−1 with respect to the zero potential function, in time O(mn log (n2/m)) one can compute
a flow xi and a potential function π̃ such that xi is 1-optimal with respect to the potential



Chien-Chung Huang, Telikepalli Kavitha, Kurt Mehlhorn, and Dimitrios Michail 349

1. Reduction.
a. Add two additional vertices s and t. For each vertex a ∈ A, add an edge (s, a) with

capacity q(a) and cost zero; for each vertex b ∈ B, add an edge (b, t) with capacity q(b)
and cost zero. Add an edge from t to s with zero cost and capacity larger than n2/4.

b. Direct any edge (a, b) where a ∈ A and b ∈ B from A to B, set its capacity to one and
cost to −(4nr − ni−1 − nj−1).

c. Set the demand/supply values of all vertices to zero. Add, if required, additional edges
to ensure that G is symmetric.

2. Initialization Phase.
a. Multiply all edge costs by 21+dlogne to make them divisible by the same amount.
b. LetK = dlogCe where C is the magnitude of the largest edge cost and let Ei, 1 ≤ i ≤ K,

denote the set of all edges having a 1 in the i-th bit of their cost.
c. Initialize x0 to any feasible flow and reduced cost c0(e) = 0 for any e ∈ E.

3. Scaling Phase. For i = 1 to K do
a. Let c̃i(e) = 2ci−1(e) + (1 if e ∈ Ei else 0)× sign(e), where sign(e) = ±1 depending on

the sign of the original cost c(e). The flow xi−1 is 3-optimal with respect to the cost
function c̃i and the zero potential function, i.e., the potential of all the vertices is 0.

b. Use Lemma 12 (from [9]) stated below with input (i) the flow xi−1, (ii) c̃i as the edge
cost function and (iii) the zero potential function, to compute a 1-optimal flow and a
potential function π̃ which proves the 1-optimality. Let xi be this flow.
/* Potentials are only decreased, starting from zero, during the computation and
π̃(v) ≥ −d · n for some constant d and all v. Constant d depends on the way the
techniques of [9] are applied to refine a 3-optimal flow to a 1-optimal flow. */

c. Compute new reduced costs as ci(u, v) = c̃i(u, v) + π̃(u)− π̃(v).
d. Let d be the constant from Lemma 12. If any edge e ∈ E has |ci(e)| > d · n+ 1, then

fix it to empty or saturated by removing it (and its reversal) from the graph and
modifying the imbalances of both its endpoints accordingly.

4. Return the b-matching induced by the flow xK and any flow on edges which were fixed
to either empty or saturated.

Figure 3 The scaling algorithm for the fair b-matching problem.

function π̃. Potentials are only decreased, starting from zero, during the computation and
π̃(v) ≥ −d · n for some constant d and all v.

I Theorem 13. Given G = (A ∪ B,E) and a capacity function q : A ∪ B → Z>0, the fair
b-matching problem can be solved in time O(rmn log (n2/m) logn) using space O(m).

Acknowledgements. We are grateful to the anonymous reviewers for their careful comments.
Special thanks to the reviewer who pointed out Sng’s thesis [23].

References
1 J. B. Orlin and R. K. Ahuja. New scaling algorithms for the assignment and minimum

mean cycle problems. In Mathematical Programming 54(1): 41-56, 1992.
2 R. K. Ahuja, T. L. Magnanti and J. B. Orlin. Network Flows: Theory, Algorithms, and

Applications. Prentice Hall (1993).
3 R. Duan and H.-H. Su. A Scaling Algorithm for Maximum Weight Matchings in Bipartite

Graphs. In 23rd SODA: 1413-1424, 2012.

FSTTCS 2013



350 Fair Matchings and Related Problems

4 M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved network op-
timization algorithms. In J.ACM 34(3), 596-615, 1987.

5 H. Gabow and R. Tarjan. Faster scaling algorithms for network problems. In SIAM J.
Comput. 18: 1013-1036, 1989.

6 D. Gale and L.S. Shapley. College admissions and the stability of marriage. In American
Mathematical Monthly 69: 9-15, 1962.

7 A. V. Goldberg. Scaling Algorithms for the Shortest Paths Problem. In SIAM J. Comput.
24(3): 494-504, 1995.

8 A. V. Goldberg, E. Tardos and R. E. Tarjan. Network Flow Algorithms. In Paths, Flows
and VLSI-Design: 101-164, Springer Verlag, 1990.

9 A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by successive approx-
imation. In Math. Oper. Res. 15: 430-466, 1990.

10 N. J. A. Harvey. Algebraic Structures and Algorithms for Matching and Matroid Problems.
In SIAM J. Comput. 39(2): 679-702, 2009.

11 C.-C. Huang and T. Kavitha. Weight-maximal Matchings. In the 2nd International Work-
shop on Matching under Preferences, July 2012.

12 J. Hopcroft and R. Karp. An n5/2 algorithm for maximum matchings in bipartite graphs.
In SIAM J. Comput. 2: 225-231, 1973.

13 M. Iri. A new method of solving transportation-network problems. In Journal of the Oper-
ations Research Society of Japan 3: 27-87, 1960.

14 R. W. Irving. Greedy Matchings. University of Glasgow, Computing Science Department
Research Report, TR-2003-136, 2003.

15 R.W. Irving, T. Kavitha, K. Mehlhorn, D. Michail and K. E. Paluch. Rank-maximal match-
ings. In ACM Transactions on Algorithms 2(4): 602-610, 2006.

16 T. Kavitha and C. D. Shah. Efficient Algorithms for Weighted Rank-Maximal Matchings
and Related Problems. In 17th ISAAC: 153-162, 2006.

17 K. Mehlhorn and D. Michail. Network Problems with Non-Polynomial Weights and Applic-
ations. Available at www.mpi-sb.mpg.de/~mehlhorn/ftp/HugeWeights.ps.

18 D. Michail. Reducing rank-maximal to maximum weight matching. In Theoretical Computer
Science 389(1-2): 125-132, 2007.

19 M. Mucha and P. Sankowski. MaximumMatchings via Gaussian Elimination. In 45th FOCS:
248-255, 2004.

20 K. Paluch. Capacitated Rank-Maximal Matchings. In 8th CIAC: 324-335, 2013.
21 P. Sankowski. Shortest Paths in Matrix Multiplication Time. In 13th ESA: 770-778, 2005.
22 P. Sankowski. Maximum weight bipartite matching in matrix multiplication Time. In The-

oretical Computer Science 410: 4480-4488, 2009.
23 C. Sng Efficient Algorithms for bipartite matching problems with preferences Ph.D. thesis,

University of Glasgow, 2008.
24 R. Yuster and U. Zwick. Answering distance queries in directed graphs using fast matrix

multiplication. In 46th FOCS: 90-100, 2005.

www.mpi-sb.mpg.de/~mehlhorn/ftp/HugeWeights.ps

	Introduction
	Background

	Our Combinatorial Technique for fair matchings
	Solving the dual problem
	Our main algorithm

	The fair b-matching problem: our scaling technique

