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Abstract
We consider the following document ranking problem: We have a collection of documents, each
containing some topics (e.g. sports, politics, economics). We also have a set of users with diverse
interests. Assume that user u is interested in a subset Iu of topics. Each user u is also associated
with a positive integer Ku, which indicates that u can be satisfied by any Ku topics in Iu. Each
document s contains information for a subset Cs of topics. The objective is to pick one document
at a time such that the average satisfying time is minimized, where a user’s satisfying time is the
first time that at least Ku topics in Iu are covered in the documents selected so far.

Our main result is an O(ρ)-approximation algorithm for the problem, where ρ is the al-
gorithmic integrality gap of the linear programming relaxation of the set cover instance defined
by the documents and topics. This result generalizes the constant approximations for generalized
min-sum set cover and ranking with unrelated intents and the logarithmic approximation for the
problem of ranking with submodular valuations (when the submodular function is the coverage
function), and can be seen as an interpolation between these results. We further extend our
model to the case when each user may be interested in more than one sets of topics and when
the user’s valuation function is XOS, and obtain similar results for these models.
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1 Introduction

1.1 Background
In a typical information retrieval application, we have a set of users and a set of documents.
Each user issues a query and we would like to present the user with a rank list of the
documents. Hopefully, the top-ranked documents are relevant to the user and our general
objective is to maximize the overall user satisfaction. In many IR applications, the probabilistic
ranking principle (PRP) is considered as a common rule of thumb to rank the documents [33].
PRP states that we should rank the documents in descending order by their probability of
relevance and it is the “optimal” way to rank the documents in the sense that PRP minimizes
the expected loss (also known as the Bayes risk) under 1/0 loss [28]. However, the 0/1 loss
metric does not directly relate to the users’ satisfaction and sometimes the ranking given by
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PRP is clearly suboptimal. Indeed, even the original paper [33] provided such an example
(the example was discovered by W.S.Cooper).

I Example 1. [33] The class of users consists of two subclasses U1 and U2. U1 has 100 users
and U2 has 50 users. Any user from U1 would be satisfied with any document s1–s9, but no
others. Any user from U2 would be satisfied with only s10. If we consider any document
s1–s9 on its own, it has a probability of 2/3 of being relevant to the next user (the ranking
algorithm does not know which subclass the user belongs to). Similarly, s10 has a probability
of 1/3 of being relevant. Therefore, by PRP, the ranking should be s1, s2, . . . , s9, s10. But
this means that U1 users can be satisfied with s1 while U2 users have to see nine irrelevant
documents before they retrieve s10. Consider the ranking s1, s10, s2, . . . , s9. U1 users are still
satisfied by the first document, but U2 users are satisfied with the second document, which
is much better than the ranking defined by PRP.

The action of placing several documents aimed at different types of users at the top
positions of the rank list (e.g. place s1 and s2 as the top-2 in the above example) is called
diversification. It is a widely accepted fact that diversification of the ranking result is helpful
in minimizing the risk of user dissatisfaction in a multiuser scenario (See, e.g., [32, 16, 20, 4]).
Example 1 is a simple yet instructive illustration why the diverse intents and the correlations
of the documents (s1–s9 are correlated in a way that any of them could satisfy a U1 user)
are the major reasons for diversification.

1. Diverse intentions. Different users may have different intents towards the same query
(e.g., a keyword). However, the ranking algorithm does not know the actual type of
an individual user but has to use the same ranking function for the same query. In
Example 1, there are two user types U1 and U2, and the next user could be either of them.
Considering another real life example, the keyword “Michael Jordan" may refer to the
famous NBA player in one query, and the U.C. Berkeley Professor in another search.

2. Correlations among documents. Typically, the utility a user can obtain from a set of
documents is not the sum of the utilities from individual documents in the set. This is
because of the similarity (or dissimilarity) of the documents. For instance, the utility
of two very similar documents is not much more than the utility of one of them (e.g.,
documents s1 and s2 in Example 1). Such correlations can be seen as another cause of
diversification of the ranking result (see e.g., [16]).

1.2 Problem Formulation
In this section, we propose our model for diversification, which captures both the diversity of
users’ intents and the correlations of the documents.

I Definition 2 (Ranking with Diverse Intents and Correlated Contents (RDC)). Here, we
have a set U of users, a set S of documents, and a set E of topics. Each user u is
interested in a subset Iu of topics. Each user u is also associated with a positive in-
teger Ku which is less or equal to |Iu|. Each document s contains a subset Cs of top-
ics and E =

⋃
s∈S Cs. The objective is to pick an ordering of all documents such that

the average satisfying time is minimized, where a user’s satisfying time tu = min{t |
at least Ku topics in Iu are covered by the first t selected documents}.

It is not hard to see that our RDC model captures both the diversity of the users’ intents
(i.e., each user is interested in a different subset of topics) and the correlations among
documents (i.e., different documents may have some common topics). Now, we discuss some
closely related prior work and their relations with our model.
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1. Ranking with multiple intents (R-Multi) [4]: Azar et al. proposed the following com-
binatorial model to capture the diversity of user preferences. We have a set U of users
and a set S of documents. User u can be satisfied with any Ku document from a subset
Iu of documents. The objective is the same as ours, to minimize the cumulative users’
satisfying time. We can see that it is a special case of RDC where each document contains
a distinct topic.

2. Ranking with unrelated intents (R-Unrel) [2]: This model is a generalization of R-Multi.
For each user u and a document s, there is a nonnegative number Aus that is the amount
of utility u can get from s. u is satisfied if she accumulates at least Ku units of utility.
The objective is same as R-Multi. It is also not hard to see that R-Unrel is a special case
of RDC where each document contains Aus distinct topics 1.

3. Ranking with submodular intents (R-Submod) [3]: The model is a generalization of
both R-Multi and R-Unrel. For each user u, there is a nonnegative submodular function
fu : {0, 1}S → R+ ∪ {0}. u is satisfied if the set S of documents she gets is such that
fu(S) ≥ 1. The objective is same as before. R-Submod generalizes RDC (as well as R-Multi
and R-Unrel). If the submodular function fu is the coverage function 2, R-Submod is
equivalent to RDC.

1.3 Our results
We find that the approximability of RDC is closely related with the (algorithmic) integrality
gap of the underlining set cover instance induced by the documents and topics. In particular,
we can show the following result. Let F ⊆ E be a subset of topics. We denote SC(F ) the set
cover instance formed by the subsets Cs : s ∈ S and the set of topics in F . Let LP(SC(F ))
be the natural linear programming relaxation for SC(F ):

minimize
∑
s∈S

xs

subject to
∑

s:e∈Cs,s∈S
xs ≥ 1 ∀e ∈ F

xs ≥ 0 ∀s ∈ S

I Theorem 3. Suppose for any F ⊆ E, there is a polynomial time algorithm that can produce
a solution for SC(F ) whose cost is at most ρ times the optimal value of LP(SC(F )). There is
a polynomial time factor O(ρ) approximation algorithm for RDC.

First, we can see that Theorem 3 produces O(1) factor approximation for both R-Multi
and R-Unrel. As we mentioned before, if we view R-Multi and R-Unrel as special cases of RDC,
the induced set cover instances have very simple structure: each set (document) consists of a
disjoint set of elements (topics). In both R-Multi and RDC, the integrality gap of LP(SC(F ))
is 1 for any F ⊆ E and we can find an integral optimal solution in polynomial time (the
algorithm trivially includes all subsets that contains at least one element in F ). Hence, ρ = 1
and we have a constant factor approximation algorithm. Therefore, our result generalizes
the constant approximations for R-Multi in [5, 34, 24] and that for R-Unrel in [2].

1 It is a polynomial time reduction if max Aus is a positive polynomially bounded integer. However, our
analysis works even if Aus is exponentially large, since the corresponding set cover instance LP(SC(F ))
can be solved (trivially) in polynomial time.

2 The set of documents and the set of topics in Iu form a set cover instance, where Iu is the subset of
topics which user u is interested in. For S ⊆ S, the coverage function f(S) is the number of topics in
Iu covered by some document in S.

FSTTCS 2013



354 Ranking with Diverse Intents and Correlated Contents

For R-Submod, Azar et al. showed that there is an O(log 1
ε ) approximation for the problem

where ε is the minimum non-zero marginal value for fis [3]. If the submodular functions
are coverage function, the result translates to an O(log |E|)-approximation. It is well known
that we can round any fractional solution of LP(SC(F )) to an integral solution such that the
cost of the integer solution is at most log |E| of the value of the fractional solution. Hence,
Theorem 3 also gives an O(log |E|)-approximation, reproducing the result in [3] for R-Submod
with coverage functions (with a somewhat larger constant hidden in the big-O notation).

Our result can be seen as an interpolation between the constant approximation for R-Multi
and R-Unrel (which induce trivial set cover instances) and the logarithmic approximation for
R-Submod(which may induce arbitrary set cover instances). Besides the above implications
on previous problems, Theorem 3 is also interesting since typically the set cover instances
induced by the documents and topics are much easier to approximate than general set cover
problem. We provide some useful examples.
1. In R-Multi and R-Unrel, the induced set cover instances are trivial and can be solved

optimally.
2. Consider another interesting example where each topic is covered by at most d documents.

It is known that we can obtain a d-approximation by a simple deterministic rounding or
primal-dual techniques (see e.g. [36]). Hence, in this case, we have an O(d)-approximation
for RDC.

3. Suppose the VC dimension of the set system (E ,S) is d. It is well known that we can
achieve an approximation factor of O(d log τ) via the LP approach [17], where τ is the
optimum LP value (O(d log OPT) is known even earlier via a non-LP approach [11]). In
many cases, O(d log τ) can be much smaller than O(log |E|).

4. For some geometric set cover problems, we can achieve sub-logarithmic factor approx-
imation algorithms using LP approaches. For example, if each subset corresponds to
a unit disk in the plane and each element corresponds to a point, there is a constant
approximation [31]. For general disk graphs, a 2O(log∗ |E|)-approximation is known [35].
Several sub-logarithmic factor approximation algorithms are known for certain geometric
set cover problems via other techniques, such as local search or dynamic programming [1,
30, 19, 12]. However, it is not clear how to combine those techniques with our LP
approach. We leave this as an interesting open question.

Even though the real world topics and documents may not necessarily have low VC-dimension
or match any geometric set cover instance, it is still our general belief that the real world
instance do not form arbitrary set system and the particularity of those instances may help
us to develop sub-logarithm factor approximations, which further implies that RDC can be
approximated within the same factor (up to a constant). Exploring the particularity of the
real world instances is left as an open question of great importance.

1.4 Related work
Azar et al. [4] introduced R-Multi and first gave an O(logn) factor approximation algorithm.
Bansal et al. [5] improved the approximation ratio to a constant (a few hundreds). Sub-
sequently, the constant was further reduced to about 28 in [34], and then to 12.4 [24]. An
important special case of R-Multi, where Ku = 1 for each u, is called the min-sum set cover
problem. Feige et al. [18] developed a 4-approximation and proved that it is NP-hard to
achieve an approximation factor of 4− ε for any constant ε > 0. In fact, it is conjectured that
R-Multi can also be approximated within a factor of 4 [24]. Another special case of R-Multi
where Ku = |Iu| has also been studied under the name of minimum latency set cover and
it is known that there is a polynomial time approximation algorithm with factor 2 [22, 25],
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which is also optimal assuming a variant of the Unique Games Conjecture [8]. Im et al. [23]
considered a generalization of R-Submod where there is metric switching cost and gave a
poly-logarithmic factor approximation algorithm for it.

There is a huge literature on search result diversification in IR and DB literature. We refer
interested readers to [16, 20, 9] and the references therein. In practice, the overall satisfying
time as defined above is not a direct measure of the overall user satisfaction. Alternative
measures have been proposed in the literature, such as discounted cumulative gain (DCG)
and mean average precision (MAP). Bansal et al. considered R-Multi with DCG being the
objective function and obtained an O(log logn)-approximation [7].

2 A Constant Factor Approximation Algorithm

In this section, we will prove Theorem 3 by giving a randomized LP rounding algorithm.

2.1 The LP Relaxation
We use the following linear program relaxation. Here we use boolean variable xst to represent
whether document s is selected at time t. yut indicates if user u is satisfied after time t. zst
represents if document s has been selected at time t.

(LP) :

minimize
∑
u∈U

n∑
t=1

(1− yut) (1)

subject to
n∑
t=1

xst = 1 ∀s ∈ S (2)∑
s∈S

xst = 1 ∀t ∈ [n] (3)

zst =
t∑

t′=1
xst′ ∀t ∈ [n] (4)∑

e∈Iu

(yut −min{
∑
s:e∈Cs

zst, 1}) ≤ (|Iu| −Ku)yut ∀u ∈ U , t ∈ [n] (5)

xst, yut, zst ∈ [0, 1] ∀s ∈ S, u ∈ U , t ∈ [n] (6)

Constraints (2) and (3) make sure that a document can be selected only once and each
time we pick one document. The meaning of zst is captured in constraints (4). Constraints (5)
guarantee that a user u is satisfied if less than |Iu|−Ku topics havn’t been covered. However,
it is known that the integrality gap of this LP is unbounded (even for R-Multi) [5]. To remedy
this, [5] uses the knapsack cover constraints to replace the simple covering constraints (5)
In our case, we define S(e, u, F ) = {s | e ∈ Cs, s ∈ T2(u, F )} where T1(u, F ) is the set of all
documents that cover at least Ku − |F | topics in Iu\F , and T2(u, F ) = S\T1(u, F ). And we
use the following constraints instead of (5):

yut(Ku − |F |) ≤ (Ku − |F |)
∑

s∈T1(u,F )

zst +
∑

e∈Iu\F

∑
s∈S(e,u,F )

zst

∀u ∈ U , t ∈ [n], F ⊆ Iu, |F | ≤ Ku (7)

Constraints (7) differ from the knapsack cover constraints in [5] in that we handle sets T1
and T2 seperately, for technical reason that will be clear from the analysis.

FSTTCS 2013
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Now we show that (LP) is indeed an LP relaxation of RDC. We just need to prove that
any feasible solution to RDC satisfies constraints (7): If yut = 0, the inequality must be
true because the left side is 0. If yut = 1, there are two cases. The first case is that at
least one document in T1(u, F ) has been selected, which means

∑
s∈T1(u,F ) zst ≥ 1. The

other case is that at least (Ku − |F |) topics have related document in T2(u, F ), which means∑
e∈Iu\F

∑
s∈S(e,u,F ) zst ≥ (Ku − |F |). Therefore both cases satisfy the inequality. So we

have proved the following lemma:

I Lemma 4. The optimal value OPTLP of (LP) is at most the optimal total satisfying time
of RDC.

2.2 A Randomized Rounding Algorithm

Assume (x∗, y∗, z∗) be the optimal fractional solution to (LP). We also assume that for any
F ⊆ E , there is a poly-time algorithm AlgoSC which can produce an integral solution for
SC(F ) whose cost is at most ρ times the value of the fractional optimal solution to LP(SC(F )).
Our randomized rounding scheme consists of dlogne+ 1 rounds, where in the k-th round, we
perform the following procedure.

Let t = 2k, Gk = ∅ and pe = min{1, 50
∑
s:e∈Cs z

∗
st}, ∀e ∈ E .

Let Pk = {e ∈ E , pe = 1}. Let the set Hk ⊆ S be the solution of AlgoSC(SC(Pk)).
For each s ∈ S\Hk, add document s to Gk independently with probability min{1, 50z∗st}.
If there are more than (70+ρ) ·2k documents in Hk∪Gk, we say this round is "overflowed"
and select nothing, else we select all the documents in Hk ∪Gk in arbitrary order in this
round.

Our algorithm builds on the ideas developed in [5] (as well as [2]). A key technical difference
between our algorithm and [5] is that we need to deal with those topics that are almost
covered (i.e., the set Pk) and the rest separately. It will be clear soon from the analysis, for a
particular user u, independent rounding (step 3) can guarantee that, at a cost not much more
than the fractional optimal, topics in Iu\Pk are covered with constant probability. For these
topics, we can use a Chernoff-like concentration result for submodular functions to show this.
Topics in Iu ∩ Pk are handled separately by AlgoSC to make sure they are covered in the
k-th round. This is where the approximiblity of the set cover instance jumps in.

2.3 The Analysis

Constraints (4) and (6) show that the optimal solution z∗st is monotonically non-decreasing
with t for all s ∈ S. Thus it’s easy to see that y∗ut is monotonically non-decreasing with t for
all u ∈ U .

For each u ∈ U , let t∗u = max{t ∈ [n] | y∗ut ≤ 1
2}, then

∑n
t=1(1− y∗ut) ≤

∑t∗u
t=1(1− y∗ut) ≤

1
2 t
∗
u. Thus we have the fact that OPTLP ≥ 1

2
∑
u t
∗
u.

Before we start to prove our Theorem 3, we need the following Chernoff-type bounds:

I Lemma 5. If X1, X2, . . . , Xn are independent {0, 1}-valued random variables with X =∑
iXi such that E[X] = µ, then we have that

1. [29] Pr[X < (1− δ)µ] ≤ e− δ
2

2 µ.
2. [10] Pr[X > µ+ β] ≤ exp(− β2

2µ+ 2
3β

).
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I Lemma 6. [13] Let f : {0, 1}n → R+ be a monotone submodular function with marginal
values in [0, 1]. Let µ = E[f(X1, . . . , Xn)]. Then for any δ > 0,

Pr
[
f(X1, . . . , Xn) ≤ (1− δ)µ

]
≤ e− δ

2
2 µ.

We now give the following lemma:

I Lemma 7. For any user u ∈ U and a non-overflowed round k such that 2k ≥ t∗u, the
probability that Hk ∪Gk does not satisfy u is at most 0.023.

Proof. Fix a user u. Consider constraints (7) for F = Pk ∩ Iu and t = 2k. If |F | ≥ Ku, u
is clearly satisfied in this phase because all the documents in Hk are selected in this round.
Therefore, we consider the case where |F | < Ku. From constraints (7) we know that:

(Ku − |F |)
∑

s∈T1(u,F )

z∗st +
∑

e∈Iu\F

∑
s∈S(e,u,F )

z∗st ≥ y∗ut(Ku − |F |) ≥
1
2(Ku − |F |).

Here, either
∑
s∈T1(u,F ) z

∗
st must be greater or equal to 1

5 , or
∑
e∈Iu\F

∑
s∈S(e,u,F ) z

∗
st

must be greater or equal to 3
10 (Ku − |F |).

In the case of
∑
s∈T1(u,F ) z

∗
st ≥ 1

5 . If there is an s ∈ T1(u, F ) such that 50zst ≥ 1, then s is
selected and user u is satisfied. Otherwise, since we select documents independently in our
algorithm and the expected number of selected documents in T1(u, F ) is

E
[
|(Gk ∪Hk) ∩ T1(u, F )|

]
=

∑
s∈T1(u,F )\Hk

50z∗st + |T1(u, F ) ∩Hk| ≥
∑

s∈T1(u,F )

50z∗st ≥ 10.

From Lemma 5 (4a), we know that the probability that Hk ∪Gk contains less than one
document in T1(u, F ) is

Pr
[
|(Gk ∪Hk) ∩ T1(u, F )| < (1− 9

10) · 10
]
≤ exp(−

( 9
10 )2

2 · 10) < 0.018.

Therefore the probability that user u is not satisfied byHk∪Gk in this case is at most 0.018.

In the case of
∑
e∈Iu\F

∑
s∈S(e,u,F ) z

∗
st ≥ 3

10 (Ku − |F |), assume boolean vector w =
{ws} ∈ {0, 1}|T2(u,F )| indicates the selected documents in T2(u, F ). Let submodular func-
tion f(w) =

∑
e∈Iu\F min{1,

∑
s∈S(e,u,F ) ws}, i.e. the number of topics in Iu\F that the

selection of documents w covers. Suppose zt = {z∗st}s∈T2(u,F ) to be a random 0/1 vector
that is obtained as follows: Independently set z∗st to be 0 with probability (1 − 50z∗st) if
s ∈ T2(u, F )\Hk, and 1 otherwise. Since for any e ∈ Iu\F ,

∑
s:e∈Cs z

∗
st <

1
50 (see the

definition of F and Pk), we can find:

E
[
f(zt)

]
=

∑
e∈Iu\F

Pr
[
e is covered by zt

]
=

∑
e∈(Iu\F )\

⋃
s∈Hk

Cs

(1−
∏

s∈S(e,u,F )
(1− 50z∗st)) + |{e | e ∈ (Iu\F ) ∩

⋃
s∈Hk

Cs}|

≥
∑

e∈Iu\F
(1−

∏
s∈S(e,u,F )

(1− 50z∗st))

≥
∑

e∈Iu\F
(1−

∏
s∈S(e,u,F )

e−50z∗st)

≥
∑

e∈Iu\F
(1− exp(−

∑
s∈S(e,u,F )

50z∗st))

≥
∑

e∈Iu\F
(1− 1

e )
∑

s∈S(e,u,F )
50z∗st

≥ (1− 1
e )15(Ku − |F |)

FSTTCS 2013
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where the penultimate inequality is because (1− e−x) ≥ (1− 1
e )x, ∀x ∈ [0, 1].

From Lemma 6, we know that

Pr[f(zt) ≤ |Ku| − |F |] = Pr[f(zt) ≤ (1− 14e− 15
15e− 15)] ≤ e−( 14e−15

15e−15 )2 15e−15
2e < 0.023.

This shows that the probability that user u is not satisfied by Hk ∪Gk in this case is at
most 0.023, which complete the proof of Lemma 7. J

I Lemma 8. The probability that the algorithm "overflowed" in round k is at most 0.03.

Proof. First we show |Hk| ≤ ρ× 2k. It is easy to see that z = {zst}s∈S is a feasible solution
of LP(SC(Pk))). By our assumption on AlgoSC, we have that

|Hk| ≤ ρ
∑
s∈S

z∗st = ρ
∑
s∈S

t∑
t′=1

x∗st′ = ρ

t∑
t′=1

∑
s∈S

x∗st′ = ρ · 2k.

where the last equation is because t = 2k in round k.
Therefore, it is suffice to show that Pr[|Gk| ≥ 70 · 2k] < 0.03. In our setting,

E
[
|Gk|

]
=

∑
s∈S\Hk

min{1, 50z∗st} ≤
∑
s∈S

50z∗st =
∑
s∈S

t∑
t′=1

50x∗st′ =
t∑

t′=1

∑
s∈S

50x∗st′ = 50 · 2k.

From Lemma 5 (4b), we know that

Pr
[
|Gk| > 50 · 2k + 20 · 2k

]
≤ exp(− 400 · 22k

100 · 2k + 40
3 · 2k

) < 0.03.

J

Now we will prove our Theorem 3.

Proof. Let Satisfy(u) denote the satisfying time of u in our algorithm. From constraints
(2), (3) and (4), we know that z∗sn = 1 for all s ∈ S, thus all the users must be satisfied after
dlogne+ 1 rounds. If some user u is satisfied before the dlog t∗ueth round, the satisfying time
Satisfy(u) ≤ 2dlog t∗ue.

Otherwise, if some user u is satisfied after the dlog t∗ueth round, since we select at most
(70 + ρ)2k documents in each round, the satisfying time of user u is at most 2 · (70 + ρ)2k
if he is satisfied in the k-th round. From Lemma 7 and Lemma 8, we know that the
probability that user u isn’t satisfied after the k-th round where 2k ≥ t∗u is less than
1− (1− 0.023)× (1− 0.03) < 0.053. Notice that the probability is independent in each round,
we get the expected total satisfying time:

E
[ ∑
u∈U

Satisfy(u)
]
≤

∑
u∈U

(2 · (70 + ρ)2dlog t∗ue +
dlogne+1∑

i=dlog t∗ue+1
(70 + ρ)2i · 0.053i−dlog t∗ue)

≤
∑
u∈U

((140 + 2ρ)t∗u + (70 + ρ)t∗u
∞∑
i=1

0.106i)

< (149 + 2.12ρ)
∑
u∈U

t∗u

< (298 + 4.3ρ)OPTLP = O(ρOPT).

This complete the proof of Theorem 3 from Lemma 4. J
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2.4 Solving the LP
In order to use the ellipsoid method to find the optimal solution, a polynomial-time separation
oracle is needed [21]. (7) contains exponentially many inequalities and it is infeasible to
verify all of them. However, we can use the trick mentioned in [2]: Instead of finding a
solution which satisfies all constraints, we only need one that satisfies the constraints we
need in the analysis. Note that in our analysis, we only consider one knapsack inequality
in each round where F = Pk ∩ Iu and t = 2k. Thus if there is a solution satisfies all these
dlogne+ 1 inequalities in (7) as well as other constraints in (2), (3), (4) and (6), it is enough
for our algorithm even if it is not a feasible solution for (LP). Therefore in each iteration of
the ellipsoid method, we just need to examine polynomial many constraints.

3 Extensions

3.1 Ranking with Groups of Intents and Correlated Contents (RGC)
Now we extend RDC to the problem that each user u may interest in more than one sets
of topics Iu1, Iu2, . . . , Iup, and a user is satisfied if at least one of these groups is satisfied,
where p is at most polynomial of n. Same as RDC, a set Iui is satisfied if Kui topics in Iui
are covered. This time we could change our relaxed LP as follows:

minimize
∑
u∈U

n∑
t=1

(1− yut)

subject to
n∑
t=1

xst = 1 ∀s ∈ S∑
s∈S

xst = 1 ∀t ∈ [n]

yut ≤ maxi{guit} ∀u ∈ U , t ∈ [n]

zst =
t∑

t′=1
xst′ ∀t ∈ [n]

guit(Kui − |F |) ≤ (Kui − |F |)
∑

s∈T1(u,i,F )
zst +

∑
e∈Iu\F

∑
s:e∈Cs,s∈T2(u,i,F )

zst

∀i ∈ [p], u ∈ U , t ∈ [n], F ⊆ Iui, |F | ≤ Kui

xst, yut, zst, guit ∈ [0, 1] ∀s ∈ S, u ∈ U , t ∈ [n], i ∈ [p]

where T1(u, i, F ) is the set of all documents that cover at least Kui − |F | objects in Iui\F ,
T2(u, i, F ) = S\T1(u, i, F ), and guit indicates if for user u, group i is satisfied after time t.

The algorithm and analysis are almost the same as in RDC, so we won’t talk about it
more. Finally we get Theorem 9.

I Theorem 9. Suppose for any F ⊆ E, there is a polynomial time algorithm that can produce
a solution for SC(F ) whose cost is at most ρ times the optimal value of LP(SC(F )). There is
a polynomial time factor O(ρ) approximation algorithm for RGC.

3.2 Ranking with XOS Valuations (RXOS)
Notice that all the problems we have mentioned in this paper are special cases of R-Submod,
where the users’ satisfying functions are submodular functions of the set of documents. There
is another family of valuations called XOS. An XOS function is a set function which is the
maximum of several additive set functions. An additive set function f : {0, 1}S → R+ ∪ {0}
has the form f(F ) =

∑
s∈F As, ∀F ⊆ S, where As is a constant associated with each element

s ∈ S. Since the family of submodular functions is contained in XOS [26], R-Submod is a
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special case of RXOS.3 Suppose for each user, the XOS function contains only polynomial
number of additive set functions which are non-negative. We can give an O(1)-approximation
algorithm. (If the number of additive set functions is exponential, the best approximate rate
we can hope for is O(logn) since RXOS generates R-Submod.)

For each user u, suppose the additive set functions be fui, i ∈ [p], where fui(F ) =∑
s∈F Auis for F ⊆ S. Without lose of generality, we can let the satisfying time be

tu = min{t | maxi fui(the first t selected documents) ≥ 1}. Now we could have the following
LP relaxation:

minimize
∑
u∈U

n∑
t=1

(1− yut)

subject to
n∑
t=1

xst = 1 ∀s ∈ S∑
s∈S

xst = 1 ∀t ∈ [n]

yut ≤ maxi{guit} ∀u ∈ U , t ∈ [n]

zst =
t∑

t′=1
xst′ ∀t ∈ [n]

guit(1−
∑
s∈F

Auis) ≤ (1−
∑
s∈F

Auis)
∑

s∈T1(u,i,F )
zst +

∑
s∈T2(u,i,F )

Auiszst

∀i ∈ [p], u ∈ U , t ∈ [n], F ⊆ S,
∑
s∈F

Auis ≤ 1

xst, yut, zst, guit ∈ [0, 1] ∀s ∈ S, u ∈ U , t ∈ [n], i ∈ [p]

where T1(u, i, F ) = {s | Auis ≥ (1−
∑
e∈F Auie), s ∈ S}, T2(u, i, F ) = S\T1(u, i, F ), and guit

indicates if fui({the first t selected documents}) ≥ 1.
This time we do not need to consider the set cover instances, and the k-th round of our

algorithm can be:
Let t = 2k, Gk = ∅.
For each s ∈ S, add document s to Gk independently with probability min{1, 50z∗st}
If there are more than 70 · 2k documents in Gk, we say this round is "overflowed" and
select nothing, else we select all the documents in Gk in arbitrary order in this round.

All the discussions are the same as in section 2.3 except there is no Hk, and in the case
that

∑
s∈T2(u,i,F ) Auiszst ≥

3
10 (1 −

∑
s∈F Auis), we could have E

[∑
s∈T2(u,i,F ) Auisz

∗
st

]
≥

15(1−
∑
s∈F Auis) and use Lemma 6 directly.

Finally we can have the following theorem:

I Theorem 10. Suppose for each user, the XOS function contains only polynomial additive
set functions which are non-negative. There is an O(1)-approximation for RXOS.

4 Final Remarks

As we mentioned in the introduction, the real world document-topic instance do not form
arbitrary set system and may be easier to approximate than the general combinatorial
set cover problem. There is a huge literature on algorithms for classifying or clustering
the documents and modeling document-topic relations. Many of those works leverage the
underlining special structure of the document-topic instance to achieve good classification or

3 The number of additive set functions which are needed to represent a submodular function may be
exponential
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clustering. It is an interesting further direction to explore the connections to those works
and see whether the assumptions made or the special structures used in those works would
translate to interesting set cover instances that are easier to approximate.

We could extend our model in several ways to capture other factors that may affect the
search result. For example, we can capture that each user only has limited patience. We
can also incorporate uncertainty into the user preferences. Namely, a user is interested in
a particular document with a certain probability. The resulting stochastic version of the
problem may have a similar flavor with the sequential trial optimization defined in [15], the
probabilistic ranking problem [27] or the stochastic matching problem in [14, 6].

Finally, we note that our approximation algorithm is mainly of theoretical interests since
we need to use the ellipsoid algorithm to solve a linear program with exponential constraints,
which is computationally expensive in practice. Hence, developing more efficient algorithms
for RDC (even with worse performance guarantee) is of great practical interests.

Acknowledgements. Jian Li would like thank Yossi Azar for a stimulating discussion about
the RDC model and for providing the manuscript [2].
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